vault backup: 2023-06-01 08:11:37
Affected files: .obsidian/graph.json .obsidian/workspace.json Money/Assets/Derivative.md STEM/AI/Neural Networks/CNN/Examples.md STEM/AI/Neural Networks/Deep Learning.md STEM/AI/Neural Networks/MLP/Decision Boundary.md STEM/CS/Languages/dotNet.md STEM/Semiconductors/Equations.md Tattoo/Engineering.md
This commit is contained in:
parent
236a5eac06
commit
b30da1d29c
@ -1,8 +1,8 @@
|
||||
# LeNet
|
||||
- 1990's
|
||||
![[lenet-1989.png]]
|
||||
![lenet-1989](../../../img/lenet-1989.png)
|
||||
- 1989
|
||||
![[lenet-1998.png]]
|
||||
![lenet-1998](../../../img/lenet-1998.png)
|
||||
- 1998
|
||||
|
||||
# AlexNet
|
||||
@ -11,7 +11,7 @@
|
||||
- [[Activation Functions#ReLu|ReLu]]
|
||||
- Normalisation
|
||||
|
||||
![[alexnet.png]]
|
||||
![alexnet](../../../img/alexnet.png)
|
||||
|
||||
# VGG
|
||||
2015
|
||||
@ -22,8 +22,8 @@
|
||||
- Similar kernel size throughout
|
||||
- Gradual filter increase
|
||||
|
||||
![[vgg-spec.png]]
|
||||
![[vgg-arch.png]]
|
||||
![vgg-spec](../../../img/vgg-spec.png)
|
||||
![vgg-arch](../../../img/vgg-arch.png)
|
||||
|
||||
# GoogLeNet
|
||||
2015
|
||||
@ -31,13 +31,13 @@
|
||||
- [[Inception Layer]]s
|
||||
- Multiple [[Deep Learning#Loss Function|Loss]] Functions
|
||||
|
||||
![[googlenet.png]]
|
||||
![googlenet](../../../img/googlenet.png)
|
||||
|
||||
## [[Inception Layer]]
|
||||
![[googlenet-inception.png]]
|
||||
![googlenet-inception](../../../img/googlenet-inception.png)
|
||||
## Auxiliary [[Deep Learning#Loss Function|Loss]] Functions
|
||||
- Two other SoftMax blocks
|
||||
- Help train really deep network
|
||||
- Vanishing gradient problem
|
||||
|
||||
![[googlenet-auxilliary-loss.png]]
|
||||
![googlenet-auxilliary-loss](../../../img/googlenet-auxilliary-loss.png)
|
@ -1,17 +1,17 @@
|
||||
![[deep-digit-classification.png]]
|
||||
![deep-digit-classification](../../img/deep-digit-classification.png)
|
||||
|
||||
# Loss Function
|
||||
Objective Function
|
||||
|
||||
- [[Back-Propagation]]
|
||||
- [Back-Propagation](MLP/Back-Propagation.md)
|
||||
- Difference between predicted and target outputs
|
||||
![[deep-loss-function.png]]
|
||||
![deep-loss-function](../../img/deep-loss-function.png)
|
||||
|
||||
- Test accuracy worse than train accuracy = overfitting
|
||||
- [[MLP|Dense]] = [[MLP|fully connected]]
|
||||
- Automates feature engineering
|
||||
|
||||
![[ml-dl.png]]
|
||||
![ml-dl](../../img/ml-dl.png)
|
||||
|
||||
These are the two essential characteristics of how deep learning learns from data: the incremental, layer-by-layer way in which increasingly complex representations are developed, and the fact that these intermediate incremental representations are learned jointly, each layer being updated to follow both the representational needs of the layer above and the needs of the layer below. Together, these two properties have made deep learning vastly more successful than previous approaches to machine learning.
|
||||
|
||||
@ -32,16 +32,16 @@ Predict
|
||||
Evaluate
|
||||
|
||||
# Data Structure
|
||||
- [[Tensor]] flow = channels last
|
||||
- [Tensor](../../Maths/Tensor.md) flow = channels last
|
||||
- (samples, height, width, channels)
|
||||
- Vector data
|
||||
- 2D [[tensor]]s of shape (samples, features)
|
||||
- 2D [tensors](../../Maths/Tensor.md) of shape (samples, features)
|
||||
- Time series data or sequence data
|
||||
- 3D [[tensor]]s of shape (samples, timesteps, features)
|
||||
- 3D [tensors](../../Maths/Tensor.md) of shape (samples, timesteps, features)
|
||||
- Images
|
||||
- 4D [[tensor]]s of shape (samples, height, width, channels) or (samples, channels, height, Width)
|
||||
- 4D [tensors](../../Maths/Tensor.md) of shape (samples, height, width, channels) or (samples, channels, height, Width)
|
||||
- Video
|
||||
- 5D [[tensor]]s of shape (samples, frames, height, width, channels) or (samples, frames, channels , height, width)
|
||||
- 5D [tensors](../../Maths/Tensor.md) of shape (samples, frames, height, width, channels) or (samples, frames, channels , height, width)
|
||||
|
||||
![[photo-tensor.png]]
|
||||
![[matrix-dot-product.png]]
|
||||
![photo-tensor](../../img/photo-tensor.png)
|
||||
![matrix-dot-product](../../img/matrix-dot-product.png)
|
@ -1,4 +1,3 @@
|
||||
![[hidden-neuron-decision.png]]
|
||||
![[mlp-xor.png]]
|
||||
|
||||
![[mlp-xor-2.png]]
|
||||
![hidden-neuron-decision](../../../img/hidden-neuron-decision.png)
|
||||
![mlp-xor](../../../img/mlp-xor.png)
|
||||
![mlp-xor-2](../../../img/mlp-xor-2.png)
|
@ -30,4 +30,4 @@
|
||||
- Portable executable (PE)
|
||||
- DLL, EXE
|
||||
|
||||
![[cli-infrastructure.png]]
|
||||
![cli-infrastructure](../../img/cli-infrastructure.png)
|
@ -11,7 +11,7 @@ $$J=\sigma E$$
|
||||
|
||||
$$V_{bi} = \frac{kT}{q}ln(\frac{N_D N_A}{n_i^2})$$
|
||||
- $V_{bi}$ = Built-in Potential
|
||||
[[Doping]]
|
||||
[Doping](Doping.md)
|
||||
$$J=nev$$
|
||||
- $n$ = Charge Density
|
||||
- $e$ = Charge
|
||||
|
Loading…
Reference in New Issue
Block a user