submitted

This commit is contained in:
andy 2021-05-04 15:24:37 +01:00
parent 133fa7b7d0
commit 7f1d4d735f
18 changed files with 1307 additions and 229 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 94 KiB

After

Width:  |  Height:  |  Size: 86 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 92 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 90 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 71 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 89 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 68 KiB

After

Width:  |  Height:  |  Size: 68 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 80 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 140 KiB

After

Width:  |  Height:  |  Size: 122 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 128 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 120 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 130 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 120 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 116 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 126 KiB

File diff suppressed because one or more lines are too long

264
nncw.py
View File

@ -1,7 +1,7 @@
#!/usr/bin/env python
# coding: utf-8
# In[2]:
# In[41]:
import numpy as np
@ -19,10 +19,11 @@ import json
import math
import datetime
import os
import random
from sklearn.model_selection import train_test_split
fig_dpi = 70
fig_dpi = 200
# # Neural Network Training
@ -32,7 +33,7 @@ fig_dpi = 70
#
# Read CSVs dumped from MatLab and parse into Pandas DataFrames
# In[3]:
# In[42]:
data = pd.read_csv('features.csv', header=None).T
@ -62,7 +63,7 @@ labels.astype(bool).sum(axis=0)
#
# Using a 50/50 split
# In[4]:
# In[43]:
data_train, data_test, labels_train, labels_test = train_test_split(data, labels, test_size=0.5
@ -74,7 +75,7 @@ data_train, data_test, labels_train, labels_test = train_test_split(data, labels
#
# Get a shallow model with a single hidden layer of varying nodes
# In[5]:
# In[44]:
def get_model(hidden_nodes=9, activation=lambda: 'sigmoid', weight_init=lambda: 'glorot_uniform'):
@ -88,7 +89,7 @@ def get_model(hidden_nodes=9, activation=lambda: 'sigmoid', weight_init=lambda:
# Get a Keras Tensorboard callback for dumping data for later analysis
# In[6]:
# In[45]:
def tensorboard_callback(path='tensorboard-logs', prefix=''):
@ -147,7 +148,7 @@ model.metrics[1].result()
# (Hint2: as epochs increases you can expect the test error rate to reach a minimum and then start increasing, you may need to set the stopping criteria to achieve the desired number of epochs - Hint 3: to find classification error rates for train and test set, you need to check the code from E2, to determine how you may obtain the train and test set patterns)
#
# In[194]:
# In[46]:
# hidden_nodes = [2, 8, 16, 24, 32]
@ -366,6 +367,14 @@ plt.show()
