285 lines
77 KiB
Plaintext
285 lines
77 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"id": "initial_id",
|
|
"metadata": {
|
|
"collapsed": true,
|
|
"ExecuteTime": {
|
|
"end_time": "2025-02-16T14:38:29.802570Z",
|
|
"start_time": "2025-02-16T14:38:24.600692Z"
|
|
}
|
|
},
|
|
"source": [
|
|
"import matplotlib.pyplot as plt\n",
|
|
"import numpy as np\n",
|
|
"from openbb import obb\n",
|
|
"import pyfinlib\n",
|
|
"import logging\n",
|
|
"\n",
|
|
"# logging.basicConfig(level=logging.DEBUG)\n",
|
|
"logging.basicConfig(level=logging.INFO)\n",
|
|
"\n",
|
|
"# Create our portfolio of equities\n",
|
|
"tickers = ['AAPL','META', 'C', 'DIS', 'CL=F']\n",
|
|
"\n",
|
|
"# Set the investment weights (I arbitrarily picked for example)\n",
|
|
"weights = np.array([.1, .1, .1, .1, .6])\n",
|
|
"\n",
|
|
"# Set an initial investment level\n",
|
|
"initial_investment = 1000000\n"
|
|
],
|
|
"outputs": [],
|
|
"execution_count": 1
|
|
},
|
|
{
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2025-02-16T14:38:30.804442Z",
|
|
"start_time": "2025-02-16T14:38:29.810045Z"
|
|
}
|
|
},
|
|
"cell_type": "code",
|
|
"source": [
|
|
"data = obb.equity.price.historical(symbol=tickers, start_date=\"2022-01-01\", provider='yfinance')\n",
|
|
"data.results[0].date, data.results[-1].date"
|
|
],
|
|
"id": "e5573366e39b2962",
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"(datetime.date(2022, 1, 3), datetime.date(2025, 2, 14))"
|
|
]
|
|
},
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"execution_count": 2
|
|
},
|
|
{
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2025-02-16T14:40:52.243456Z",
|
|
"start_time": "2025-02-16T14:40:52.223672Z"
|
|
}
|
|
},
|
|
"cell_type": "code",
|
|
"source": [
|
|
"portfolio = pyfinlib.Portfolio(\n",
|
|
" [\n",
|
|
" pyfinlib.PortfolioAsset(.1, \"AAPL\", [i.close for i in data.results if i.symbol == 'AAPL']),\n",
|
|
" pyfinlib.PortfolioAsset(.1, \"META\", [i.close for i in data.results if i.symbol == 'META']),\n",
|
|
" pyfinlib.PortfolioAsset(.1, \"C\", [i.close for i in data.results if i.symbol == 'C']),\n",
|
|
" pyfinlib.PortfolioAsset(.1, \"DIS\", [i.close for i in data.results if i.symbol == 'DIS']),\n",
|
|
" pyfinlib.PortfolioAsset(.6, \"CL=F\", [i.close for i in data.results if i.symbol == 'CL=F']),\n",
|
|
" ]\n",
|
|
")"
|
|
],
|
|
"id": "28a68dea99911874",
|
|
"outputs": [],
|
|
"execution_count": 8
|
|
},
|
|
{
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2025-02-16T14:40:52.968790Z",
|
|
"start_time": "2025-02-16T14:40:52.955560Z"
|
|
}
|
|
},
|
|
"cell_type": "code",
|
|
"source": [
|
|
"returns = pyfinlib.util.rates_of_change([i.close for i in data.results if i.symbol == 'AAPL'])\n",
|
|
"aapl_portfolio = pyfinlib.Portfolio(\n",
|
|
" [\n",
|
|
" pyfinlib.PortfolioAsset(1., \"AAPL\", [i.close for i in data.results if i.symbol == 'AAPL'])\n",
|
|
" ]\n",
|
|
")\n",
|
|
"VaR_historical = aapl_portfolio.value_at_risk_percent(0.05)\n",
|
|
"VaR_historical_10 = aapl_portfolio.value_at_risk_percent(0.1)\n",
|
|
"VaR_historical, VaR_historical_10"
|
|
],
|
|
"id": "d6bf8e256ebb7ac1",
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"(-0.027671346350936935, -0.021443681951589365)"
|
|
]
|
|
},
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"execution_count": 9
|
|
},
|
|
{
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2025-02-16T14:40:53.898760Z",
|
|
"start_time": "2025-02-16T14:40:53.787791Z"
|
|
}
|
|
},
|
|
"cell_type": "code",
|
|
"source": [
|
|
"# Plot the historical returns and VaR threshold\n",
|
|
"plt.figure(figsize=(10, 6))\n",
|
|
"plt.hist(returns, bins=50, alpha=0.75, color='blue', edgecolor='black')\n",
|
|
"plt.axvline(VaR_historical, color='red', linestyle='--', label=f'VaR (95%): {VaR_historical:.2%}')\n",
|
|
"plt.axvline(VaR_historical_10, color='orange', linestyle='--', label=f'VaR (90%): {VaR_historical_10:.2%}')\n",
|
|
"plt.title('Historical Returns of AAPL')\n",
|
|
"plt.xlabel('Returns')\n",
|
|
"plt.ylabel('Frequency')\n",
|
|
"plt.legend()\n",
|
|
"plt.show()"
|
|
],
|
|
"id": "5ab5e055a23f28ed",
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"<Figure size 1000x600 with 1 Axes>"
|
|
],
