{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Playlist Neural Network\n",
"\n",
"Given a list of playlists, can unknown tracks be correctly classified?"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"# playlist_names = [\"RAP\", \"EDM\", \"ROCK\", \"METAL\", \"JAZZ\", \"POP\"] # super-genres\n",
"# playlist_names = [\"ALL RAP\", \"EDM\", \"ROCK\", \"METAL\", \"JAZZ\", \"POP\"] # super-genres\n",
"# playlist_names = [\"RAP\", \"EDM\", \"ROCK\", \"METAL\", \"JAZZ\"] # super-genres without POP\n",
"# playlist_names = [\"ALL RAP\", \"EDM\", \"ROCK\", \"METAL\", \"JAZZ\"] # super-genres without POP\n",
"playlist_names = [\"ALL RAP\", \"DNB\", \"4/4\", \"cRock\", \"METAL\", \"cJazz\"] # super-genres with decomposed EDM\n",
"# playlist_names = [\"DNB\", \"HOUSE\", \"TECHNO\", \"GARAGE\", \"DUBSTEP\", \"BASS\"] # EDM playlists\n",
"# playlist_names = [\"20s rap\", \"10s rap\", \"00s rap\", \"90s rap\", \"80s rap\"] # rap decades\n",
"# playlist_names = [\"UK RAP\", \"US RAP\"] # UK/US split\n",
"# playlist_names = [\"uk rap\", \"grime\", \"drill\", \"afro bash\"] # british rap playlists\n",
"# playlist_names = [\"20s rap\", \"10s rap\", \"00s rap\", \"90s rap\", \"80s rap\", \"trap\", \"gangsta rap\", \"industrial rap\", \"weird rap\", \"jazz rap\", \"boom bap\", \"trap metal\"] # american rap playlists\n",
"# playlist_names = [\"rock\", \"indie\", \"punk\", \"pop rock\", \"bluesy rock\", \"hard rock\", \"chilled rock\", \"emo\", \"pop punk\", \"stoner rock/metal\", \"post-hardcore\", \"melodic hardcore\", \"art rock\", \"post-rock\", \"classic pop punk\", \"90s rock & grunge\", \"90s indie & britpop\", \"psych\"] # rock playlists\n",
"# playlist_names = [\"metal\", \"metalcore\", \"mathcore\", \"hardcore\", \"black metal\", \"death metal\", \"doom metal\", \"sludge metal\", \"classic metal\", \"industrial\", \"nu metal\", \"calm metal\", \"thrash metal\"] # metal playlists\n",
"\n",
"# headers = float_headers + [\"duration_ms\", \"mode\", \"loudness\", \"tempo\"]\n",
"headers = float_headers + [\"mode\", \"loudness\", \"tempo\"]\n",
"# headers = float_headers\n",
"\n",
"BALANCED_WEIGHTS = True"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Pull and process playlist information.\n",
"\n",
"1. Get live playlist track information from spotify\n",
"2. Filter listening history for these tracks\n",
"\n",
"Filter out tracks without features and drop duplicates before taking only the descriptor parameters"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"playlists = [get_playlist(i, spotnet) for i in playlist_names] # 1)\n",
"\n",
"# filter playlists by join with playlist track/artist names\n",
"filtered_playlists = [pd.merge(track_frame(i.tracks), scrobbles, on=['track', 'artist']) for i in playlists] # 2)\n",
"\n",
"filtered_playlists = [i[pd.notnull(i[\"uri\"])] for i in filtered_playlists]\n",
"# distinct on uri\n",
"filtered_playlists = [i.drop_duplicates(['uri']) for i in filtered_playlists]\n",
"# select only descriptor float columns\n",
"filtered_playlists = [i[headers] for i in filtered_playlists]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Construct the dataset with associated labels before splitting into a train and test set."
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"dataset = pd.concat(filtered_playlists)\n",
"labels = [np.full(len(plst), idx) for idx, plst in enumerate(filtered_playlists)]\n",
"labels = np.concatenate(labels)\n",
"\n",
"# stratify: maintains class proportions in test and train set\n",
"data_train, data_test, labels_train, labels_test = train_test_split(dataset, labels, \n",
" test_size=0.1, \n",
"# random_state=70, \n",
" stratify=labels\n",
" )\n",
"\n",
"class_weights = class_weight.compute_class_weight('balanced',\n",
" classes=np.unique(labels_train),\n",
" y=labels_train)\n",
"class_weights = {i: j for i, j in zip(range(len(filtered_playlists)), class_weights)}\n",
"\n",
"labels_train = tf.one_hot(labels_train, len(filtered_playlists))\n",
"labels_test = tf.one_hot(labels_test, len(filtered_playlists))"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"def tensorboard_callback(path='tensorboard-logs', prefix=''):\n",
" return tf.keras.callbacks.TensorBoard(\n",
" log_dir=os.path.normpath(os.path.join(path, prefix + datetime.now().strftime(\"%Y%m%d-%H%M%S\"))), histogram_freq=1\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"def get_model(hidden_nodes=128,\n",
" layers=2,\n",
" classes=len(filtered_playlists),\n",
" activation=lambda: 'sigmoid', \n",
" weight_init=lambda: 'glorot_uniform'):\n",
" l = [tf.keras.layers.InputLayer(input_shape=data_train.to_numpy()[0].shape, name='Input')]\n",
" \n",
" for i in range(layers):\n",
" l.append(\n",
" tf.keras.layers.Dense(hidden_nodes, \n",
" activation=activation(), \n",
" kernel_initializer=weight_init(), \n",
" name=f'Hidden{i+1}')\n",
" )\n",
" \n",
" l.append(tf.keras.layers.Dense(classes, \n",
" activation='softmax', \n",
" kernel_initializer=weight_init(), \n",
" name='Output'))\n",
" \n",
" model = tf.keras.models.Sequential(l)\n",
" return model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Single Model"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model: \"sequential_10\"\n",
"_________________________________________________________________\n",
"Layer (type) Output Shape Param # \n",
"=================================================================\n",
"Hidden1 (Dense) (None, 64) 704 \n",
"_________________________________________________________________\n",
"Output (Dense) (None, 6) 390 \n",
"=================================================================\n",
"Total params: 1,094\n",
"Trainable params: 1,094\n",
"Non-trainable params: 0\n",
"_________________________________________________________________\n"
]
}
],
"source": [
"model = get_model(hidden_nodes=64, layers=1)\n",
"\n",
"model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.01), \n",
"# optimizer=tf.keras.optimizers.SGD(learning_rate=0.01, momentum=0.9),\n",
" loss='categorical_crossentropy', \n",
" metrics=['accuracy'])\n",
"model.summary()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"if BALANCED_WEIGHTS:\n",
