2020-12-11 21:33:20 +00:00
|
|
|
from dataclasses import dataclass, field
|
|
|
|
from typing import List
|
|
|
|
import numpy as np
|
2020-12-24 14:58:45 +00:00
|
|
|
from numpy import log as ln
|
2020-12-11 21:33:20 +00:00
|
|
|
|
|
|
|
from maths import gaussian
|
|
|
|
|
|
|
|
class MarkovModel:
|
|
|
|
|
|
|
|
def __init__(self, states: list, observations: list = list(), state_transitions: list = list()):
|
|
|
|
self.observations = observations
|
2020-12-23 20:12:08 +00:00
|
|
|
self.state_transitions = state_transitions # use state number not state index, is padded by entry and exit probs
|
2020-12-11 21:33:20 +00:00
|
|
|
|
|
|
|
self.states = states # number of states
|
|
|
|
# self.timesteps = list()
|
|
|
|
|
|
|
|
self.forward = np.zeros((len(states), len(observations)))
|
2020-12-24 14:58:45 +00:00
|
|
|
self.p_obs_forward = 0
|
|
|
|
|
2020-12-11 21:33:20 +00:00
|
|
|
self.backward = np.zeros((len(states), len(observations)))
|
2020-12-24 14:58:45 +00:00
|
|
|
self.p_obs_backward = 0
|
|
|
|
|
|
|
|
self.occupation = np.zeros((len(states), len(observations)))
|
2020-12-23 20:12:08 +00:00
|
|
|
|
|
|
|
def get_other_state_index(self, state_in):
|
|
|
|
"""For when state changes, get other index for retrieving state transitions (FOR 0 INDEXING)"""
|
|
|
|
if state_in == 0:
|
|
|
|
return 1
|
|
|
|
elif state_in == 1:
|
|
|
|
return 0
|
|
|
|
else:
|
|
|
|
print(f"invalid state index provided, ({state_in})")
|
|
|
|
|
|
|
|
def get_other_state_number(self, state_in):
|
|
|
|
"""For when state changes, get other number for retrieving state transitions (FOR 1 INDEXING)"""
|
|
|
|
return self.get_other_state_index(state_in - 1) + 1
|
2020-12-24 14:58:45 +00:00
|
|
|
|
|
|
|
def populate(self):
|
|
|
|
self.populate_forward()
|
|
|
|
self.calculate_p_obs_forward()
|
|
|
|
self.populate_backward()
|
|
|
|
self.calculate_p_obs_backward()
|
|
|
|
self.populate_occupation()
|
2020-12-11 21:33:20 +00:00
|
|
|
|
|
|
|
def populate_forward(self):
|
|
|
|
for t, observation in enumerate(self.observations): # iterate through observations (time)
|
2020-12-23 20:12:08 +00:00
|
|
|
for state_index, state in enumerate(self.states):
|
|
|
|
|
|
|
|
state_number = state_index + 1 # for easier reading (arrays 0-indexed, numbers start at 1)
|
2020-12-11 21:33:20 +00:00
|
|
|
|
2020-12-24 14:58:45 +00:00
|
|
|
if t == 0: # calcualte initial, 0 = first row = initial
|
2020-12-23 20:12:08 +00:00
|
|
|
self.forward[state_index, t] = self.state_transitions[0, state_number] * gaussian(observation, state.mean, state.std_dev)
|
2020-12-11 21:33:20 +00:00
|
|
|
else:
|
2020-12-24 14:58:45 +00:00
|
|
|
# each state for each time has two paths leading to it, the same state (this) and the other state (other)
|
2020-12-23 20:12:08 +00:00
|
|
|
|
|
|
|
other_index = self.get_other_state_index(state_index)
|
|
|
|
other_number = other_index + 1 # for 1 indexing
|
|
|
|
|
2020-12-24 14:58:45 +00:00
|
|
|
# previous value * prob of changing from previous state to current
|
2020-12-23 20:12:08 +00:00
|
|
|
this_to_this = self.forward[state_index, t - 1] * self.state_transitions[state_number, state_number]
|
|
|
|
other_to_this = self.forward[other_index, t - 1] * self.state_transitions[other_number, state_number]
|
|
|
|
|
|
|
|
self.forward[state_index, t] = (this_to_this + other_to_this) * gaussian(observation, state.mean, state.std_dev)
|
|
|
|
|
|
|
|
@property
|
2020-12-24 14:58:45 +00:00
|
|
|
def observation_likelihood(self):
|
|
|
|
"""abstraction for getting p(obs|model) for future calculations (occupation/transition)"""
|
|
|
|
return self.p_obs_forward
|
|
|
|
|
|
|
|
def calculate_p_obs_forward(self):
|
2020-12-23 20:12:08 +00:00
|
|
|
|
|
|
|
sum = 0
|
|
|
|
for state_index, final_likelihood in enumerate(self.forward[:, -1]):
|
|
|
|
sum += final_likelihood * self.state_transitions[state_index + 1, -1] # get exit prob from state transitions
|
|
|
|
|
2020-12-24 14:58:45 +00:00
|
|
|
self.p_obs_forward = sum
|
2020-12-23 20:12:08 +00:00
|
|
|
return sum
|
|
|
|
|
|
|
|
def populate_backward(self):
|
|
|
|
|
|
|
|