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0kAAAIjCAYAAADWYVDIAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAZrtJREFUeJzt3Qd8FNX2wPGTtmmQYJAqVUFpKgoqCD5FEARUBBQ7Rf4qig0UFFHBgig+xEbR9xDkKSqg2DsiT2kKigr4EJRQpEokkIRkk935f85NNpmEBJKQnc1uft/PZ/TuzszemdmQ7Nlz75kwy7IsAQAAAAAY4bn/AwAAAAAogiQAAAAAsCFIAgAAAAAbgiQAAAAAsCFIAgAAAAAbgiQAAAAAsCFIAgAAAAAbgiQAAAAAsCFIAgAAAAAbgiQAcFiTJk1k8ODBUpmEhYXJ+PHj/fLaycnJ5vVnz57tl9dHrpycHBk9erQ0bNhQwsPD5fLLLw/0IQFA0CJIAoBjoB/8NQBYtWpVsesvuOACadOmzTH38/HHH/stiKksvv76a3MtfUtERITUrl1brrjiCvn111/L9Zo7duww123NmjUS6l555RV5+umnzfV69dVXZcSIEaXa7+yzzzbXe/r06Ufd1uPxSP369c32n3zySbHb6PW2v49xcXHSqlUrefDBB+XAgQOl/rcDAIEUGdDeAaAK2rBhg/mmv6xB0tSpU/0WKB06dEgiIyvHn4Q777xTzjrrLMnOzpaff/5ZZsyYYQKotWvXSt26dcscJD3yyCMme9e2bVsJZV999ZWccMIJMmXKlFLvs3HjRvn+++/N9Xn99dfl1ltvPWofO3fuzN++Z8+eJW6rQVe1atUkLS1NPv/8c5kwYYLZf+nSpSY4AoDKrHL8RQSAKiQ6OloqA6/XK263W2JiYsxSWZx33nkmG+JzyimnmA/vc+bMMcPJKoPMzExxuVxlDnb9ac+ePVKjRo0y7fPaa6+ZbN3kyZPNNdehkRoAHWn7M888UwYNGiQPPPCApKenS3x8fLHb6usdf/zxpj1s2DDp37+/vPPOO7JixQrp2LFjGc8OAJxVeX67A0AVnZOkGRPNdjRv3twEKzVr1pTOnTvLF198YdbrtppFUvZhTD76QfWee+4xc1E0ANOg4p///KdYllWoX93n9ttvNxmA1q1bm20//fTT/HVFs1R//vmnDB061Ayv0m2bNm1qghUNrFRKSorce++9cuqpp5qMQUJCgsks/PTTTxUeNKnff//9sOO78cYbpU6dOub49Jx0yJmPZp80I6WGDBmSf918c6NKmhumQyR1sb+O7vfmm2+aIWOardEhZDp0TPfXc9dj0TlA2q5Vq5a5Ljo0zU73b9eunVSvXt1cK71uzz333FHP/2jvr2/O1+LFi2XdunX556nHfTRz5841wcwll1wiiYmJ5vGRso0LFy6Uq6++WgYMGGAev/fee1JaF154ofn/5s2bS70PAAQKmSQAqACpqany119/Hfa8BkBHo8HJxIkT5f/+7//M/BD98K3zNH744Qe56KKL5JZbbjHDxjRo+s9//lNoX/2gfNlll5kPyBrQ6JCyzz77TEaNGmU+uBcdeqXDnebNm2eCJf2Wv6Ssgfanx7J//365+eabpUWLFub1FixYIBkZGSaL8scff8i7774rV155pQmgdu/eLS+99JKcf/75sn79ehNcVQQNAtRxxx2X/5z21aFDh/zATwMTnSOj10Cv39133y0tW7aURx99VB5++GFzDr5g69xzzy3XcTz22GPmvDUAysrKMm2lwVCPHj3knHPOMcHLl19+aTIzJ510Uv7wNX3vrrnmGunatas89dRT5jmdZ6VDz+66664S+yzN+6vnrj8XOpxNh7bpz5LS8z+SlStXyqZNm2TWrFnmXPr162cCaM0QFef99983r69Bkg571EBSt7/22mtLdf18Qa5+CQAAlZ4FACi3WbNm6df5R1xat25daJ/GjRtbgwYNyn98+umnW7179z5iP8OHDzevVdS7775rnn/88ccLPX/FFVdYYWFh1qZNm/Kf0+3Cw8OtdevWHfY6um7cuHH5jwcOHGi2/f777w/b1uv1mv9nZmZaHo+n0LrNmzdb0dHR1qOPPlroOX19vVZHsnjxYrPdK6+8Yu3du9fasWOH9emnn1rNmjUz5/Ldd9/lbzt06FCrXr161l9//VXoNa6++morMTHRysjIMI/1+Evqu+j74HP++eebpehxnXjiifmv66P76zr7+aozzjjDateuXf7ju+66y0pISLBycnKssijL+6vHXPRn7Uhuv/12q2HDhvnv5+eff276+vHHH4vd/pJLLrE6deqU//jll1+2IiMjrT179hTaTn+O9HU2bNhg3kd9/1966SXzc1GnTh0rPT290L+d4n7GACDQGG4HABVAh8NptqDoctpppx11X51HosOkdBJ9WWlBB60Cp8UO7HR4lsY+RSuQaZZHK40dba6SZoguvfRSad++/WHrfUP9dOiXb06OZlP27dtnhpvpcDDNgpWXDqHT7Ihmoi6++GKTpdNMiW/onJ7X22+/bY5P25rB8y2a0dHtj6X/kug8nNjY2GLX6ZwbO81aaabN/h7rsDnfEEp/vb9lKRf+1ltvyVVXXZX/fupwOJ2fpNmhovS91QyWZsN8dI6R7quZyeLoz4G+j5pl1Gxos2bN5KOPPjJDFQGgsmO4HQBUAB2aVlxAoUPEihuGZ6dDwvr06SMnn3yyKReugcENN9xQqgBry5YtJpjQeS52vqFWut5OP7Aezd69e82QtaOVLtdgSufUTJs2zcwzsc/BOZYhVTo8ToMMHdqlc2B0Lo+9QIIenw4DfPnll81SUhGDilbStdN5ZBoMFH3f//777/zHt912mwkmdM6Wzmnq3r27mdej73VFvr+lpdXm9Drqz60OufPp0qWLvPHGG2ZIoP2aa0ClQ0fPOOOMQtvrEEMNqoYPH35YHxrI6tyrqKgoadCggRl+CADBgiAJAALsH//4h5mvoZPg9cPrv//9bzPXREtf6zylilRSJqQ8nnjiCXnooYdM5kfn6yQlJZkP1jofSAOo8tKCBt26dTNtLYagc6BuuukmU8xCixf4Xvv666832Z3ilCbALKkMtQZ7mr0p7bUrbtuiNEOj92rSbIxmf3TRuUADBw409zRymi9bpIFacZYsWWICpqLbd+rUqdjtNWt24oknHvZz7atuBwDBhiAJACoBDTC0ApsumkHRD5ha0MEXJJX0gb5x48amUMDBgwcLZRv+97//5a8vK82KaAZA70t0JFrEQT9Iz5w5s9DzmuWpyA/HTz75pMkoaWECDRz1+PRcNZjxBVMlOdL9eDTbo8dalGZnin7grwhaHEGHCOqigZ5ml7TQhQaaOhTNqfdXh/1pQK5D7eyl1n10aJ8GRb4gSbOEy5YtMwUydLimnZ6HZj21Kp5W/gOAUMGcJAAIMJ3vYafzevRDs1ZQ8/Hdi6boh/pevXqZYOHFF18s9LxmojRAONLNPkui2SDN4HzwwQemyl5RvtLTmkEpWmZ8/vz5pupaRdJhWjr/RUt379q1y/Srj3U4V3GBnA4jO9p1872u3rPHV9Jcffjhh7Jt2zbx93us19iX7bK/z0X54/3VgFMDJR0ip0FS0UXLgeu19R2XL4uk96gquq1mojRwKm4eEwAEMzJJABBgWkhByynrPXQ0o6SBiWZp9Jt7H13n+5ZfixNooKClmDUrod/4jx071pTKPv30082QPc0U6LC38s4D0aF0+jr6AVjLZ+scmJ07d5og6NtvvzWFCPTDtM6n0uyXltX+5ZdfzIdlf2RhtOS1zul59tlnTWZJFy2LrXNidCieXkO9b5MWbNDMi7aVnr8eq2agNBOjQZPuo/OLNEun11nnBemHfR3yqDdL9cfcGe1Lj0mLI+j8HM1WvfDCC6ak95FKdfvj/dX3SOeMlVQKXUuO/+tf/zJFFnxlwfU4dahjSdvfcccd5trrjWbLSu9t5btfl52WRi86FwsAHBPo8noAEMyOVsa4uLLMRUtPa3nns88+26pRo4YVGxtrtWjRwpowYYLldrvzt9HS0XfccYdVq1YtU/rZ/uv74MGD1ogRI6z69etbUVFRVvPmza2nn346v7Szj+6jpcSLU7QEuNqyZYspBa59avlmLYGt+2dlZeWXAL/nnntMKW49bi0PvXz58sNKaJe1BPj8+fOLXX/BBReYMtr79+83j3fv3m2OR8tY63nXrVvX6tq1qylNbffee+9ZrVq1MuWqix7H5MmTrRNOOMGcnx7/qlWrSiwBXtxx6fsYHx9/2PO+Mtg+CxYssLp3727Vrl3bcrlcVqNGjaxbbrnF2rlzp3U0pX1/S1MCXK+ZXocbbrihxG20zHlcXJzVt29fa/Xq1eY8HnrooRK3T05ONtvoMdrPXct/H0v5/G3bth1xfwDwpzD9j3MhGQAAAABUbsxJAgAAAAAbgiQAAAAAsCFIAgAAAAAbgiQAAAAAsCFIAgAAAAAbgiQAAAAAqEo3k/V6vbJjxw5zQzq9OzkAAACAqsmyLDl48KDUr19fwsPDq26QpAFSSXcJBwAAAFD1bNu2TRo0aFA5gySPxyPjx4+X1157TXbt2mUiusGDB8uDDz6Yn/XRaG/cuHHyr3/9S/bv3y+dOnWS6dOnS/PmzUvVh2aQfBciISHBr+cDOCY7W2TWrNz2kCEiUVHO9OvNFvkjr98Th4iEO9QvAABABThw4IBJoPhihEoZJD311FMm4Hn11VeldevWsmrVKhkyZIgkJibKnXfeabaZNGmSPP/882abpk2bykMPPSQ9evSQ9evXS0xMzFH78AVbGiARJCFkpKeLjBqV2771VpH4eGf6zUkX+V9ev6fdKhLpUL8AAAAV6GjTcAIaJC1btkz69OkjvXv3No+bNGkib7zxhnz33Xf5WaRnn33WZJZ0OzVnzhypU6eOvPvuu3L11VcH8vABAAAAhKCAVrc799xzZdGiRfLbb7+Zxz/99JN8++230rNnT/N48+bNZhhet27d8vfRLNM555wjy5cvL/Y1s7KyTBrNvgAAAABAaQU0k3T//febIKZFixYSERFh5ihNmDBBrrvuOrNeAySlmSM7fexbV9TEiRPlkUceceDoAQAAAISigAZJ8+bNk9dff13mzp1r5iStWbNG7r77blPAYdCgQeV6zTFjxsjIkSMPm5wFAACAI9MvrLO1OBAQpDTxEhkZecy3/glokDRq1CiTTfLNLTr11FNly5YtJhukQVLdunXN87t375Z69erl76eP27ZtW+xrRkdHmwUAAACll5aWJtu3bzdzwoFgFhcXZ2IHl8sVnEFSRkbGYTdx0uhPbwCrtJqdBko6b8kXFGlmaOXKlXKrVvQCAABAhWSQNEDSD5e1atU65m/hgUDQAN/tdsvevXtNbQO9ZdCRbhhbaYOkSy+91MxBatSokRlu9+OPP8ozzzwjN954o1mv/0B1+N3jjz9uTtJXAlyH411++eWBPHQgsDRb+uGHBW2nhEeLnP9hQRsAEBJ0iJ1+wNQAKTY2NtCHA5Sb/vxGRUWZ0WkaMJXmlkGVLkh64YUXTNBz2223yZ49e0zwc8stt8jDDz+cv83o0aMlPT1dbr75ZnMz2c6dO8unn35a7hMGQkJkpEhe6XxHhUeKnBCAfgEAjiCDhFAQXs7skV2YFeIDT3V4npYNT01N5WayAAAAxcjMzDTDk3TUDl9EI5R/nksbGwQ0kwSgnLTy0Ouv57a1ZH5UlDP9erNFkvP6bXKdSLhD/QIAAFSVm8kCKCe3W2TIkNxF207xukVWDMldtA0AQBW2b98+qV27tiQnJwf6UGTGjBlmvj8qBkESAAAAgo4GBBdffHGx67755hszv+rnn38+6usMHjzYbKuLTvjXIVo6J16HbB2NFiDr06ePNGnSJP85rcp87rnnSvXq1U2V5vvuu09ycnLy12tA5evPvqxYsSJ/my+++EJOPvlkMxzshhtuMAUIfHSYmK7TwgR2Wvjshx9+MOd+rH766Se55pprzL1GtRBCy5Yt5bnnnjviPl9//XWx56XL999/b7YZP358sevj4+OP6dz9gSAJAAAAQWfo0KHmA7WWLi9q1qxZ0r59eznttNNK9VoabO3cuVP++OMPmTJlirz00ksybty4o97KZubMmeY47MFFr169zOtp1ea33npL3n//fXNf0KK+/PJL06dvadeunXleb4Vz7bXXyrBhw2T58uWyatUqefnll/P309fSdY0bNy70enpPIN3v+eefl2O1evVqkyF77bXXZN26dTJ27FgZM2aMvPjiiyXuo4Gh/Xx0+b//+z8TdOp7oe69997DtmnVqpVceeWVx3TufmGFuNTUVC1MYf4PhIy0NK24krto2ynZaZb1uuQu2gYAhIRDhw5Z69evN/8vRP/GlLSUZduMjNJtWwbZ2dlWnTp1rMcee6zQ8wcPHrSqVatmTZ8+3frrr7+sq6++2qpfv74VGxtrtWnTxpo7d26h7QcNGmT16dOn0HP9+vWzzjjjjCP2P3/+fKtWrVqFnhszZozVvn37Qs+9//77VkxMjHXgwAHzePPmzeaz6Y8//ljs6+7evdus970Xo0ePtm677TbTXrp0qdWuXTsrJyen2H2XLFliuVwuK6Po9a4At912m9WlS5dSb+92u831efTRR0vcZs2aNeZc//vf/x7zuZfq57kMsQGZJAAAABSvWrWSl/79C29bu3bJ2/bsWXhbHZ5W3HZlEBkZKQMHDpTZs2ebezz5zJ8/39wcV4eL6ZA5zdB89NFHsnbtWnNLGR3C9d1335X4urrdsmXLTGbmSHRYmy/745OVlXVYNTUdrqbHodkZu8suu8xka/T2Nppt8tF7VdWrV08+//xzk63SfjQjpveyuvXWW02WKyIiothj0oyNDu1buXJl/nMXXHCBGVJ4rFJTUyUpKanU2+s56ZytITp/ugT//ve/zfC5884775jPvaIRJAEAACAo6Tyc33//XZYsWVJoqF3//v1NmecTTjjBDPFq27atnHjiiXLHHXeYoXDz5s0r9DoffvihVKtWzQQ4p556qrl/56hRo47Yt86L0Xt82vXo0cMEWG+88YYJ1P7880959NFHzTodWqa0n8mTJ5tgToM3DZIuv/zy/EBJ5+jo8T322GPSunVrOeOMM8x5Pvnkk9KlSxdzjJ06dZJTTjnlsOFvcXFx5rztc3YaNWpkAo9jsWzZMjN0UIPM0tKhiHo9GjRoUOx6DRxff/31QsMVj+XcK5wV4hhuh5DEcDsAQBUfbudz7rnnWjfccINpb9y40XzuW7x4sXmsQ7N0uJcOszvuuOOs+Ph4KzIy0rryyisLDbfr1q2b2VeHf+njoUOHHrXf7t275w8Fs5s8ebKVkJBgRUREWHFxcdbEiRPNMb355pslvpYef+fOnUtcv2HDBqtZs2ZmKKEOA5w9e7YZmqbD2X766adC2+rQwmnTplmldfHFF5vrokurVq0OW//LL79Yxx9//GHDGo9k27ZtVnh4uLVgwYISt9Fhj/pe7Nq164ivVZZz92G4HVBVRUeL6LdgumjbKeHRIp3n5S7aBgCENq06VtJS9KazR9o2NrZ025aDZiLefvttOXjwoMkinXTSSXL++eebdU8//bSpyqYV5hYvXixr1qwx2Q17xbTcw4mXZs2ayemnny6vvPKKGa6mmZAjOf744+Xvv/8+7PmRI0fK/v37ZevWrfLXX3+Z6ndKM1klOeecc2TTpk0lrr/llltM9kkLG2hBCC10oEP19DztWTSVkpJihq2Vlg550+uiy8cff1xo3fr166Vr164mg/Tggw+W+jX1fahZs6YZUnikfi+55BKpU6fOEV+rLOdekbiZLBCMIiNF8irBOCo8UqRRAPpFmegwER07XlY6REP/8ABAMBkwYIDcddddMnfuXJkzZ46Zu6LDttTSpUtNkHL99debx/pB+7fffjMV1UoSHh4uDzzwgAl2tNKazikqjg4F0+pvxdH+fUPxdOidltI+88wzS+xTA5SShsRpsKZzgTTg8AVlOkfH938d1uejQw91GJseW2npkMTirFu3Ti688EIZNGiQKXVeWjo/TIMknS+mJdWLs3nzZhO02udiHeu5VzSCJAAIsQCpb9+BkpKSVeZ9k5KiZeHCOQRKAIKKzvG56qqrTInqAwcOFCpS0Lx5c1mwYIGZU3PcccfJM888I7t37z5ikKQ0W6FzkqZOnWrmNBVHM1Lap35419f20eyVznvSYOudd94x82l0no2v4MCrr75qikL4AhndRrNXmlkp7nf6448/boI9pf3oPYueffZZ6d69u7knk5bn9tFCB5qx0myajwYrGghNnDix1Nd07dq1JkDSc9RgcdeuXeZ5PQdflkqLX+hr6zHYA62vvvrKBEFa/rsker4aFPYsWtDjGM69ohEkAcFIb0q3cGFuu2/f3MySE7w5Itvz+m3QNzezhEpFM0gaILlcYyUmpvT3kcjM3CIpKRPM/gRJAIKNDrnTrIPeo8heTEGHiOm9j/TDvhY10GFjWiThaNl2rZx3++23y6RJk0xmyn6zUx8t8KDZIQ2AdEiYzyeffGIyL1rpTofvvffee4cFA1qYQIsraD8tWrQwRRGuuOKKw/rQDNk999xT6Jy0mp9md/R+SBrInXXWWfnrNGt10003FXoNHfanAVtZLFiwQPbu3WsyZfZsmd6fSG+Gq7T63IYNG/IzOz76Pug9k/S8iqPZPD0HDWaPVKmurOde0cJ0YpKEMP1GQYeQ6D8GvXMvEBLS0wtKpaallXscd5nlpIvMy+t3QJpIpEP9otQ2btwol112syQkvCxxcc1LvV9GxkY5cOBmef/9l803rwCqFh2ipd/+640/i5awRsm0Op1+WNfMS1kDkYrmGx6nwwn1s29VlnmEn+fSxgZ8DQwAAACUQ+/evc2XU1rqW+cdBZKWGNc5WVU9QKooBEkAAABAOd19991SGXTr1i3QhxBSKAEOAAAAADYESQAAAABgQ5AEAAAAADYESQAAAABgQ+EGIBi5XCKzZhW0nRLuEukwq6ANAAAQggiSgGAUFSViu6O4Y8KjRE4MQL8AAAAOYrgdAAAAANgQJAHBKCdHb/Odu2jbKd4ckT8/yl20DQBAFbZv3z6pXbu2JCcnB/pQZMaMGXLppZcG+jBCBkESEIyyskQuuSR30bZTvFkiSy7JXbQNAECAaEBw8cUXF7vum2++kbCwMPn555+P+jqDBw822+oSFRUlTZs2ldGjR0tmZuZR950wYYL06dNHmjRpkv/cokWL5Nxzz5Xq1atL3bp15b777pOcIl9o6nGdd955EhMTIw0bNpRJkyYVWv/FF1/IySefLAkJCXLDDTeI2+3OX5eammrWbdmypdA+N954o/zwww/m3I/VTz/9JNdcc405ttjYWGnZsqU899xzpboeeu5xcXFSo0aNowaYDRo0MNd9//79+c//+OOPcsYZZ0i1atXMe5ySkpK/Tq9ju3bt5LvvvhN/I0gCAABA0Bk6dKgJJrZv337YulmzZkn79u3ltNNOK9VrabC1c+dO+eOPP2TKlCny0ksvybhx4464T0ZGhsycOdMchz246NWrl3k9/bD/1ltvyfvvvy/3339//jYHDhyQ7t27S+PGjWX16tXy9NNPy/jx4+Xll182671er1x77bUybNgwWb58uaxatSp/ndLX0nW6v53L5TL7Pf/883KsVq9ebTJkr732mqxbt07Gjh0rY8aMkRdffPGI+2kwd+WVV8qtt9561D70uhX3/vzf//2fXHjhhSbg04DwiSeeyF83efJk6dSpk5x99tnibwRJAAAAKF5OesmLJ7P02+YcKt22ZXDJJZdIrVq1ZPbs2YWeT0tLk/nz55sP4Zqt0IzICSecYLIbp556qrzxxhuHvVZ0dLTJ+mjm5PLLL5du3bqZAOxIPv74Y7Nfhw4d8p/ToEg/+D/88MPSrFkzOf/8802WaOrUqXLw4EGzzeuvv26CiVdeeUVat24tV199tdx5553yzDPPmPV//fWXWW677Taz/rLLLpNff/3VrFu2bJl8//33ctdddxV7TJp50aDs0KEi17uMbrzxRpM50uM/8cQT5frrr5chQ4bIO++8c8T9HnnkERkxYoS5zkcyffp0kz269957D1un53rTTTeZbJm+d75z1wBWg1LNVjmBIAkAAADFm1et5OWb/oW3fbt2ydt+3bPwtu81KX67MoiMjJSBAweaIMmyrPznNUDyeDzmA7YOmdPhWR999JGsXbtWbr75ZjN87UjDtXQ7DUY0M3MkOqxNX9suKyvLDKGz0+FqehyanVGaHfrHP/5R6PV79OghGzZskL///tsEfvXq1ZPPP//cZKu0Hw28srOzTYZGs1wRERHFHpNmz3RI2sqVK/Ofu+CCC8yQwmOVmpoqSUlJx/w669evl0cffVTmzJkj4eGHhyKnn366CVD1PHTooi/bpNkzDTh1GKMTCJIAAAAQlDTj8fvvv8uSJUsKDbXr37+/JCYmmgySZivatm1rMiJ33HGHGQo3b968Qq/z4YcfmjkwGuBoFmTPnj0yatSoI/atc4Lq169f6DkNdjTA0myVBmp//vmnCQiUDudTu3btkjp16hTaz/dY1+kcHT2+xx57zGSSdH6OnueTTz4pXbp0MceoQ85OOeWUw4a/abZMz9s+X6lRo0Ym6DoWy5YtM1kyDTKPhQaRGrzqEEM9ruL8+9//lgULFshJJ51kAkkd5vef//zHnNtZZ51lrrFm6R588EHxJ+6TBAAAgOINSCt5XViRbEb/PaX/Xr5PxVSDa9GihSkUoEPXNGOyadMmk3nxBSYaqOicFg06NGDRYW76QV0/cNtp8KFDwNLT082cJM1SaaB1JDqkrWjWSOcaaQCgWQ/NWOlwvIceesgcU3FZk5J07tzZDKvz+e2330zmRec5aRZKh9v17NlT2rRpYx7b5/Zo5kozUD6635Ho6/iKPeg8J52DVDSzpsUpdI6Wnt+x0IBHi0Do8L2SaGBoD3p1yKT2/d///tcEufp+67A/DZjOOeccv1X0I5MEAACA4kXGl7xExJR+28jY0m1bDjr36O233zZzfjSLpBkInUujNGDRuTVaYW7x4sWyZs0ak4mwV4tT8fHxJjuhQ7004NLhajr/5UiOP/54MzyuqJEjR5r5Nlu3bjVzizTAUJrJUjr3affu3YX28T3WdcW55ZZbTNECLeqggZIWR9DCCnqe9oBCaTU4HbJXWpq50euii86zKjo0rmvXriaDVBGZm6+++soMh9QgVBd9bd+1LKlQhl7Pu+++21TC+/rrr8256/vVu3dv89hfyCQBwUjHMftS7EcZM12hwl0i7V8saAMAEGADBgwwmZW5c+earInO29Eha2rp0qUmSPFlLjTI0KxMq1atSnw9zfg88MAD5sO5VovTzExxdBicVn8rjvbvG4qnQ++0IMSZZ55pHnfs2NFUi9M5RlpyXOkcHB0+d9xxxx32Whqs6VwgLeDgC8p0X9//NVvmo0MPdf6THltp6ZDE4qxbt85UmRs0aFCFFUvQYNZeVEKzZTqUUDNZGtwWpXOStHCDBr9Kz9V+7v5EJgkIRvpLdfjw3CXvF6wjwqNETh6eu2gbAIAA07lEV111lRnKpfN+7EUKmjdvbgIQnVOjH7Y1I1M0i1MczVZocQStSlcSzUhpIFE0m6TZq19++cWs03lFOpdIy3L7ii1o4KVzbTQDptvoXB/NdmlQVpTOjXr88cflhRdeMI81iNLhas8++6wpAKFBhM5P8tFgQzNW9oBDi1votSmLtWvXmiGIOrxOj0vnSumyd+/e/G20+IUOd9RhjD6aPdOMlP5fAxpfhkorDio9Lh0i6Fv0nlRKz0kzY3Ya7N1+++2m/LlvqKKeq74nWmpdAy77uVc0giQAAAAENQ04NFjRwMVeTEGHiGkGR5/XOUs6nE1LfB+NDgXTD+haTU3nKRVHCzzoaxctAvHJJ5+YG8VqpTmtqvfee+8V6lMLK2jlus2bN5vqePfcc48pGV5cUQTNkOl6+zlpNb8333zTlEDX4hI6N8dHs1ZaPttOAxZf0YjSWrBggQmINFOmRR98i70vnfekFfnsGR09D81i6dA5DYy0rYve66mstJy4DqnTohs+Gmxq0KXzsHQu0tHmjR2LMMteMzEE6Q279IdRyxbqXYuBkKCpdd8dtc87T6SEUqAVzusR2ZvXb63zRMId6heltnHjRrnsspslIeFliYtrXur9MjI2yoEDN8v7779svnkFULXot/b6oV2/2S9ajAAl0yBIAxXNvJSlMIM/+IbH6XBC/exblWUe4ee5tLEBc5KAYJSZqaV4ctuawo4v32TXMvNmiizqUlDxKNyhfgEAqIQ006FfTumQM513FEiaLdI5WVU9QKooBEkAAABAOWnltcqgW7dugT6EkMKcJAAAAACwIUgCAAAAABuCJAAAABghXs8LVYRVAT/HBEkAAABVnO8ePm63O9CHAhwzLU+ufDfrLQ8KNwAAAFRxel+guLg4c28c/WAZ6HLWQHkzSBog6U14a9SokR/8lwdBEhCM9JuRSZMK2k4JixJpO6mgDQAICWFhYeZmoXpvmS1btgT6cIBjogGS3jj4WBAkAcHI5RIZNcr5fiNcIq0C0C8AwO9cLpe5mTRD7hDMNBN6LBkkH4IkAAAAGDrMLiYmJtCHAQQcQRIQjDwekR9+yG2feabOuHWmX69H5O+8fo87UyTcoX4BAAAcRJAEBKPMTJGzz85tp6WJxMc70683U+SzvH4HpImEO9QvAACAgwJauqRJkyZmomDRZfjw4WZ9ZmamadesWVOqVasm/fv3l927dwfykAEAAACEuIAGSd9//73s3Lkzf/niiy/M81deeaX5/4gRI+SDDz6Q+fPny5IlS2THjh3Sr1+/QB4yAAAAgBAX0OF2tWrVKvT4ySeflJNOOknOP/98SU1NlZkzZ8rcuXPlwgsvNOtnzZolLVu2lBUrVkiHDh0CdNQAAAAAQlmluVOYlpt87bXX5MYbbzRD7lavXi3Z2dnSrVu3/G