# |2-4|0.08|0.9|35|1, 2, 8, 16, 32, 64|1, 2, 4, 8, 16, 32, 64, 100| n |
# |2-5|0.08|0.2|35|1, 2, 8, 16, 32, 64|1, 2, 4, 8, 16, 32, 64, 100| n |
# |2-6|0.01|0.1|35|2, 8, 16, 24, 32|1, 2, 4, 8, 16, 32, 64, 100, 150, 200| n |
# |2-7|0.01|0.9|35|1, 2, 8, 16, 32, 64|1, 2, 4, 8, 16, 32, 64, 100| n |
# |2-8|0.01|0.5|35|1, 2, 8, 16, 32, 64|1, 2, 4, 8, 16, 32, 64, 100| n |
# |2-9|0.01|0.3|35|1, 2, 8, 16, 32, 64|1, 2, 4, 8, 16, 32, 64, 100| n |
# |2-10|0.01|0.7|35|1, 2, 8, 16, 32, 64|1, 2, 4, 8, 16, 32, 64, 100| n |
# |2-11|0.01|0.0|35|1, 2, 8, 16, 32, 64|1, 2, 4, 8, 16, 32, 64, 100| n |
# |2-12|0.1|0.0|35|1, 2, 8, 16, 32, 64|1, 2, 4, 8, 16, 32, 64, 100| y |
# |2-13|0.5|0.0|35|1, 2, 8, 16, 32, 64|1, 2, 4, 8, 16, 32, 64, 100| y |
# |2-14|0.05|0.0|35|1, 2, 8, 16, 32, 64|1, 2, 4, 8, 16, 32, 64, 100| y |
# In[214]:
@ -396,7 +405,7 @@ for i in range(multi_iterations):
#
# (Iterations x [Test/Train] x Number of nodes x Number of epochs)
# In[301]:
# In[268]:
multi_param_epochs = sorted(list({i["epochs"] for i in multi_param_results[0]}))
@ -420,7 +429,7 @@ print(f'Epochs: {multi_param_epochs}')
print()
print(f'Loss: {multi_param_results[0][0]["loss"]}')
print(f'LR: {multi_param_results[0][0]["optimizer"]["learning_rate"]:.3}')
print(f'Momentum: {multi_param_results[0][0]["optimizer"]["momentum"]:}')
print(f'Momentum: {multi_param_results[0][0]["optimizer"]["momentum"]:.3}')
# #### Export/Import Test Sets
@ -433,10 +442,10 @@ print(f'Momentum: {multi_param_results[0][0]["optimizer"]["momentum"]:}')
pickle.dump(multi_param_results, open("results/exp1-test2-3.p", "wb"))
# In[300]:
# In[267]:
exp1_testname = 'exp1-test1'
exp1_testname = 'exp1-test2-14'
multi_param_results = pickle.load(open(f"results/{exp1_testname}.p", "rb"))
np.savetxt("exp1-mean.csv", mean_param_accuracy, delimiter=',')
@ -445,7 +454,7 @@ std_param_accuracy = np.loadtxt("results/test1-exp1-std.csv", delimiter=',')
# multi_iterations = 30
# ### Best Results
# In[302]:
# In[166]:
best_param_accuracy_idx = np.unravel_index(np.argmax(mean_param_accuracy[0, :, :]), mean_param_accuracy.shape)
@ -453,12 +462,12 @@ best_param_accuracy = mean_param_accuracy[best_param_accuracy_idx]
best_param_accuracy_nodes = multi_param_nodes[best_param_accuracy_idx[1]]
best_param_accuracy_epochs = multi_param_epochs[best_param_accuracy_idx[2]]
print(f'Nodes: {best_param_accuracy_nodes}, Epochs: {best_param_accuracy_epochs}, {best_param_accuracy * 100:.1}% Accurate')
print(f'Nodes: {best_param_accuracy_nodes}, Epochs: {best_param_accuracy_epochs}, {best_param_accuracy * 100:.3}% Accurate')
# ### Test Accuracy Surface
# In[303]:
# In[269]:
X, Y = np.meshgrid(multi_param_epochs, multi_param_nodes)
@ -484,10 +493,10 @@ plt.show()
# ### Test Error Rate Curves
# In[313]:
# In[270]:
fig = plt.figure(figsize=(6, 5))
fig = plt.figure(figsize=(5, 4))
# fig = plt.figure()
fig.set_dpi(fig_dpi)
@ -497,19 +506,42 @@ for idx, (layer, std) in enumerate(zip(mean_param_accuracy[0, :, :], std_param_a
plt.legend()
plt.grid()
plt.title(f"Test error rates for different epochs and hidden nodes")
plt.title(f"Test error rates over hidden nodes")
plt.xlabel("Epochs")
plt.ylabel("Error Rate")
plt.ylim(0, 0.6)
