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Part I

Quantum Engineering Design
1 Structure Design
In order to design a quantum well which emits light of wavelength 1.55μm, a well material must be chosen such
that an interband electron transition emits photons of this wavelength.

This band gap energy can be found from the equation

E = hf

When considering photons, f can be substituted with

f =
c

λ

Therefore in order to find the E in terms of wavelength

E =
hc

λ

Returning to the specifications, this allows 1.55μm to be expressed as 1.28x10-19 J or approximately 0.8 eV.
This energy value will be the same as the total interband transition for the well from the first confined hole

energy level to the first confined electron enery level,

Eg,transition = E1h + Eg + E1e ≈ 0.8eV (1)

see figure 1.
Eg should be the dominant term in this equation and as such when investigating suitable materials the bulk

band gap should be close to but lower than 0.8eV.
Ternary alloys were investigated in order to allow precise control over the lattice constants and band gap by

varying the composition ratio.
Indium gallium arsenide (InxGa(1 − x)As) as a well material with indium phosphide (InP) as a barrier mate-

rial would provide a suitable combination assuming that a composition ratio x could be found that satisfied the
two conditions of having the required bulk band gap and being lattice matched. A common ratio in industry is
In0.53Ga0.47As and as such this was tested first.

1.1 Lattice Match
Lattice matching is the process of ensuring that two crystalline structures are of similar dimensions in order to
decrease strain at the interface between the two materials. This is particularly important for quantum wells formed
through epitaxial growth as strain introduced between such thin layers can cause defects which ultimately negatively
affect it’s electronic properties.

The lattice constants between the barrier and well materials should be as close as is deemed acceptable for the
application. The lattice constants for the prospective materials are shown in table 1.

In order to compute a compound lattice constant for InGaAs, Vegard’s law can be applied. Vegard’s law provides
an approximation for the lattice constant of a solid solution by finding the weighted average of the individual lattice
constants by composition ratio and is given by:
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Figure 1: Band structure of an AlGaAs/GaAs/AlGaAs quantum well including discrete confined energy levels [1]

Material Lattice Constant, α (Å)
InAs 6.0583
GaAs 5.6532
InP 5.8687

Table 1: Lattice constants for prospective well and barrier materials [2]

αA(1−x)Bx
= (1− x)αA + xαB

Applying this to the prospective well material gives the following,

αIn0.53Ga0.47As = 0.53· 6.0583 + 0.47· 5.6532 = 5.8679

This shows that to 4 significant figures the composition of InGaAs is lattice matched to InP to within 0.001Å
which is sufficient for this application.

1.2 Band Gap
Vegard’s law can also be used to approximate the band gap of a ternary alloy, such as InGaAs. The band gaps at
300K for each alloy can be seen in table 2.

In this case the band gap approximates to,

Eg,In0.53Ga0.47As ≈ 0.53· 0.35 + 0.47· 1.42 ≈ 0.85eV

However the band gap has been experimentally found to be 0.75eV [3]. This implies that the linear relationship
provided by Vegard’s law is not accurate enough and in this case a modified version including a bowing parameter
b should be used,

Material Band Gap at 300K, Eg (eV)
InAs 0.35
GaAs 1.42
InP 1.34

Table 2: Band gaps for prospective well and barrier materials [2]
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Charge Carrier Effective mass ratio in In0.53Ga0.47As (m
∗

m0 )
Electron 0.041 [4]
Light Hole 0.051 [5]
Heavy Hole 0.2 [6]

Table 3: Effective masses of charge carriers in

Eg,total = xEg,a + (1− x)Eg,b − bx (1− x)

For this application, however, the experimentally determined value will be used. This value is ideal for this
application as it is comparable to and slightly lower than the required 0.8eV energy value.

1.3 Width Calculation
Having found two materials that are lattice matched with a suitable band gap value, the final calculation is that of
the quantum well width. In order to calculate this value, the equation for confined energy levels within an infinite
quantum well will be used,

En =
n2π2è2

2mL2
(2)

Referring back to equation 1, the terms for the first electron and hole energy levels can each be replaced with
equation 2 as seen below,

Eg,transition = 0.8eV = E1h + Eg,InGaAs + E1e =
12π2è2

2m∗
hL

2
+ Eg,InGaAs +

12π2è2

2m∗
eL

2

With the experimentally determined value for Eg,,InGaAs this equation becomes

0.8eV =
π2è2

2m∗
hL

2
+ 0.75eV +

π2è2

2m∗
eL

2

0.05eV =
π2è2

2L2

(
1

m∗
h

+
1

m∗
e

)

