submitted

This commit is contained in:
andy 2021-04-27 13:03:33 +01:00
parent eda7d3f3ab
commit 9d439c8b02
4 changed files with 735 additions and 186 deletions

View File

@ -33,25 +33,25 @@ for x=1:length(x_vals)
cond(x, :) = sheet_conductivity(x_vals(x),... % omega (rads-1)
fermi_from_carrier_density(1.3e17, ev_to_j(3)),... % fermi_level (J)
300,... % temp (K)
5e-12); % scatter_lifetime (s)
1e-12); % scatter_lifetime (s)
end
if MULTIPLE_SERIES
cond2 = zeros(length(x_vals), 2);
for x=1:length(x_vals)
cond2(x, :) = sheet_conductivity(x_vals(x),... % omega (rads-1)
fermi_from_carrier_density(1.3e17, ev_to_j(3)),... % fermi_level (J)
fermi_from_carrier_density(2.2e17, ev_to_j(3)),... % fermi_level (J)
300,... % temp (K)
1e-12); % scatter_lifetime (s)
end
cond3 = zeros(length(x_vals), 2);
for x=1:length(x_vals)
cond3(x, :) = sheet_conductivity(x_vals(x),... % omega (rads-1)
fermi_from_carrier_density(1.3e17, ev_to_j(3)),... % fermi_level (J)
300,... % temp (K)
1e-13); % scatter_lifetime (s)
end
% cond3 = zeros(length(x_vals), 2);
% for x=1:length(x_vals)
% cond3(x, :) = sheet_conductivity(x_vals(x),... % omega (rads-1)
% fermi_from_carrier_density(1.3e17, ev_to_j(3)),... % fermi_level (J)
% 300,... % temp (K)
% 1e-13); % scatter_lifetime (s)
% end
end
if DISPLAY_HZ % divide radians back to hertz
@ -62,15 +62,9 @@ end
%% RENDER
%%%%%%%%%%%%%%%%%%%%%%%%%%%
RE_COLOUR = 'r-';
IM_COLOUR = 'r--';
MAG_COLOUR = 'r:';
RE_COLOUR2 = 'g-';
IM_COLOUR2 = 'g--';
MAG_COLOUR2 = 'g:';
RE_COLOUR = 'r';
RE_COLOUR2 = 'g';
RE_COLOUR3 = 'b';
IM_COLOUR3 = 'b--';
MAG_COLOUR3 = 'b:';
LW = 2;
figure(1);
@ -82,7 +76,7 @@ if strcmp(EXCITATION_TYPE, 'intra')
if MULTIPLE_SERIES
plot(x_vals, angle(cond2(:, 1)) .* (180/pi), RE_COLOUR2, 'LineWidth', LW);
plot(x_vals, angle(cond3(:, 1)) .* (180/pi), RE_COLOUR3, 'LineWidth', LW);
% plot(x_vals, angle(cond3(:, 1)) .* (180/pi), RE_COLOUR3, 'LineWidth', LW);
end
title('2D Intraband Sheet Conductivity Phase');
@ -93,7 +87,7 @@ elseif strcmp(EXCITATION_TYPE, 'inter')
if MULTIPLE_SERIES
plot(x_vals, angle(cond2(:, 2)) .* (180/pi), RE_COLOUR2, 'LineWidth', LW);
plot(x_vals, angle(cond3(:, 2)) .* (180/pi), RE_COLOUR3, 'LineWidth', LW);
% plot(x_vals, angle(cond3(:, 2)) .* (180/pi), RE_COLOUR3, 'LineWidth', LW);
end
title('2D Interband Sheet Conductivity Phase');
@ -104,7 +98,7 @@ else
if MULTIPLE_SERIES
plot(x_vals, angle(sum(cond2, 2)) .* (180/pi), RE_COLOUR2, 'LineWidth', LW);
plot(x_vals, angle(sum(cond3, 2)) .* (180/pi), RE_COLOUR3, 'LineWidth', LW);
% plot(x_vals, angle(sum(cond3, 2)) .* (180/pi), RE_COLOUR3, 'LineWidth', LW);
end
title('2D Sheet Conductivity Phase');
end
@ -112,12 +106,13 @@ end
set(gca,'Xscale','log')
% set(gca,'Yscale','log')
axis tight
ylim([-90 90])
if MULTIPLE_SERIES
% legend('\phi(TTF)', '\phi(CoCp_2)');
% legend('\phi(1x10^8m^{-2})', '\phi(1x10^{15}m^{-2})', '\phi(1.3x10^{17}m^{-2})');
% legend('\phi(10K)', '\phi(300K)', '\phi(2230K)');
legend('\phi(5x10^{-12} s)', '\phi(1x10^{-12} s)', '\phi(1x10^{-13} s)');
legend('TTF \phi(\sigma)', 'CoCp_2 \phi(\sigma)');
% legend('1x10^8m^{-2} \phi(\sigma)', '1x10^{15}m^{-2} \phi(\sigma)', '1.3x10^{17}m^{-2} \phi(\sigma)');
% legend('10K \phi(\sigma)', '300K \phi(\sigma)', '2230K \phi(\sigma)');
% legend('5x10^{-12} s \phi(\sigma)', '1x10^{-12} s \phi(\sigma)', '1x10^{-13} s \phi(\sigma)');
else
legend('\phi');
end

