graphene/Report/report.lyx
2021-04-21 22:38:57 +01:00

2440 lines
40 KiB
Plaintext

#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\begin_preamble
\def\changemargin#1#2{\list{}{\rightmargin#2\leftmargin#1}\item[]}
\let\endchangemargin=\endlist
\pagenumbering{roman}
\usepackage{color}
\definecolor{commentgreen}{RGB}{0,94,11}
\end_preamble
\use_default_options true
\begin_modules
customHeadersFooters
minimalistic
todonotes
\end_modules
\maintain_unincluded_children false
\language british
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype true
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command biber
\index_command default
\paperfontsize 11
\spacing onehalf
\use_hyperref true
\pdf_title "Graphene Investigations & Conductivity Modelling"
\pdf_author "6420013"
\pdf_subject "EEEM022 Nanoelectronics & Devices"
\pdf_keywords "EEEM022"
\pdf_bookmarks true
\pdf_bookmarksnumbered false
\pdf_bookmarksopen false
\pdf_bookmarksopenlevel 1
\pdf_breaklinks false
\pdf_pdfborder true
\pdf_colorlinks false
\pdf_backref false
\pdf_pdfusetitle true
\papersize default
\use_geometry true
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine biblatex
\cite_engine_type authoryear
\biblio_style plain
\biblio_options urldate=long
\biblatex_bibstyle ieee
\biblatex_citestyle ieee
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date true
\justification true
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 1.8cm
\topmargin 2cm
\rightmargin 1.8cm
\bottommargin 2cm
\secnumdepth 3
\tocdepth 3
\paragraph_separation skip
\defskip medskip
\is_math_indent 0
\math_numbering_side default
\quotes_style british
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle fancy
\listings_params "breaklines=true,frame=tb,language=Matlab,basicstyle={\ttfamily},commentstyle={\color{commentgreen}\itshape},keywordstyle={\color{blue}},emphstyle={\color{red}},stringstyle={\color{red}},identifierstyle={\color{cyan}},morekeywords={audioread, aryule, xcorr, freqz, spectrogram, mfcc, spectro, fft_, autocorr, clip_segment, islocalmax, ms_to_samples, rceps, cceps, ones, audioplayer, play, get_impulse_train, lpc, strcat, num2str, xlim}"
\bullet 1 0 9 -1
\bullet 2 0 24 -1
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Title
\size giant
Graphene Applications & Conductivity Modelling At High Frequencies
\end_layout
\begin_layout Author
6420013
\end_layout
\begin_layout Standard
\begin_inset VSpace 15pheight%
\end_inset
\end_layout
\begin_layout Standard
\align center
\begin_inset Graphics
filename surrey.png
lyxscale 15
width 40col%
\end_inset
\end_layout
\begin_layout Standard
\begin_inset VSpace vfill
\end_inset
\end_layout
\begin_layout Standard
\noindent
\align center
EEEM022
\begin_inset Newline newline
\end_inset
November 2020
\size large
\begin_inset Newline newline
\end_inset
Department of Electrical and Electronic Engineering
\begin_inset Newline newline
\end_inset
Faculty of Engineering and Physical Sciences
\begin_inset Newline newline
\end_inset
University of Surrey
\end_layout
\begin_layout Standard
\begin_inset Newpage newpage
\end_inset
\end_layout
\begin_layout Abstract
abstract
\end_layout
\begin_layout Standard
\begin_inset CommandInset toc
LatexCommand tableofcontents
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Newpage newpage
\end_inset
\end_layout
\begin_layout Standard
\begin_inset FloatList figure
\end_inset
\end_layout
\begin_layout Standard
\begin_inset FloatList table
\end_inset
\end_layout
\begin_layout Standard
\begin_inset CommandInset toc
LatexCommand lstlistoflistings
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Newpage newpage
\end_inset
\end_layout
\begin_layout Right Footer
EEEM022 Coursework
\end_layout
\begin_layout Left Footer
April 2021
\end_layout
\begin_layout Left Header
6420013
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
pagenumbering{arabic}
\end_layout
\begin_layout Plain Layout
\backslash
setcounter{page}{1}
\end_layout
\end_inset
\end_layout
\begin_layout Section
Introduction
\end_layout
\begin_layout Standard
Graphene is a 2D allotrope of carbon with
\end_layout
\begin_layout Standard
This work explores the suitability of graphene for high frequency applications.