# initialise from exit probabilities
|
|
|
|
self.backward[:, -1] = self.state_transitions[1:len(self.states) + 1, -1]
|
|
|
|
|
|
|
|
for t, observation in list(enumerate(self.observations[1:]))[::-1]: # iterate backwards through observations (time)
|
2020-12-24 14:58:45 +00:00
|
|
|
# print(t, observation)
|
2020-12-23 20:12:08 +00:00
|
|
|
for state_index, state in enumerate(self.states):
|
|
|
|
|
|
|
|
state_number = state_index + 1 # for easier reading (arrays 0-indexed, numbers start at 1)
|
|
|
|
|
|
|
|
other_index = self.get_other_state_index(state_index)
|
|
|
|
other_number = other_index + 1 # for 1 indexing
|
2020-12-24 14:58:45 +00:00
|
|
|
|
|
|
|
# observation for transitions from the same state
|
|
|
|
this_state_gaussian = gaussian(observation, self.states[state_index].mean, self.states[state_index].std_dev)
|
|
|
|
# observation for transitions from the other state
|
|
|
|
other_state_gaussian = gaussian(observation, self.states[other_index].mean, self.states[other_index].std_dev)
|
2020-12-23 20:12:08 +00:00
|
|
|
|
2020-12-24 14:58:45 +00:00
|
|
|
# beta * a * b
|
|
|
|
this_from_this = self.backward[state_index, t + 1] * self.state_transitions[state_number, state_number] * this_state_gaussian
|
|
|
|
other_from_this = self.backward[other_index, t + 1] * self.state_transitions[other_number, state_number] * other_state_gaussian
|
2020-12-23 20:12:08 +00:00
|
|
|
|
2020-12-24 14:58:45 +00:00
|
|
|
self.backward[state_index, t] = (this_from_this + other_from_this)
|
2020-12-23 20:12:08 +00:00
|
|
|
|
2020-12-24 14:58:45 +00:00
|
|
|
def calculate_p_obs_backward(self):
|
2020-12-23 20:12:08 +00:00
|
|
|
|
|
|
|
sum = 0
|
2020-12-24 14:58:45 +00:00
|
|
|
for state_index, initial_likelihood in enumerate(self.backward[:, 0]):
|
|
|
|
# pi * b * beta
|
2020-12-23 20:12:08 +00:00
|
|
|
sum += self.state_transitions[0, state_index + 1] * gaussian(self.observations[0], self.states[state_index].mean, self.states[state_index].std_dev) * initial_likelihood
|
|
|
|
|
2020-12-24 14:58:45 +00:00
|
|
|
self.p_obs_backward = sum
|
2020-12-23 20:12:08 +00:00
|
|
|
return sum
|
2020-12-24 14:58:45 +00:00
|
|
|
|
|
|
|
def populate_occupation(self):
|
|
|
|
for t, observation in enumerate(self.observations): # iterate through observations (time)
|
|
|
|
for state_index, state in enumerate(self.states):
|
|
|
|
|
|
|
|
forward_backward = self.forward[state_index, t] * self.backward[state_index, t]
|
|
|
|
self.occupation[state_index, t] = forward_backward / self.observation_likelihood
|
|
|
|
|
|
|
|
def transition_likelihood(self, from_index, to_index, t):
|
|
|
|
if t == 0:
|
|
|
|
print("no transition likelihood for t == 0")
|
|
|
|
|
|
|
|
forward = self.forward[from_index, t - 1]
|
|
|
|
transition = self.state_transitions[from_index + 1, to_index + 1]
|
|
|
|
emission = gaussian(self.observations[t], self.states[to_index].mean, self.states[to_index].std_dev)
|
|
|
|
backward = self.backward[to_index, t]
|
|
|
|
|
|
|
|
return (forward * transition * emission * backward) / self.observation_likelihood
|
|
|
|
|
|
|
|
def baum_welch_state_transitions(self):
|
|
|
|
|
|
|
|
new_transitions = np.zeros((len(self.states), len(self.states)))
|
|
|
|
|
|
|
|
# i
|
|
|
|
for from_index, from_state in enumerate(self.states):
|
|
|
|
# j
|
|
|
|
for to_index, to_state in enumerate(self.states):
|
|
|
|
|
|
|
|
transition_sum = 0
|
|
|
|
for t in range(1, len(self.observations)):
|
|
|
|
transition_sum += self.transition_likelihood(from_index, to_index, t)
|
|
|
|
|
|
|
|
occupation_sum = 0
|
|
|
|
for t in range(0, len(self.observations)):
|
|
|
|
occupation_sum = self.occupation[to_index, t]
|
|
|
|
|
|
|
|
new_transitions[from_index, to_index] = transition_sum / occupation_sum
|
|
|
|
|
|
|
|
return new_transitions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# child object to replace normal prob/likeli operations with log prob operations (normal prob for debugging)
|
|
|
|
class LogMarkovModel(MarkovModel):
|
|
|
|
|
|
|
|
def log_state_transitions(self):
|
|
|
|
self.state_transitions = ln(self.state_transitions)
|