BIN
Report/antennae-power.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 37 KiB

View File

@ -157,3 +157,81 @@
year = {2021}
}
@inproceedings{gnrfet-low-power,
author = {Chen, Ying-Yu and Sangai, Amit and Gholipour, Morteza and Chen, Deming},
booktitle = {International Symposium on Low Power Electronics and Design (ISLPED)},
doi = {10.1109/ISLPED.2013.6629286},
pages = {151--156},
title = {Graphene nano-ribbon field-effect transistors as future low-power devices},
url = {https://ieeexplore.ieee.org/document/6629286},
urldate = {2021-04-26},
year = {2013}
}
@article{flexible-antennae-review,
abstract = {The field of flexible antennas is witnessing an exponential growth due to the demand for wearable devices, Internet of Things (IoT) framework, point of care devices, personalized medicine platform, 5G technology, wireless sensor networks, and communication devices with a smaller form factor to name a few. The choice of non-rigid antennas is application specific and depends on the type of substrate, materials used, processing techniques, antenna performance, and the surrounding environment. There are numerous design innovations, new materials and material properties, intriguing fabrication methods, and niche applications. This review article focuses on the need for flexible antennas, materials, and processes used for fabricating the antennas, various material properties influencing antenna performance, and specific biomedical applications accompanied by the design considerations. After a comprehensive treatment of the above-mentioned topics, the article will focus on inherent challenges and future prospects of flexible antennas. Finally, an insight into the application of flexible antenna on future wireless solutions is discussed.},
article-number = {847},
author = {Kirtania, Sharadindu Gopal and Elger, Alan Wesley and Hasan, Md. Rabiul and Wisniewska, Anna and Sekhar, Karthik and Karacolak, Tutku and Sekhar, Praveen Kumar},
doi = {10.3390/mi11090847},
issn = {2072-666X},
journal = {Micromachines},
number = {9},
pubmedid = {32933077},
title = {Flexible Antennas: A Review},
url = {https://www.mdpi.com/2072-666X/11/9/847},
urldate = {2021-04-26},
volume = {11},
year = {2020}
}
@article{water-transfer-graphene-antennae,
author = {Wang, Weijia and Ma, Chao and Zhang, Xingtang and Shen, Jiajia and Hanagata, Nobutaka and Huangfu, Jiangtao and Xu, Mingsheng},
doi = {10.1080/14686996.2019.1653741},
eprint = { https://doi.org/10.1080/14686996.2019.1653741 },
journal = {Science and Technology of Advanced Materials},
note = {PMID: 31489056},
number = {1},
pages = {870--875},
publisher = {Taylor \& Francis},
title = {High-performance printable 2.4 GHz graphene-based antenna using water-transferring technology},
url = {https://doi.org/10.1080/14686996.2019.1653741},
urldate = {2021-04-26},
volume = {20},
year = {2019}
}
@article{graphene-microwave,
author = {Bozzi, Maurizio and Pierantoni, Luca and Bellucci, Stefano},
doi = {10.13164/re.2015.0661},
journal = {Radioengineering},
month = {09},
pages = {661--669},
title = {Applications of Graphene at Microwave Frequencies},
url = {https://www.researchgate.net/publication/283181514_Applications_of_Graphene_at_Microwave_Frequencies},
urldate = {2021-04-26},
volume = {24},
year = {2015}
}
@article{graphene-modal-prop-drude,
author = {Araneo, R. and Burghignoli, Paolo and Lovat, Giampiero and Hanson, George},
doi = {10.1109/TEMC.2015.2406072},
journal = {IEEE Transactions on Electromagnetic Compatibility},
month = {08},
pages = {1--8},
title = {Modal Propagation and Crosstalk Analysis in Coupled Graphene Nanoribbons},
url = {https://www.researchgate.net/publication/276930151_Modal_Propagation_and_Crosstalk_Analysis_in_Coupled_Graphene_Nanoribbons},
urldate = {2021-04-26},
volume = {57},
year = {2015}
}
@misc{short-channel,
author = {{{Semiconductor Engineering}}},
month = jul,
title = {Knowledge Center Short Channel Effects},
url = {https://semiengineering.com/knowledge_centers/manufacturing/process/issues/short-channel-effects/},
urldate = {2021-04-26},
year = {2018}
}

File diff suppressed because it is too large Load Diff