vault backup: 2023-06-02 17:17:29
Affected files: .obsidian/workspace-mobile.json .obsidian/workspace.json Lab/Scratch Domain.md Money/Econ.md STEM/AI/Classification/Classification.md STEM/AI/Classification/README.md STEM/AI/Classification/Supervised.md STEM/AI/Neural Networks/CNN/Examples.md STEM/AI/Neural Networks/CNN/FCN/FCN.md STEM/AI/Neural Networks/CNN/FCN/FlowNet.md STEM/AI/Neural Networks/CV/Filters.md STEM/img/coordinate-change.png STEM/img/gaussian-class.png Tattoo/Engineering.md Want.md
This commit is contained in:
parent
b30da1d29c
commit
1c441487f9
34
AI/Classification/Classification.md
Normal file
34
AI/Classification/Classification.md
Normal file
@ -0,0 +1,34 @@
|
|||||||
|
*Given an observation, determine one class from a set of classes that best explains the observation*
|
||||||
|
|
||||||
|
***Features are discrete or continuous***
|
||||||
|
|
||||||
|
- 2 category classifier
|
||||||
|
- Dichotomiser
|
||||||
|
|
||||||
|
# Argmax
|
||||||
|
Argument that gives the maximum value from a target function
|
||||||
|
|
||||||
|
# Gaussian Classifier
|
||||||
|
[Training](Supervised.md)
|
||||||
|
- Each class $i$ has it's own Gaussian $N_i=N(m_i,v_i)$
|
||||||
|
|
||||||
|
$$\hat i=\text{argmax}_i\left(p(o_t|N_i)\cdot P(N_i)\right)$$
|
||||||
|
$$\hat i=\text{argmax}_i\left(p(o_t|N_i)\right)$$
|
||||||
|
- With equal priors
|
||||||
|
|
||||||
|
![](../../img/gaussian-class.png)
|
||||||
|
|
||||||
|
# Discrete Classifier
|
||||||
|
- Each class $i$ has it's own histogram $H_i$
|
||||||
|
- Describes the probability of each observation type $k$
|
||||||
|
- $P(o_t=k|H_i)$, based on class-specific type counts
|
||||||
|
|
||||||
|
$$\hat i=\text{argmax}_i\left(P(o_t=k|H_i)\right)$$
|
||||||
|
- Nothing else known about classes
|
||||||
|
|
||||||
|
$$\hat i=\text{argmax}_i\left(P(o_t=k|H_i)\cdot P(H_i)\right)$$
|
||||||
|
- Given class priors $P(H_i)$
|
||||||
|
- Maximum posterior probability
|
||||||
|
- Bayes
|
||||||
|
|
||||||
|
![](../../img/coordinate-change.png)
|
1
AI/Classification/README.md
Symbolic link
1
AI/Classification/README.md
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
Classification.md
|
5
AI/Classification/Supervised.md
Normal file
5
AI/Classification/Supervised.md
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
|
||||||
|
# Gaussian Classifier
|
||||||
|
- With $T$ labelled data
|
||||||
|
|
||||||
|
$$q_t(i)=$$
|
@ -33,7 +33,7 @@
|
|||||||
|
|
||||||
![googlenet](../../../img/googlenet.png)
|
![googlenet](../../../img/googlenet.png)
|
||||||
|
|
||||||
## [[Inception Layer]]
|
## [Inception Layer](Inception%20Layer.md)
|
||||||
![googlenet-inception](../../../img/googlenet-inception.png)
|
![googlenet-inception](../../../img/googlenet-inception.png)
|
||||||
## Auxiliary [[Deep Learning#Loss Function|Loss]] Functions
|
## Auxiliary [[Deep Learning#Loss Function|Loss]] Functions
|
||||||
- Two other SoftMax blocks
|
- Two other SoftMax blocks
|
||||||
|
@ -3,7 +3,7 @@ Fully [[Convolution]]al Network
|
|||||||
[[Convolutional Layer|Convolutional]] and [[UpConv|up-convolutional layers]] with [[Activation Functions#ReLu|ReLu]] but no others (pooling)
|
[[Convolutional Layer|Convolutional]] and [[UpConv|up-convolutional layers]] with [[Activation Functions#ReLu|ReLu]] but no others (pooling)
|
||||||
- All some sort of Encoder-Decoder
|
- All some sort of Encoder-Decoder
|
||||||
|
|
||||||
Contractive → [[UpConv]]
|
Contractive → [UpConv](../UpConv.md)
|
||||||
|
|
||||||
# Image Segmentation
|
# Image Segmentation
|
||||||
- For visual output
|
- For visual output
|
||||||
@ -29,7 +29,7 @@ Contractive → [[UpConv]]
|
|||||||
- Can use summed per-pixel log [[Deep Learning#Loss Function|loss]]
|
- Can use summed per-pixel log [[Deep Learning#Loss Function|loss]]
|
||||||
|
|
||||||
# Evaluation
|
# Evaluation
|
||||||
![[fcn-eval.png]]
|
![fcn-eval](../../../../img/fcn-eval.png)
|
||||||
- SDS
|
- SDS
|
||||||
- Classical method
|
- Classical method
|
||||||
- 52% mAP
|
- 52% mAP
|
||||||
|
@ -3,9 +3,9 @@ Optical Flow
|
|||||||
- 2-Channel optical flow
|
- 2-Channel optical flow
|
||||||
- $dx,dy$
|
- $dx,dy$
|
||||||
- Two consecutive frames
|
- Two consecutive frames
|
||||||
- 6-channel [[tensor]]
|
- 6-channel [tensor](../../../../Maths/Tensor.md)
|
||||||
|
|
||||||
![[flownet.png]]
|
![flownet](../../../../img/flownet.png)
|
||||||
|
|
||||||
# [[Skip Connections]]
|
# [[Skip Connections]]
|
||||||
- Further through the network information is condensed
|
- Further through the network information is condensed
|
||||||
@ -14,13 +14,13 @@ Optical Flow
|
|||||||
- Append activation maps from encoder to decoder
|
- Append activation maps from encoder to decoder
|
||||||
|
|
||||||
# Encode
|
# Encode
|
||||||
![[flownet-encode.png]]
|
![flownet-encode](../../../../img/flownet-encode.png)
|
||||||
|
|
||||||
# [[Upconv]]
|
# [[Upconv]]
|
||||||
![[flownet-upconv.png]]
|
![flownet-upconv](../../../../img/flownet-upconv.png)
|
||||||
|
|
||||||
# Training
|
# Training
|
||||||
- Synthetic rendered objects
|
- Synthetic rendered objects
|
||||||
- Real background images
|
- Real background images
|
||||||
|
|
||||||
![[flownet-training.png]]
|
![flownet-training](../../../../img/flownet-training.png)
|
@ -1,2 +1,2 @@
|
|||||||
# Gabor
|
# Gabor
|
||||||
![[gabor.png]]
|
![gabor](../../../img/gabor.png)
|
BIN
img/coordinate-change.png
Normal file
BIN
img/coordinate-change.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 120 KiB |
BIN
img/gaussian-class.png
Normal file
BIN
img/gaussian-class.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 52 KiB |
Loading…
Reference in New Issue
Block a user