plt.tight_layout()
plt.savefig(f'graphs/{exp1_testname}-error-rate-curves.png')
# plt.savefig(f'graphs/{exp1_testname}-error-rate-curves.png')
plt.show()
# In[271]:
fig = plt.figure(figsize=(5, 4))
# fig = plt.figure()
fig.set_dpi(fig_dpi)
for idx, (layer, std) in enumerate(zip(mean_param_accuracy[0, :, :], std_param_accuracy[0, :, :])):
# plt.errorbar(multi_param_epochs, 1 - layer, yerr=std, capsize=4, label=f'{multi_param_nodes[idx]} Nodes')
plt.plot(multi_param_epochs, std, 'x-', label=f'{multi_param_nodes[idx]} Nodes', lw=2)
plt.legend()
plt.grid()
plt.title(f"Test error rate std. dev over hidden nodes")
plt.xlabel("Epochs")
plt.ylabel("Standard Deviation")
plt.ylim(0, 0.1)
plt.tight_layout()
# plt.savefig(f'graphs/{exp1_testname}-error-rate-std.png')
plt.show()
# ### Test/Train Error Over Nodes
# In[314]:
# In[272]:
fig, axes = plt.subplots(math.ceil(len(multi_param_nodes) / 2), 2, figsize=(6, 6*math.ceil(len(multi_param_nodes) / 2)/3))
@ -526,10 +558,10 @@ for idx, (nodes, ax) in enumerate(zip(multi_param_nodes, axes.flatten())):
ax.grid()
fig.tight_layout()
fig.savefig(f'graphs/{exp1_testname}-test-train-error-rate.png')
# fig.savefig(f'graphs/{exp1_testname}-test-train-error-rate.png')
# In[315]:
# In[273]:
fig, axes = plt.subplots(math.ceil(len(multi_param_nodes) / 2), 2, figsize=(6, 6*math.ceil(len(multi_param_nodes) / 2)/3))
@ -544,7 +576,7 @@ for idx, (nodes, ax) in enumerate(zip(multi_param_nodes, axes.flatten())):
ax.grid()
fig.tight_layout()
fig.savefig(f'graphs/{exp1_testname}-test-train-error-rate-std.png')
# fig.savefig(f'graphs/{exp1_testname}-test-train-error-rate-std.png')
# # Experiment 2
@ -554,7 +586,7 @@ fig.savefig(f'graphs/{exp1_testname}-test-train-error-rate-std.png')
# (Hint4: to implement majority vote you need to determine the predicted class labels -probably easier to implement yourself rather than use the ensemble matlab functions)
#
# In[113]:
# In[249]:
num_models=[1, 3, 9, 15, 25]
@ -562,6 +594,8 @@ num_models=[1, 3, 9, 15, 25]
def evaluate_ensemble_vote(hidden_nodes=16,
epochs=50,
batch_size=128,
learning_rates=None,
rand_ranges=False,
optimizer=lambda: 'sgd',
weight_init=lambda: 'glorot_uniform',
loss=lambda: 'categorical_crossentropy',
@ -582,10 +616,12 @@ def evaluate_ensemble_vote(hidden_nodes=16,
dtest=data_test,
ltrain=labels_train,
ltest=labels_test):
for m in nmodels:
for m in nmodels: # iterate over different ensemble sizes
if print_params:
print(f"Models: {m}")
# response dict object for test stats
response = {"epochs": list(),
"num_models": m}
@ -594,29 +630,72 @@ def evaluate_ensemble_vote(hidden_nodes=16,
###################
if isinstance(hidden_nodes, tuple): # for range of hidden nodes, calculate value per model
if m == 1:
if not rand_ranges:
# just average provided range
models = [get_model(int(np.mean(hidden_nodes)), weight_init=weight_init)]
response["nodes"] = [int(np.mean(hidden_nodes))]
else:
# get random val
node_val = random.randint(*hidden_nodes)
models = [get_model(node_val, weight_init=weight_init)]
