2023-05-20 01:33:56 +01:00
|
|
|
$$R=\frac{\rho L}{A}$$
|
|
|
|
- $R$ = Resistance
|
|
|
|
- $\rho$ = Resistivity ($\Omega cm$)
|
|
|
|
- $L$ = Length
|
|
|
|
- $A$ = CS Area
|
|
|
|
|
|
|
|
$$J=\sigma E$$
|
|
|
|
- $J$ = Current Density
|
|
|
|
- $\sigma$ = Conductivity ($\frac{1}{\Omega cm}$)
|
|
|
|
- $E$ = Electric Field
|
|
|
|
|
|
|
|
$$V_{bi} = \frac{kT}{q}ln(\frac{N_D N_A}{n_i^2})$$
|
|
|
|
- $V_{bi}$ = Built-in Potential
|
2023-06-01 08:11:37 +01:00
|
|
|
[Doping](Doping.md)
|
2023-05-20 01:33:56 +01:00
|
|
|
$$J=nev$$
|
|
|
|
- $n$ = Charge Density
|
|
|
|
- $e$ = Charge
|
|
|
|
- $v$ = Drift Velocity
|
|
|
|
|
|
|
|
$$v=\mu E$$
|
|
|
|
- $v$ = Drift Velocity
|
|
|
|
- $\mu$ = Mobility
|
|
|
|
- $E$ = Electric Field
|
|
|
|
|
|
|
|
$$\sigma = ne\mu$$
|
|
|
|
$$\rho=\frac{1}{\sigma}$$
|
|
|
|
$$\sigma=q(\mu_nn+\mu_pp)$$
|
|
|
|
- $q$ = Electronic Charge
|
|
|
|
- $\mu$ = Carrier Mobility ($\frac{cm^2}{Vs}$)
|
|
|
|
$$1 eV = 1.602\times 10^{-19}J$$
|