Section
\begin_inset CommandInset ref
LatexCommand ref
reference "sec:Applications"
plural "false"
caps "false"
noprefix "false"
\end_inset
presents two applications of graphene that take advantage of it's behaviour
at high frequencies.
Section
\begin_inset CommandInset ref
LatexCommand ref
reference "sec:Sheet-Conductivity-Modelling"
plural "false"
caps "false"
noprefix "false"
\end_inset
presents an investigation into the 2D sheet conductivity of the material.
\end_layout
\begin_layout Section
Applications
\begin_inset CommandInset label
LatexCommand label
name "sec:Applications"
\end_inset
\end_layout
\begin_layout Section
Sheet Conductivity Modelling
\begin_inset CommandInset label
LatexCommand label
name "sec:Sheet-Conductivity-Modelling"
\end_inset
\end_layout
\begin_layout Standard
This section presents a model for graphene's high frequency conductivity
using the equation below below
\begin_inset CommandInset citation
LatexCommand cite
key "yao"
literal "false"
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{multline}
\sigma_{s}\left(\omega\right)=\frac{2ie^{2}k_{B}T}{\pi\hbar^{2}\left(\omega+\nicefrac{i}{\tau}\right)}\ln\left(2\cosh\left(\frac{E_{F}}{2k_{B}T}\right)\right)\\
+\frac{e^{2}}{4\hbar}\left(\frac{1}{2}+\frac{1}{\pi}\tan^{-1}\left(\frac{\hbar\omega-2E_{F}}{2k_{B}T}\right)-\frac{i}{2\pi}\ln\left(\frac{\left(\hbar\omega+2E_{F}\right)^{2}}{\left(\hbar\omega-2E_{F}\right)^{2}+4\left(k_{B}T\right)^{2}}\right)\right)\label{eq:2d-conductivity}
\end{multline}
\end_inset
\end_layout
\begin_layout Standard
Taking this equation, the first term accounts for the intraband transitions
while the latter term refers to the interband transitions
\begin_inset CommandInset citation
LatexCommand cite
key "david-paper"
literal "false"
\end_inset
\begin_inset Flex TODO Note (Margin)
status open
\begin_layout Plain Layout
cite
\end_layout
\end_inset
.
These two contributions are separated for reference below,
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\sigma_{s}^{intra}\left(\omega\right)=\frac{2ie^{2}k_{B}T}{\pi\hbar^{2}\left(\omega+\nicefrac{i}{\tau}\right)}\ln\left(2\cosh\left(\frac{E_{F}}{2k_{B}T}\right)\right)\label{eq:intra-conductivity}
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\sigma_{s}^{inter}\left(\omega\right)=\frac{e^{2}}{4\hbar}\left(\frac{1}{2}+\frac{1}{\pi}\tan^{-1}\left(\frac{\hbar\omega-2E_{F}}{2k_{B}T}\right)-\frac{i}{2\pi}\ln\left(\frac{\left(\hbar\omega+2E_{F}\right)^{2}}{\left(\hbar\omega-2E_{F}\right)^{2}+4\left(k_{B}T\right)^{2}}\right)\right)\label{eq:inter-conductivity}
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
Equation
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:2d-conductivity"
plural "false"
caps "false"
noprefix "false"
\end_inset
was implemented in MatLab, see listing
\begin_inset CommandInset ref
LatexCommand ref
reference "calculation_function"
plural "false"
caps "false"
noprefix "false"
\end_inset
, such that the inter and intraband contributions were returned separately.
This allowed for displaying both aspects independently or together by summing.
From the function it can be seen that the variables are AC frequency,
\begin_inset Formula $\omega$
\end_inset
, the Fermi energy level,
\begin_inset Formula $E_{F}$
\end_inset
, the temperature,
\begin_inset Formula $T$
\end_inset
, and the scatter lifetime,
\begin_inset Formula $\tau$
\end_inset
.
These were varied within reasonable ranges in order to investigate how
such variations affect the conductivity, both as a whole and individually.