response["nodes"] = [node_val]
else:
if not rand_ranges:
# use linspace to generate equally spaced nodes throughout range
models = [get_model(int(i), weight_init=weight_init)
for i in np.linspace(*hidden_nodes, num=m)]
response["nodes"] = [int(i) for i in np.linspace(*hidden_nodes, num=m)]
else:
# use random to generate nodes throughout range
node_val = [random.randint(*hidden_nodes) for _ in range(m)]
models = [get_model(i, weight_init=weight_init) for i in node_val]
response["nodes"] = node_val
elif hidden_nodes == 'm':
# incrementing mode, number of nodes ranges from 1 to m
# more nodes in larger ensembles
models = [get_model(i+1, weight_init=weight_init) for i in range(m)]
response["nodes"] = [i+1 for i in range(m)]
else: # not a range of epochs, just set to given value
else:
# not a range of epochs, just set to given value
models = [get_model(hidden_nodes, weight_init=weight_init) for _ in range(m)]
response["nodes"] = hidden_nodes
######################
## COMPILE MODELS
######################
if learning_rates is None:
# default, just load optimiser
for model in models:
model.compile(
optimizer=optimizer(),
loss=loss(),
metrics=metrics
)
else:
for idx, model in enumerate(models):
optim = optimizer()
# generate learning rate either randomly or linearly
if isinstance(learning_rates, tuple):
if not rand_ranges:
# get equal spaced learning rates
optim.learning_rate = np.linspace(*learning_rates, num=m)[idx]
else:
# get random learning rate
optim.learning_rate = random.uniform(*learning_rates)
elif learning_rates == '+':
# incrementing mode, scale with size of ensemble
optim.learning_rate = 0.01 * (idx + 1)
model.compile(
optimizer=optim,
loss=loss(),
metrics=metrics
)
if tboard:
# include a tensorboard callback to dump stats for later analysis
if callbacks is not None:
cb = [i() for i in callbacks] + [tensorboard_callback(prefix=f'exp{exp}-{m}-')]
else:
@ -627,13 +706,18 @@ def evaluate_ensemble_vote(hidden_nodes=16,
###################
histories = list()
for idx, model in enumerate(models):
if isinstance(epochs, tuple): # for range of epochs, calculate value per model
if isinstance(epochs, tuple):
# for range of epochs, calculate value per model
if not rand_ranges:
if m == 1:
e = np.mean(epochs) # average, not lower bound if single model
else:
e = np.linspace(*epochs, num=m)[idx]
e = int(e)
else: # not a range of epochs, just set to given value
else:
e = random.randint(*epochs)
else:
# not a range of epochs, just set to given value
e = epochs
# print(m, e) # debug
@ -648,9 +732,9 @@ def evaluate_ensemble_vote(hidden_nodes=16,
histories.append(history.history)
response["epochs"].append(e)
########################
## FEEDFORWARD TEST
########################
############################
## FEEDFORWARD TEST DATA
############################
# TEST DATA PREDICTIONS
response["predictions"] = [model(dtest.to_numpy()) for model in models]
# TEST LABEL TENSOR
@ -665,7 +749,7 @@ def evaluate_ensemble_vote(hidden_nodes=16,