1atGghjRo1kuXLl5f4OllZWXLgwIFCCwAAAAAEXZD07rvvyv79+2Xw4MHm8a5du0y9fr0ZlF2dOnXMupJMnDhREhMT85eGDRv6/dgBAAAAhI5KEyTp0LqePXtK/fr1j+l1xowZY4bq+ZZt27ZV2DECAAAACH2VogT4li1b5Msvv5R33nkn/7m6deuaIXiaXbJnk7S6na4rSXR0tFmAkBYVJTJuXEHbKWFRIm3GFbQBAABCUKUIkrQgQ+3ataV37975z7Vr106ioqJk0aJFpvS32rBhg2zdulU6duwYwKMFKgGXS2T8eOf7jXCJnBaAfgEAAKpSkOT1ek2QNGjQIImMLDgcnU80dOhQGTlypCQlJUlCQoLccccdJkCish0AAACAkA2SdJidZoe0ql1RU6ZMkfDwcJNJ0qp1PXr0kGnTpgXkOIFKxesV+fXX3HbLliLhDk0vtLwiqXn9JrYUCas00xoBAABCJ0jq3r27WJZV7LqYmBiZOnWqWQDYHDok0qZNbjstTSQ+3pl+PYdEPs7rd0CaSKRD/QIAADiIr4EBAAAAwIYgCQAAAABsCJIAAAAAwIYgCQAAAABsCJIAAAAAwIYgCQAAAAAqUwlwAOUQFSVy770FbaeERYm0vLegDQAAEIIIkoBg5HKJPP208/1GuETOCEC/AAAADmK4HQAAAADYkEkCgpHXK7J1a267USORcIe+77C8Iul5/cY3EgnjexYAABB6CJKAYHTokEjTprnttDSR+Hhn+vUcEnk/r98BaSKRDvULAADgIL4GBgAAAAAbgiQAAAAAsCFIAgAAAAAbgiQAAAAAsCFIAgAAAAAbgiQAAAAAsKEEOBCMIiNFbrutoO2UsEiR5rcVtAEAAEIQn3KAYBQdLTJ1qvP9RkSLnBWAfgEAABzEcDsAAAAAsCGTBAQjyxL566/c9vHHi4SFOddvVl6/0Q72CwAA4CCCJCAYZWSI1K6d205LE4mPd6ZfT4bIO3n9DkgTiXSoXwAAAAcx3A4AAAAAbAiSAAAAAMCGIAkAAAAAbAiSAAAAAMCGIAkAAAAAbAiSAAAAAMCGEuBAMIqMFBk0qKDtlLBIkaaDCtoAAAAhiE85QDCKjhaZPdv5fiOiRToGoF8AAAAHMdwOAAAAAGzIJAHByLJEMjJy23FxImFhzvXryes3wsF+AQAAHESQBAQjDZCqVcttp6WJxMc7068GSPPy+h2QJhLpUL9Bbs+ePZKamlrm/RITE6V27dp+OSYAAFAygiQA8HOA1LfvQElJySrzvklJ0bJw4RwCJQAAHEaQBAB+pBkkDZBcrrESE9O41PtlZm6RlJQJZn+CJAAAnEWQBAAO0AApLq55mfZxu/12OAAA4AiobgcAAAAANgRJAAAAAGBDkAQAAAAANsxJAoJRRITIFVcUtJ0SFiHS8IqCNgAAQAgiSAKCUUyMyPz5zvcbESNyXgD6BQAAcBDD7QAAAADAhiAJAAAAAGwYbgcEo/R0kWrVcttpaSLx8c70m5MuMi+v3wFpIpEO9QtH5OS4JTk5ucz7ud1ucblcZd4vMTGRG+UCAColgiQAgGRn75Pt27fIsGHjyxTwaGC1e/c2qVOniURGlq2YR1JStCxcOIdACQBQ6RAkAQDE4zkoXm+0uFxjJCHhlFLvl5q6VLKyHpPIyNFl2i8zc4ukpEyQ1NRUgiQAQKUT8CDpzz//lPvuu08++eQTycjIkGbNmsmsWbOkffv2Zr1lWTJu3Dj517/+Jfv375dOnTrJ9OnTpXnz5oE+dAAIOdHRjSQurvS/XzMzk8u1n3K7y3x4AACEfuGGv//+2wQ9UVFRJkhav369TJ48WY477rj8bSZNmiTPP/+8zJgxQ1auXCnx8fHSo0cPyczMDOShAwAAAAhRAc0kPfXUU9KwYUOTOfJp2rRpfluzSM8++6w8+OCD0qdPH/PcnDlzpE6dOvLuu+/K1VdfHZDjBgAAABC6AppJev/9982wuiuvvNKMST/jjDPMsDqfzZs3y65du6Rbt26FqiGdc845snz58mJfMysrSw4cOFBoAQAAAICgCJL++OOP/PlFn332mdx6661y5513yquvvmrWa4CkNHNkp49964qaOHGiCaR8i2aqgJATESHSq1fuom2nhEWI1O+Vu2gbAAAgBAV0uJ3X6zWZpCeeeMI81kzS2rVrzfyjQYMGles1x4wZIyNHjsx/rJkkAiWEnJgYkY8+cr7fiBiRCwLQLwAAQFXJJNWrV09atWpV6LmWLVvK1q1bTbtu3brm/7t37y60jT72rSsqOjpaEhISCi0AAAAAEBRBkla227BhQ6HnfvvtN2ncuHF+EQcNhhYtWlQoM6RV7jp27Oj48QIAAAAIfQENkkaMGCErVqwww+02bdokc+fOlZdfflmGDx9u1oeFhcndd98tjz/+uCny8Msvv8jAgQOlfv36cvnllwfy0IHASk8XiY/PXbTtlJx0kbficxdtAwAAhKCAzkk666yzZOHChWYe0aOPPmoyR1ry+7rrrsvfZvTo0ZKeni4333yzuZls586d5dNPP5UYnZMBVGUZGYHp1xOgfiuBPXv2SGpqapn2SU5OlpwcT7n6y8lxm/2d6g8AAFSCIEldcsklZimJZpM0gNIFAAIZIPXtO1BSUrLKtJ/bnSE7d+6T6tXdZdovO3ufbN++RYYNGy8ul8vv/QEAgEoUJAFAMNAMkgZILtdYiYlpXIb9lorH85h4vWXL7ng8B8XrjRaXa4wkJJzi9/4AAEABgiQAKAMNkOLimpd6+8zMsg2XKyo6upGj/QEAgAAXbgAAAACAyoYgCQAAAABsGG4HBKPwcJHzzy9oO9exSO28fvmOBQAAhCiCJCAYxcaKfP218/1Gxop0C0C/AAAADuKrYAAAAACwIUgCAAAAABuCJCAYpaeL1KqVu2jbKTnpIm/Xyl20DQAAEIKYkwQEq7/+Cky/WQHqFwAAwCFkkgAAAADAhiAJAAAAAGwIkgAAAADAhiAJAAAAAGwIkgAAAADAhup2QDAKDxdp376g7VzHIkl5/fIdCwAACFEESUAwio0V+f575/uNjBW5OAD9AgAAOIivggEAAADAhiAJAAAAAGwIkoBglJEh0qRJ7qJtp+RkiLzXJHfRNgAAQAhiThIQjCxLZMuWgrZzHYukbyloAwAAhCAySQAAAABgQ5AEAAAAADYESQAAAABgQ5AEAAAAADYESQAAAABgQ3U7IBiFhYm0alXQdq5jkcRWBW0AAIAQRJAEBKO4OJF165zvNzJOpHcA+gUAAHAQw+0AAAAAwIYgCQAAAABsCJKAYJSRIdK6de6ibafkZIh81Dp30TYAAEAIYk4SEIwsS2T9+oK2cx2LpK4vaAMAAIQgMkkAAAAAYEOQBAAAAAA2BEkAAAAAYEOQBAAAAAA2BEkAAAAAYEN1OyAYhYWJNG5c0HauY5H4xgVtAACAEESQBASjuDiR5GTn+42ME+kTgH4BAAAcxHA7AAAAALAhSAIAAAAAG4IkIBgdOiRy1lm5i7adknNI5NOzchdtAwAAhCDmJAHByOsVWbWqoO1cxyIpqwraAAAAIYhMEgAAAADYECQBAAAAgA1BEgAAAABUliBp/PjxEhYWVmhp0aJF/vrMzEwZPny41KxZU6pVqyb9+/eX3bt3B/KQAQAAAIS4gGeSWrduLTt37sxfvv322/x1I0aMkA8++EDmz58vS5YskR07dki/fv0CerwAAAAAQlvAq9tFRkZK3bp1D3s+NTVVZs6cKXPnzpULL7zQPDdr1ixp2bKlrFixQjp06BCAowUqkeOPD0y/0QHqFwAAoKpkkjZu3Cj169eXE088Ua677jrZunWreX716tWSnZ0t3bp1y99Wh+I1atRIli9fXuLrZWVlyYEDBwotQMiJjxfZuzd30bZTIuNF+u/NXbQNAAAQggIaJJ1zzjkye/Zs+fTTT2X69OmyefNmOe+88+TgwYOya9cucblcUqNGjUL71KlTx6wrycSJEyUxMTF/adiwoQNnAgAAACBUBHS4Xc+ePfPbp512mgmaGjduLPPmzZPY2NhyveaYMWNk5MiR+Y81k0SgBAAAACBohtvZadbo5JNPlk2bNpl5Sm63W/bv319oG61uV9wcJp/o6GhJSEgotAAh59AhkQsuyF207ZScQyJfXpC7aBsAACAEVaogKS0tTX7//XepV6+etGvXTqKiomTRokX56zds2GDmLHXs2DGgxwkEnNcrsmRJ7qJt5zoW2bMkd9E2AABACArocLt7771XLr30UjPETst7jxs3TiIiIuSaa64x84mGDh1qhs4lJSWZjNAdd9xhAiQq2wEAAAAIySBp+/btJiDat2+f1KpVSzp37mzKe2tbTZkyRcLDw81NZLVqXY8ePWTatGmBPGQAAAAAIS6gQdKbb755xPUxMTEydepUswAAAABAlZuTBAAAAACBRpAEAAAAAJVluB2AYxAXF5h+IwLULwAAgEMIkoBgFB8vkp7ufL+R8SJXBaBfAAAABzHcDgAAAABsCJIAAAAAwIYgCQhGmZkivXvnLtp2iidT5OveuYu2AQAAQhBzkoBg5PGIfPxxQdsplkdkx8cFbQAAgBBEJgkAAAAAbAiSAAAAAMCGIAkAAAAAbAiSAAAAAMCGIAkAAAAAbAiSAAAAAMCGEuBAMIqPF7Es5/uNjBe5NgD9AgAAVPZM0h9//FHxRwIAAAAAwRokNWvWTLp06SKvvfaaZGZmVvxRAQAAAEAwBUk//PCDnHbaaTJy5EipW7eu3HLLLfLdd99V/NEBKJ5+OXHllbmLk19UeDJFvrkyd9E2AABACCpXkNS2bVt57rnnZMeOHfLKK6/Izp07pXPnztKmTRt55plnZO/evRV/pAAKeDwiCxbkLtp2iuUR2bYgd9E2AABACDqm6naRkZHSr18/mT9/vjz11FOyadMmuffee6Vhw4YycOBAEzwBAAAAQJUJklatWiW33Xab1KtXz2SQNED6/fff5YsvvjBZpj59+lTckQIAAABAZS0BrgHRrFmzZMOGDdKrVy+ZM2eO+X94eG7M1bRpU5k9e7Y0adKkoo8XAI7Znj17JDU1tUz7JCcnS04OQwwBAKgKyhUkTZ8+XW688UYZPHiwySIVp3bt2jJz5sxjPT4AqPAAqW/fgZKSklWm/dzuDNm5c59Ur+7227EBAIAgDpI2btx41G1cLpcMGjSoPC8PAH6jGSQNkFyusRIT07gM+y0Vj+cx8XrJJgEAEOrKFSTpULtq1arJlVp+2EYLOGRkZBAcAaj0NECKi2te6u0zM5P9ejwAACDICzdMnDhRjj/++GKH2D3xxBMVcVwAjiQuTiQtLXfRtlMi4kQGpOUu2gYAAAhB5cokbd261RRnKKpx48ZmHQA/CwsTiY8PTL+RAegXAACgsmeSNGP0888/H/b8Tz/9JDVr1qyI4wIAAACA4AmSrrnmGrnzzjtl8eLF4vF4zPLVV1/JXXfdJVdffXXFHyWAwrKyRAYPzl207RRPlsjywbmLtgEAAEJQuYbbPfbYY+aeIV27dpXIyNyX8Hq9MnDgQOYkAU7IyRF59dXc9tSpItHRzvRr5Yhszuv3rKki4lC/AAAAlT1I0vLeb731lgmWdIhdbGysnHrqqWZOEgAAAABUuSDJ5+STTzYLAAAAAFTpIEnnIM2ePVsWLVpk7l6vQ+3sdH4SAAD+oH939KbAZZWYmGgKDwEA4JcgSQs0aJDUu3dvadOmjYRpWWAAABwIkPr2HSgpKWUvHJKUFC0LF84hUAIA+CdIevPNN2XevHnSq1ev8uwOAEC5aAZJAySXa6zExJR+Hmxm5hZJSZlg9idIAgD4rXBDs2bNyrMrAADHTAOkuLjmZdrH7fbb4QAAQky57pN0zz33yHPPPSeWZVX8EQE4urg4HXeUu2jbKRFxIv325C7aBgAACEHlyiR9++235kayn3zyibRu3VqioqIKrX/nnXcq6vgAFEfnAdaqFZh+YwLQLwAAQGUPkmrUqCF9+/at+KMBAAAAgGAMkmbNmlXxRwKg9LKyREaOzG0/84xIdLQz/XqyRH7I6/fMZ0QiHOoXAACgss9JUjk5OfLll1/KSy+9JAcPHjTP7dixQ9LS0iry+AAUJydHZNq03EXbTrFyRDZOy120DQAAEILKlUnasmWLXHzxxbJ161bJysqSiy66SKpXry5PPfWUeTxjxoyKP1IAAAAAqKyZJL2ZbPv27eXvv/+W2NjY/Od1ntKiRYsq8vgAAAAAoPJnkr755htZtmyZuV+SXZMmTeTPP/+sqGMDAAAAgODIJHm9XvF4PIc9v337djPsDgAAAACqVJDUvXt3efbZZ/Mfh4WFmYIN48aNk169elXk8QEAAABA5Q+SJk+eLEuXLpVWrVpJZmamXHvttflD7bR4Q3k8+eSTJti6++6785/T1x4+fLjUrFlTqlWrJv3795fdu3eX6/UBAAAAwG9zkho0aCA//fSTvPnmm/Lzzz+bLNLQoUPluuuuK1TIobS+//57U0r8tNNOK/T8iBEj5KOPPpL58+dLYmKi3H777dKvXz8ToAFVmv4727y5oO2UiFiRyzYXtAEAAEJQZLl3jIyU66+//pgPQAMsDa7+9a9/yeOPP57/fGpqqsycOVPmzp0rF154Yf5NbFu2bCkrVqyQDh06HHPfQNAKD9dKKc73GxYuUi0A/QIAAFT2IGnOnDlHXD9w4MBSv5YOp+vdu7d069atUJC0evVqyc7ONs/7tGjRQho1aiTLly8vMUjS+zTp4nPgwIFSHwsAAAAARJb3Pkl2GsxkZGSYkuBxcXGlDpJ0uN4PP/xghtsVtWvXLvN6NWrUKPR8nTp1zLqSTJw4UR555JFSnwsQlNxukbFjc9sTJogUKcfvNx63yM95/Z42QSTCoX4BAAAqe+EGvYmsfdEhcxs2bJDOnTvLG2+8UarX2LZtmwm2Xn/9dYmJiZGKMmbMGDNUz7doP0DIyc4W+ec/cxdtO8XKFvn1n7mLtgEAAEJQuYKk4jRv3txUqCuaZSqJDqfbs2ePnHnmmWZ+ky5LliyR559/3rQ1Y+R2u2X//v2F9tPqdnXr1i3xdaOjoyUhIaHQAgAAAAB+L9xQ7ItFRsqOHTtKtW3Xrl3ll19+KfTckCFDzLyj++67Txo2bChRUVGyaNEiU/pbabZq69at0rFjx4o8bAAAAAA4tiDp/fffL/TYsizZuXOnvPjii9KpU6dSvUb16tWlTZs2hZ6Lj48390TyPa9lxUeOHClJSUkmI3THHXeYAInKdgAAAAAqVZB0+eWXF3qsN4GtVauWKdWtN5qtKFOmTJHw8HCTSdKKdT169JBp06ZV2OsDAAAAQIUESV6vV/zh66+/LvRYCzpMnTrVLAAAAAAQVIUbAAAAAKDKZpJ0nlBpPfPMM+XpAsCRxMaKrF1b0HZKRKxIr7UFbQAAgBBUriDpxx9/NIveRPaUU04xz/32228SERFhSnrb5yoB8IPwcJHWrZ3vNyxcpEYA+gUAAKjsQdKll15qqtO9+uqrctxxx5nn9KayWsL7vPPOk3vuuaeijxMAAAAAKm+QpBXsPv/88/wASWn78ccfl+7duxMkAf7mdos88URu+4EHRFwuZ/r1uEXW5fXb+gGRCIf6RUjKyXFLcnJymfbR7XNyPH47JgAAyh0kHThwQPbu3XvY8/rcwYMHubKAv2VnizzySG571CjngiQrW2RtXr+tRokIQRLKJzt7n2zfvkWGDRsvrjL8/LrdGbJz5z6pXt3t1+MDAFRt5QqS+vbta4bWaUbp7LPPNs+tXLlSRo0aJf369avoYwQAhBiP56B4vdHico2RhITcua2lkZq6VDyex8TrJZsEAKhkQdKMGTPk3nvvlWuvvdYUbzAvFBkpQ4cOlaeffrqijxEAEKKioxtJXFzzUm+fmVm24XkAADgWJMXFxcm0adNMQPT777+b50466SSJj48v10EAAAAAQEjcTHbnzp1mad68uQmQLMuquCMDAAAAgGAJkvbt2yddu3aVk08+WXr16mUCJaXD7ahsBwAAAKDKBUkjRoyQqKgo2bp1qxl653PVVVfJp59+WpHHBwAAAACVf06S3iPps88+kwYNGhR6XofdbdmypaKODUBJYmJEvvuuoO2U8BiRHt8VtAEAAEJQuYKk9PT0Qhkkn5SUFImOjq6I4wJwJBERImed5Xy/4REiNQPQLwAAQGUfbnfeeefJnDlz8h+HhYWJ1+uVSZMmSZcuXSry+AAAAACg8meSNBjSwg2rVq0St9sto0ePlnXr1plM0tKlSyv+KAEU5naLPPdcbvuuu0RcLmf69bhFNuT1e8pdIhEO9QsAAFDZM0lt2rSR3377TTp37ix9+vQxw+/69esnP/74o7lfEgA/05s4jx6du+Td0NkRVrbImtG5i7YBAABCUJkzSdnZ2XLxxRfLjBkzZOzYsf45KgAAAAAIlkySlv7++eef/XM0AAAAABCMw+2uv/56mTlzZsUfDQAAAAAEY+GGnJwceeWVV+TLL7+Udu3aSXx8fKH1zzzzTEUdHwAAAABU3iDpjz/+kCZNmsjatWvlzDPPNM9pAQc7LQcOAAAAAFUiSGrevLns