\end_layout
\begin_layout Subsection
Results
\end_layout
\begin_layout Standard
To validate the model, values for TTF and CoCp
\begin_inset script subscript
\begin_layout Plain Layout
2
\end_layout
\end_inset
doping taken from
\begin_inset CommandInset citation
LatexCommand citet
key "david-paper"
literal "false"
\end_inset
(see table
\begin_inset CommandInset ref
LatexCommand ref
reference "tab:david-values"
plural "false"
caps "false"
noprefix "false"
\end_inset
) were simulated and can be seen presented in figure
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:david-simulation-conductivity"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
Similarly to the original, the real component can be seen to be between
48 and 63 mS for TTF and CoCp
\begin_inset script subscript
\begin_layout Plain Layout
2
\end_layout
\end_inset
respectively with both having a cutoff frequency of around 20 GHz.
Beyond the cutoff frequency the value is around 60
\begin_inset Formula $\mu S$
\end_inset
by 5 THz.
The imaginary component peaks over the same frequency band that the real
component declines and the two intersect at around 150 GHz with a conductance
of 31 mS with CoCp
\begin_inset script subscript
\begin_layout Plain Layout
2
\end_layout
\end_inset
and 24 mS for TTF.
Beyond 100 THz, the imaginary component dips below zero, with a trough
of -0.5 mS around 250 THz.
\end_layout
\begin_layout Standard
\begin_inset Float table
wide false
sideways false
status open
\begin_layout Plain Layout
\noindent
\align center
\begin_inset Tabular
<lyxtabular version="3" rows="3" columns="3">
<features tabularvalignment="middle">
<column alignment="center" valignment="top">
<column alignment="center" valignment="top">
<column alignment="center" valignment="top">
<row>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
Dopant
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
Carrier Concentration (cm
\begin_inset script superscript
\begin_layout Plain Layout
-2
\end_layout
\end_inset
)
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
Fermi Level (eV)
\end_layout
\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
TTF
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $1.3\times10^{13}$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
0.41
\end_layout
\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
CoCp
\begin_inset script subscript
\begin_layout Plain Layout
2
\end_layout
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $2.2\times10^{13}$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
0.53
\end_layout
\end_inset
</cell>
</row>
</lyxtabular>
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset VSpace defskip
\end_inset
With Fermi velocity energy scale,
\begin_inset Formula $t$
\end_inset
= 3 eV
\end_layout
\begin_layout Plain Layout
\begin_inset Caption Standard
\begin_layout Plain Layout
Carrier concentration values for dopants from
\begin_inset CommandInset citation
LatexCommand citet
key "david-paper"
literal "false"
\end_inset
and the Fermi levels derived from the model, see figure
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:fermi-concentration-func"
plural "false"
caps "false"
noprefix "false"
\end_inset
\begin_inset CommandInset label
LatexCommand label
name "tab:david-values"
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Plain Layout
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status collapsed
\begin_layout Plain Layout
\noindent
\align center
\begin_inset Graphics
filename ../Resources/david-recreation-mag.png
lyxscale 20
width 60col%
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Caption Standard
\begin_layout Plain Layout
Complex conductivity for TTF and CoCp
\begin_inset script subscript
\begin_layout Plain Layout
2
\end_layout
\end_inset
doping at 300 K with a scatter lifetime of 1 ps
\begin_inset CommandInset citation
LatexCommand cite
key "david-paper"
literal "false"
\end_inset
\begin_inset CommandInset label
LatexCommand label
name "fig:david-simulation-conductivity"
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
The two contributions to this complex conductance, intraband and interband,
can be seen individually in figure
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:david-simulation-inter-intra"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
Comparing the two, it can be seen that the interactions happen over largely
separate frequency ranges.
The interband interactions begin after the 10 THz range, initially the
imaginary component sharply drops and relaxes with a minima at 187 THz
and 248 THz for TTF and CoCp
\begin_inset script subscript
\begin_layout Plain Layout
2
\end_layout
\end_inset
.
As the imaginary component minimises, the real component begins sharply
rising over a 100 THz range to a maximum of 60
\begin_inset Formula $\mu S$
\end_inset
.
This continues throughout the hundreds of terahertz range and beyond the
region of interest.