# take argmax for ensemble predicted class
correct = 0 # number of correct ensemble predictions
correct_num_models = 0 # when correctly predicted ensembley, proportion of models correctly classifying
correct_num_models = 0 # when correctly predicted ensembley, number of models correctly classifying
individual_accuracy = 0 # proportion of models correctly classifying
# pc = predicted class, pcr = rounded predicted class, gt = ground truth
@ -712,19 +796,21 @@ def evaluate_ensemble_vote(hidden_nodes=16,
# ## Single Iteration
# Run a single iteration of ensemble model investigations
# In[224]:
# In[250]:
single_ensem_results = list()
# for test in evaluate_ensemble_vote(epochs=(5, 300), optimizer=lambda: tf.keras.optimizers.SGD(learning_rate=0.02)):
for test in evaluate_ensemble_vote(hidden_nodes=(1, 400),
epochs=20,
for test in evaluate_ensemble_vote(hidden_nodes=(1, 20),
epochs=(1, 20),
rand_ranges=True,
learning_rates=(0.01, 0.5),
optimizer=lambda: tf.keras.optimizers.SGD(learning_rate=0.02)):
single_ensem_results.append(test)
print(test["nodes"], test["epochs"])
# In[225]:
# In[251]:
fig = plt.figure(figsize=(8, 5))
@ -774,6 +860,8 @@ plt.show()
# |15|0.01|0.9|35|50 - 100|50|1, 3, 5, 7, 9, 15, 25, 35, 45| n |
# |16|0.01|0.1|35|50 - 100|50|1, 3, 5, 7, 9, 15, 25, 35, 45| n |
# |17|0.1|0.1|35|50 - 100|50 - 100|1, 3, 5, 7, 9, 15, 25, 35, 45| n |
# |18 (r)|0.01 - 1|0.0|35|1 - 50|20 - 70|1, 3, 5, 7, 9, 15, 25, 35| n |
# |19 (r)|0.01 - 1|0.0|35|1 - 100|10 - 70|1, 3, 5, 7, 9, 15, 25| n |
# In[335]:
@ -829,7 +917,7 @@ for i in range(multi_ensem_iterations):
# 2. Individual Accuracy
# 3. Agreement
# In[322]:
# In[253]:
def test_tensor_data(test):
@ -839,7 +927,7 @@ def test_tensor_data(test):
test["agreement"]]
# In[362]:
# In[354]:
multi_ensem_models = sorted(list({i["num_models"] for i in multi_ensem_results[0]}))
@ -874,10 +962,10 @@ exp2_testname = 'exp2-test17'
pickle.dump(multi_ensem_results, open(f"results/{exp2_testname}.p", "wb"))
# In[349]:
# In[353]:
exp2_testname = 'exp2-test16'
exp2_testname = 'exp2-test19'
multi_ensem_results = pickle.load(open(f"results/{exp2_testname}.p", "rb"))
np.savetxt("exp2-mean.csv", mean_ensem_accuracy, delimiter=',')
@ -885,7 +973,7 @@ np.savetxt("exp2-std.csv", std_ensem_accuracy, delimiter=',')mean_ensem_accuracy
std_ensem_accuracy = np.loadtxt("results/test1-exp2-std.csv", delimiter=',')
# ### Best Results
# In[363]:
# In[355]:
best_ensem_accuracy_idx = np.unravel_index(np.argmax(mean_ensem_accuracy[0, :]), mean_ensem_accuracy.shape)
@ -897,24 +985,24 @@ print(f'Models: {best_ensem_accuracy_models}, {best_ensem_accuracy * 100:.3}% Ac
# ### Test/Train Error Over Model Numbers
# In[364]:
# In[356]:
fig = plt.figure(figsize=(6, 4))
fig = plt.figure(figsize=(5, 4))
fig.set_dpi(fig_dpi)
# plt.plot(multi_ensem_models, 1 - mean_ensem_accuracy[0, :], 'x-', label='Ensemble Test')
# plt.plot(multi_ensem_models, 1 - mean_ensem_accuracy[2, :], 'x-', label='Individual Test')
# plt.plot(multi_ensem_models, 1 - mean_ensem_accuracy[1, :], 'x-', label='Individual Train')
# plt.plot(multi_ensem_models, 1 - mean_ensem_accuracy[3, :], 'x-', label='Agreement')
plt.plot(multi_ensem_models, 1 - mean_ensem_accuracy[0, :], 'x-', label='Ensemble Test')
