# Field - Set on which addition and multiplication defined - Behave same as on rational and real numbers - Subtraction, division implied - Examples - Rational numbers - Real numbers - Complex numbers - Any field can be used as scalars for a vector space - A commutative ring where 0 =/= 1 and all nonzero elements are invertible ## Vector Space - Set of vectors - Can be added together and multiplied by scalar - Can be scaled by complex numbers - Part of definitions - Must satisfy vector axioms