" cw = class_weights\n",
"else:\n",
" cw = None\n",
"history = model.fit(data_train.to_numpy(), labels_train, \n",
" callbacks=[tensorboard_callback()], \n",
" validation_split=0.11,\n",
" verbose=0,\n",
" class_weight=cw,\n",
" epochs=50)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAoQAAAG/CAYAAADB4sa8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAABJ0AAASdAHeZh94AAB72klEQVR4nO3dd3hUVf7H8fdJgFBCE+mCINJEmigqAoINC+qu4lqw66o/166ra13b6trWLmvvKIptrVhBFAQEAUGKSJUqHUIIKef3x5mbO0kmydTMJPN5Pc88uXPrmZxk5jvnnO+5xlqLiIiIiKSvjGQXQERERESSSwGhiIiISJpTQCgiIiKS5hQQioiIiKQ5BYQiIiIiaU4BoYiIiEiaU0AoIiIikuYUEIqIiIikOQWEIiIiImlOAaGIiIhImlNAKCIiIpLmFBCKiIiIpLmUDgiNMdnGmDuMMZ8ZYzYaY6wx5twIjm9ijHnGGPOHMSbHGPONMWa/BBZZREREpNpJ6YAQ2B24DegOzIrkQGNMBvAxcAbwBHA90AIYb4zpHOdyioiIiFRbtZJdgEqsBlpba9cYY/YHpkVw7AhgAHCKtXYsgDHmLWAhcAcuUBQRERFJeyndQmitzbPWrony8BHAWuDdoPP9AbwFnGiMyYpDEUVERESqvVRvIYxFX2CGtbao1PqpwEVAF+DnUAcaY1oAzUutzg4cMwfYFd+iioiIiMRVHaAdMMFau6WynWtyQNga+DbE+tWBn20oJyAELgX+mYhCiYiIiFShE4H/VbZTTQ4I6wF5IdbvDNpenqeAt0ut6waMHT16NHvttVccildWbm4uP//8Mz179qRevYqKJ8mg+kldqpvUpvpJXaqb1BZL/SxevJgzzjgDYEU4+9fkgDAXCDVOsG7Q9pCsteuAdcHrjDEA9OrVix49esSpiCVt3bqVLVu2sN9++9GoUaOEXEOip/pJXaqb1Kb6SV2qm9QWS/1kZ2d7i2ENc0vppJIYrcZ1G5fmrVtVhWURERERSVk1OSCcCewXmI8w2IHADtz0MyIiIiJpr0YEhMaY1saYbsaY2kGrxwItgZOC9tsdOAX40FobanyhiIiISNpJ+TGExpjLgCa4rGCA440xewSWHw+kUt8LnAN0BJYGto0FfgBeNMbsA6zHZQ9nogxiERERkWIpHxAC1wF7Bj0/Cb/V7zUg5Nw61tpCY8yxwAPAFbis4mnAudbaBYkrroiIiEj1kvIBobW2Qxj7nAucG2L9JuDCwENERCQlFRUVsXbtWvLy8igqKn0/hcTJz89nt912Y/Xq1axfv77KrivhKV0/GRkZZGVl0bJlSzIy4jvqL+UDQhERkZqsqKiI5cuXk5ubS2ZmJpmZmcVTnSVarVq1aN68ObVqKRxIRcH1Y61l165d5ObmkpeXR/v27eMaFOovQEREJInWrl1Lbm4uu+22Gy1atKiyYBCgsLCQbdu20bBhQzIzM6vsuhKe0vVjrWXdunVs3LiRtWvX0rp1qNn1olMjsoxFRESqq7y8PDIzM6s8GJTqxxhDixYtyMzMJC8vvpOlKCAUERFJoqKioirtJpbqzRhDZmZm3MeaKiAUERFJMgWDEolE/L0oIBQRERFJcwoIRURERNKcAkIRERGpts4991w6dOiQ7GJUewoIRUREJO6MMWE9xo8fn+yiCpqHUERERBLg1VdfLfH8lVde4Ysvviizvnv37jFd59lnn63Su7vUVAoIRUREJO7OPPPMEs9/+OEHvvjiizLrS9uxYwf169cP+zq1a9eOqnxSkrqMRUREJCmGDBnCvvvuy/Tp0xk8eDD169fnpptuAuCDDz7guOOOo02bNmRlZdGpUyfuuusuCgsLS5yj9BjCpUuXYozhwQcf5JlnnqFTp05kZWVxwAEHMG3atKp8edWKWghFREQkaTZs2MAxxxzDaaedxplnnknLli0BeOmll8jOzuaaa64hOzubr7/+mttuu42tW7fywAMPVHre0aNHs23bNi6++GKMMdx///2cdNJJLF68WK2KISggFBERSUFXXQUzZyb2GtZmUFiYTWZmBpXNddynDzzySPzLsGbNGv773/9y8cUXl1g/evRo6tWrV/z8kksu4ZJLLuGpp57i7rvvJisrq8LzLl++nF9//ZWmTZsC0LVrV0488UTGjRvH8OHD4/9CqjkFhCIiIilo5kyYMCHRVzEkOxTIysrivPPOK7M+OBjctm0beXl5DBo0iKeffpr58+fTu3fvCs976qmnFgeDAIMGDQJg8eLFcSp5zaKAUEREJAX16ZP4a1hrKSwsDOteyokqT9u2balTp06Z9XPnzuWWW27h66+/ZuvWrSW2bdmypdLztm/fvsRzLzjctGlTDKWtuRQQioiIpKBEdM+WVlhYxLZt22nYsCGZmZmJv2AIwS2Bns2bN3PooYfSqFEj7rzzTjp16kTdunWZMWMGN9xwQ1jTzJT3eqy1MZe5JlJAKCIiIill/PjxbNiwgXfffZfBgwcXr1+yZEkSS1WzadoZERERSSle615wa96uXbt46qmnklWkGk8thCIiIpJSBgwYQNOmTTnnnHO44oorMMbw6quvqrs3gdRCKCIiIimlWbNmfPTRR7Ru3ZpbbrmFBx98kCOPPJL7778/2UWrsdRCKCIiIgn3xBNP8MQTT5RYN378+HL3HzBgAJMnTy6zvnQr4UsvvVTieYcOHcptSVQLY/nUQigiIiKS5hQQioiIiKQ5BYQiIiIiaU4BoYiIiEiaU0AoIiIikuYUEIqIiIikOQWEIiIiImlOAaGIiIhImlNAKCIiIpLmFBCKiIiIpDkFhCIiIiJpTgGhiIiIpLylS5dijClx7+Lbb78dY0xYxxtjuP322+NapiFDhjBkyJC4njNZFBCKiIhI3J1wwgnUr1+fbdu2lbvPyJEjqVOnDhs2bKjCkkXml19+4fbbb2fp0qXJLkpCKSAUERGRuBs5ciS5ubm89957Ibfv2LGDDz74gKOPPppmzZpFdY1bbrmF3NzcWIpZqV9++YU77rgjZED4+eef8/nnnyf0+lVFAaGIiIjE3QknnEDDhg0ZPXp0yO0ffPABOTk5jBw5Mupr1KpVi7p160Z9fKzq1KlDnTp1knb9eFJAKCIiInFXr149TjrpJL766ivWrVtXZvvo0aNp2LAhAwcO5LrrrqNnz55kZ2fTqFEjjjnmGGbNmlXpNUKNIczLy+Pqq6+mefPmNGzYkBNOOIHff/+9zLHLli3j0ksvpWvXrtSrV49mzZpxyimnlGgJfOmllzjllFMAGDp0KMYYjDGMHz8eCD2GcN26dVxwwQW0bNmSunXr0rt3b15++eUS+3jjIR988EGeeeYZOnXqRFZWFgcccADTpk2r9HUnQq2kXFVERERqvJEjR/Lyyy/z1ltvcdlllxWv37hxI+PGjeP0009n9erVvP/++5xyyil07NiRtWvX8vTTT3PooYfyyy+/0KZNm4iueeGFF/Laa69xxhlnMGDAAL7++muOO+64MvtNmzaNSZMmcdppp7HHHnuwdOlSRo0axZAhQ/jll1+oX78+gwcP5oorruCxxx7jpptuonv37gDFP0vLzc1lyJAhLFq0iMsuu4yOHTvy9ttvc+6557J582auvPLKEvuPHj2abdu2cfHFF2OM4f777+ekk05i8eLF1K5dO6LXHSsFhCIiIpIQhx12GK1bt2b06NElAsK3336b/Px8Ro4cSc+ePVm4cCEZGX6n5VlnnUW3bt14/vnnufXWW8O+3qxZs3jttde49NJLefLJJwH429/+xsiRI5k9e3aJfY877jhGjBhRYt3xxx/PwQcfzDvvvMNZZ53FXnvtxaBBg3jsscc48sgjK80ofuaZZ5g3bx6vvfZacVf4JZdcwqGHHsott9zC+eefT8OGDYv3X758Ob/++itNmzYFoGvXrpx44omMGzeO4cOHh/2640EBoYiISCq66iqYOTOhl8iwluzCQjIyM6Gy6Vv69IFHHono/JmZmZx22mk8/PDDLF26lA4dOgCuZaxly5YcfvjhZGZmFu9fWFjI5s2byc7OpmvXrsyYMSOi633yyScAXHHFFSXWX3XVVWXGMtarV694OT8/n61bt7L33nvTpEkTZsyYwVlnnRXRtb3rt2rVitNPP714Xe3atbniiis4/fTTmTBhQolA79RTTy0OBgEGDRoEwOLFiyO+dqwUEIqIiKSimTNhwoSEXsKQ+EBg5MiRPPzww4wePZqbbrqJ33//nYkTJ3LFFVeQmZlJUVERjz76KE899RRLliyhsLCw+NhIs4+XLVtGRkYGnTp1KrG+a9euZfbNzc3l3nvv5cUXX2TlypVYa4u3bdmyJcJX6V+/c+fOJVo7we9iXrZsWYn17du3L/HcCw43bdoU1fVjoYBQREQkFfXpk/BLWGspLCwkMzOz8gmeoyxPv3796NatG2+88QY33XQTb7zxBtba4i7Ve+65h1tvvZXzzz+fu+66i912242MjAyuuuoqioqKorpmOC6//HJefPFFrrrqKg4++GAaN26MMYbTTjstodcNFtw6Giw4OK0qCghFRERSUYTds9EoKixk+7ZtNGzYsNzgJB5GjhzJrbfeyuzZsxk9ejSdO3fmgAMOAGDs2LEMHTqU559/vsQxmzdvZvfdd4/oOnvuuSdFRUX89ttvJVoFFyxYUGbfsWPHcs455/DQQw8Vr9u5cyebN28usV+4d0Lxrj979myKiopKtBLOnz+/eHuq0rQzIiIiklBea+Btt93GzJkzS8w9mJmZWaZF7O2332blypURX+eYY44B4LHHHiux/pEQwXWo6z7++OMluqwBGjRoAFAmUAzl2GOPZc2aNYwZM6Z4XUFBAY8//jjZ2dkceuih4byMpFALoYiIiCRUx44dGTBgAB988AFAiYBw+PDh3HnnnZx33nkMGDCAn3/+mddff5299tor4uv06dOH008/naeeeootW7YwYMAAvvrqKxYtWlRm3+HDh/Pqq6/SuHFj9tlnHyZPnsyXX35ZZtxinz59yMzM5L777mPLli1kZWVx2GGH0aJFizLnvOiii3j66ac599xzmT59Oh06dGDs2LF8//33PPLIIyUyjFONAkIRERFJuJEjRzJp0iT69+/P3nvvXbz+pptuIicnh9GjRzNmzBj2228/Pv74Y/7xj39EdZ0XXniB5s2b8/rrr/P+++9z2GGH8fHHH9OuXbsS+z366KNkZmby+uuvs3PnTg455BC+/PJLhg0bVmK/Vq1a8d///pd7772XCy64gMLCQr755puQAWG9evUYP348//jHP3j55ZfZunUrXbt25cUXX+Tcc8+N6vVUFZOMgYvVkTGmBzBnzpw59OjRIyHX2Lp1K9988w1Dhw6lUaNGCbmGRE/1k7pUN6lN9VMxb4qRaFrEYlVYWMi2KhhDKNEpr37C+ZuZO3cu++67L8C+1tq5lV1LYwhFRERE0pwCQhEREZE0p4BQREREJM0pIBQRERFJcwoIRURERNKcAkIREZEk04wfEolE/L0oIBQREUmijIwMCgsLFRRKWLz7TwffGi8eFBCKiIgkUVZWFoWFhaxbt05BoVTIWsu6desoLCwkKysrrufWnUpERESSqGXLluTl5bFx40a2bNlCZmYmxpgquba1lvz8fDZs2FBl15TwBdcPuImqCwsLqVevHi1btozrtdRCKCIikkQZGRm0b9+eJk2aUKdOnSoNzAoKCvjjjz8oKCiosmtK+ILrxxhDnTp1aNKkCe3bt497l3FKtxAaY7KAO4GzgKbAbOAWa+0XYRx7BHAz0BP3OhcCj1trX01ciUVERCKXkZFB69atq/y6W7duZf78+fTu3Vu3FUxBVVk/qd5C+BJwDfA6cCVQCHxijBlY0UHGmBOAz4E6wO24wDAXeMUYc3UCyysiIiJS7aRsQGiM6Q+cBtxorf27tfYZ4DBgGXB/JYdfBqwGDrPWPmGtfRI4HPgNODdxpRYREUmQyZPhrLNg5sxkl0RqoFTuMh6BaxF8xlthrd1pjHkeuMcY085au6KcYxsBm6y1eUHHFhhj1ie0xCIiIolyzTXwww/wxx/w2WfJLo3UMCnbQgj0BRZaa7eWWj818LNPBceOB3oYY+4yxuxtjOlkjLkV2J/KWxdFRERSS1ERzJrllqdMAU1PI3GWyi2ErXHdvqV569pUcOxdQEfc2MFbAut2ACdbaz+o7MLGmBZA81KrOwFs376drVtLx6jxkZOTU+KnpBbVT+pS3aQ21U/szOLFNMzNdU82b2bbrFnYvfaK+byqm9QWS/1s3749ov1TOSCsB+SFWL8zaHt58nBZxWOBd4FM4CLgNWPMkdbaHyq59qXAP0NtmDp1KmvWrKnk8NhMnTq18p0kaVQ/qUt1k9pUP9FrNXUqBwY9n//666waWGF+ZURUN6ktmvpZvnx5RPunckCYC4Sahrtu0PbyPAEcBOxnrS0CMMa8BcwFHoUS/1ehPAW8XWpdJ+CD/v37071790oOj05OTg5Tp06lf//+NGjQICHXkOipflKX6ia1qX5iV2fGjBLPe+Xn03Xo0JjPq7pJbbHUz7x58yLaP5UDwtVA2xDrvYmaVoU6yBhTB7gAuN8LBgGstfnGmE+By4wxday1u8q7sLV2HbCu1HkByM7OTvhcQA0aNNB8UClM9ZO6VDepTfUTg99+K/E0a84csuL4u1TdpLZo6ic7Ozui/VM5qWQm0MUYU/o3cGDQ9lCa4QLdzBDbauNec6htIiIiqWnu3JLPp09XYonEVSoHhGPxx/4BxXcuOQ+Y4k05Y4xpb4zpFnTcOmAz8OdAa6F3bDZwPDDfWltRd7OIiEjqKCyE+fPdcsOG7ufmzbB4cdKKJDVPygaE1topuHF89xpj7jfGXAR8DXQArg/a9RVgXtBxhcCDQBfgB2PMVcaYa3HT1ewB3F01r0BERCQOFi+GnYF8yr/8xV8/fXpyyiM1UsoGhAFnA4/g7mX8GK7Ld7i19tuKDrLW/gsYCeTjsoXvArYCI6y1ryeywCIiInEV3F18+umQGRj1pIBQ4iiVk0qw1u4E/h54lLfPkHLWjwZGJ6ZkIilo2zZ49lmoWxcuuQQyUv37noRUWAiPPgrt28OIEckujaSC4ICwXz/o0QNmz1ZAKHGV0gGhiITBWhgzBq69Flat8tf97W/JLZdE55FH4LrroFYtGDAA2lQ0B381UFBA5pdfUlsTH0fPCwjbtoUmTVxQ6AWE1kJgFgyRWKgJQaQ6mzMHDjvMdSOtCpqJ6R//gAgnJZUUsGMH3B+4u2ZBAfzyS3LLEw8PPkiDk0/mkNtuc7dfk8h5AWGPHu5nv37upxJLJI4UEIpUR1u2wNVXQ58+MH68W9e8uWtZAti+3XUba1qK6uXpp2Fd0BSopeaeq5b+9z8AGi9dSq3PP09yYaqhggI/w7h0QAjqNpa4UUAoUp0UFcErr0DXrq5rsbDQjRW84gpYuBAeeADOOcft++mnMLqKhtEWFsKf/wyDB0OC7vVd4+Xm+q2DnuoeEO7aBUF32KjzxBNJLEw19dtv7vcIfkDYu7cSSyTuFBCKVBczZ8KgQS7gW7vWrRs0CH76ySUhNGni1v3nP9CihVu+8kr444/El+2HH+D992HiRDeeUSL37LPg3SfdGxO2aFHyyhMPs2dDnn9L+loTJ7q/YwlfcEKJFxDWq+cvKyCUOFFAKJLqduxwCSL9+sGkSW5d69bw+uswYQL06lVy/912g8cfd8sbNsBVVyW+jMFj3SZOTPz1apqdO+G++9zy3nvDkUe65ereQvjDD2XXPfJIlRcjrn7/HV54wWX1V4XggHCfffxlr9tYdyypllJxOK0CQpFUd+WV8NRT7h2kVi2XTTx/PpxxRvnZhaecAiee6JZHj4aPP05sGYNvov5thdOESijPP+8nBd18sxsSAC4grM4f9lOmAFC0226sOuggt+6NN/yW0OqmoACGDYMLLnA/vcmiE8kLCNu1g+B72SqxJCoFBe7t8LTTYL/94Pzz4cUX4ddfq+5fbdw46N/f7+hJFQoIRVLZggWuNQLcB8CsWfDggyU/GEIxBp580t/vkksSO7YvuIVw2TJYsSJx16pp8vLg3/92yx07wsiR0KmTe56TUzLJpLoJBISF/fqx6E9/cut27XJfcKqjV1/1/9YnT3aBYaKjiNIZxp4KEkt++slNYXnHHanZEpUMM2fCNde4mXuGD3cjW376yQWD558PXbq4jpcRI9wInOnTXfAYb199BX/6kzv/UUcl5hrRUkAoksq8qTqMce9cwV1GlWnb1gWP4Lq5/vGPxJQRSrYQgrqNI/Hii65+wLUO1q7tuo091XUc4caNrtkFKDzgADZ17UqhF8SMGuWSaKqTvDy4/faS60aPhn/9K3HXzM93XwqhbEAYIrEkLw9uvRUOOADeeccV98YbE1e8VLd6NTz0kPtV9e0LDz/sf7+qXx8GDvRvDQ2uxe6dd9wom/33h6ZNXdB2113xmcVr/Hg4/njXsJyZCf/8p+v0SRUpVBQRKWHGDHjrLbd8xhnQs2fk57jwQvehNX68+xA+/XSXiBJP27eXfbf89ltX5hS0Zg20apXsUgTs2gX33uuW99wTzjrLLXsthAC//cbOfoewYoX7NS9f7hphveXGjd0HfzR/Hgk1dWrxYmG/fmAMeZdeSv0LLoD16+G11+Cvf01iASP09NP+3/m//gXPPQdLlrgIrGtXN0wj3hYtckEhlA0IvcSSwATV06fDuee6qUmD3X+/+254xRXxL17MnnnGvTfddVfJv/lSVq6EN990v4oGDdwjOzv0ct268PXXbjKGcePKtpAOHQpnnw0nn+yCwcJC9yv87jv3PXbiRH9Ew/bt8MUX7vHQQ64MRx8d3UudONG1TObmuokhRo+Gk06K7lwJY63VI4wH0AOwc+bMsYmyZcsW+/7779stW7Yk7BoSvSqvn2OOsRasrVXL2kWLoj/Pr79aW7euO1eXLtbm5savjNZaO22aO7dXVrB2n33ie41KhFM3u3ZZe/LJrnhnnmltQUEVFrA8zzzj/+6eftpaa21enrWP3LfTFmKsBftA/duKdynv0aiRtV9/XcF11q2z9v77rZ04sWpel7XW3n57cQG3LF3q6mf9emv32MP/GykqCvt027dbO2mStU8+ae2FF1p70knWvvSStTt2JPA1eLZts7ZFC1fuvfd2f0xz57pfPFhbr577P4jS779bO3u2tYWFpTa8/bZfyVOmlD3wvPOsBbujbhObmVFUvGvv3tZ+8IG1LVu658ZY+9Zboa+dtM+dLVuszcx0BWzd2v0+SykosPbxx61t2LDiv//KHp07W3v33dYuXVp5sYqK3NvtSy9Ze8EF1nbt6p8nI8P9G0XwZ2uttfb7763NzvbP8frr4R8bS/3MmTPHAhboYcOJc8LZSQ8FhFLF9fPtt/670CWXxH6+++/3z3fjjbGfL9grr/jn9iIusPaPP+J7nQpUVjdFRcWfncWPCy6I/I09rnbtsrZDB1eYdu2szcuzhYXWnnaaW7WMdtaCfZWRIT/kWrWydr/9/Oe1a1s7enQ51/rrX/0dBw609pNPQr74hQtdoHX22dauWhXj6/O+0HTpUrJ+7rvPL8tnn4U8dMMGa7/80v3Znn66td26uQ/SUL+H3Xaz9tpr3feehPnXv/wLBv+SP/3UL1ibNi6yi8BPP1l76qklT/G3v7ngPj/flgiq7bZtZY5f+vcnirfvxSJbu7a1d9zh/rSstXbGDD8QqVPH2vHjy5YhaZ87EyaUrMjdd7d2+vTizbNnW3vQQaHrPJxH06bW/t//WTt5cuz/52+9ZW39+v65Tz/d2pyc8I6dMsUPaI1xb5eRUECYgg8FhFJl9VNU5D60wbXsRfghE1J+vrX9+rlzZma6T6J4ufFG/7yffOK/a773XvyuUYnK6sYrovem7C1ffXUSg8Lnn/cL8tRTtqjI2iuv9FdNrDPUWrCLmh9o77jD2hdfdIHCokXW7tzpn+b1110w6B0XsgWjT5+yn5h9+rhPuoICW1Rk7ahRJT/0mjWzduzYKF9bUZGL1MDas84qWT8bN/oXGjbM5udbO3Wqtf/5jwtG27ev/MO+cWNrWzQrKLN+2DBr338/EEzFy4YN7oJgba9eZZvxHnvML8B++7mmzEp+NRMmWHv00RW/xubNrZ3W8RRrwRbtuWeJc+TmWvuPf1h7sJlcfMD1HcbYWbPKXu/zz/2G+8aNrf3555Lbk/a58/DDISt259ff25tv9ssM7nvTp5+61uB166xdssTaOXOs/eEHa7/6ytr//c/F6c8+60773nsl/0fiYeZMa/fcs2RVL1tW8TE//uj/6YC1L7wQ+XUVEKbgQwGhVFn9BAdV110Xv/POnOm/y+63X/w+NU880XotQXb7dv8aV18dn/OHoaK6efRR/9fZqZNreejc2V93++1VVkxffr61e+3lCtC2rbU7d9p//9svU/fu1uaedaEtbjmpxNdf+72XYO1llwV1iRcWui5NcE1tpfrf8vfqYv/T8wVbm7yQgclZZ1m7eXOEr2/hQv8ETzxRon62bbN2+Yl/K97er97cCgOjVq1cY+PNN7sA9bd5ebZo5Ehb1KiR/fHCUXbIkLLHtGvnughXr464Zsr6xz/8E3/4YdntRUWuKcrb56STQvT9ut0+/NDaAQNKljUz0w1hePxxa484wu9FBWvnsI+1YMfVOtaefbbrBv72W/f3AdbWZYfNxx1QcO315b6E4Eb8Pfawdvlyf1vSPnfOOssWR76PP15cwO2mgR3KVxZcy+l111UaY1eZP/6wJf7eWrRw9RHKjBmuldLb95lnorumAsIUfCgglCqpn8JCa/v2df+aDRtau359fM9/003+O9R998XnnF26uPOdeKJ7fuCB7vn++4fcfcoU1xI2ZkzIXrColFc3b7zhtwi2bOkPxVy2zAUN3q/i4YfjU46wvfSSf/HHH7cvvug/bds28IF9773+yjD+5mbPdsd6h/z5z4HxdYsX+ytHjXItdHfd5ZoAgyKTZbSztzZ5zH7zcY4dM6bkh1n79tZ+800Er+/VV4sPzp04zb7+eo494YRf7X77FdjMTGv3ZmHxGMmn+Wvxddq0caMO/vUv972oTEBXUOD3qXuPl1+2c+e6ILj0WLNatVyXbNRv26tW+cH0wQeX35y8a5eL5rwL33RT8ab8fNeK27NnybLVrWvtpZe66gm2fr1rSTrxmDy7C/fl6j7+HjJY3m8/a3d06eWeHH54hS8l+AtHjx7Wbtrk1iftc6dHD1eYYcPshg3WPj/wBVuA6zvPJcte0emj4B7kyhUVWfvxx9b+6U/WXnVVyKA8Hnbtsvbyy0v+jY0aVXKfWbNK/ns99VT011NAmIIPBYRSJfUzZoz/LnLHHfE/f26uP0q6bl3XkhOLnTv9Jg1vbOLf/26Lmz62bi2x+4QJ/uerV4QTT3QtGN4HVDRC1c0XX/hdqQ0bum/swRYs8PMEwPXgVon8fL+JsnVr+8m7ucW/wiZNgoKXt97yC1e68OVYscLafff1DxswwNotoz/yVwQGkW3ebO0Fp223V/KwXUFQFOm12Dz3nF250nXBequNsfaaa8LLSSq89DJrweZlZNmmDUK3PL7PCdaC3ZWZZcc8sc4uXlxJ931RkbUXX1z2RJmZrp/Yui8YTz/tenaDd2ncOMoxhn/7W5nfXbk2bSqRgZD/wit21ChrO3YsWZZGjVyj45o1lVx7zpzigx7d76US/zd16rigedcu6w+ObdKkwl9gUZELmr1zHHqoq8ukfO7k5BQPnJx74o3F/4d/4c3iILioVq3yM2GCFRS4983evUv+oj/5JKEv4bnnSg7VuPhilxA2Z45r1PfWP/ZYbNdRQJiCDwWEkvD6yc/3W9t2371MMBU3Eyf671axJqz8/LN/Lm+09P/+568bN65410mT/AHuoR61a7uuweeeizwfpXTdTJ/uX6t2bTfOKJSZM93nKLjPp3A+f4IVFLhuwGefjaC1M6j1bMlVjxR/0Neta+133wXtN2OG/8uJoGCbNpXs1rqv+QP+k3Xr7Ndfl2wdbdV0p5128bOuPz24QmbMsEVFLqs3OBjp0SP0ENSiIjem6/LLrZ1R6wBrwX7HgKC4rdDuv3++vfZaF79tfv8b/6R33ln5CwseCLrvvq7/1CtYnTolKrmoyGV2nnGGf0jPnhF2PS5e7H/iH3VUeMf8+mvx2Mk8U8cO4Lvi67do4Rp9w+5+D/5yOG2a3b7dJR3feGOpFs8n/MSSymYjKCgomfd1yinWbtpU/vtaYaFr7XroIWuHD9tlT2/xhR154jb77ruxjdHb/Jk/9vFk3i4uz9FHW7v62f9Zm5Xl/1O+9FLok+TluTeL4PEfwY/zzou+gGGaNMkNafAueX6vafbyRi/Zs3GPz05/yZW/vMekSZVeQwFhCj4UEErC6+e55/x3lv/8JzHX8Awe7K7Tt29s5wluxfKm3diwwV93yy3W2pKDq41xXWIffmjtueeW7JoMbvQ57DAXjIQzDiy4bhYt8lv+jLH2zTcrPnbSJGsbNLDFwWM4DQtr1rgxasGBVfPmrtoqbEErKChuRcpv1tK2abqj+HPvgw/KvCj/5PfeW3mhguzc6fesPsf51oLd1biZvfrqkr/no4+2duXKwEH5+da+9pq/8eabi883f761/fv7m2rXtvaee9zLmT/f2ltv9ePJLHJtHi6QeiTzajtihLWvv55j33zzw5L/O0VFfrJLy5YVRxjBWfJ77eWnQH/yiT9mtUGDkFOzeA3W4LJDw04iOvts/8AffwzrkA0brH3guG+KW7nW0twe0naJffLJKKbHue02//oVRbKT/eDKjhlT6Wlzc60dNMg/5P/+b6d97z3/fW3ZMtdafvrpJVvQX2WktWBf4mwL7v/5ggvc+NVwpnDKyXFDOIYPt/ayjCeLT9yR32zz5i4ppLhuvviiZIbTk0/6J9q+3dpHHvGnL/Ieu+/u/im9Zu0mTVzQmGC//27tAQdYeyCTi7u8w35cfHGl51dAmIIPBYSS0PrJzfWjiz32iP9cgaVdc43/yR7LV/077vDf3IKbyLwBU4MH21mz/IRTcHFvsF27XEPiRRe5oKr0e6YxrsVr1CiXYRiKVze//rq1OFcDwu+u+fJL18gErqVuwoSy+xQVuQHkp51Wsquo9KNtW1fWkJ9Fo0cX73hHk4eKj3n22XIK5vU9XXhheC8kSGGhC4Ym4ebu+JaBxderX9+VMWRwtP/+bqcePUqszs931R2c9BAcMHiP4MzXnBdcNF7u/87LL/sHltcSFDxXY+vW1v72W8ntb77pDxTdbbcyAwbz892XC+8UYY0XnTPHP+fJJ1e6e1GRayD3/n7Px/9yV9h3v+hS2b2mvI4dK95vxw6/Uq4vP7Ek2MaNbhpI73cyfPgie8EFeeU2tnVlXvGYz800sobCMn/z117rGrWDX2p+vssOPvNM/0sXWPssF7hzmcb2huuLQg+V/u67kplSd93lAr7g/ljv/fLRR/2gOeh/zH78cXi/6xjl7iiyv7Q8tPw3BQWENeuhgFASWj+PPBL0blledBBHwW+aMUyoa0891Z2jffuS6y+91H0Y1smybXffGfKLfigFBW6o1uWXl0yQ8B6ZmdYeeaQLKjds8I/bsmWLfeONj2zv3v5UJJFOt/j++/7nasOG/q9lyxZXbm8MfPCjVy83Zm30aL+333t06OCmiilO5i4sLE4PXZ/Z3NZne/HnXLm8BJ2hQyN7MZ6iIruzXmNrwf6Xiyy4lr4FCyo45q67/BcRYuDd1KklJ+v1Hvvv74KtzXcG/S0vWWKtreB/Jy/P73Pr3bts4DRmjB+YNW1ads4Uz9NP+9ds06ZMpsa6df73rczMyocD2j//2e2ckWHtL79UuOv8+SUDTnA9zJvOviK2/7Fu3WwgWqt8X2/QZCWJJcGWLXO/qvJilaZNXUw6apS1W0acX2Ljpw/8bE84IfQXo27d3AiAyy8P/YWhSRNrlzVziXNFlf1d//hjmeSn4kfnzq4ps/Q3r61b/Yn4zzkn7N9HTMaNKy7XsuP/5v7+wnmEMTZGAWEKPhQQprlFi+zOSy+1395zT/zrZ+tWv2mhc2d/VtkohZVct2CB/8ZaOkUuEt4H0bBhJde/+Wbx+b1xVJH2ghcWuu7cK68M/cFVq5Ybc/jSS9b+9ttW26vXuuJt550XXaPMa6/58UezZm4+59LjHuvUsXbkSDdGrXRryIsv+nNNe48uXVxXWeEb/piw67jfgstZqLCcI103nW3XLvIXY63rWg1c85GOD9t77gljtqHgcaEPPhhyl5wc1yJ0wAHW/vOfpQJMr6+6RYviF1fhe1twABo82PPTT/2Io0EDN0CxIsFptMHdygHTpvlD01q0qGB6z6lT/fOce265l8vNdb26XssyuJ7vN94IvOwVK/wNkX47CU7WuuGGyvcPM7GktNmzrW3c2N3hJCuryB5+uBudMG1aUDfwihVlI7/AXXU2bHCL3giU8h5167rxiu+/b+3OLTv98117beWF/PnnkgP1evd2XxQq6qc+6SS3b+PG8Z+QsLSiIn+O1+zsuE/Ir4AwBR8KCNPY6tXFzQsFtWrZ7YGMxrgJ/kB8442oTlFQ4HrW2rd3b74HHOC6YEeNcp+jZcYvFRb6c3RE0R1ZfFHvE7bUnIPLJq8sfk3/4B57zz3RXSK4uN9+6wIo73Zc5T2GD49tisVRo0Kft0MHF3OU123tyctz5ygdxE6v7yYbX8futgHb7IgRYYy98saRGRPdB9uXX/oFKOeuIGUUFfkDAgcOjPyaXlrt8ccXr6rwve2PP/wWHa817LvvSiaMfPlleNe+4Qb/9e67b8lmZFtymO5BB5XzKz3ySLdD7drFLZylffFFyVwGY1yjeJlMea+Ft0uXyL6hzJ7tnzycW1tEkFhS2vz5W+0993xr16wp53Pn2mv9c3vRb4iWt+XL3UxW3nfEjAz3q3zppVKzJk2f7p8v3Hu4LVnixrR+/HF4v8egL6Qh546Mp7Fj/Wv9859xP70CwhR8KCBMUzt2+G/qgUdRgwZuIHc8bNjgj5Pp3TuqubPGjSs7x1npR0aGGzM0cqRr9PnqK2t3HXKo2xhtYsmvv/oXCJp1dflyFxP8igsqFux9THTnL0dBgSv/xReXHU7Uv39+2LeUqoh3dzVjrD32WGs/+ijyex/v2OFaRZs3t7YNvxcX8n6us0OGhDlMNHiM3bx5kb+QoAl/S8xGXBlvjGlGhrVr14Z/3Lp1/vXuvrt4daXvbRdd5B/31lt+BlJGRmR3vCkqKnmuAw8sk/4dvLlMkv3XX/sbL7uszOkXLXItXcF/c336hL7NsLW25G36yuvuDuWNN/zjwpmML8LEkmAV1s3GjX4T+ZAh/u0IO3eu8JxLl1bwxenZZ2P7mw7Htm3+F4qzzkrMNax1bwpe136zZmHNFxopBYQp+FBAmIaKilyqXeDNK3/AAFsUPJ5p9uzYr3H99f6b40cfRXTo3Ln++7P3aNfO3TRh0KDKbwj/IO5DPz+jtn3m8Z125swIg57g6WUmTrTWul46r+XkBc61FmxRo0aRR1Nh8hJSzjknzx5++FK7ZEn8puqZPbvyW1OFY9s2az8/7pHi39XpnaeFP/XId99F/fdhrS0ey2mzsyNroQq+l3YkEzR++KF/XFCrXqXvbb/8EvqPtLxEk4oUFPhjW8GNqwtqCty5s2TGdPHtxIqK/Jvn1q9fIr193To3Ji74dmoNGriAv8LW6EWL/AMiuSXOLbfY4m8k4XzDiSKxxFNh3dx9t1/+Tz8t2ZtRWVN5eby7ujRokLD3BWuttSNGuOs0apS4JL3gCebLGV4RKwWEKfhQQJiGgjNoDz3UbvnjD/uT9wELblxLhN0zJaxc6X+LHTAg7A/stWtdy0Zwtmd2tpsGJLhruLDQNeKNGeMmwh02rOQg79PwE0v6Ma34PIcd5m608OGHlQyHCR6ztX69XbvWv6UWWPv6ES/4T8KcWDlaKf+/E7hfWU6rjjZnewSB2erV/u/wkUciv643IWE5d40pV0GB3/wa1PVbqeBAJqguwqqf0jf3jeb1evLySn5batHC3Wnk1FOtvf56u/GuJ+wZjT60PZllm9fZ7GaVCf6CExjzl5PjJoAu/eVq5MgIGly9CZN79Qq//F5SS6dO4R8TRWKJtRXUzY4d/thmL+Hnq6/8X0KZeZLC5PW4HHJIdMeHK3hKrGjLWpGdO/2bG7dpE8W8QuFRQJiCDwWEaSZ4UthOnaxdv764fnLvvNPf1rFj0ERuEdi5s+SsuaHmOSklN9cN+A7+cMrIcF2nld71IKCoyBX3o4+sfewyP7HkYkaV25LYqZMbk9i3r+ua7t7dDYkam32OtWDXZbSwLVqUnDbs4outLVoY1KUcy4d7GFL6f2f5cv/3EE6CQLCiIn++jssvj/za3oDLs8+O/FgvUaFu3fBndPbG3+2zT4nVYdVP8HjHeIzFyslxYyAraiYPPLaYRrYwO/CP1aSJLfhjo33uubLjQA8/PLwe3BKC3y/CvV2Kl7J+wgnhXyfKxJJy6+ZJf65AO3q0W7dtW/EdRiJtibTWuuZUb7xoNH/Pkdi+3X9TGjky/ucPHo7x3//G//wBVRkQ1kJESpo6Fc45xy03bgwffQTNmsHWrQDsuvJK6ubmwr33wpIlcOSR8O23bp9wfPopu/7vCuosWwTAzFbDePzlwWS/Aw0auEd2tr/coAGsXw933gnLlvmnGTYMHnwQ9t03/JdmDLRp4x4csze83BC2bePeEdPpfwz88ANMngxz57p3OoDffnOP0vZgHgBzivZh3Tp//bnnwlNPgTGdoFUrWLMGJk6EK68Mv6A1ydix/vJf/hLZscZAp04we3boSqjIxo2wdq1b7t49smMB/vQnePFF2LkTPv8c/vznivcvKnL/OwAHHhj59Q4/HN55BwoK4JRTIj++tPr14dNP4emn3e9v+XL3D7RihbtGkEZ2K2x3y/NPuJ4RQ5oyd66/vVcvuP9+OOooVyUROekkuO02t/zOO3DDDRXvv3MnLHLvDfToEf51+vVz9bV5Myxe7P5uolVQAA884JY7dvTrIzsbeveGn36CSZMiP+/8+e71Aey3X/TlC0eDBjB8OLz1FnzwAeTmQr168Tl3Tg7cfbdb7tQJzj8/PudNMgWEIsFWrIATT3RvWpmZ8Pbb0K1b2f3+9S/3xjtqFPzyCxx7LHz5JTRsWO6p101ZwrYLr6bTnA+oE1g3hx78ec0olr4QfhF79HCB4NFHR/TKysrIcG/KEybQ9LfpnH++/762dav7bJ88GaZPh7w8qFUr6JFp6fXuPMgHunXn4kPd+j594Lzz3KnBwODB7g154kQXYUb8aVoDvPWW+9mpE/TtG/nx0QaE8+b5y9EEhEce6YKqHTvcB2plAeHChbBli1uOJiAEFzzFU3Y2XHttyXWFhe5LyvLl2KXLGP3v5WyevYw9Wcbmhu248JWryQvs2q4d3HUXnHmmezuIyj77QNeusGABvPtu5QHhggUuuIbIA0LP9OmxBYRvvw1Ll7rl665z/9yeQw5xAeG0abBrF9SpE/IUIc2Y4S8nOiAE9wXsrbdg+3YYN859yYmHxx7zv2zdeSfUrh2f8yaZAkIRz/btcMIJ7sMC3D/9kUeG3tcYeOIJFxS+8YaLnv70J/j4Y6hbt3i3LVvggzdzsfffz18W/5sWuG/HW2jEP7mDcZ3+Rp3M2rTZ7r505uSUabwo1qKF+3A6//yS788x6dcPJkyAOXNc1JeVBUCjRnDEEe4R0u8rYcw2AIZe2p2hl5ez36BB7g153ToXMHTtGqeCVxPLlrlmV3AfTtEExN4H++LFLpgJNzIJDgj32Sfy69ar55rE3n8fPvzQ/WFW9IfnvU6IPiCsCpmZ0LYttG2LOfhg/nQCHHSQ+xfA/UnTuDHcdBNcfnkcGpWMgZNPhnvuce8TK1a4SLM8wU2TkQSEvXu711ZY6ALCSFujPdbCffe55ebN3Te8YAMGuPe+vDwXGEZS115AmJUV3ZeUSB