--- tags: - ai - maths --- Error signal graph ![mlp-arch-graph](../../../img/mlp-arch-graph.png) 1. Error Signal - $e_j(n)=d_j(n)-y_j(n)$ 2. Net Internal Sum - $v_j(n)=\sum_{i=0}^mw_{ji}(n)y_i(n)$ 3. Output - $y_j(n)=\varphi_j(v_j(n))$ 4. Instantaneous Sum of Squared Errors - $\mathfrak{E}(n)=\frac 1 2 \sum_{j\in C}e_j^2(n)$ - $C$ = o/p layer nodes 5. Average Squared Error - $\mathfrak E_{av}=\frac 1 N\sum_{n=1}^N\mathfrak E (n)$ $$\frac{\partial\mathfrak E(n)}{\partial w_{ji}(n)}= \frac{\partial\mathfrak E(n)}{\partial e_j(n)} \frac{\partial e_j(n)}{\partial y_j(n)} \frac{\partial y_j(n)}{\partial v_j(n)} \frac{\partial v_j(n)}{\partial w_{ji}(n)} $$ #### From 4 $$\frac{\partial\mathfrak E(n)}{\partial e_j(n)}=e_j(n)$$ #### From 1 $$\frac{\partial e_j(n)}{\partial y_j(n)}=-1$$ #### From 3 (note prime) $$\frac{\partial y_j(n)}{\partial v_j(n)}=\varphi_j'(v_j(n))$$ #### From 2 $$\frac{\partial v_j(n)}{\partial w_{ji}(n)}=y_i(n)$$ ## Composite $$\frac{\partial\mathfrak E(n)}{\partial w_{ji}(n)}= -e_j(n)\cdot \varphi_j'(v_j(n))\cdot y_i(n) $$ $$\Delta w_{ji}(n)=-\eta\frac{\partial\mathfrak E(n)}{\partial w_{ji}(n)}$$ $$\Delta w_{ji}(n)=\eta\delta_j(n)y_i(n)$$ ## Gradients #### Output Local $$\delta_j(n)=-\frac{\partial\mathfrak E (n)}{\partial v_j(n)}$$ $$=- \frac{\partial\mathfrak E(n)}{\partial e_j(n)} \frac{\partial e_j(n)}{\partial y_j(n)} \frac{\partial y_j(n)}{\partial v_j(n)}$$ $$= e_j(n)\cdot \varphi_j'(v_j(n)) $$ #### Hidden Local $$\delta_j(n)=- \frac{\partial\mathfrak E (n)}{\partial y_j(n)} \frac{\partial y_j(n)}{\partial v_j(n)}$$ $$=- \frac{\partial\mathfrak E (n)}{\partial y_j(n)} \cdot \varphi_j'(v_j(n))$$ $$\delta_j(n)= \varphi_j'(v_j(n)) \cdot \sum_k \delta_k(n)\cdot w_{kj}(n)$$ ## Weight Correction $$\text{weight correction = learning rate $\cdot$ local gradient $\cdot$ input signal of neuron $j$}$$ $$\Delta w_{ji}(n)=\eta\cdot\delta_j(n)\cdot y_i(n)$$ - Looking for partial derivative of error with respect to each weight - 4 partial derivatives 1. Sum of squared errors WRT error in one output node 2. Error WRT output $y$ 3. Output $y$ WRT Pre-activation function sum 4. Pre-activation function sum WRT weight - Other [weights](../Weight%20Init.md) constant, goes to zero - Leaves just $y_i$ - Collect 3 boxed terms as delta $j$ - Local gradient - Weight correction can be too slow raw - Gets stuck - Add momentum ![mlp-local-hidden-grad](../../../img/mlp-local-hidden-grad.png) - Nodes further back - More complicated - Sum of later local gradients multiplied by backward weight (orange) - Multiplied by differential of activation function at node ## Global Minimum - Much more complex error surface than least-means-squared - No guarantees of convergence - Non-linear optimisation - Momentum - $+\alpha\Delta w_{ji}(n-1), 0\leq|\alpha|<1$ - Proportional to the change in weights last iteration - Can shoot past local minima if descending quickly ![mlp-global-minimum](../../../img/mlp-global-minimum.png) ![back-prop1](../../../img/back-prop1.png) ![back-prop2](../../../img/back-prop2.png) ![back-prop-equations](../../../img/back-prop-equations.png) $w^+_5=w_5-\eta\cdot\frac{\partial E_{total}}{\partial w_5}$ ![back-prop-weight-changes](../../../img/back-prop-weight-changes.png)