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status open
\begin_layout Plain Layout
\noindent
\align center
\begin_inset Graphics
filename ../Resources/david-recreation-intra-mag.png
lyxscale 20
width 50col%
\end_inset
\begin_inset Graphics
filename ../Resources/david-recreation-inter-mag.png
lyxscale 20
width 50col%
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Caption Standard
\begin_layout Plain Layout
Intraband and interband conductivity for TTF and CoCp
\begin_inset script subscript
\begin_layout Plain Layout
2
\end_layout
\end_inset
doping at 300 K with a scatter lifetime of 1 ps
\begin_inset CommandInset citation
LatexCommand cite
key "david-paper"
literal "false"
\end_inset
\begin_inset CommandInset label
LatexCommand label
name "fig:david-simulation-inter-intra"
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
The Fermi level used to calculate conductance (listing
\begin_inset CommandInset ref
LatexCommand ref
reference "calculation_function"
plural "false"
caps "false"
noprefix "false"
\end_inset
) was derived from the net carrier concentration as a result of doping,
see listing
\begin_inset CommandInset ref
LatexCommand ref
reference "fermi_from_carrier_density"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
The non-linear function can be seen modelled in figure
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:fermi-concentration-func"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status open
\begin_layout Plain Layout
\noindent
\align center
\begin_inset Graphics
filename ../Resources/fermi-conc.png
lyxscale 20
width 60col%
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Caption Standard
\begin_layout Plain Layout
Fermi level associated with different carrier concentrations
\begin_inset CommandInset label
LatexCommand label
name "fig:fermi-concentration-func"
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Subsubsection
Carrier Density
\end_layout
\begin_layout Standard
The general trends for how the dopant-influenced net carrier concentration
influences conductivity can be seen in the surfaces of figure
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:surf-carrier-concentration"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
To select a suitable range to visualise, the values from table
\begin_inset CommandInset ref
LatexCommand ref
reference "tab:david-values"
plural "false"
caps "false"
noprefix "false"
\end_inset
and figure
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:fermi-concentration-func"
plural "false"
caps "false"
noprefix "false"
\end_inset
were considered.
Realistic dopant carrier concentrations can be seen to of the order of
\begin_inset Formula $1\times10^{13}$
\end_inset
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
cm
\begin_inset script superscript
\begin_layout Plain Layout
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
-2
\end_layout
\end_inset
or
\family default
\series default
\shape default
\size default
\emph default
\bar default
\strikeout default
\xout default
\uuline default
\uwave default
\noun default
\color inherit
\begin_inset Formula $1\times10^{17}$
\end_inset
m
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
\begin_inset script superscript
\begin_layout Plain Layout
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
-2
\end_layout
\end_inset
.
For the simulation, values up to
\family default
\series default
\shape default
\size default
\emph default
\bar default
\strikeout default
\xout default
\uuline default
\uwave default
\noun default
\color inherit
\begin_inset Formula $1\times10^{18}$
\end_inset
m
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
\begin_inset script superscript
\begin_layout Plain Layout
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
-2
\end_layout
\end_inset
for a Fermi level of 1.13 eV were chosen.
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status open
\begin_layout Plain Layout
\noindent
\align center
\begin_inset Graphics
filename ../Resources/carrier-density/real-com-carrier-surf-sl5e-12-T300-logCB.png
lyxscale 20
width 80col%
\end_inset
\end_layout
\begin_layout Plain Layout
\noindent
\align center
\begin_inset Graphics
filename ../Resources/carrier-density/im-com-carrier-surf-sl5e-12-T300-logCB.png
lyxscale 20
width 80col%
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Caption Standard
\begin_layout Plain Layout
Complex conductivity over frequency for different carrier densities.
Room temperature with a scatter lifetime of
\begin_inset Formula $5\times10^{-12}$
\end_inset
s and a Fermi velocity energy scale of 2.8 eV
\begin_inset CommandInset label
LatexCommand label
name "fig:surf-carrier-concentration"
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
The conductance can broadly be seen to follow the same spectral profile
over the range of carrier concentrations as can be seen in figure
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:david-simulation-conductivity"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
Variation comes in the magnitude of the various regions.
For both the real and imaginary component, the max value (pre-cutoff for
the real component and the peak of the imaginary component) can be seen
to be constant over net carrier concentrations up until around
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
10
\begin_inset script superscript
\begin_layout Plain Layout
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
15
\end_layout
\end_inset
\family default
\series default
\shape default
\size default
\emph default
\bar default
\strikeout default
\xout default
\uuline default
\uwave default
\noun default
\color inherit
m
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
\begin_inset script superscript
\begin_layout Plain Layout
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
-2
\end_layout
\end_inset
, 21 mS for the real component and 11 mS for the imaginary.
