$$n=N_c\cdot e^{\frac{-(E_c-E_F)}{kT}}$$ $$p=N_v\cdot e^{\frac{-(E_F-E_v)}{kT}}$$ - $E_c$ is the position of the conduction band minimum - $E_v$ is the position of the valence band maxmimum - $k$ is Boltzmann's constant - $N_x$ are the effective density of states $$np=n_i^2$$ - $n_i$ = Intrinsic carrier concentration $$n_i=\sqrt{N_cN_v}e^{\frac{-E_g}{2kt}}$$ - $E_g$ = Band Gap = $E_c-E_v$ ## Substitutional Doping - Donated electrons are delocalised - Ions are immobile $$N_c \equiv 2 \left[ \frac{2\pi m_nkT}{h^2}\right]^{3/2}$$ $$N_v \equiv 2 \left[ \frac{2\pi m_pkT}{h^2}\right]^{3/2}$$