3LlTFi9ebB5fddVV8vzzz0udOnX8dXwAAAAAUHmDJMuyCj3+5JNPTPlvAA6LiRHJ+7LCtJ0SHiPSdXFBGwAAIASVa05SSUETAIdERIhccIHz/YZHiNQJQL8AAACVtbqdzjcqOueIOUgAAAAAqvRwu8GDB0t0dLR5nJmZKcOGDTusut0777xTsUcJoLDsbJGXX85t33yz3sDMmX692SKb8vptdrNIuEP9AgAAVNYgadCgQYfdLwlAALjdIrffntsePNjBIMktsiqv3xMHEyQBAICQVKYgadasWf47EgAAAAAItjlJAAAAABDqCJIAAAAAwIYgCQAAAABsCJIAAAAAwIYgCQAAAADKW90OQCWh9yr78MOCtlPCo0XO/7CgDQAAEIIIkoBgFBkp0ru38/2GR4qcEIB+AQAAHMRwOwAAAACwIZMEBKPsbJHXX89tX3edSFSUM/16s0WS8/ptcp1IuEP9AgAAOIggCQhGbrfIkCG57SuvdDBIcousyOu30ZUESQAAICQx3A4AAAAAbAiSAAAAAMCGIAkAAAAAbAiSAAAAAMCGIAkAAAAAbAiSAAAAAMCGEuBAMIqOFpk3r6DtlPBokc7zCtoAAAAhKKCZpOnTp8tpp50mCQkJZunYsaN88skn+eszMzNl+PDhUrNmTalWrZr0799fdu/eHchDBiqHyMjc+yPpom2nhEfm3h/J3COJ71gAAEBoCmiQ1KBBA3nyySdl9erVsmrVKrnwwgulT58+sm7dOrN+xIgR8sEHH8j8+fNlyZIlsmPHDunXr18gDxkAAABAiAvoV8GXXnppoccTJkww2aUVK1aYAGrmzJkyd+5cEzypWbNmScuWLc36Dh06BOiogUogJ0dk4cLcdt++zmWTvDki2/P6bdCXbBIAAAhJleYTjsfjMRmj9PR0M+xOs0vZ2dnSrVu3/G1atGghjRo1kuXLl5cYJGVlZZnF58CBA44cP+Ao/RkfMCC3nZbmYJCUJfJtXr8D0giSAABASAp4dbtffvnFzDeKjo6WYcOGycKFC6VVq1aya9cucblcUqNGjULb16lTx6wrycSJEyUxMTF/adiwoQNnAQAAACBUBDxIOuWUU2TNmjWycuVKufXWW2XQoEGyfv36cr/emDFjJDU1NX/Ztm1bhR4vAAAAgNAW8LEymi1q1qyZabdr106+//57ee655+Sqq64St9st+/fvL5RN0up2devWLfH1NCOlCwAAAAAEZSapKK/Xa+YUacAUFRUlixYtyl+3YcMG2bp1q5mzBAAAAAAhl0nSoXE9e/Y0xRgOHjxoKtl9/fXX8tlnn5n5REOHDpWRI0dKUlKSuY/SHXfcYQIkKtsBAAAACMkgac+ePTJw4EDZuXOnCYr0xrIaIF100UVm/ZQpUyQ8PNzcRFazSz169JBp06YF8pABAEEqJ8ctycnJZd5Ph37r0PDy0L9ttWvXLte+AIAqGiTpfZCOJCYmRqZOnWoWADb6gW3WrIK2U8JdIh1mFbSBIJGdvU+2b98iw4aNL1PAo4HV7t3bpE6dJhIZGVHmfpOSomXhwjkESgAQZAJeuAFAOURFiQwe7Hy/4VEiJwagX+AYeTwHxeuNFpdrjCQknFLq/VJTl0pW1mMSGTm6TPupzMwtkpIywVRaJUgCgOBCkAQAqDKioxtJXFzzUm+fmZlcrv183O4y7wIAqAQIkoBglJMj8tlnue0ePUQiHfqn7M0R2ZnXb70eIuH8CgEAAKGHTzhAMMrKErnkktx2WpqDQVKWyJK8fgekESQBAICQVOnukwQAAAAAgUSQBAAAAAA2BEkAAAAAYEOQBAAAAAA2BEkAAAAAYEOQBAAAAAA21O8FgpHLJfLiiwVtp4S7RNq/WNAGAAAIQQRJQDCKihIZPtz5fsOjRE4OQL8AAAAOYrgdAAAAANiQSQKCkccj8s03ue3zzhOJiHCmX69HZG9ev7XOEwl3qF8AAAAHESQBwSgzU6RLl9x2WppIfLwz/XozRRbl9TsgTSTcoX4BAAAcRJAEoELs2bNHUlNTy7xfYmKi1K5d2y/HBAAAUB4ESQAqJEDq23egpKRklXnfpKRoWbhwDoESAACoNAiSABwzzSBpgORyjZWYmMal3i8zc4ukpEww+xMkAQCAyoIgCUCF0QApLq55mfZxu/12OAAAAOVCCXAAAAAAsCFIAgAAAAAbhtsBwSgqSmTSpIK2U8KiRNpOKmgHYTW95ORkycnx+OWYAABAaCBIAoKRyyUyapTz/Ua4RFoFoN8KrKbndmfIzp37pHp1JkMBAIDiESQBqDLV9HL3XSoez2Pi9ZJNAgAAxSNIAoKRxyPyww+57TPPFImIcKZfDSz+zuv3uDNFwh3qtwKr6WVmJvvteAAAQGggSAKCUWamyNln57bT0kTi453p15sp8llevwPSRMId6hcAAMBBVLcDAAAAABuCJAAAAACwIUgCAAAAABuCJAAAAACwIUgCAAAAABuCJAAAAACwoQQ4EIyiokTGjStoOyUsSqTNuII2AABACCJIAoKRyyUyfrzz/Ua4RE4LQL8AAAAOYrgdAAAAANiQSQKCkdcr8uuvue2WLUXCHfq+w/KKpOb1m9hSJIzvWQAAQOghSAKC0aFDIm3a5LbT0kTi453p13NI5OO8fgekiUQ61C8AAICD+BoYAAAAAGzIJAEIqJwctyQnJ5dpH90+J8fjt2MCAABVG0ESgIDJzt4n27dvkWHDxotLK/aVktudITt37pPq1d1+PT4AAFA1ESQBCBiP56B4vdHico2RhIRTSr1faupS8XgeE6+XbBIAAKh4BEkAAi46upHExTUv9faZmWUbngcAAFAWFG4AAAAAABsySUAwiooSuffegrZTwqJEWt5b0AYAAAhBBElAMNIiB08/7Xy/ES6RMwLQL1CFqjeqxMREqV27tl+OCQBwdARJAABUouqNKikpWhYunEOgBAABQpAEBCOvV2Tr1tx2o0Yi4Q5NL7S8Iul5/cY3EgljWiNQ0dUbMzO3SErKBElNTSVIAoAACegnnIkTJ8pZZ50l1atXN38ILr/8ctmwYUOhbTIzM2X48OFSs2ZNqVatmvTv3192794dsGMGKoVDh0SaNs1dtO0UzyGR95vmLtoGUOrqjaVdYmIaB/qQAaDKC2iQtGTJEhMArVixQr744gvJzs6W7t27S3p6ev42I0aMkA8++EDmz59vtt+xY4f069cvkIcNAAAAIIQFdLjdp59+Wujx7NmzTUZp9erV8o9//MMMNZg5c6bMnTtXLrzwQrPNrFmzpGXLliaw6tChw2GvmZWVZRafAwcOOHAmAAAAAEJFpZpQoEGRSkpKMv/XYEmzS926dcvfpkWLFtKoUSNZvnx5iUP4tCqQb2nYsKFDRw8AAAAgFFSaIMnr9crdd98tnTp1kjZt2pjndu3aZSoC1ahRo9C2derUMeuKM2bMGBNs+ZZt27Y5cvwAAAAAQkOlqW6nc5PWrl0r33777TG9TnR0tFkAAAAAIGgzSbfffrt8+OGHsnjxYmnQoEH+83Xr1hW32y379+8vtL1Wt9N1AAAAABBSmSTLsuSOO+6QhQsXytdffy1NtZyxTbt27SQqKkoWLVpkSn8rLRG+detW6dixY4COGqgEIiNFbrutoO2UsEiR5rcVtAEAAEJQZKCH2Gnluvfee8/cK8k3z0gLLsTGxpr/Dx06VEaOHGmKOSQkJJigSgOk4irbAVWGDimdOtX5fiOiRc4KQL8AAABVJUiaPn26+f8FF1xQ6Hkt8z148GDTnjJlioSHh5tMkpb27tGjh0ybNi0gxwsAAAAg9AV8uN3RxMTEyNSpU80CII/+2/nrr9z28ceLhIU5129WXr/RDvYLAADgICYVAMEoI0Okdu3cdlqaSHy8M/16MkTeyet3QJpIpEP9AgAAVLXqdgAAAABQWRAkAQAAAIANQRIAAAAA2BAkAQAAAIANQRIAAAAA2BAkAQAAAIANJcCBYBQZKTJoUEHbKWGRIk0HFbQBAABCEJ9ygGAUHS0ye7bz/UZEi3QMQL8AAAAOYrgdAAAAANiQSQKCkWWJZGTktuPiRMLCnOvXk9dvhIP9AgAAOIhMEhCMNECqVi138QVLTtAAaV613MUXLAEAAIQYgiQAAAAAsCFIAgAAAAAbgiQAAAAAsCFIAgAAAAAbgiQAAAAAsCFIAgAAAAAb7pMEBKOICJErrihoOyUsQqThFQVtAACAEESQBASjmBiR+fOd7zciRuS8APQLAADgIIIkIETt2bNHUlNTy7xfYmKi1K5d2y/HBAAAEAwIkoAQDZD69h