1zjGspzMlx70PxCAg3bXLNxQA9e8Jpp8V+zhSRkewCiKSEoiI46yyYOdM9v+wyuPTS4s2TJsExx9TnllsGcNZZ9bj4Yrjplgwe7vMyK3of53b6+mu2DT+dNb8X8N57MOJky/m7/4+Bl/TgnMW3Uy8QDL6bfTZPX72AS+ZdxbxFtVmwAFaudLFlfr57n92wwfVwzZsHP/7orr94MVx0URyDQYD993c/8/Ph55/DPy7cYGPwYH954sTIylYTxNJd7Nl7b/czPx9+/z3847w6qlPHdftFw/sA3bgRvvuu4n2nTHE/69ePbBxDkjVoAO+9B61bu1/V1Ve7xtjrr49fD2OJls933614Xy8gzMgI3TtRnnr1/ABy+vTIyhds3DiYNcstX3ll2V/CgAH+cqTdxl5A2KtX1bSq1a8Pxx/vlv/3P9dtHKsHHnBv1uB6ijJqUBgVzkBDPZRUUuMFT2g7bFiJuSSWLCn/7klgbV122PH4U/W/xNm2Mwvsx5ScE2bF7n3snKe/i+oOGgkT7R1Lgm+1V1FSTWGhG+QOCZ0PLO7/OzNnWnvccS5rNpYK8+Y36dw5+vN88YX/uw6+k0dlvKzdffeN7rrWujRzL4ngqqsq3revux2ZHTSozKbq8N62fXv4uTMRKyryb2EzeHDF+554ov83E6koEkvK1M2hh7pzZGe7eQhLKyrys21GjAi/bIWF/pyGYdzDN27efdf//3nnndjOtXq1n6hy0EGxvTeEqSqTSmpQaCsSpZde8rtIuneHMWOKm+F27HBDpzZscJs7d95Ely6FNG/u99ztpB7H8yHTcWNizuEV5tONY/kUgPzsJhQ+9iR7rPmRHhcdklrD6Pbe2x/3GEmrgtf61KiRa1opT0YGDBzoliNtIczNhYcecs03XoZLohUVwcMPQ//+rvv/7rth/PjozrV0qZ9kEW13MZQcCxbJOEKvjqLpLvbsvrvr9gfXdVxePezY4cY5gut/rYa8BK6EMMZvJZw40R9/ForXQhhJd7HHG0foJZZEasoUN4QE4OKLoWnTsvsY47cSTpoU/v/mokVuWA5UzfhBz9FHu7Gk4I/njdY997i/dW85pd7MY6eAUNLbxImuHxZclvCHH7oBRLj3uYsu8nuRL700jwce+JZp03JYt86Np960yb3PfTmlEZvf+Iwtrd0YuQws1hi48EJqL15I5uWXxjAqPYG8xBKILiDcZ5/K3xS9gGLpUjd+Klx//asb0H7SSTBkSGRd2tFYs8YlB11zjatcz513Rne+t9/2l6PtLgY33swbJ+Bln1YmJ8dPSY91rJbXbbx0qR/0lTZjhhu7Bqk9fjCZvIDQWhdch5Kb6wf9sQSEEF23sffFuHZt13deHi8gXLXKjW0JR3B5qjIgrFfPjQ0H9/7uBXSRWroU/vtft3zkkTB0aFyKl0oUEEr68sYN5ue7N8B33y3RGvPoo/D66255yBC48868EodnZECTJu6Q/v3h8NOa03jKF3DooXDEEZgffoBnn3UDs1OZ9yHiJZaE45df3M9wgg0vIITwWwnHjPF/+eCm9enbF666yh+/E08ffeQGiI8b55537Ohn1Y4f764fKa81omtXd+5o1arljwEMt4Vw/nx/OZYWQnBZ954PPgi9jzd+EBQQlufgg/3W9PLGEc6f77e4RRMQeoklEHFAmLFwoR+onnWWS7wpTzTjCL3xg7VqVf0YU+8L2Y4d8Mkn0Z3jjjvcZwW4sYM1kAJCSV+rVvmtKLfeWiIB4ptvXOMUuAaaMWPCHAPdrp0LIL74wkWJ1YEXEIabWLJ+vXtAeAFhv37+wPRwAsLff4dLLnHLzZrB3/7mZ08++qgLsF5+2Z+aIxa5ue78xx/vv6Yzz3TNwk895WeMR9pKuHixywaC2LqLPd4XlXADwlinnAnWsaNLAoDyW7a8gLBNG9hjj9iuV1NlZPhfMr7+2nUvlBZthrEnhsSSOo8+6k8N9fe/V7xz377FMxLw/ffhXcALCHv0KDETQ5UYNswfGhNNt/Evv8Arr7jlP/8ZDjggfmVLIQoIJX0tXOgvB7VqLF/uPsMLC9173nvvuSlfaiwv0xj8IKYikU5nUqeOP66sspa2oiI3s7XXCvjss26Ki59+ci2v4KawOfdcNzYxeF6zSM2e7V77U0+5540auVbJV191y61auXFUAF99Ff4HH8Svu9gTHBCGM2bLq6OMDOjSJfbre93GP/0UuovQm3JGrYMVO/lk97OgwGW9luYFhJmZ0U/R5H3Bmz497PF9ddevp/aYMe7Jn/5UeXZznTp+UBROC6G1/v9qVXYXe+rW9Vu6P/rIDamIxG23ufcmY/wJqWsgBYSSvn791V8OfGjm5rovgF5j0TPPlByWUyNFmljidRdD+K1PXuvrL7/4v9xQHn3UBV/g5j/zWlR69nTNtm+8EbjNCm7W7P33d9MDbdwYXjnAvbE/8oj7QPNeyyGHuKk2zjij5L7XX++3hETSSui1QnTvHl1LT2leQLhtG/zxR+X7e6+rUye//LGoqNt49Wp/bKgCwooNHuzf0ShUt7EXEO69d/T1FkViSacPP8R43aGVTZzt8bqNZ83yk0XKs3Sp/yUvGQEh+F/McnNdwli4pkxxd5gB15Ue6xCMFKaAUNKX10KYlQXt2mGt66n0vshefjmcfXbyildlIk0s8Vqf6taFPfcM7xrB4wjLm89uzhy48Ua33LGjCw6DGeMmgZ0/3wVqtWq5lodRo8ju148ub79N7WefdS1+FT2OPdYNmN+1y73222933fwdOpQtU5s2LrkF3O3bgidfLs+iRf4fUTy6i8GfixDC6zb26ihek//27etPply621jjB8NXq5YfXI8b5wL8YLFkGHsiTSzZtIkO3tjZIUPCr8NDDnE/g29ZWJ6qvkNJKEcd5Vr+Ifxu4y+/9G8JVbu2e6+owRQQSvryAsK994bMTJ54wh8mMmiQm/EkbUSSWOIFG926hZ85fdBBfqZsqHGEeXkwcqT7mZHhum3Luw1gw4YuG/Lnn4vvJJOxcSPdX3+detdd58YEVvTwPvw6dHBl+ec/K57t+4Yb/NtzhdNKGNxdHI978kJkU8/s2uVnI8crIDTG7zaeMKHk+DcvIMzIKDn8QELzuo3z8komOOzY4e6NDrEFhJEklhQUkDVqFLW8+wuH2zoILknGU1m3sRcQGuPKlwxZWX4w/vHHlbdqPvWUCwa9ls177ol+gvdqQgGhpC8vIOzcmQkT/FkW9tjDfabXkNtThieSxJJIMow9DRr41wgVEN56qz+lyY03+q0PFenWzQV377xDUfv24ZfFGP+uNMHZkuXZYw+44AK3/OmnlbeGeK0PPXrEp7sYSn4QVTb1zK+/+lPAxLN7y/swLSws2eXmBYT77uvP9yblO/xwv6UquNt43rzYMow9wYklP/zg/l8/+wyefhpuvtklTQ0e7Fr369YlKzDVTGHPni75IlzNm0Pnzm453ICwW7cETvYYBq/beOdON5YwlIICd6eqv/3NH0j++ut+lmENpnsZS3oqKCgeX7O1VRdOOcX/33/3XWjZMsnlq2qlE0vKa+nZts2/fVqkrU+DB7vgYcYM9+3cCx4mTIAHH3TL/fq5FrtwBSb83X7YYXz/wQcMHDiQhuW1LHrq1vU/kMP1j3/Ac8+5gPmuu9x8ZqEsXOhPXBmPZBJPvXpuGpCVKytvIYxnhnGwwYPdPEubN7txhGee6f5ppk1z29VdHJ6sLBg+HEaPdoF1bq6r31gzjIP16+e+YH37bdjnyrv+eupHOrxhwAD3BWTyZNd1HOo2btb6LZXJ6i72HHmkm2d2yxb3xa30fYg3bXL/t19+6Z63auWGSKTJ37ZaCCU9LV3qgkLgsc+6FI/THzWqxs4oULFwE0timd/OG0dYWOg+QMC9MZ99tvvQqFcPXnstuqbZjAx2NWmCbd7cpYRX9Ig0GARo394luYBrWSgvuzkR3cUebxxhZQFhcNJPJPfCrUzt2nBc4L7dn37qWlnmzfO73tLkQzMuvG7jnBw3NhX8gLBWrdgzw72M/NIyM93f8sCBbojGjTeS+5//8O2//02BN3lzJLwW9s2bS743BFu1yk+ESnZAmJXlD3345JOSYzgXLnRDW7xgsG9f1xuQRn/XCgglPQVNOfP5Utftceml/md+2gk3sSSaDGNPcDewN/3MZZf505g88EB8A5h4u/FGf6xheWMJve7inj3j2zoH4c9F6LUQtmtX/jjMaHkfpjk5LhtcCSXRGTbMn5vTy2D1AsLOnf0xq9E680x48kk3gfJrr7n/t2XLXBC/bJkbtvHaa3DPPeRfcAGbov2/C2eC6lRIKAnmtdzn5fkt/V995f5+vc+Fk092vyMvkSpNKCCU5Nu2LfzbH8XJ+sn+lDML6cIhh7hb2Ka1cBJLvGCjVq2Sma/h2G03/44dEye62b5fe809P/poF5Gnsg4d4Jxz3PIHH/hdw5758/1xkPHsLvZ4AeG6dWWzU4PFO8M42LBh/nQoH3zgZ11nZyfmejVVgwZwzDFu+cMPXSJQPDKMPZmZ7v/ppptcS+CgQa5lsKLkqWjss4/f4l7ePJ3BAWGfPvG9fjSOOMINfQD3BW7UKPd37SWP3HKLW5/MsY5JooBQkis/3zXTd+rkBj5XgXfegffuc98Et9KQDv1b8s47sX8pr/bCSSzxWgj33ju6X5jXbfzDDyXvRvLCC9XjRvE33eRncN51V8ltiewuhvAyjQsL/a67RARoDRu6pAhwAaHX9X/AAal5r+5U5nUbb97shiEsXeqexysRqSpkZPjZxpW1EHbq5AdiyVSnjj+/6QcfuMA5OHnkrrtCj4VMA+n5qiV1zJnjgoyCApcBF+bM+tHIy4MrroARI6BDvgsIt7TswrcTTfolkYQSPH9ZeXcsibX1yZugOi+v5N1IvHu8prq99nIZyuCyj4IDZ6+7uHfv6O8yUZFw5iJcutRv3U3UBLpet/G6dX6rlrqLI3fccf542eC7X1SngBD8buOFC0NPOp/MO5SUp3QLfqtWLrmt9MT0aUYBoSRX8Hi1GTP8u1TE2eLFbhz144+7592MCwjbDe2slkFP584VJ5bs3Onf+SDaYCN4gmooeTeS6uKmm/wWBK+V8Jdf3JcbSEx3MYTXQpioDONgxx9ftjXXuzWhhK9x4+J5NPnpJ399dQ0IwW8x9qxb589KkEoB4eGH+19C0zB5pDwKCCW5Sgce//533C/x7rvuvchr9Bq0fy57ELjVVjzu81pTVJZYsnChm1oCog822rTxf+eh7kZSHXTu7MZlAYwd61rJEt1dDK67bbfd3HJ5cxHGkvQTrlatygaA+jCNjtdt7Kld25/br7o48ED/C1LpbuPgQDeVAsLatV3jwwsvpGXySHkUEEpyle6a/Oqr8rsrI7RrF1x5pXvP3bLFrbvqKvjqmd8wXte0AsKSKkosiVfr0/PPu4meP/kk/lmwVeXmm92HoLWuu8/rLu7bN7Ef6JVlGnt11Lw57L574srhdRuDS1Zo1Spx16rJTjih5NjLLl2q34z4DRtCr15uuXRAGJxQ0rdv1ZUpHN27ux6KNEweKY8CQkmeXbv8rMyTTvIz4AIz58di6VLXRfzYY+5548aupfDhh6H2En/KGQWEpVSUWOIFG8bENj3MwIFukudUnmKmMl27+pPavvmm3zKXqO5iT2VzESYywzhYcECo1sHo7b57yTkDq1t3scfrNp461b13eLyAsF079yVFUpoCQkmeuXNdUAhuHJk3oPedd9zs91H68kv3ZdS7gcL++7uei+KhakFzEFa77plEqyixxAt69twT6tevujKlqltuKTuWLlHdxR6vhXDFirItuNZGd1vBaHTp4qbvgLJ3e5DIBHcbV/eAcOfOktMxpWJCiZRLAaEkT/A4tX794Prr3bK1bpLiKDz3nJvey0tgvfxy+O67Uvck94LN5s1TYxqEVFJRYklVtT5VF927l2wR7NevZOJHInjnLyrypynxrFrlz0+YqAzjYJ99BmvXutZ9id5JJ/ndll4WfnUTnFjizUe4aZOfhKaAsFpQQCjJ4wUcDRq4FocePVwGI8DLL8Pq1WGfqqgIbrgB/vpXN4ONN