stem/AI/Neural Networks/Weight Init.md

18 lines
424 B
Markdown
Raw Normal View History

vault backup: 2023-05-26 18:29:17 Affected files: .obsidian/graph.json .obsidian/workspace-mobile.json .obsidian/workspace.json STEM/AI/Neural Networks/Activation Functions.md STEM/AI/Neural Networks/CNN/CNN.md STEM/AI/Neural Networks/CNN/Convolutional Layer.md STEM/AI/Neural Networks/CNN/Examples.md STEM/AI/Neural Networks/CNN/GAN/CycleGAN.md STEM/AI/Neural Networks/CNN/GAN/DC-GAN.md STEM/AI/Neural Networks/CNN/GAN/GAN.md STEM/AI/Neural Networks/CNN/GAN/StackGAN.md STEM/AI/Neural Networks/CNN/GAN/cGAN.md STEM/AI/Neural Networks/CNN/Inception Layer.md STEM/AI/Neural Networks/CNN/Max Pooling.md STEM/AI/Neural Networks/CNN/Normalisation.md STEM/AI/Neural Networks/CV/Data Manipulations.md STEM/AI/Neural Networks/CV/Datasets.md STEM/AI/Neural Networks/CV/Filters.md STEM/AI/Neural Networks/CV/Layer Structure.md STEM/AI/Neural Networks/Weight Init.md STEM/img/alexnet.png STEM/img/cgan-example.png STEM/img/cgan.png STEM/img/cnn-cv-layer-arch.png STEM/img/cnn-descriptor.png STEM/img/cnn-normalisation.png STEM/img/code-vector-math-for-control-results.png STEM/img/cvmfc.png STEM/img/cyclegan-results.png STEM/img/cyclegan.png STEM/img/data-aug.png STEM/img/data-whitening.png STEM/img/dc-gan.png STEM/img/fine-tuning-freezing.png STEM/img/gabor.png STEM/img/gan-arch.png STEM/img/gan-arch2.png STEM/img/gan-results.png STEM/img/gan-training-discriminator.png STEM/img/gan-training-generator.png STEM/img/googlenet-auxilliary-loss.png STEM/img/googlenet-inception.png STEM/img/googlenet.png STEM/img/icv-pos-neg-examples.png STEM/img/icv-results.png STEM/img/inception-layer-arch.png STEM/img/inception-layer-effect.png STEM/img/lenet-1989.png STEM/img/lenet-1998.png STEM/img/max-pooling.png STEM/img/stackgan-results.png STEM/img/stackgan.png STEM/img/under-over-fitting.png STEM/img/vgg-arch.png STEM/img/vgg-spec.png STEM/img/word2vec.png
2023-05-26 18:29:17 +01:00
- Randomly
- Gaussian noise with mean = 0
- Small network
- Fixed sigma is fine
- 0.01
- E.g. 8 layers
- AlexNet
- Too large
- Wont converge
- Too small
- Gradient wont propagate back many layers
## Xavier System
$$\sigma=\frac 1 {n_{in}+n_{out}}$$
or
$$\sigma=\sqrt{2/n}$$
* Where $n=\text{filter size}\times n_{out}$
* And $n_{in}$ and $n_{out}$ refer to number of image channels in and out of the layer