Beyond
\family default
\series default
\shape default
\size default
\emph default
\bar default
\strikeout default
\xout default
\uuline default
\uwave default
\noun default
\color inherit
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
a net carrier concentration of 10
\begin_inset script superscript
\begin_layout Plain Layout
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
15
\end_layout
\end_inset
\family default
\series default
\shape default
\size default
\emph default
\bar default
\strikeout default
\xout default
\uuline default
\uwave default
\noun default
\color inherit
m
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
\begin_inset script superscript
\begin_layout Plain Layout
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
-2
\end_layout
\end_inset
the maximum values begin to rapidly increase and by 10
\begin_inset script superscript
\begin_layout Plain Layout
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
17
\end_layout
\end_inset
\family default
\series default
\shape default
\size default
\emph default
\bar default
\strikeout default
\xout default
\uuline default
\uwave default
\noun default
\color inherit
m
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
\begin_inset script superscript
\begin_layout Plain Layout
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
-2
\end_layout
\end_inset
they have increased by an order of magnitude to hundreds of milli-siemens.
\end_layout
\begin_layout Standard
For the real conductance component, beyond this previously mentioned
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
10
\begin_inset script superscript
\begin_layout Plain Layout
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
15
\end_layout
\end_inset
\family default
\series default
\shape default
\size default
\emph default
\bar default
\strikeout default
\xout default
\uuline default
\uwave default
\noun default
\color inherit
m
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
\begin_inset script superscript
\begin_layout Plain Layout
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
-2
\end_layout
\end_inset
threshold, the cutoff frequency begins to increase as can be seen from
higher peak smearing the lighter blue across a higher frequency band.
This moves the cutoff from around 120 GHz to about 180 GHz.
The value that the real conductance takes above the cutoff frequency decreases
past the 10
\begin_inset script superscript
\begin_layout Plain Layout
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
15
\end_layout
\end_inset
\family default
\series default
\shape default
\size default
\emph default
\bar default
\strikeout default
\xout default
\uuline default
\uwave default
\noun default
\color inherit
m
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
\begin_inset script superscript
\begin_layout Plain Layout
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
-2
\end_layout
\end_inset
carrier concentration threshold, from 58
\family default
\series default
\shape default
\size default
\emph default
\bar default
\strikeout default
\xout default
\uuline default
\uwave default
\noun default
\color inherit
\begin_inset Formula $\mu S$
\end_inset
to 2
\begin_inset Formula $\mu S$
\end_inset
at
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
\begin_inset Formula $1\times10^{17}$
\end_inset
\family default
\series default
\shape default
\size default
\emph default
\bar default
\strikeout default
\xout default
\uuline default
\uwave default
\noun default
\color inherit
m
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
\begin_inset script superscript
\begin_layout Plain Layout
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
-2
\end_layout
\end_inset
.
For the imaginary component, at low carrier concentrations the peak value
decreases to around 1
\family default
\series default
\shape default
\size default
\emph default
\bar default
\strikeout default
\xout default
\uuline default
\uwave default
\noun default
\color inherit
\begin_inset Formula $\mu S$
\end_inset
by 500 THz.
As the carrier concentration decreases beyond
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
\begin_inset Formula $1\times10^{12}$
\end_inset
\family default
\series default
\shape default
\size default
\emph default
\bar default
\strikeout default
\xout default
\uuline default
\uwave default
\noun default
\color inherit
m
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
\begin_inset script superscript
\begin_layout Plain Layout
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
-2
\end_layout
\end_inset
this value decreases into the small negative values that can be seen in
figure
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:david-simulation-conductivity"
plural "false"
caps "false"
noprefix "false"
\end_inset
, the frequency at which the drop occurs lowers and the steeper colour gradient
indicates that the change happens faster.
The earliest frequency that this occurs at is around 10 THz and
\begin_inset Formula $1\times10^{15}$
\end_inset
\family default
\series default
\shape default
\size default
\emph default
\bar default
\strikeout default
\xout default
\uuline default
\uwave default
\noun default
\color inherit
m
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
\begin_inset script superscript
\begin_layout Plain Layout
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
-2
\end_layout
\end_inset
.
Finally, as the carrier concentration further increases and the 120 GHz
peak increases in magnitude, the frequency for this high frequency conductance
drop begins to increase again.
