--- tags: - quantum --- $$\psi(r,\theta,\phi)=R(r)\cdot Y_{ml}(\theta, \phi)$$ Wave functions are products of Radial Function - $R_{n,l}(r)$ Spherical Harmonic - $Y_{ml}(\theta, \phi)$ Forms [Orbitals](Orbitals.md) Absolute value of wave function squared gives probability density of finding electron inside differential volume $dV$ centred on $r, \theta, \phi$ $$|\psi(r,\theta,\phi)|^2$$ ![wave-function-polar](../img/wave-function-polar.png) ![hydrogen-wave-function](../img/hydrogen-wave-function.png) ![wave-function-polar-segment](../img/wave-function-polar-segment.png) ![wave-function-nodes](../img/wave-function-nodes.png) ![hydrogen-electron-density](../img/hydrogen-electron-density.png) ![radius-electron-density-wf](../img/radius-electron-density-wf.png)