--- tags: --- - Limits output values - Squashing function # Threshold - For binary functions - Not differentiable - Sharp rise - *Heaviside function* - Unipolar - 0 <-> +1 - Bipolar - -1 <-> +1 ![threshold-activation](../../img/threshold-activation.png) # Sigmoid - Logistic function - Normalises - Introduces non-linearity - Alternative is $tanh$ - -1 <-> +1 - Easy to take derivative $$\frac d {dx} \sigma(x)= \frac d {dx} \left[ \frac 1 {1+e^{-x}} \right] =\sigma(x)\cdot(1-\sigma(x))$$ ![sigmoid](../../img/sigmoid.png) ### Derivative $$y_j(n)=\varphi_j(v_j(n))= \frac 1 {1+e^{-v_j(n)}}$$ $$\frac{\partial y_j(n)}{\partial v_j(n)}= \varphi_j'(v_j(n))= \frac{e^{-v_j(n)}}{(1+e^{-v_j(n)})^2}= y_j(n)(1-y_j(n))$$ - Nice derivative - Max value of $\varphi_j'(v_j(n))$ occurs when $y_j(n)=0.5$ - Min value of 0 when $y_j=0$ or $1$ - Initial [weights](Weight%20Init.md) chosen so not saturated at 0 or 1 If $y=\frac u v$ Where $u$ and $v$ are differential functions $$\frac{dy}{dx}=\frac d {dx}\left(\frac u v\right)$$ $$\frac{dy}{dx}= \frac {v \frac d {dx}(u) - u\frac d {dx}(v)} {v^2}$$ # ReLu Rectilinear - For deep networks - $y=max(0,x)$ - CNNs - Breaks associativity of successive [convolutions](../../Signal%20Proc/Convolution.md) - Critical for learning complex functions - Sometimes small scalar for negative - Leaky ReLu ![relu](../../img/relu.png) # SoftMax - Output is per-class vector of likelihoods - Should be normalised into probability vector ## AlexNet $$f(x_i)=\frac{\text{exp}(x_i)}{\sum_{j=1}^{1000}\text{exp}(x_j)}$$