$$R=\frac{\rho L}{A}$$ - $R$ = Resistance - $\rho$ = Resistivity ($\Omega cm$) - $L$ = Length - $A$ = CS Area $$J=\sigma E$$ - $J$ = Current Density - $\sigma$ = Conductivity ($\frac{1}{\Omega cm}$) - $E$ = Electric Field $$V_{bi} = \frac{kT}{q}ln(\frac{N_D N_A}{n_i^2})$$ - $V_{bi}$ = Built-in Potential [[Doping]] $$J=nev$$ - $n$ = Charge Density - $e$ = Charge - $v$ = Drift Velocity $$v=\mu E$$ - $v$ = Drift Velocity - $\mu$ = Mobility - $E$ = Electric Field $$\sigma = ne\mu$$ $$\rho=\frac{1}{\sigma}$$ $$\sigma=q(\mu_nn+\mu_pp)$$ - $q$ = Electronic Charge - $\mu$ = Carrier Mobility ($\frac{cm^2}{Vs}$) $$1 eV = 1.602\times 10^{-19}J$$