started design

This commit is contained in:
aj 2019-11-11 13:39:57 +00:00
parent a8ef2d80a8
commit 90110f82fb
6 changed files with 420 additions and 130 deletions

2
.gitignore vendored Normal file
View File

@ -0,0 +1,2 @@
*~
*#

BIN
WellBandStructure.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 71 KiB

View File

@ -43,9 +43,11 @@
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\cite_engine biblatex
\cite_engine_type authoryear
\biblio_style plain
\biblatex_bibstyle ieee
\biblatex_citestyle ieee
\use_bibtopic false
\use_indices false
\paperorientation portrait
@ -97,6 +99,393 @@ Quantum Engineering Design
Structure Design
\end_layout
\begin_layout Standard
In order to design a quantum well which emits light of wavelength 1.55μm,
a well material must be chosen such that an interband electron transition
emits photons of this wavelength.
\end_layout
\begin_layout Standard
This band gap energy can be found from the equation
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
E=hf
\]
\end_inset
\end_layout
\begin_layout Standard
When considering photons,
\begin_inset Formula $f$
\end_inset
can be substituted with
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
f=\frac{c}{\lambda}
\]
\end_inset
\end_layout
\begin_layout Standard
In order to find the
\begin_inset Formula $E$
\end_inset
in terms of wavelength
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
E=\frac{hc}{\lambda}
\]
\end_inset
\end_layout
\begin_layout Standard
Returning to the specifications, this allows 1.55μm to be expressed as 1.28x10
\begin_inset script superscript
\begin_layout Plain Layout
-19
\end_layout
\end_inset
J or approximately 0.8 eV.
\end_layout
\begin_layout Standard
This energy value will be the same as the total band gap for the well from
the first hole energy level to the first electron enery level, shown as
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\varSigma E_{g}=E_{1h}+E_{g}+E_{1e}\thickapprox0.8eV
\]
\end_inset
\end_layout
\begin_layout Standard
see figure
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:Well-Band-structure"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status open
\begin_layout Plain Layout
\align center
\begin_inset Graphics
filename WellBandStructure.png
lyxscale 40
width 60col%
\end_inset
\begin_inset Caption Standard
\begin_layout Plain Layout
Band structure of an AlGaAs/GaAs/AlGaAs quantum well including discrete
energy levels
\begin_inset CommandInset citation
LatexCommand cite
key "ieee_s6824198"
literal "false"
\end_inset
\begin_inset CommandInset label
LatexCommand label
name "fig:Well-Band-structure"
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula $E_{g}$
\end_inset
should be the dominant term in this equation and as such in investigating
suitable materials, the bulk band gap should be close to but lower than
0.8eV.
\end_layout
\begin_layout Standard
None of the binary III-V Indium based alloys have bulk band gaps in a suitable
range, as such ternary alloys were investigated.
\end_layout
\begin_layout Standard
Indium Gallium Arsenide (In
\begin_inset script subscript
\begin_layout Plain Layout
\begin_inset Formula $x$
\end_inset
\end_layout
\end_inset
Ga
\begin_inset script subscript
\begin_layout Plain Layout
\begin_inset Formula $(1-x)$
\end_inset
\end_layout
\end_inset
As) as a well material with Indium Phosphide (InP) as a barrier material
would provide a suitable combination assuming that a composition ratio
\begin_inset Formula $x$
\end_inset
could be found that satisfied the two conditions of having the required
bulk band gap and being lattice matched.
A common ratio in industry is In
\begin_inset script subscript
\begin_layout Plain Layout
0.53
\end_layout
\end_inset
Ga
\begin_inset script subscript
\begin_layout Plain Layout
0.47
\end_layout
\end_inset
As and as such this was tested first.
\end_layout
\begin_layout Subsubsection
Lattice Match
\end_layout
\begin_layout Standard
Lattice matching is the process of ensuring that two crystalline structures
are of similar dimensions in order to decrease strain at the interface
between the two materials.
This is particularly important for quantum wells formed through epitaxial
growth as strain introduced between such thin layers can cause defects
ultimately negatively affecting it's electronic properties.
\end_layout
\begin_layout Standard
The lattice constants between the barrier and well materials should be as
close as is deemed acceptable for the application.
The lattice constants for the prospective materials are shown in table
\begin_inset CommandInset ref
LatexCommand ref
reference "tab:Lattice-constants"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset Float table
wide false
sideways false
status open
\begin_layout Plain Layout
\align center
\begin_inset Tabular
<lyxtabular version="3" rows="4" columns="2">
<features tabularvalignment="middle">
<column alignment="center" valignment="top">
<column alignment="center" valignment="top">
<row>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
Material
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
Lattice Constant (Å)
\end_layout
\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
InAs
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
6.0583
\end_layout
\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
GaAs
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
5.653
\end_layout
\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
InP
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
5.869
\end_layout
\end_inset
</cell>
</row>
</lyxtabular>
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Caption Standard
\begin_layout Plain Layout
Lattice constants for prospective well and barrier materials
\begin_inset CommandInset label
LatexCommand label
name "tab:Lattice-constants"
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Plain Layout
\end_layout
\end_inset
\end_layout
\begin_layout Standard
In order to compute a compound lattice constant for InGaAs, Vegard's law
can be applied.
Vegard's law provides an approximation for the lattice constant of a solid
solution by
\end_layout
\begin_layout Subsubsection
Band Gap
\end_layout
\begin_layout Subsection
Probability Plot
\end_layout
@ -121,6 +510,18 @@ Application of Nanomaterials
\end_inset
\end_layout
\begin_layout Standard
\begin_inset CommandInset bibtex
LatexCommand bibtex
btprint "btPrintCited"
bibfiles "references"
options "bibtotoc"
\end_inset
\end_layout
\end_body