6XUY4/58+gW81oI1V1cVnmJJQUF/u+tKoKN6iK4lbAqWsoqyjSuigzjYJmZ7laAEptWrVx27hdfwJAhyS5NdDp08MeReuMIg1sKFRBWCwoIJXm8Lsm+ff2B1Tfc4H7u2hV2BuqOHa6h5v773fPdd4evv65gSikvsFF3cWihEksWL/a799VC6Nt3X5dpfMcdLoMp0Sqai7AqMowlMXr29LvgqyNj/FbC7793vTypdss6qZQCQkmO4ISS/ff31x9yiEs6AHdLIS89uBxr1sDQof7tQLt2dTfBCO7BKGHLFjc3FqiFsDyhEkuquvWpOjnpJLjttqrJDm3Vyh+/WV4LYcOG0LZt4ssiEsx70121yo1x9QLCli2rz8TzaU4BoSRHcEJJcCID+K2EW7fCf/9b4SkOOsgltoELDCdPrmQYV3CyigLC0EIlliggTA3GuLulQNm5CIPHeFaH2wBKzRL8LXzSpJIJJfp7rBYUEEpylE4oCXbssa4rDtw8MTt3ljn8iy/c+8+yZe75eee5Me5Nm1Zy3YWacqZSoRJLvO7IVq3C+CVLQpU3F2FVZRiLhLLffv79zT//HBYs8NdLtaCAUJKjdEJJsIwMP+N47Vp45ZUSm595xmUSb93qnt9zj5vrOKxb0AUHhInOCK2uQiWWKMM4dXjjCJcs8e8cs2ED/PGHW1bSjyRDVpY//OfNN/370isgrDYUEEpyeIFGcEJJsNNOc3dAADcFTWEhRUVw3XVw8cVQWOjef8aMgRtvjKBHwusybtdOc+lVJDixZOdOPyBUsJF83heZvDxYudItq0tfUsEhh7ifubn+OgWE1UZKB4TGmCxjzH3GmFXGmFxjzBRjzJERHH+qMWayMSbHGLPZGDPJGHNYIsssYdi1C2bNcsvBCSXBateGa691y4sWkfPau/zpT/DQQ25V8+YwfnwUN4bQlDPhCU4s+eQTyMlxzxVsJF9wy7Y3jlAZxpIKSmfzNW3qJrKXaiGlA0LgJeAa4HXgSqAQ+MQYM7CyA40xtwNvACsC57gFmA0o/S7ZKkooCXbBBdCsGQBLLv43H37ouiC6d4cpU1xCSUSs1ZQz4Qqul1df9ZfVQph8oeYi9FoIs7JKzcIuUoUOPrjkcyWUVCu1kl2A8hhj+gOnAX+31j4YWPcKMAe4HyhvYhGMMQcBtwHXWmsfroLiSiQqSigJ1qAB8464nO5jbmffvBkczlfUP/4IXn3V3Zs4Yn/84Q88VAthxbzEkm3b4OOP/fVqfUq+Pfd09/0uKCgbEHbtGnoIhkhVaNnSfWHx/i7VXVytpHIL4Qhci+Az3gpr7U7geeBgY0y7Co69ClgDPGqc7EQWVCJUUUJJQGGhuwnEwDGXkYMb6/f0Xvfx/vtRBoOgDONIBCeWeDerb9LEveFLctWq5XfDeR+8XpexWnAl2YK7jRUQVisp20II9AUWWmu3llofmHWOPrju4FAOByYBV+C6ipsZY9YA/7LWPlHZhY0xLYDmpVZ3Ati+fTtbt5YuUnzkBMZpeT9rqgZTp5IJFPTqxY4Qr3XTJvjrX+vxxRe1gWa8XOdCLt31GJ0Wf8n2iRMo6ts3quvWnjWLeoHl7W3aUBRhPaZL/XiyevYka8KE4ucFXbuyw7tXbopJt7qpv+ee1PrtNwoXLCBn1SoarXBvhTv32otdCXp/ikW61U91Eu+6qb3//tQLDDPZ1rUrNgX/HquTWOpn+/btEe2fygFhayDUzWy9dW1CHWSMaQrsDhwCHAbcASwHzgMeN8bkW2ufruTalwL/DLVh6tSprFmzpvLSx2CqN9NyDWTy8zkucIeSZbvvzpxvvimxfdmyhtx7b3/WrHF3fdhjj21kX3wgRbdnklFYyJabbuJHb0qaCO3z9dd0BooyMvh68WLs8uVRnacm10+wtrVrE5zys7JhQ2aWqq9Uky5106tOHToCRYsW8dPo0RwaWP9zfj6rUriO0qV+qqN41U1G69bsO2wYOa1b89vy5RDl+6yUFE39LI/wdx9TQGiMOdBaOyWWc1SgHpAXYv3OoO2heN3DzYDTrLVjAIwxY4GfcS2GlQWETwFvl1rXCfigf//+dE/QOKqcnBymTp1K//79adCgQUKukWwZs2aRWVAAQJvjj6f50KHF2957rxY33VSPnBw3CHn48HxGjbI0ajScgl/+Qp033qDN5Mkc3r49RVHMIVjv+ecBsB07MuTIsJPVi6VD/QTL2GMPNzF4QMshQxgaVF+pJN3qps7cufDZZ9TesYMDvS59oPvJJ9M1Bcd5plv9VCcJqZthw2gGtI/P2dJaLPUzL3g6qjDE2kI42RizCHgVeN1auzjG8wXLBbJCrK8btL284wDygbHeSmttkTFmDHCHMaa9tbbc0Nlauw5YF7zOBDKlsrOzadSoUVgvIFoNGjRI+DWSxpu9Hqg3cCD1GjWisBBuvhnuu8+tNwbuugtuvLE2GRmB+8PefDO88QbGWrKffrrCW9qVa8kSADK7dYvp91uj6ydY375+YglQd7/9qJvirztt6qZHj+LFul984RYyM8nu2zfMGdqTI23qpxpS3aS2aOonOzuy9IlYk0rOBH4FbgV+NcZ8b4y5xBizW4znBdc1HOqO2N66VeUctxHXirjBWltYapsX5OneW8lSKqEkLw9OOMEPBhs3ho8+cvFfRvBfZ48e7vYkAO+849+hIVxFRf6k1JpyJjzBiSWgDONUEtxCPnGivy6Fg0ERSW0xBYTW2tHW2uNw4/muBAyuu3WVMeZ9Y8wIY0y071AzgS7GmNIh8YFB20OVqSiwrXmIa3vjDv+IskwSq6A7lBSZTM4+2817DC7m+/FHdyvjkP78Z/dz/Xr/xunhWrHC3dkBlGEcCW9esaZN/TvHSPLttZe/HBiCoQxjEYlFXKadsdaut9Y+Ya0dAHQG/gV0A8YAa4wxz4QzmXQpY4FM4CJvhTEmC5ccMsVauyKwrr0xplupY8cEjj0n6Ni6wEjgF2ttea2LkkhBdyix/fbnqqvgrbfcpgED4Icf/Nu0hjRsmL/82WeRXdtrHQQFhJG49lq48kp4/fVSTbaSVPXrQ5tSeXVqwRWRGCTiHT4X2IHrtjWABU4EJhhjphljwvoaG0hWeRu41xhzvzHmIuBroAMQnGb6ClB65OTTwFzgSWPMA8aYy4FvgT2B66J9YRKjoDuUfLiqH48/7lbvsw98+CFUOtyhfXu/FWTcuMiurTkIo7P77vDII353vaSO0olVCghFJAZxCQiNMQ2NMecZY74ElgH3AEtxk0u3wnXVngq0AF6M4NRnA48AZwGPAbWB4dbabys6yFqbi5tyZjRwPvAAUAQcZ639NILrSzwF3aHkhrfdHUr22MM19u0W7qhTr5Vw8mTYvDn8a3sBYd260FZ3L5QaoHRAqC5jEYlBTAGhMeZEY8xbwFrcHUQa4u4S0sZa+ydr7bvW2nxrbaG1dixwN27C6bBYa3daa/9urW1tra1rre1vrR1Xap8h1toyN0u01q6z1p5rrW0WOPag0sdKFQsEhNtpwEK60LSpa+hrV9E9Z0o7+mj3s7AQvvoq/OOCE0rU9Sk1QemAsFvpkTMiIuGL9ZPxPVySx8NAd2vtgdbaJ621G8rZfxbweozXlGpq2wQXEP5EX7LqZfLRR1E0agweDPUCU1BG0m3stRCqu1hqiuABt+3bu8x9EZEoxToP4WHW2vHh7mytnYp/6zlJI7/M3MVe89wdSmaYfowZU/KWl2GrWxcOPdT1M3/2GVjrJi6syK5dxXMQKiCUGiO4hVDdxSISo1innRkfp3JIDbZiBVwzbC51Azee6X3+/hx/fAwn9LqNV6yAcGZiX7LEdTGD5iCUmiM4IFRCiYjEKNYxhHcbY2ZWsP0nY0zIewJLeti40cVve6zzE0qGXNsvtpN6ASGEN/2MppyRmmi33eAvf4EmTeCMM5JdGhGp5mIdQzgCqChr9xNcdrGkodxcdxeSX36BfriA0AbuUBKTLl1gzz3dcjjjCDXljNRUY8a4idr33z/ZJRGRai7WgLA98FsF25fg5v6TNFNQAKedBt9/754fuZsLCE3fvpCZGdvJjfFbCSdMgB07Kt7fCwgbN3bz6onUJLH+P4mIEHtAuJ2KA76OuAmqJdV9+y288opL0oiDf/4T/vc/t3zUkF10ynEJJfSLsbvY4wWEeXkuKKyI12XcpUvlCSgiIiJpKNaAcDxwsTGmzEy/xph2uNvOfRPjNSTR1q+Ho46Cc86B99+P+XRffw333uuW990X3rlzLsa7j3C8urYOOwxqBZLkK+s21pQzIiIiFYo1ILwVyALmGmMeMsacH3j8B/gZqBPYR1LZ9OmupQ3gk09iOtUff8CZZ7qGxnr13L2Ksxf4CSVxayFs1Mift6aixJKcHPj9d7esgFBERCSkWKedWQAMwk04fTXwXOBxFTATGGStDWNeEEmq2bP95cq6XytgLZx3Hqxe7Z4/9lhgNgzvlnXxSCgJ5nUbL1gAS5eG3mfRIn9ZU86IiIiEFPM9vKy1s621h+LuU3xQ4NEicEu52RUfLSkhOCD89Vc/oovQY4/Bxx+75VNOgQsuCGzwAsJ4JJQE8+5rDOV3G2vKGRERkUrF7aau1tr11tqpgcf6eJ1XqsDsUnF7FK2EP/0E11/vlvfcE555JpC/kZ/vnz9e3cWePn2gRQu3XF63cfCUM2ohFBERCSnWW9cBYIzZA+gLNCZEkGmtfSUe15EEyM8ve7eP8ePdnDFh2r7d7b5rl2sAfOMNN1cuAHPn+uMT4z1XWkaGayV89VX46iv3WmrXLrmPFxC2bOnGHYqIiEgZMQWExpi6wMvAybhA0ALevB7B85coIExVCxa4QApcgFVUFHEL4eWX+3HXnXfCwQcHbfzxR3853i2E4AeE27bB5MkweHDJ7cowFhERqVSsXcb3ACcBNwNDcMHgOcBRuDuYzAJ6x3gNSaTg7uITT3Q/58+HtWvDOnz0aHjpJbc8dCjccEOpHRKVUOI56ih/bsFQ3cbBcxCKiIhISPG4dd2L1tr7gLmBdSuttV9aa4cDm4G/xXgNSSQvIMzMhEsu8dd/+22lh/72m39Is2bw2mshckYSlVDiad7cb3ksHRBu3OjmWAQFhCIiIhWINSBsAUwNLOcGfjYI2v4OrgVRUtXPP7ufXbu67tasLPd8/PgKD9u1C04/3fXUgmslbNOm1E6JTCgJ5mUb//RTyZbN4AxjJZSIiIiUK9aAcC3QDMBauwPYBHQN2t4IqBvjNSSRvICtVy+oWxcOPNA9r2Qc4a23wrRpbvnKK2H48BA7JTKhJJg3HyHA55/7y5pyRkREJCyxBoRTgIFBzz8E/m6MGWmMOQs3WfUPMV5DEmXTJv8uHr16uZ9Dhrifc+f63a2lfP453H+/W+7TB+67r5zzJzqhxHPQQdC4sVsO7jb2EkqMgU6dEnd9ERGRai7WgPAxYLExJtDPyK24cYOv4rKPtwBXxHgNSRSvuxigZ0/389BD/XUhxhGuXQtnn+2W69eHN9/0e5nLSHRCiadWLTj8cLf8+ecuUxr8gLB9e9f6KSIiIiHFeuu676y1V1pr8wLPVwDdcXMS9gK6B25vJ6koOMPYayE86CB/Lr9S4withQsv9IfpPfGEG3pYrkQnlATzuo3Xr4cZM9yyppwREREJS9QBoTGmvjHmXWPMyOD11toia+0sa+0ca21B7EWUhPECwsaNoV07t1y/PvTv75ZLjSN86y346CO3fOqpcO65FZy7qhJKPMG3sfvsMxe9asoZERGRsEQdEAaSSI4A6sevOFKlghNKvLn8wB9H+PPPbuoW3I8rAp3/u+/uWgeDDymjqhJKPO3bQ/fubnncOFizxt1CBRQQioiIVCLWMYTfAQdXupeknqIimDPHLXvjBz3eOEJrYeJEAK67Dtatc6sffdQFhRX67jt/uSpaCMHvNp482U+BBk05IyIiUolYA8LLgEHGmLsD9zOW6mLJEsjJccve+EHPgAEuUQNg/Hi+/BJefNE9PfpoN/9ghayF5593y+3bVzLQMI68gLCwEEaN8terhVBERKRCsQaEs4A9gBuBZcaYPGPM1lKPLbEXU+IuVEKJp0GD4m7eom8mcPHF/ur//reSrmJw083MnOmWL7zQ3SO5Kgwa5GcTe9PP1K4Ne+5ZNdcXERGppmrFePw7gI1HQaSKBQeE++5bdvuQIfDDDzBrJhvYDDThX/8KM7Z65hn3MzMTzj8/9rKGq149V+7guQg7dfJbO0VERCSkmD4prbXnxqkcUtW8OQg7doSGDctuP/RQ+Pe/ycAykO/4o/9wLrssjPNu3QpvvOGWhw+Htm3jVuSwHH10yYBQ4wdFREQqVUV9eZJygjOMQyg48BAKcHMHHmbG89xzYU4lOHq0PzbxooviUNAIBU8/Axo/KCIiEoaYWgiNMWeHs5+19pVYriNxlpMDixa55XICwkeeb8hg9qM/0/hLqwns0TPkbiVZC08/7Zbbty8bnFWFrl1dv/ayZe65AkIREZFKxTq46qUKtgWPLVRAmErmznXBG5Sdcgb47Te47Ta4nSH0Zxpt185wXcGNGlV83tLJJIm+O0koxrhuYy8wVZexiIhIpWLtMu4Y4rE3bsLq94DpQIiMBUmq4HsYl2ohtBYuvhhyc2ECbj5CU1QE339f+XmTlUxS2imnuJ/160Pv3skrh4iISDUR672Ml4V4LLbWfm2tHQH8gZurUFKJN36wbl3Ye+8Sm155Bb76yi3vfe5Af8qYUrexKyPZySTBDj8cvvgCJk2C3XZLXjlERESqiUQnlXwEnJrga0ikvIBw331LdOuuXQtXX+2WW7eGOx5uDH36uBXjx1d8zmQnk5R2xBFqHRQREQlTogPCTkBWgq8hkbDWDwhLjR+86irYtMktP/kkNGmCf1/jH3/07w0c6pzJTiYRERGRqMWaZTy4nE1NgMHAFcD7sVxD4mz1ati40S0HjR/8+GN48023/Oc/uwfg5iP8z3/c7eAmTYKjjip7zunTk59MIiIiIlGLNct4PKHvVGKAQuBt4PIYryHxFOKWdbt2waWXulWNGsETTwTtP2iQy9y11o0jDBUQeq2DyU4mERERkajEGhAODbHOApuAZdbarTGeX+ItOCAMdBlPnAjLl7tV//oXtGkTtH/Tpi5wnDUr9DjCVEomERERkajEeuu6SlJPJeV4AWGrVtC8OQCff+5WGQNnnBHimCFDXEA4bRrs2OGmc/GkWjKJiIiIRCympBJjTEdjzPEVbD/eGNMhlmtInHlzEAaNH/QCwgMOKGeWlkPdfITk58Pkyf56JZOIiIjUCLFmGT+ISxwpz9+Af8d4DYmXXbtg3jy3HAgI167180HKjecGDfKXg+cjVDKJiIhIjRBrQHgw8EUF278CBlWwXarSggWulQ+Kxw9+EVR7ofJFANh9dzdnIZQcR+i1DmZkKJlERESkGos1IGwKbKtg+3agWYzXkHgJkWHsdRc3bAgHHljBsd58hFOmuPvaKZlERESkxog1IFwOHFLB9kHA7zFeQ+LFGz+YmQndu2OtHxAedhjUrl3Bsd44wl27XFAYnExy8cUJK7KIiIgkXqwB4RvA6caYK4wxxecyxmQaY67E3bZudIzXkHjxWgi7dYOsLH7+2Y0hhDDyQQYHzUE+frySSURERGqQWOchvBcYCDwC3GyMWRBY3xVojpu4+l8xXkPipdQt68aN8zeVO37Q06IFdO/uklKefRZWrXLrlUwiIiJS7cXUQmitzQOOAi4ApgK7Bx5TgfOBIwL7SLJt3AgrV7rlUuMH99oLOnUK4xzeOEIvGFQyiYiISI0Qawsh1toi4MXAQ1KVN34QoFcvduxwdyiBMFoHPYceCqNG+c+VTCIiIlIjxDox9W7GmF4VbO9pjGkayzUkTkplGE+cCHmBttuwhwB6iSUeJZOIiIjUCLEmlTwMPFPB9qdxk1dLsnkBYePGsMcexeMHMzNhaKg7UofSqhV07eqWlUwiIiJSY8QaEB4G/K+C7R8CR8R4DYkHLyDs1QuMKR4/eNBBLkYM2/33Q79+LstYySQiIiI1QqxjCJsD6yvYvgFoEeM1JFZFRTBnjlvu1YuVK2HuXPc07PGDnhNOcA8RERGpMWJtIVwN9K1gez/gjxivIbFavBh27HDLPXuWuF2den1FREQk1oDwfeACY0yZJiNjzInAecB7MV5DYlUqocQbP9ikCey/f1JKJCIiIikk1i7j23FjBN8zxswCAv2S7Av0AX4B/hnjNSRWQQFh0T77FrcQHnGEhgGKiIhI7BNTbwEOAu4GagMjAo/awJ1Af8DEWEaJlTcH4V578dOihmzY4J6qu1hEREQg9i5jrLU51tp/Wmt7WmvrW2vrAwcAc3H3MV4d6zUkRkG3rPOyiwGOPDI5xREREZHUEvOdSjzGGAMcDowE/gw0xGUgj47XNSQK27fDb7+55aDxg127wp57Jq9YIiIikjpibiE0xvQzxvwHWAl8DpwNfAwMBFpZa6O+2a0xJssYc58xZpUxJtcYM8UYE3G7ljHmC2OMNcY8EW1Zqq25c8FaAHI792LSJLc64ulmREREpMaKKiA0xuxljLnVGDMfmIobN/g6cCpuzOA71trJ1gYikei9BFwTOPeVQCHwiTFmYARlPQk4OMZyVF9B9zD+YUcv8vPdssYPioiIiCfiLmNjzGRcssh6YCxwobX2u8C2TvEqmDGmP3Aa8Hdr7YOBda/gMpnvBwaEcY66wEPAfbgkl/TjjR+sV4/3f3bVU7t22dsSi4iISPqKpoXwQGApcBFwpRcMJsAIXItg8b2SrbU7geeBg40x7cI4x/W415i+91P2AsIePfjsCzfHzCGHQHZ2EsskIiIiKSWagPAyXObwe8AaY8zTxpihgaSSeOoLLLTWbi21fmrgZ5+KDjbGtAf+Adxgrc2Nc9mqB2uLA8Jte/Vi4UK3WuMHRUREJFjEXcbW2qeAp4wxHXEZxWcAfwXWAN8ANvCIVWtCT1njrWtTyfEPAT9Za9+M9MLGmBa4+zQH6wSwfft2tm4tHaPGR05OTomfsTKrVtFw0yYAZuR3L15/yCHb2bq1KC7XSCfxrh+JH9VNalP9pC7VTWqLpX62b98e0f5RTztjrV2Cm5D6bmNMP1xw6CWVPGWMOQb4H/BloKs3UvWAvBDrdwZtD8kYMxQ4Gde9HY1LKecOK1OnTmXNmjVRnjY8U6dOrXynMLSYPr04m2bswvYANGqUx4YNX/HNN3G5RFqKV/1I/KluUpvqJ3WpblJbNPWzfPnyiPaPyzyE1trpwHRjzHXAYcCZuODwQmAHEM2ItVwgK8T6ukHbyzDG1AIeA1611k6L4roATwFvl1rXCfigf//+dO/ePcQhscvJyWHq1Kn079+fBg0axHy+OjNnFi9/snwIAEcdlcHhhw+N+dzpKN71I/Gjukltqp/UpbpJbbHUz7x58yLaP24TUwNYa4uAL4EvjTGXACfiupSjsRpoG2J968DPVeUcdzbQFbjYGNOh1LaGgXXrrLU7yruwtXYdsC54nTdEMjs7m0aNGlVW9pg0aNAgPteYPx+AXbu3YfH6FgAMH16bRo1qx37uNBa3+pG4U92kNtVP6lLdpLZo6ic7wuzRmCemLo+1dqe1doy19sQoTzET6GKMKf0bODBoeyjtcfdS/h5YEvQAFywuAdIjrWLWLACWNe1TvEq3qxMREZHS4tpCGGdjgetw09t48xBmAecBU6y1KwLr2gP1rbXzA8e9Sehg8T3gE+BZYEpCS54KduyABQsAmJzbB4B994U2laXiiIiISNpJ2YDQWjvFGPM2cG8g63cRcA7QAbggaNdXgENxySwEAsP5lBLo8l1irX0/oQVPFXPmQJHLJP5kZW9A082IiIhIaCkbEAacDdwFnAU0BWYDw6213ya1VNVBUELJDNsH0O3qREREJLSUDggD09X8PfAob58hYZ4r3hNnp7bA+MGdtRrwW0EnsrJg0KAkl0lERERSUsKSSiTJAi2Ev2T2oohMBg+GeuXO3CgiIiLpTAFhTVRUVNxCOCVP4wdFRESkYgoIa6LffoPAbW5mBm75rPGDIiIiUh4FhDVRUELJTPqwxx5uyhkRERGRUBQQ1kSB7uJCMviZnpxyCpj0SqkRERGRCCggrIkCLYQL6UIu9fnLX5JbHBEREUltCghrokBAOIvetGsHBx5Y8e4iIiKS3hQQ1jTr18PKlYAbP6juYhEREamMAsKaJjB+EPyAUERERKQiCghrmqAM4/Vt+6i7WERERCqlgLCG2TF5JgBraMmhp7ZSd7GIiIhUSgFhDZM7aSbgEkrUXSwiIiLhUEBYk+zcSePV8wBY3FDdxSIiIhIeBYQ1yB8TfqEWhQA0HNRH3cUiIiISFgWENcjsV2YWL/c8q0/SyiEiIiLViwLCGmTz+JkA7DR16XVy5+QWRkRERKoNBYQ1xOrV0HzVTADWteyJqV0ruQUSERGRakMBYQ3xzlhLb9yk1HUP7JPcwoiIiEi1ooCwhpj46lIasxWA5kf2SW5hREREpFpRQFgDrFoF+dNmFj83ffskrSwiIiJS/SggrAHeeQd6M9Nf0bNn0soiIiIi1Y8CwhrgrbcoHj9o994bGjZMcolERESkOlFAWM2tXAnffw99Ai2Epk+fpJZHREREqh8FhNXcO+9AY7uJDixzKxQQioiISIQUEFZzb7/tdxcDCghFREQkYgoIq7GVK+G77/zuYgB6905aeURERKR6UkBYjb3zjvtZ3ELYrBm0bZu8AomIiEi1pICwGnvrLfezf52ZbqFPHzAmWcURERGRakoBYTXlZRfXZhddC+a6lRo/KCIiIlFQQFhNjR3rfnZnHrWK8t0TjR8UERGRKCggrKbeftv9PGJ3ZRiLiIhIbBQQVkO//+66iwFO3HOmW6hTB7p1S1qZREREpPpSQFgNednFAH3MTLew775Qu3ZSyiMiIiLVmwLCasjrLu6wp6XhbzPdE3UXi4iISJQUEFYzGzbA5Mlu+fwjV2A2bXJPlFAiIiIiUVJAWM189hkUFbnlEzsooURERERip4Cwmvn4Y/ezUSPokT/T36AWQhEREYmSAsJqpKAAPv3ULR91FGT+PNM96dgRGjdOWrlERESkelNAWI1MngybN7vl4cOBmTPdE3UXi4iISAwUEFYjXnexMXDswK2weLFboe5iERERiYECwmrECwgPOACar57tb1ALoYiIiMRAAWE1sXw5zJnjlo87Dr+7GBQQioiISEwUEFYTXusglAoImzSB9u2TUCIRERGpKRQQVhNeQNiqFfTtC8wKzEHYu7cbVCgiIiISJQWE1cCOHfDVV2752GMho6gAfv7ZrVB3sYiIiMRIAWE18M03sHOnWz7uOGDBAsjLcysUEIqIiEiMFBBWA153ce3acOSRKKFERERE4qpWsgsgAfn5mNWrqbtxI2b1ati+HQBrYdoH0BoYfBA03AZMmuSOqV0b9tknaUUWERGRmkEBYaqYN4+GvXszrNRqA0zznkwE2gZt7N4d6tSpitKJiIhIDaYu4+rs8MOTXQIRERGpAdRCmCratiX3kUdYsGABXbt2pV69egA88AD8ughatoC77grav3FjOP745JRVREREahQFhKmiWTPyzzuPZd98w15Dh1KvUSM2bYIbL4VC4KozgIuSXUgRERGpidRlnMLGjYPCQrd83HHJLYuIiIjUXAoIU9hHH7mf2dkweHByyyIiIiI1lwLCFFVYCJ995paPOkrJxCIiIpI4CghT1JQpsGGDW1Z3sYiIiCSSAsIU5d2dBNz9i0VEREQSRQFhivICwn79oFWr5JZFREREajYFhClo5UrDrFluWd3FIiIikmgpHRAaY7KMMfcZY1YZY3KNMVOMMUeGcdxJxpgxxpjFxpgdxpgFxpiHjDFNqqDYMfv8c396SAWEIiIikmgpHRACLwHXAK8DV+LmaP7EGDOwkuOeAboDrwFXAJ8BlwGTjTH1ElbaOPECwhYtYP/9k1wYERERqfFS9k4lxpj+wGnA3621DwbWvQLMAe4HBlRw+Ahr7fhS55sOvAyMBJ5LRJnjYdeuDMaPd9Vy7LGQkeohu4iIiFR7qRxujMC1CD7jrbDW7gSeBw42xrQr78DSwWDAe4Gf3eNYxribM2d3duwwgLqLRUREpGqkbAsh0BdYaK3dWmr91MDPPsCKCM7n5equr2xHY0wLoHmp1Z0Atm/fztatpYsUHzk5Ofz4Y0sAatWyHHjgNhJ0KYlCTk5OiZ+SOlQ3qU31k7pUN6ktlvrZvn17RPunckDYGlgdYr23rk2E57sB1+I4Nox9LwX+GWrD1KlTWbNmTYSXDo+1MH36EQB0776eGTMmJeQ6EpupU6dWvpMkheomtal+UpfqJrVFUz/Lly+PaP9UDgjrAXkh1u8M2h4WY8wZwAXA/dbaX8M45Cng7VLrOgEf9O/fn+7dE9PrPHNmHmvXNgDg1FMbMnTo0IRcR6KTk5PD1KlT6d+/Pw0aNEh2cSSI6ia1qX5Sl+omtcVSP/PmzYto/1QOCHOBrBDr6wZtr5QxZhBu3OE44OZwjrHWrgPWlToPANnZ2TRq1Cic00Ts2293Fi+ffHJdGjWqW8HekiwNGjRI2N+AxEZ1k9pUP6lLdZPaoqmf7OzsiPZP5aSS1bhu49K8dasqO4ExpjfwP1xm8ghrbUH8ihd/3nQzHTsW0bVrkgsjIiIiaSOVA8KZQBdjTOmQ+MCg7eUyxnTCzT+4DjjWWhvZ6MoqtmULTJ6cCcCwYfkEGiRFREREEi6VA8KxQCZwkbfCGJMFnAdMsdauCKxrb4zpFnygMaYV8DlQBAyz1v5RZaWO0uefQ0GBiwKPOiqlGzJFRESkhknZMYTW2inGmLeBewPTwCwCzgE64BJEPK8AhwLBbWqfAXvhJrAeWOrOJmuttV8ksuzROPZYePPNHbz88loGDmyW7OKIiIhIGknZgDDgbOAu4CygKTAbGG6t/baS43oHfl4fYtsEIOUCwgYN4JhjCqhbdzZZWcouFhERkaqT0gFh4M4kfw88yttnSIh1GoEnIiIiEqZUHkMoIiIiIlVAAaGIiIhImlNAKCIiIpLmFBCKiIiIpDkFhCIiIiJpTgGhiIiISJpTQCgiIiKS5hQQioiIiKQ5BYQiIiIiaU4BoYiIiEiaU0AoIiIikuYUEIqIiIikOQWEIiIiImlOAaGIiIhImlNAKCIiIpLmFBCKiIiIpDkFhCIiIiJpTgGhiIiISJpTQCgiIiKS5hQQioiIiKQ5BYQiIiIiaU4BoYiIiEiaU0AoIiIikuYUEIqIiIikOQWEIiIiImlOAaGIiIhImlNAKCIiIpLmFBCKiIiIpDkFhCIiIiJpTgGhiIiISJpTQCgiIiKS5hQQioiIiKQ5BYQiIiIiaU4BoYiIiEiaU0AoIiIikuYUEIqIiIikOQWEIiIiImlOAaGIiIhImlNAKCIiIpLmFBCKiIiIpDkFhCIiIiJpTgGhiIiISJpTQCgiIiKS5hQQioiIiKQ5BYQiIiIiaU4BoYiIiEiaU0AoIiIikuYUEIqIiIikOQWEIiIiImlOAaGIiIhImlNAKCIiIpLmFBCKiIiIpDkFhCIiIiJpTgGhiIiISJpTQCgiIiKS5hQQioiIiKQ5BYQiIiIiaU4BoYiIiEiaS+mA0BiTZYy5zxizyhiTa4yZYow5Msxj2xpj3jLGbDbGbDXGfGCM2SvRZRYRERGpblI6IAReAq4BXgeuBAqBT4wxAys6yBiTDXwDHArcA/wT6AtMMMY0S2SBRURERKqbWskuQHmMMf2B04C/W2sfDKx7BZgD3A8MqODwS4HOQH9r7bTAsZ8Gjr0WuCmBRRcRERGpVlK5hXAErkXwGW+FtXYn8DxwsDGmXSXHTvOCwcCx84GvgL8kprgiIiIi1VMqB4R9gYXW2q2l1k8N/OwT6iBjTAbQC/gxxOapQCdjTMN4FVJERESkukvZLmOgNbA6xHpvXZtyjtsNyArj2AXlXdgY0wJoXmp1N4DZs2ezffv28g6NSW5uLsuXL2fGjBnUq1cvIdeQ6Kl+UpfqJrWpflKX6ia1xVI/ixcv9hbrhLN/KgeE9YC8EOt3Bm0v7ziiPNZzKS4RpYwzzjijkkNFREREUkY74KfKdkrlgDAX19JXWt2g7eUdR5THep4C3i61LhvogktM2VXJ8dHqBHwAnAj8lqBrSPRUP6lLdZPaVD+pS3WT2mKpnzq4YHBCODunckC4GmgbYn3rwM9V5Ry3Edc62DrEtsqOBcBauw5YF2LTlIqOi5Uxxlv8zVo7N5HXksipflKX6ia1qX5Sl+omtcWhfiptGfSkclLJTKCLMaZRqfUHBm0vw1pbBPwM7B9i84HAYmvttjiVUURERKTaS+WAcCyQCVzkrTDGZAHnAVOstSsC69obY7qFOPYAY8z+Qcd2BQ6jbFewiIiISFpL2S5ja+0UY8zbwL2BrN9FwDlAB+CCoF1fwd2RxAStewr4K/CxMeZBIB93x5O1wEOJL72IiIhI9ZGyAWHA2cBdwFlAU2A2MNxa+21FB1lrtxljhgAPA7fgWkLHA1dba/9IYHlj9QdwR+CnpB7VT+pS3aQ21U/qUt2ktiqrH2OtTfQ1RERERCSFpfIYQhERERGpAgoIRURERNKcAkIRERGRNKeAUERERCTNKSAUERERSXMKCFOAMSbLGHOfMWaVMSbXGDPFGHNkssuVbowx2caYO4wxnxljNhpjrDHm3HL27R7Yb3tg31eNMc2ruMhpwxhzgDHmCWPMXGNMjjFmuTHmLWNMlxD7qm6qkDGmhzHmbWPMYmPMDmPMemPMt8aY40Psq7pJMmPMzYH3tjkhtg0wxnwXqMc1xpjHjDHZyShnOjDGDAnURajHQaX2TXjdpPo8hOniJWAE8AjwK3Au8IkxZqi19rvkFSvt7A7cBiwHZgFDQu1kjNkD+BbYAtwEZAPXAT2NMf2ttbuqpLTp5QbgENydhmYDrYDLgBnGmIOstXNAdZMkewINgZdx94mvD5wM/M8Yc7G19hlQ3aSCQB3cBOSE2NYH+AqYh7uRwx64+ukMHFN1pUxLjwHTSq1b5C1UWd1Ya/VI4gPoD1jguqB1dQN/DJOSXb50egBZQKvA8v6Bejk3xH5PATuA9kHrjgjsf1GyX0dNfAADgDql1nUGdgKvqW5S64G77ehMYL7qJnUewJu4wGI8MKfUtk9wAX2joHUXBurnqGSXvSY+cI0OFhhRyX5VUjfqMk6+EUAh8Iy3wlq7E3geONgY0y5ZBUs31to8a+2aMHY9GfjIWrs86NgvgYXAXxJVvnRmrZ1kS7UgWWt/BeYC3YNWq25SgLW2EFgBNAlarbpJImPMYNznzVUhtjUCjsR9udoatOkVYDuqn4QzxjQ0xpTpta3KulFAmHx9gYWlKhpgauBnn6otjlTEGNMWaAH8GGLzVFx9ShUwxhigJbA+8Fx1k0TGmAbGmN2NMZ2MMVfjurK+CmxT3SSRMSYTeBx4zlr7c4hdeuKGkJWon8CXsJmofhLtRWArsNMY840xZv+gbVVWNxpDmHytgdUh1nvr2lRhWaRyrQM/y6uz3YwxWdbavCosU7oaCbTFjfsE1U2yPQRcHFguAt7FjfME1U2yXYIb63lEOdsrq59BiSiUsAt4B9clvB7YBzc2cKIxZoC19ieqsG4UECZfPSDUm+DOoO2SOrz6qKzO9MGWQMaYbsCTwGRcMgOobpLtEWAs7kvsX3DjCOsEtqluksQY0wy4E7jLWvtHObtVVj/6HEoAa+0kYFLQqv8ZY8biEufuBY6mCutGXcbJl4tLZiitbtB2SR1efajOksQY0wr4GJetOiIwXg1UN0llrZ1vrf3SWvuKtXY4Lov4w0DXvuomee4GNuK6jMtTWf2obqqItXYR8AEwNNDVX2V1oxbC5FuN6/YqzWsmXlWFZZHKec32rUNsaw1sVLdX4hhjGgOf4pIVBllrg/8/VDepZSzwNNAF1U1SGGM6AxfhEknauNgccIFEbWNMB9zYtcrqR59DVWsFrnW9AVVYN2ohTL6ZQJdAJlGwA4O2S4qw1q4E/sBNS1Naf1RfCWOMqQt8iAswhltrfwnerrpJOV5XVmPVTdK0xX3OPwYsCXociPs/WoIbgzsHKKBU/Rhj6uASG2dWVYEFgL1w3cHbqcK6UUCYfGNxY20u8lYYY7KA84Ap1toVySqYlOsdYHjwlEDGmMNxb7BvJ61UNVig62QMcDBwirV2cjm7qm6qmDGmRYh1tYGzcd1ZXuCuuql6c4A/h3jMxU3A/2fgeWvtFuBL4ExjTMOg48/Cdf2rfhIg1F16jDG9gROAz621RVVZNyYwwaEkkTHmLdw/5sO4CanPwX1rPtxa+20yy5ZujDGX4boj2wD/h8uU/Cmw+XFr7ZbAB9pPwGbgUdw/5d+B34ED1PUVf8aYR4ArcS2Eb5Xebq19LbCf6qaKGWPeAxrh7kKyEncXmZFAN+Baa+1/AvupblKEMWY8sLu1dt+gdfvhEhx+wc2LuwdwLfCttXZYMspZ0xljvsZ9aZoErMNlGV8E5AMHW2vnBfarkrpRQJgCAl1hdwFnAk1xGUa3WmvHJbVgacgYsxQ3PUMoHa21SwP79QD+AwzETR3wMe7Db20VFDPtBD7ADi1vu7XWBO2ruqlCxpjTgAtw86U1A7YB03FfoP5Xal/VTQoIFRAG1g8E7gP2w9XjW8CN1tptVV7INGCMuQL35Wlv3JeqP3Bzd94RSC4J3jfhdaOAUERERCTNaQyhiIiISJpTQCgiIiKS5hQQioiIiKQ5BYQiIiIiaU4BoYiIiEiaU0AoIiIikuYUEIqIiIikOQWEIiIiImlOAaGIiIhImlNAKCIiIpLmFBCKiFQjxphzjTHWGLN/sssiIjWHAkIRkVKCgq7yHgclu4wiIvFUK9kFEBFJYbcBS0KsX1TVBRERSSQFhCIi5fvUWvtjsgshIpJo6jIWEYmCMaZDoPv4OmPM1caYZcaYXGPMBGPMviH2P8wYM9EYk2OM2WyM+cAY0z3Efm2NMc8bY1YZY/KMMUuMMaOMMXVK7ZpljPmPMeaPwDnfM8Y0L3Wu/Y0x44wx6wNlW2KMeSHOvwoRqQHUQigiUr7GxpjdS62z1toNQc/PBhoCTwJ1gSuBr40xPa21awGMMUcAnwKLgduBesDlwPfGmP2stUsD+7UBpgJNgGeA+UBbYARQH9gVdN3HgU3AHUAH4CrgCeDUwLlaAJ8DfwD/BjYH9jspyt+FiNRgCghFRMr3ZYh1ebjAz7M30NlauxLAGPMZMAW4AbgmsM8DwEbgYGvtxsB+7wM/4QK6cwL73Qu0Ag4s1VV9mzHGlCrHBuAoa60NnC8DuMIY09hauwUYADQN7BN8rlvCfO0ikkbUZSwiUr6/AUeWehxTap/3vWAQwFo7FRcQHgtgjGkN9AFe8oLBwH6zgS+C9ssA/gR8GGrcohf4BXmm1LqJQCawZ+D55sDP4caY2mG9WhFJW2ohFBEp39Qwkkp+DbFuIfCXwLIXoC0Isd88YJgxpgGQDTQC5oRZtuWlnm8K/Gwa+DkBeAf4J3C1MWY88D4w2lqbF+Y1RCRNqIVQRKR6KixnvQHXomitHQEcjBtb2BZ4AZhujMmumiKKSHWhgFBEJDadQ6zrAiwNLC8L/OwaYr9uwHprbQ4u+WMrUCZDORbW2h+stTdba/cHRgI9gNPieQ0Rqf4UEIqIxOZPxpi23hNjTH/gQFxWMdba1cBM4BxjTJOg/fYFjgI+CexXhOvSPT7UbelCJJVUyBjTNMQxMwM/syI5l4jUfBpDKCJSvmOMMd1CrJ8EFAWWFwHfGWNG4QKtq3AZwPcH7f93XIA42RjzPP60M1tw09B4bsIFiROMMc/gxhi2Bk4BBuInioTjHOBSY8x7wG+4qXH+imuF/CSC84hIGlBAKCJSvjvLWX8eMD6w/AouOLwKaIGbR/CyQMsgANbaL40xR+OmmLkTyMclfdxgrV0StN9KY8yBwF247t1GwEpcMLkjwrJPAPrjuodb4oLPqcDI4GuKiACYsjMZiIhIZYwxHXD3Of67tfbBJBdHRCQmGkMoIiIikuYUEIqIiIikOQWEIiIiImlOYwhFRERE0pxaCEVERETSnAJCERERkTSngFBEREQkzSkgFBEREUlzCghFRERE0pwCQhEREZE0p4BQREREJM0pIBQRERFJcwoIRURERNKcAkIRERGRNPf/OR6vCl6sYToAAAAASUVORK5CYII=\n",
"image/svg+xml": [
"\n",
"\n",
"\n"
],
"text/plain": [
"