--- tags: - ai - maths --- [Hidden Markov Models - JWMI Github](https://jwmi.github.io/ASM/5-HMMs.pdf) [Rabiner - A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition](https://www.cs.cmu.edu/~cga/behavior/rabiner1.pdf) - Stochastic sequences of discrete states - Transitions have probabilities - Desired output not always produced the same - Same pronunciation ![](../../../img/markov-state.png) $$P(X|M)=\left(\prod_{t=1}^Ta_{x_{t-1}x_t}\right)\eta_{x_T}$$ $$a_{x_0x_1}=\pi_{x_1}$$ # 1st Order - Depends only on previous state - Markov assumption $$P(x_t=j|x_{t-1}=i,x_{t-2}=h,...)\approx P(x_t=j|x_{t-1}=i)$$ - Described by state-transition probabilities $$a_{ij}=P(x_t=j|x_{t-1}=i), 1\leq i,j\leq N$$ - $\alpha$ - State transition - For $N$ states - $N$  by $N$ matrix of state transition probabilities # Weather ![](../../../img/markov-weather.png) $$A=\left\{a_{ij}\right\}=\begin{bmatrix} 0.4 & 0.3 & 0.3\\ 0.2 & 0.6 & 0.2 \\ 0.1 & 0.1 & 0.8 \end{bmatrix}$$ rain, cloud, sun across columns and down rows $$A=\{\pi_j,a_{ij},\eta_i\}=\{P(x_t=j|x_{t-1}=i)\}$$ # Start/End - Null states - Entry/exit states - Don't generate observations ![](../../../img/markov-start-end.png) $$\pi_j=P(x_1=j) \space 1 \leq j \leq N$$ - Sub $j$ because probability of kicking off into that state $$\eta_i=P(x_T=i) \space 1 \leq i \leq N$$ - Sub $i$ because probability of finishing from that state ![](../../../img/markov-start-end-probs.png) ![](../../../img/markov-start-end-matrix.png) # State Duration - Probability of staying in state decays exponentially $$p(X|x_1=i,M)=(a_{ii})^{\tau-1}(1-a_{ii})$$ ![](../../../img/markov-state-duration.png) - Given, $a_{33}=0.8$ - $\times0.8$ repeatedly - Stay in state