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status open
\begin_layout Plain Layout
\noindent
\align center
\begin_inset Graphics
filename ../Resources/carrier-density/intraband-lines-mag.png
lyxscale 20
width 50col%
\end_inset
\begin_inset Graphics
filename ../Resources/carrier-density/interband-lines-mag.png
lyxscale 20
width 50col%
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Caption Standard
\begin_layout Plain Layout
Inter- and intraband conductance for high and low carrier concentration
graphene species
\begin_inset CommandInset label
LatexCommand label
name "fig:inter-intra-carrier-conc"
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Plain Layout
\end_layout
\end_inset
\end_layout
\begin_layout Standard
Figure
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:inter-intra-carrier-conc"
plural "false"
caps "false"
noprefix "false"
\end_inset
presents the conductance for three graphene species of differing carrier
concentrations decomposed into the intraband and interband components.
From comparing the relative magnitudes from the two, it is clear that the
majority contribution for conductance throughout the selected frequency
range is from the intraband transitions.
This is also apparent from the similarity in spectral profile between the
intraband conductivity and both the surfaces of figure
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:surf-carrier-concentration"
plural "false"
caps "false"
noprefix "false"
\end_inset
and the reproduced results of figure
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:david-simulation-conductivity"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
In general, the intraband conductivity can be seen to exist up to the THz
portion of the spectrum while the interband has the majority of it's contributi
ons above the THz range.
The interband conductance can be seen to be responsible for the previously
noted negative imaginary conductance behaviour seen in the surface of figure
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:surf-carrier-concentration"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
Low carrier concentration result in a higher initial imaginary component
that does not lower into negative values.
As concentration increases, the imaginary component decreases more forming
a sharp trough that also bottoms out at a higher frequency.
\end_layout
\begin_layout Standard
Alongside this imaginary decrease, the real component can be seen to increase
from a value between 1
\begin_inset Formula $\mu S$
\end_inset
and 30
\begin_inset Formula $\mu S$
\end_inset
depending on carrier concentration to the limit of 60
\begin_inset Formula $\mu S$
\end_inset
.
Although the differing species reach this same limit, their approach is
different.
The lower carrier concentration species begins at the higher 30
\begin_inset Formula $\mu S$
\end_inset
value and decreases only slightly to the limit over a wider spectral range.
The higher carrier concentration species begins much lower at 1
\begin_inset Formula $\mu S$
\end_inset
before increasing to 60
\begin_inset Formula $\mu S$
\end_inset
in what is closer to a step action at the higher frequency of 110 THz.
\end_layout
\begin_layout Subsubsection
Temperature
\end_layout
\begin_layout Standard
Values from 0 K to the breakdown temperature of graphene, 2230 K
\begin_inset CommandInset citation
LatexCommand cite
key "graphene-high-temp"
literal "false"
\end_inset
, were simulated in order to investigate the effect on conductance.
Figure
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:surf-temperature"
plural "false"
caps "false"
noprefix "false"
\end_inset
shows a surface of the conductance spectrum over the prescribed temperature
range.
In general, temperature can be seen to have little effect on conductance,
both real and imaginary.
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status open
\begin_layout Plain Layout
\noindent
\align center
\begin_inset Graphics
filename ../Resources/temperature/real-com-temp-surf-sl5e-12-TTF.png
lyxscale 20
width 80col%
\end_inset
\end_layout
\begin_layout Plain Layout
\noindent
\align center
\begin_inset Graphics
filename ../Resources/temperature/im-com-temp-surf-sl5e-12-TTF.png
lyxscale 20
width 80col%
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Caption Standard
\begin_layout Plain Layout
Complex conductivity over frequency for different temperatures
\begin_inset CommandInset label
LatexCommand label
name "fig:surf-temperature"
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status open
\begin_layout Plain Layout
\noindent
\align center
\begin_inset Graphics
filename ../Resources/temperature/intraband-lines-mag.png
lyxscale 20
width 50col%
\end_inset
\begin_inset Graphics
filename ../Resources/temperature/interband-lines-mag.png
lyxscale 20
width 50col%
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Caption Standard
