22 lines
600 B
Markdown
22 lines
600 B
Markdown
|
$$n=N_c\cdot e^{\frac{-(E_c-E_F)}{kT}}$$
|
|||
|
$$p=N_v\cdot e^{\frac{-(E_F-E_v)}{kT}}$$
|
|||
|
- $E_c$ is the position of the conduction band minimum
|
|||
|
- $E_v$ is the position of the valence band maxmimum
|
|||
|
- $k$ is Boltzmann's constant
|
|||
|
- $N_x$ are the effective density of states
|
|||
|
|
|||
|
$$np=n_i^2$$
|
|||
|
- $n_i$ = Intrinsic carrier concentration
|
|||
|
|
|||
|
$$n_i=\sqrt{N_cN_v}e^{\frac{-E_g}{2kt}}$$
|
|||
|
- $E_g$ = Band Gap = $E_c-E_v$
|
|||
|
|
|||
|
## Substitutional Doping
|
|||
|
|
|||
|
- Donated electrons are delocalised
|
|||
|
- Ions are immobile
|
|||
|
|
|||
|
$$N_c \equiv 2 \left[ \frac{2\pi m_nkT}{h^2}\right]^{3/2}$$
|
|||
|
$$N_v \equiv 2 \left[ \frac{2\pi m_pkT}{h^2}\right]^{3/2}$$
|
|||
|
|