# Activation Maximisation - Synthesise an ideal image for a class - Maximise 1-hot output - Maximise [[Activation Functions#SoftMax|SoftMax]] ![am](../../../img/am.png) - **Use trained network** - Don't update weights - [[Architectures|Feedforward]] noise - [[Back-Propagation|Back-propagate]] [[Deep Learning#Loss Function|loss]] - Don't update weights - Update image ![am-process](../../../img/am-process.png) ## Regulariser - Fit to natural image statistics - Prone to high frequency noise - Minimise - Total variation - $x^*$ is the best solution to minimise [[Deep Learning#Loss Function|loss]] $$x^*=\text{argmin}_{x\in \mathbb R^{H\times W\times C}}\mathcal l(\phi(x),\phi_0)$$ - Won't work $$x^*=\text{argmin}_{x\in \mathbb R^{H\times W\times C}}\mathcal l(\phi(x),\phi_0)+\lambda\mathcal R(x)$$ - Need a regulariser like above ![am-regulariser](../../../img/am-regulariser.png) $$\mathcal R_{V^\beta}(f)=\int_\Omega\left(\left(\frac{\partial f}{\partial u}(u,v)\right)^2+\left(\frac{\partial f}{\partial v}(u,v)\right)^2\right)^{\frac \beta 2}du\space dv$$ $$\mathcal R_{V^\beta}(x)=\sum_{i,j}\left(\left(x_{i,j+1}-x_{ij}\right)^2+\left(x_{i+1,j}-x_{ij}\right)^2\right)^{\frac \beta 2}$$ - Beta - Degree of smoothing