\begin_layout Plain Layout
Inter- and intraband conductance for low, room and high temperature graphene
using TTF doping
\begin_inset CommandInset label
LatexCommand label
name "fig:inter-intra-temperature"
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Subsubsection
Scattering Lifetime
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status open
\begin_layout Plain Layout
\noindent
\align center
\begin_inset Graphics
filename ../Resources/scatter-lifetime/real-com-SL-surf-300K-TTF10,14.png
lyxscale 20
width 80col%
\end_inset
\end_layout
\begin_layout Plain Layout
\noindent
\align center
\begin_inset Graphics
filename ../Resources/scatter-lifetime/im-com-SL-surf-300K-TTF10,14.png
lyxscale 20
width 80col%
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Caption Standard
\begin_layout Plain Layout
Complex conductivity over frequency for different scattering lifetimes
\begin_inset CommandInset label
LatexCommand label
name "fig:surf-scatter-lifetime"
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status open
\begin_layout Plain Layout
\noindent
\align center
\begin_inset Graphics
filename ../Resources/scatter-lifetime/intraband-lines-mag.png
lyxscale 20
width 50col%
\end_inset
\begin_inset Graphics
filename ../Resources/scatter-lifetime/interband-lines-mag.png
lyxscale 20
width 50col%
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Caption Standard
\begin_layout Plain Layout
Inter- and intraband conductance with 3 different scattering times for graphene
using TTF doping
\begin_inset CommandInset label
LatexCommand label
name "fig:inter-intra-scatter-lifetime"
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Subsection
Discussion
\end_layout
\begin_layout Section
Conclusion
\end_layout
\begin_layout Standard
\begin_inset Newpage newpage
\end_inset
\end_layout
\begin_layout Standard
\begin_inset CommandInset label
LatexCommand label
name "sec:bibliography"
\end_inset
\begin_inset CommandInset bibtex
LatexCommand bibtex
btprint "btPrintCited"
bibfiles "references"
options "bibtotoc"
\end_inset
\begin_inset Newpage pagebreak
\end_inset
\end_layout
\begin_layout Section
\start_of_appendix
Source Code
\begin_inset CommandInset label
LatexCommand label
name "sec:Code"
\end_inset
\end_layout
\begin_layout Standard
\begin_inset CommandInset include
LatexCommand lstinputlisting
filename "../2D-Conductivity/sheet_conductivity.m"
lstparams "caption={Calculation function for 2D sheet conductivity},label={calculation_function}"
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Newpage pagebreak
\end_inset
\end_layout
\begin_layout Standard
\begin_inset CommandInset include
LatexCommand lstinputlisting
filename "../2D-Conductivity/conductivity_calculations.m"
lstparams "caption={Script for calculating conductivity over a range of frequencies},label={sheet_calculation_script}"
\end_inset
\end_layout
\begin_layout Standard
\begin_inset CommandInset include
LatexCommand lstinputlisting
filename "../2D-Conductivity/conductivity_calc_surface.m"
lstparams "caption={Script for calculating conductivity over a range of frequencies and presenting as a surface},label={sheet_calculation_script_surface}"
\end_inset
\end_layout
\begin_layout Standard
\begin_inset CommandInset include
LatexCommand lstinputlisting
filename "../2D-Conductivity/fermi_conc.m"
lstparams "caption={Script for plotting net carrier concentrations against Fermi level},label={fermi_concentration_script}"
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Newpage pagebreak
\end_inset
\end_layout
\begin_layout Standard
\begin_inset CommandInset include
LatexCommand lstinputlisting
filename "../2D-Conductivity/carrier_density_from_fermi.m"
lstparams "caption={Derive the carrier density for a given Fermi energy},label={carrier_density_from_fermi}"
\end_inset
\end_layout
\begin_layout Standard
\begin_inset CommandInset include
LatexCommand lstinputlisting
filename "../2D-Conductivity/fermi_from_carrier_density.m"
lstparams "caption={Derive the Fermi energy for a given carrier density},label={fermi_from_carrier_density}"
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Newpage pagebreak
\end_inset
\end_layout
\begin_layout Standard
\begin_inset CommandInset include
LatexCommand lstinputlisting
filename "../2D-Conductivity/fermi_velocity.m"
lstparams "caption={Derive the Fermi velocity for a given energy scale},label={fermi_velocity}"
\end_inset
\end_layout
\begin_layout Standard
\begin_inset CommandInset include
LatexCommand lstinputlisting
filename "../2D-Conductivity/ev_to_j.m"
lstparams "caption={Convert electron-volts to joules},label={ev_to_j}"
\end_inset
\end_layout
\begin_layout Standard
\begin_inset CommandInset include
LatexCommand lstinputlisting
filename "../2D-Conductivity/j_to_ev.m"
lstparams "caption={Convert joules to electron-volts},label={j_to_ev}"
\end_inset
\end_layout
\end_body
\end_document