View File

@ -1,128 +0,0 @@
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\use_default_options true
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry true
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date true
\justification true
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 2cm
\topmargin 2cm
\rightmargin 2cm
\bottommargin 2cm
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Title
EEE3037 Nanotechnology Coursework
\end_layout
\begin_layout Standard
\align center
6420013
\end_layout
\begin_layout Section
Quantum Engineering Design
\end_layout
\begin_layout Subsection
Structure Design
\end_layout
\begin_layout Subsection
Probability Plot
\end_layout
\begin_layout Subsection
Probability Intervals
\end_layout
\begin_layout Standard
\begin_inset Newpage pagebreak
\end_inset
\end_layout
\begin_layout Section
Application of Nanomaterials
\end_layout
\begin_layout Standard
\begin_inset Newpage pagebreak
\end_inset
\end_layout
\end_body
\end_document

Binary file not shown.

15
references.bib Normal file
View File

@ -0,0 +1,15 @@
@article{ieee_s6824198,
abstract = "<p>Quantum well infrared photodetectors (QWIPs) are known for their stability, high pixel-to-pixel uniformity, and high-pixel operability, which are essential for large area imaging arrays. In this paper, we discuss the initial demonstration of QWIP devices, and the many years of progress that propelled this technology toward the demonstration of large format focal plane arrays. In addition, we present some potential applications of this technology in science and medicine.</p>",
author = "Gunapala, Sarath D and Bandara, Sumith V and Liu, John K and Mumolo, Jason M and Rafol, Sir B and Ting, David Z and Soibel, Alexander and Hill, Cory",
issn = "1077-260X",
journal = "IEEE Journal of Selected Topics in Quantum Electronics",
keywords = "Detectors ; Noise ; Gallium Arsenide ; Absorption ; Cameras ; Dark Current ; Engineering ; Physics",
language = "eng",
number = "6",
pages = "154,165",
publisher = "IEEE",
title = "Quantum Well Infrared Photodetector Technology and Applications",
volume = "20",
year = "2014-11",
}