L =

√
π2è2

2· (0.05eV)
·
(

1

m∗
h

+
1

m∗
e

)
As a frequently studied composition due to it’s favourable structural parameters with InP, The charge carrier

effective masses of In0.53Ga0.47As have been found experimentally to be as shown in table 3.
As the electrical and optical properties of the valence band are governed by the heavy hole interactions, this

effective mass ration will be used.
Substituting these ratios into the above provides,

L =

√
π2è2

2· (0.05eV)·me
·
(

1

0.2
+

1

0.041

)
which reduces to a well length of 14.87nm.
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1.4 Confined Energy Level Calculations
With all the parameters of the well ascertained the first and second confined electron and hole energy levels can be
found by utilising equation 2.

For confined electron states:

E1e =
12π2è2

2·m∗
e· (14.87nm)

2

E1e = 6.65× 10−21J = 0.041eV

This equation shows that confiend energy level values are proportional to the square of n, the principal quantum
number or energy level. As such:

E2e = 22·E1e

E2e = 2.66× 10−20J = 0.17eV

For confined hole states:

E1h =
12π2è2

2·m∗
h· (14.87nm)

2

E1h = 1.36× 10−21J = 0.0085eV

E2h = 22·E1h

E2h = 5.45× 10−21J = 0.034eV

With the dimensions and first confined energy levels calculated, the final design for the quantum well can be
seen in figure 2.

2 Probability Plot
The probability of finding an electron in a quantum well is given by

P =

ˆ L

0

ψ∗ψdx (3)

with ψ in the case of an infinite quantum well being given by,

ψ (x) = A sin (kx) = A sin
(nπ
L
x
)

Here A acts as a normalisation constant to satisfy the conditions
ˆ
allspace

ψ∗ψdV = 1

in this case providing the wave function ψ as

ψ (x) =

√
2

L
sin
(nπ
L
x
)

(4)
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Figure 2: InP/InGaAs/InP quantum well design
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Figure 3: Probability plot for electron in ground state

Importantly, the above conditions are for an infinite quantum well where an assumption is made that the well
has a barrier region of infinite potential such that the wavefunction is confined to the well. A real quantum well is
unable to satisfy this leading to the wavefunction “spilling” into the barrier region. For the purposes of plotting the
probability density, however, it is a reasonable assumption to make.

Considering equation 3, if the probability can be found by integrating ψ∗ψ, or in this situation ψ2 then the
probability can be shown by plotting ψ2, see figure 3. Here the well stretches from 0 to the blue line along the x
axis and n has been set to 1 for the ground state. This function for the first excited state can be seen in figure 4.

3 Probability Intervals
Combining equations 3 and 4 gives the final probability function for a distance across the well from x = 0 to x = x0:

P (0 ≤ x ≤ x0) =
1

L

(
x0 −

L

2nπ
sin

(
2nπx0
L

))
For an arbitrary interval across the well, this becomes:

P (a ≤ x ≤ b) =
1

L

(
(b− a)− L

2nπ

(
sin

(
2nπb

L

)
− sin

(
2nπa

L

)))
This equation can be utilised in order to find the probability of finding the electron between 2nm and 4nm and

between 6nm and 8nm, the intervals for which can be seen plotted in figure 5.

3.1 2nm to 4nm

P (2nm ≤ x ≤ 4nm) =
1

L

(
2nm− L

2nπ

(
sin

(
2nπ· (4nm)

L

)
− sin

(
2nπ· (2nm)

L

)))

P (2nm ≤ x ≤ 4nm) =
1

14.87nm

(
2nm− 14.87nm

2π

(
sin

(
2π· (4nm)

14.87nm

)
− sin

(
2π· (2nm)

14.87nm

)))

P (2nm ≤ x ≤ 4nm) ≈ 0.0955
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Figure 4: Probability plot for electron in 1st excited state

Figure 5: Probability plot for electron in ground state with distance intervals
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3.2 6nm to 8nm

P (6nm ≤ x ≤ 8nm) =
1

L

(
2nm− L

2nπ

(
sin

(
2nπ· (8nm)

L

)
− sin

(
2nπ· (6nm)

L

)))

P (6nm ≤ x ≤ 8nm) =
1

14.87nm

(
2nm− 14.87nm

2π

(
sin

(
2π· (8nm)

14.87nm

)
− sin

(
2π· (6nm)

14.87nm

)))

P (6nm ≤ x ≤ 8nm) ≈ 0.263
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Part II

Application of Nanomaterials
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