Fully [Convolution](../../../../Signal%20Proc/Convolution.md)al Network [Convolutional](../Convolutional%20Layer.md) and [up-convolutional layers](../UpConv.md) with [ReLu](../../Activation%20Functions.md#ReLu) but no others (pooling) - All some sort of Encoder-Decoder Contractive → [UpConv](../UpConv.md) # Image Segmentation - For visual output - Previously image $\rightarrow$ vector - Additional layers to up-sample representation to an image - Up-[convolution](../../../../Signal%20Proc/Convolution.md)al - De-[convolution](../../../../Signal%20Proc/Convolution.md)al ![fcn-uses](../../../../img/fcn-uses.png) ![fcn-arch](../../../../img/fcn-arch.png) # Training - Rarely from scratch - Pre-trained weights - Replace final layers - [FC](../../MLP/MLP.md) layers - White-noise initialised - Add [UpConv](../UpConv.md) layer(s) - Fine-tune train - Freeze others - Annotated GT images - Can use summed per-pixel log [loss](../../Deep%20Learning.md#Loss%20Function) # Evaluation ![fcn-eval](../../../../img/fcn-eval.png) - SDS - Classical method - 52% mAP - FCN - 62% mAP - Intersection over Union - IOU - Jaccard - Averaged over all images - $J(A,B)=\frac{|A\cap B|}{|A\cup B|}$