plt.plot(multi_ensem_models, 1 - mean_ensem_accuracy[2, :], 'x-', label='Individual Test')
plt.plot(multi_ensem_models, 1 - mean_ensem_accuracy[1, :], 'x-', label='Individual Train')
plt.plot(multi_ensem_models, 1 - mean_ensem_accuracy[3, :], 'x-', label='Disagreement')
plt.errorbar(multi_ensem_models, 1 - mean_ensem_accuracy[0, :], yerr=std_ensem_accuracy[0, :], capsize=4, label='Ensemble Test')
plt.errorbar(multi_ensem_models, 1 - mean_ensem_accuracy[2, :], yerr=std_ensem_accuracy[2, :], capsize=4, label='Individual Test')
plt.errorbar(multi_ensem_models, 1 - mean_ensem_accuracy[1, :], yerr=std_ensem_accuracy[1, :], capsize=4, label='Individual Train')
plt.errorbar(multi_ensem_models, 1 - mean_ensem_accuracy[3, :], yerr=std_ensem_accuracy[3, :], capsize=4, label='Disagreement')
# plt.errorbar(multi_ensem_models, 1 - mean_ensem_accuracy[0, :], yerr=std_ensem_accuracy[0, :], capsize=4, label='Ensemble Test')
# plt.errorbar(multi_ensem_models, 1 - mean_ensem_accuracy[2, :], yerr=std_ensem_accuracy[2, :], capsize=4, label='Individual Test')
# plt.errorbar(multi_ensem_models, 1 - mean_ensem_accuracy[1, :], yerr=std_ensem_accuracy[1, :], capsize=4, label='Individual Train')
# plt.errorbar(multi_ensem_models, 1 - mean_ensem_accuracy[3, :], yerr=std_ensem_accuracy[3, :], capsize=4, label='Disagreement')
plt.title(f"Error Rate for Horizontal Ensemble Models")
# plt.ylim(0, 0.2)
plt.ylim(0, 0.1)
# plt.ylim(0, np.max(1 - mean_ensem_accuracy + std_ensem_accuracy) + 0.05)
plt.grid()
plt.legend()
@ -922,11 +1010,35 @@ plt.xlabel("Number of Models")
plt.ylabel("Error Rate")
plt.tight_layout()
plt.savefig(f'graphs/{exp2_testname}-error-rate-curves.png')
# plt.savefig(f'graphs/{exp2_testname}-error-rate-curves.png')
plt.show()
# In[305]:
fig = plt.figure(figsize=(5, 4))
# fig = plt.figure()
fig.set_dpi(fig_dpi)
plt.plot(multi_ensem_models, std_ensem_accuracy[0, :], 'x-', label='Ensemble Test', lw=2)
plt.plot(multi_ensem_models, std_ensem_accuracy[1, :], 'x-', label='Individual Train', lw=2)
plt.plot(multi_ensem_models, std_ensem_accuracy[2, :], 'x-', label='Individual Test', lw=2)
plt.plot(multi_ensem_models, std_ensem_accuracy[3, :], 'x-', label='Agreement', lw=2)
plt.legend()
plt.grid()
plt.title(f"Test error rate std. dev over ensemble models")
plt.xlabel("Number of Models")
plt.ylabel("Standard Deviation")
plt.ylim(0, 0.08)
plt.tight_layout()
# plt.savefig(f'graphs/{exp2_testname}-error-rate-std.png')
plt.show()
# # Experiment 3
#
# Repeat Exp 2) for cancer dataset with two different optimisers of your choice e.g. 'trainlm' and 'trainrp'. Comment and discuss the result and decide which is more appropriate training algorithm for the problem. In your discussion, include in your description a detailed account of how the training algorithms (optimisations) work.
