--- tags: - signals - maths --- Integral operator - Satisfies mathematical properties of integral operator - Product of two after one has been reversed and shifted $$x(t)=x_1(t)\circledast x_2(t)=\int_{-\infty}^\infty x_1(t-\tau)\cdot x_2(\tau)d\tau$$ # Properties 1. $x_1(t)\circledast x_2(t)=x_2(t)\circledast x_1(t)$ - Commutativity 2. $(x_1(t)\circledast x_2(t))\circledast x_3(t)=x_1(t)\circledast (x_2(t)\circledast x_3(t))$ - Associativity 3. $x_1(t)\circledast [x_2(t)+x_3(t)]=x_1(t)\circledast x_2(t)+ x_1(t)\circledast x_3(t)$ - Distributivity 4. $Ax_1(t)\circledast Bx_2(t)=AB[x_1(t)\circledast x_2(t)]$ - Associativity with Scalar 5. Symmetrical graph about origin 6. $y(t)=x_1(t-a)\circledast x_2(t-b)$ - $x(t)=x_1(t)\circledast x_2(t)$ - $y(t)=x(t-a-b)$ 7. $x(t)=x_1(t)\circledast x_2(t)$ - $x_1$ between $a_1$ and $b_1$ - $x_2$ between $a_2$ and $b_2$ - Starting point of $x(t)=a_1+a_2$ - Ending point of $x(t)=b_1+b_2$ 8. $\overline{x \circledast y}=\bar x \circledast \bar y$ 9. $(x \circledast y)'=x'\circledast y=x\circledast y'$ # Applications 1. Communications systems - Shift signal in frequency domain (Frequency modulation) 2. System analysis - Find system output given input and [transfer function](Transfer%20Function.md) # Polynomial Multiplication - Convolving coefficients of two poly gives coefficients of product # Discrete $$G[i,j]=H[u,v]\circledast F[i,j]$$ $$G[i,j]=\sum^k_{u=-k}\sum^k_{v=-k} H[u,v]F[i-u,j-v]$$