vault backup: 2023-05-31 22:11:33
Affected files: .obsidian/workspace.json STEM/AI/Neural Networks/Activation Functions.md STEM/AI/Neural Networks/Transformers/Attention.md STEM/CS/ABI.md
This commit is contained in:
parent
1ad823d42c
commit
bfdc107e5d
@ -38,7 +38,7 @@ y_j(n)(1-y_j(n))$$
|
|||||||
- Nice derivative
|
- Nice derivative
|
||||||
- Max value of $\varphi_j'(v_j(n))$ occurs when $y_j(n)=0.5$
|
- Max value of $\varphi_j'(v_j(n))$ occurs when $y_j(n)=0.5$
|
||||||
- Min value of 0 when $y_j=0$ or $1$
|
- Min value of 0 when $y_j=0$ or $1$
|
||||||
- Initial [[Weight Init|weights]] chosen so not saturated at 0 or 1
|
- Initial [weights](Weight%20Init.md) chosen so not saturated at 0 or 1
|
||||||
|
|
||||||
If $y=\frac u v$
|
If $y=\frac u v$
|
||||||
Where $u$ and $v$ are differential functions
|
Where $u$ and $v$ are differential functions
|
||||||
@ -53,7 +53,7 @@ Rectilinear
|
|||||||
- For deep networks
|
- For deep networks
|
||||||
- $y=max(0,x)$
|
- $y=max(0,x)$
|
||||||
- CNNs
|
- CNNs
|
||||||
- Breaks associativity of successive [[convolution]]s
|
- Breaks associativity of successive [convolutions](../../Signal%20Proc/Convolution.md)
|
||||||
- Critical for learning complex functions
|
- Critical for learning complex functions
|
||||||
- Sometimes small scalar for negative
|
- Sometimes small scalar for negative
|
||||||
- Leaky ReLu
|
- Leaky ReLu
|
||||||
|
@ -6,8 +6,8 @@
|
|||||||
- Sigma pi units
|
- Sigma pi units
|
||||||
- Hyper-networks
|
- Hyper-networks
|
||||||
- Draw from relevant state at any preceding point along sequence
|
- Draw from relevant state at any preceding point along sequence
|
||||||
- Addresses [[RNN]]s vanishing gradient issues
|
- Addresses [RNNs](../RNN/RNN.md) vanishing gradient issues
|
||||||
- [[LSTM]] tends to poorly preserve far back [[Neural Networks#Knowledge|knowledge]]
|
- [LSTM](../RNN/LSTM.md) tends to poorly preserve far back [knowledge](../Neural%20Networks.md#Knowledge)
|
||||||
- Attention layer access all previous states and weighs according to learned measure of relevance
|
- Attention layer access all previous states and weighs according to learned measure of relevance
|
||||||
- Allows referring arbitrarily far back to relevant tokens
|
- Allows referring arbitrarily far back to relevant tokens
|
||||||
- Can be addd to [[RNN]]s
|
- Can be addd to [[RNN]]s
|
||||||
|
@ -2,7 +2,7 @@
|
|||||||
- Machine code therefore hardware-dependent
|
- Machine code therefore hardware-dependent
|
||||||
- API defines this structure in source code
|
- API defines this structure in source code
|
||||||
- Adherence usually responsibility of
|
- Adherence usually responsibility of
|
||||||
- [[Compilers]]
|
- [Compilers](Compilers.md)
|
||||||
- OS
|
- OS
|
||||||
- Library author
|
- Library author
|
||||||
|
|
||||||
@ -13,7 +13,7 @@
|
|||||||
- Stack organisation
|
- Stack organisation
|
||||||
- Memory access types
|
- Memory access types
|
||||||
- Size, layouts and alignments of basic data types
|
- Size, layouts and alignments of basic data types
|
||||||
- [[Calling Conventions]]
|
- [Calling Conventions](Calling%20Conventions.md)
|
||||||
- How function arguments are passed
|
- How function arguments are passed
|
||||||
- Stack or register
|
- Stack or register
|
||||||
- Which registers for which function param
|
- Which registers for which function param
|
||||||
@ -31,5 +31,5 @@
|
|||||||
# Embedded ABI
|
# Embedded ABI
|
||||||
- File format, data types, register usage, stack frame organisation, function parameter passing conventions
|
- File format, data types, register usage, stack frame organisation, function parameter passing conventions
|
||||||
- For embedded OS
|
- For embedded OS
|
||||||
- [[Compilers]] create object code compatible with code from other [[compilers]]
|
- [Compilers](Compilers.md) create object code compatible with code from other [compilers](Compilers.md)
|
||||||
- Link libraries from different [[compilers]]
|
- Link libraries from different [compilers](Compilers.md)
|
Loading…
Reference in New Issue
Block a user