breakout fermi velocity into separate function
This commit is contained in:
parent
36f0c6f6b7
commit
eea2bc4b79
@ -1,4 +1,4 @@
|
||||
function carrier_density = carrier_density_from_fermi(fermi)
|
||||
function carrier_density = carrier_density_from_fermi(fermi, energy_scale) % J, J
|
||||
|
||||
if fermi > 0
|
||||
sf = 1;
|
||||
@ -6,13 +6,11 @@ else
|
||||
sf = -1;
|
||||
end
|
||||
|
||||
a = 0.246e-9; % lattice constant (m)
|
||||
t = 2.8; % eV
|
||||
hbar = 6.626e-34 / (2*pi); % Js
|
||||
|
||||
root_3_over_2 = sqrt(3) / 2;
|
||||
|
||||
carrier_density = fermi^2 / (pi * (root_3_over_2 * a * ev_to_j(t))^2);
|
||||
carrier_density = fermi^2 ...
|
||||
/ ...
|
||||
(pi * ( hbar * fermi_velocity(energy_scale) )^2);
|
||||
carrier_density = sf * carrier_density;
|
||||
end
|
||||
|
||||
|
@ -13,18 +13,24 @@ F_TOTAL = 50;
|
||||
MAX_Y = 30; % carriers
|
||||
Y_TOTAL = 50;
|
||||
|
||||
t = 2.8; % eV
|
||||
|
||||
f_vals = logspace(MIN_F, MAX_F, F_TOTAL); % hz
|
||||
f_vals = f_vals .* (2*pi); % rads-1
|
||||
|
||||
y_vals = logspace(0, MAX_Y, Y_TOTAL); % ev
|
||||
%y_vals = -MAX_Y:2*MAX_Y/Y_TOTAL:MAX_Y; % ev
|
||||
%y_vals = y_vals + 273.15;
|
||||
carrier_vals = logspace(0, MAX_Y, Y_TOTAL); % m-2
|
||||
%carrier_vals = carrier_vals + 273.15;
|
||||
|
||||
cond = zeros(length(f_vals), length(y_vals));
|
||||
fermi_vals = zeros(1, length(carrier_vals));
|
||||
for carr=1:length(carrier_vals)
|
||||
fermi_vals(carr) = fermi_from_carrier_density(carrier_vals(carr), ev_to_j(t));
|
||||
end
|
||||
|
||||
cond = zeros(length(f_vals), length(fermi_vals));
|
||||
for freq=1:length(f_vals)
|
||||
for y=1:length(y_vals)
|
||||
% omega (rads-1), fermi_level (J), temp (K), scatter_lifetime (s-1)
|
||||
cond(freq, y) = sheet_conductivity(f_vals(freq), fermi_from_carrier_density(y_vals(y)), 300, 5e-15);
|
||||
for y=1:length(fermi_vals)
|
||||
% omega (rads-1), fermi_level (eV), temp (K), scatter_lifetime (s-1)
|
||||
cond(freq, y) = sheet_conductivity(f_vals(freq), fermi_vals(y), 300, 5e-12);
|
||||
end
|
||||
end
|
||||
|
||||
@ -33,7 +39,7 @@ if DISPLAY_HZ % divide radians back to hertz
|
||||
end
|
||||
|
||||
figure(1)
|
||||
surf(f_vals, y_vals, transpose(real(cond)));
|
||||
surf(f_vals, carrier_vals, transpose(real(cond)));
|
||||
h = gca;
|
||||
rotate3d on
|
||||
grid;
|
||||
@ -50,7 +56,7 @@ else
|
||||
end
|
||||
|
||||
figure(2)
|
||||
surf(f_vals, y_vals, transpose(imag(cond)));
|
||||
surf(f_vals, carrier_vals, transpose(imag(cond)));
|
||||
h = gca;
|
||||
rotate3d on
|
||||
grid;
|
||||
|
@ -15,7 +15,7 @@ x_vals = x_vals .* (2*pi); % rads-1
|
||||
cond = [];
|
||||
for x=x_vals
|
||||
% omega (rads-1), fermi_level (J), temp (K), scatter_lifetime (s-1)
|
||||
cond = [cond sheet_conductivity(x, ev_to_j(3), 300, 5e-12)];
|
||||
cond = [cond sheet_conductivity(x, fermi_from_carrier_density(7e7, ev_to_j(2.8)), 3000, 5e-12)];
|
||||
end
|
||||
|
||||
if DISPLAY_HZ % divide radians back to hertz
|
||||
|
@ -1,4 +1,4 @@
|
||||
function fermi = fermi_from_carrier_density(carrier_density)
|
||||
function fermi = fermi_from_carrier_density(carrier_density, energy_scale), % cm-2, J
|
||||
|
||||
if carrier_density > 0
|
||||
sf = 1;
|
||||
@ -6,16 +6,12 @@ else
|
||||
sf = -1;
|
||||
end
|
||||
|
||||
carrier_density = abs(carrier_density);
|
||||
|
||||
a = 0.246e-9; % lattice constant (m)
|
||||
t = 2.8; % eV
|
||||
hbar = 6.626e-34 / (2*pi); % Js
|
||||
|
||||
root_3_over_2 = sqrt(3) / 2;
|
||||
carrier_density = abs(carrier_density);
|
||||
|
||||
fermi_velocity_eq = (root_3_over_2 * a * ev_to_j(t))^2;
|
||||
fermi = sf * sqrt(carrier_density * pi * fermi_velocity_eq);
|
||||
fermi = sqrt(carrier_density * pi * ( hbar * fermi_velocity(energy_scale) )^2 );
|
||||
fermi = sf * fermi;
|
||||
|
||||
end
|
||||
|
||||
|
9
2D-Conductivity/fermi_velocity.m
Normal file
9
2D-Conductivity/fermi_velocity.m
Normal file
@ -0,0 +1,9 @@
|
||||
function fermi = fermi_velocity (energy_scale) % J
|
||||
|
||||
a = 0.246e-9; % lattice constant (m)
|
||||
hbar = 6.626e-34 / (2*pi); % Js
|
||||
|
||||
fermi = (sqrt(3)/2) * a * energy_scale / hbar;
|
||||
|
||||
end
|
||||
% m/s
|
4
2D-Conductivity/j_to_ev.m
Normal file
4
2D-Conductivity/j_to_ev.m
Normal file
@ -0,0 +1,4 @@
|
||||
function eV = j_to_ev(j)
|
||||
eV = j / 1.602e-19;
|
||||
end
|
||||
|
Loading…
Reference in New Issue
Block a user