from fmframework.net.network import Network as FmNet from spotframework.net.network import Network as SpotNet from spotframework.net.user import NetworkUser from spotframework.model.uri import Uri from google.cloud import bigquery from csv import DictWriter import datetime import os from log import logger import analysis.cache spotnet = SpotNet(NetworkUser(client_id=os.environ['SPOT_CLIENT'], client_secret=os.environ['SPOT_SECRET'], refresh_token=os.environ['SPOT_REFRESH']).refresh_access_token()) fmnet = FmNet(username='sarsoo', api_key=os.environ['FM_CLIENT']) cache = analysis.cache.load_cache_from_storage() client = bigquery.Client() # Perform a query. QUERY = ( 'SELECT ' ' DISTINCT uri, track, album, artist ' 'FROM `sarsooxyz.scrobbles.*` ' 'WHERE ' ' uri IS NOT NULL ' 'ORDER BY artist ' ) logger.info('querying uris') query_job = client.query(QUERY) rows = query_job.result() features = [] for_pulling = [] logger.info('polling cache') for row in rows: cache_entry = cache.get_track(row.track, row.artist) if cache_entry is not None: if cache_entry.get('features') is None: features.append(cache_entry) continue for_pulling.append(row) logger.info('pulling tracks') tracks = spotnet.get_tracks(uri_strings=[i.uri for i in for_pulling]) if tracks is not None: logger.info('populating features') tracks = spotnet.populate_track_audio_features(tracks) features += [i.audio_features.to_dict() for i in tracks if i.audio_features is not None] logger.info('caching pulled') for cacheable in for_pulling: track = next((i for i in tracks if str(i.uri) == cacheable.uri), None) if track is not None and track.audio_features is not None: cache.set_track(name=cacheable.track, artist=cacheable.artist, audio_features=track.audio_features.to_dict()) logger.info('dumping') date = str(datetime.date.today()) with open(f'{date}_features.csv', 'w', newline='') as fileobj: headers = ['acousticness', 'analysis_url', 'danceability', 'duration_ms', 'energy', 'uri', 'instrumentalness', 'key', 'key_code', 'liveness', 'loudness', 'mode', 'speechiness', 'tempo', 'time_signature', 'track_href', 'valence'] writer = DictWriter(fileobj, fieldnames=headers, dialect='excel-tab') writer.writeheader() for feature in features: writer.writerow(feature) analysis.cache.write_cache_to_storage(cache)