@ -978,6 +1090,8 @@ for test in evaluate_optimisers(epochs=(5, 300), nmodels=[1, 3, 5]):
# | 6 | SGD | Adam | RMSprop | 0.02 | 0.01 | 1e7 | 35 | m | 50 | 1, 3, 9, 15, 25, 35, 45 | n |
# | 7 | SGD | Adam | RMSprop | 0.1 | 0.9 | 1e-8 | 35 | 1 - 400 | 50 - 100 | 1, 3, 5, 7, 9, 15, 25 | n |
# | 8 | SGD | Adam | RMSprop | 0.05 | 0.9 | 1e-8 | 35 | 1 - 400 | 50 - 100 | 1, 3, 5, 7, 9, 15, 25 | n |
# | 9 (r) | SGD | Adam | RMSprop | 0.01 - 1 | 0.0 | 1e-7 | 35 | 1 - 100 | 10 - 70 | 1, 5, 9, 15, 25 | n |
# | 10 (r) | SGD | Adam | RMSprop | 0.01 - 1 | 0.0 | 1e-7 | 35 | 1 - 100 | 1 - 70 | 1, 5, 9, 15, 25 | n |
# In[27]:
@ -1027,7 +1141,7 @@ for i in range(multi_optim_iterations):
# 2. Individual Accuracy
# 3. Agreement
# In[467]:
# In[339]:
multi_optim_results_dict = dict() # indexed by optimiser name
@ -1085,16 +1199,16 @@ print(f'Loss: {multi_optim_results[0][0][0]["loss"]}')
pickle.dump(multi_optim_results, open("results/exp3-test5.p", "wb"))
# In[466]:
# In[338]:
exp3_testname = 'exp3-test8'
exp3_testname = 'exp3-test10'
multi_optim_results = pickle.load(open(f"results/{exp3_testname}.p", "rb"))
# ### Best Results
# In[468]:
# In[340]:
for optim, optim_results in optim_tensors.items():
@ -1107,7 +1221,7 @@ for optim, optim_results in optim_tensors.items():
# ### Optimiser Error Rates
# In[469]:
# In[343]:
fig, axes = plt.subplots(1, 3, figsize=(12, 3))
@ -1125,11 +1239,11 @@ for idx, ((optimiser_name, tensors_dict), ax) in enumerate(zip(optim_tensors.ite
# ax.errorbar(multi_optim_models, 1 - tensors_dict["mean"][3, :], yerr=tensors_dict["std"][3, :], capsize=4, label='Disagreement')
ax.set_title(f"{optimiser_name} Error Rate for Ensemble Models")
ax.set_ylim(0, 0.1)
ax.set_ylim(0, 0.15)
# ax.set_ylim(0, np.max([np.max(1 - i["mean"] + i["std"]) for i in optim_tensors.values()]) + 0.03)
ax.grid()
# if idx > 0:
ax.legend()
# ax.legend()
ax.set_xlabel("Number of Models")
ax.set_ylabel("Error Rate")
@ -1138,11 +1252,39 @@ axes[1].legend()
axes[2].legend()
plt.tight_layout()
plt.savefig(f'graphs/{exp3_testname}-error-rate-curves.png')
# plt.savefig(f'graphs/{exp3_testname}-error-rate-curves.png')
plt.show()
# In[345]:
# fig = plt.figure(figsize=(5, 4))
# fig = plt.figure()
# fig.set_dpi(fig_dpi)
fig, axes = plt.subplots(1, 3, figsize=(12, 3))
fig.set_dpi(fig_dpi)
for idx, ((optimiser_name, tensors_dict), ax) in enumerate(zip(optim_tensors.items(), axes.flatten())):
ax.plot(multi_optim_models, tensors_dict["std"][0, :], 'x-', label='Ensemble Test', lw=2)
ax.plot(multi_optim_models, tensors_dict["std"][1, :], 'x-', label='Individual Train', lw=2)
ax.plot(multi_optim_models, tensors_dict["std"][2, :], 'x-', label='Individual Test', lw=2)
ax.plot(multi_optim_models, tensors_dict["std"][3, :], 'x-', label='Agreement', lw=2)
ax.legend()
ax.grid()
ax.set_title(f"{optimiser_name} ensemble test std. dev")
ax.set_xlabel("Number of Models")
ax.set_ylabel("Standard Deviation")
ax.set_ylim(0, 0.15)
plt.tight_layout()
# plt.savefig(f'graphs/{exp3_testname}-errors-rate-std.png')
plt.show()
# In[ ]:

File diff suppressed because it is too large Load Diff