0oKSlZZd43KSlaFi6cQ6AEAACqLIIkIBilp4tUq5bbTksTiY8vtFozSBoguVxjJSamcalfNjNzi6SkTDD7Fxsk5aSLzMvrd0CaSGThfgEAAEIBQRIQwjRAiotrXqZ93G6/HQ4AAEBQoAQ4AAAAANgQJAEAAACADcPtABSSk+OW5OTkYteFeTKkWV5706ZNYkXEmbZun5PjcfAoAQAA/IcgCUC+7Ox9sn37Fhk2bLy4XK7D1sdGeeSH+3PbAwbcIYeyc28o63ZnyM6d+6R6dSY0AQCA4EeQBCCfx3NQvN5ocbnGSELCKYetj4nMEJG2pl29+gsSlZObSUpNXSoez2Pi9ZJNAgAAwY8gCQhGEREivXoVtCtYdHSjYqviRUVkyoqtuf1Gx54i4Z4Y087MLH54HgAAQDAiSAKCUUyMyEcfOd5ttidGxnzmfL8AAABOIkgCKrk9e/aYm7uWBYUUAAAAyo8gCajkAVLfvgMlJSWrTPtRSAEAAKD8CJKASkwzSBoguVxjJSamcf7zMZ4M+fTHjqZ98RnLJTOvFHfBfv4ppBATmS7vXF/btPu9tkcyc+Ir9PUBAAAqA4IkIAhogGQvpBDjSZdY7yHTjotrJuERhYMVfxZSiI3SCncAAAChKzzQBwAAAAAAlQlBEgAAAADYECQBAAAAgA1BEgAAAADYECQBAAAAgA3V7YAg5JVwWZN4fn7bsX6tcFmzI69fi+9YAABAaCJIAoKQOyJWRpzxtfP9emJlxEfO9wsAAOAkvgoGAAAAABuCJAAAAACwIUgCglCMJ10WLq1lFm071m9kuiy8vpZZtA0AABCKmJMEBKka2X8Fpt/YwPQLAABQJTJJ//3vf+XSSy+V+vXrS1hYmLz77ruF1luWJQ8//LDUq1dPYmNjpVu3brJx48aAHS8AAACA0BfQICk9PV1OP/10mTp1arHrJ02aJM8//7zMmDFDVq5cKfHx8dKjRw/JzMx0/FgBAAAAVA0BHW7Xs2dPsxRHs0jPPvusPPjgg9KnTx/z3Jw5c6ROnTom43T11Vc7fLQAAAAAqoJKOydp8+bNsmvXLjPEzicxMVHOOeccWb58eYlBUlZWlll8Dhw44MjxAgBQUXJy3JKcnFzm/fTvZO3atf1yTABQlVTaIEkDJKWZIzt97FtXnIkTJ8ojjzzi9+MDAMAfsrP3yfbtW2TYsPHicrnKtG9SUrQsXDiHQAkAQjVIKq8xY8bIyJEjC2WSGjZsGNBjAiqaV8Llf9Xb57cd69cKl//tzevX4g4CgD94PAfF640Wl2uMJCScUur9MjO3SErKBElNTSVIAoBQDZLq1q1r/r97925T3c5HH7dt27bE/aKjo80ChDJ3RKzc2u575/v1xMqt7zrfL1AVRUc3kri45mXax+322+EAQJVSab8Kbtq0qQmUFi1aVCgrpFXuOnbsGNBjAwAAABC6AppJSktLk02bNhUq1rBmzRpJSkqSRo0ayd133y2PP/64NG/e3ARNDz30kLmn0uWXXx7Iw0aI2LNnjxmWUlZMjAYAAAhtAQ2SVq1aJV26dMl/7JtLNGjQIJk9e7aMHj3a3Evp5ptvlv3790vnzp3l008/lZiYmAAeNUIlQOrbd6CkpBRUQgymidHRngyZ/V0r0x589nrJiohzpt+IDJl9ZV6/89dLlseZfgEAAKpMkHTBBReY+yGVJCwsTB599FGzABVJM0gaILlcYyUmpnHQTYwOE0vqZm3JbzvWb5gldavn9RvmXL8AAABOqrSFGwAnaIDExGgAAAAEReEGAAAAAAgEgiQAAAAAsGG4HQAAISInxy3Jycll3o+qnQBQGEESAAAhIDt7n2zfvkWGDRsvLpcr6Kp2AkBlQpAEBCFLwiQ5rlV+27F+rTBJ/juvX8u5fgEcncdzULzeaHG5xkhCwilBV7UTACoTgiQgCOl9kYacvc75fj1xMmSB8/0CKL3o6EZU7QSAY0ThBgAAAACwIUgCAAAAABuG2wEO2bNnjxnzXxZapSonx3PY89GeDJmx+izTHtbuezP8zgnRERkyo29evwu/N8PvAAAAQg1BEuBQgNS370BJSckq035ud4bs3LlPqlcvPGEgTCxpkrE+v+2UsDBLmhyX12+Yc/0CAAA4iSAJcIBmkDRAcrnGSkxM4zLst1Q8nsfE6z08mwQAAAD/IEgCHKQBUlmqTmVmlv2mkAAAADg2FG4AAAAAABsySQh6FVkQAQCqopwct/m9WFaJiYnlugFteX5vH0t/AFBWBEkIahVdEAEAqprs7H2yffsWGTZsvLhcrjLtm5QULQsXzilT4FLe39vl7Q8AyoMgCUGtqhZEsCRMdkU3zm871q8VJrsO5vVrOdcvAP/xeA6K1xstLtcYSUg4pdT7ZWZukZSUCeb3cFmClvL+3i5vfwBQHgRJCAlVrSCC3hfpmo7On4PeF+maN4P72gEoXnR0ozL9HlVut3O/t4+1PwAoCwo3AAAAAIANQRIAAAAA2DDcDghCLs8heW7NP0z7rrb/FXdErDP9RhyS5y7N6/eD/4rb40y/AEKnKh7VRQEEA4IkIAiFi1daHFyV33as3zCvtKiV12+Yc/0CCJ2qeFQXBRAMCJIAAIBjVfGCvboogKqBIAkAADhWFS/Yq4sCqBoo3AAAAAAANgRJAAAAAGDDcDugjKjmBAAAENoIkoAgrea0P+r4CnutMvV7KDD9AgAAOIUgCQjCak6ZEfHSt9PeCnmtMvWbEy99X3O+XwAAACcRJAHlQDUnAACA0EXhBgAAAACwIUgCgpDLc0im/HiBWbTtWL8Rh2RK7wvMom0AAIBQxHA7FGvPnj2Smppa5v0SExOldu3afjkmFAgXr7RNXZLfdqzfMK+0rZ/Xb5hz/QJAeauLKv42ASgrgiQUGyD17TtQUlKyyrxvUlK0LFw4hz9GAIBKUV1U8bcJQFkRJOEwmkHSAMnlGisxMY1LvV9m5hZJSZlg9ucPEQCgMlQX5W8TgPIgSEKJNEAqSwU35a642wABAHDM1UUVf5sAlBWFGwAAAADAhkySwyiIAABAcOBvNlB1ESQ5iIIIqEiHwuMC0292YPoFACfxNxuo2giSHERBBFSUzIh46fWPdOf7zYmXXrOd7xcAnMbfbKBqI0gKAAoiAAAQHPibDVRNFG4AAAAAABuCJCAIRXkyZeLPvc2ibcf6jciUiT16m0XbAAAAoYjhdkEiJ8ctycnJZd7P7XaX+c7k2k9OjkecPM5AHGswixCPdEj5OL+d7VS/YR7p0Civ3zDn+gWAY1Gev02B+FsYTFXxgqXyX3mPszyfSY5lP977yocgKQhkZ++T7du3yLBh48v0D09/Se/evU3q1GkikZERpd7P7c6QnTv3SfXqbkeOMxDHCgCoGsr7tykQfwuDpSpesFT+K+9xlvczSXn3U7z3lQ9BUhDweA6K1xstLtcYSUg4pdT7paYulaysxyQycnSZ9/N4HhOv1+PIcQbiWAEAVcOx/A118m9hMFXFC5bKf+U9zmP5TFKe/XjvK6egCJKmTp0qTz/9tOzatUtOP/10eeGFF+Tss8+WqiY6ulGZKuxkZiYf037lVdb+AnmsAICqIRj+FgZbVbxgqfxX1uM81s8kvPehcY6VvnDDW2+9JSNHjpRx48bJDz/8YIKkHj16mHQfAAAAAFS5IOmZZ56Rm266SYYMGSKtWrWSGTNmSFxcnLzyyiuBPjQAAAAAIahSD7fTCiGrV6+WMWPG5D8XHh4u3bp1k+XLlxe7T1ZWlll8fNU3Dhw4IIGWlpYmHk+OpKevF48nrdT7ZWRsEsvySkbG/yQy0hNy+wXTsVaW/dyeDPH9RB84uEayIuIcOU53RIYcyMjr98AayfLEVarrUhn7ZL+quV8wHSv7VY79MjO3itt9SNatW2c+L1RmW7ZsEbc7q8yfZ5w+x/IeJ+99yY7lvdfPwHp+gf5M7uvfsqwjbhdmHW2LANqxY4eccMIJsmzZMunYsWP+86NHj5YlS5bIypUrD9tn/Pjx8sgjjzh8pAAAAACCxbZt26RBgwbBmUkqD8066RwmH6/XKykpKVKzZk0JCwtzLEJt2LChufgJCQmO9IlcXPvA4voHDtc+sLj+gcO1DxyufWBx/ctH80MHDx6U+vXrH3G7Sh0kHX/88RIRESG7d+8u9Lw+rlu3brH7REdHm8WuRo0aEgj6A8sPbWBw7QOL6x84XPvA4voHDtc+cLj2gcX1l3Ld2DaoCzfoTdjatWsnixYtKpQZ0sf24XcAAAAAUFEqdSZJ6dC5QYMGSfv27c29kZ599llJT0831e4AAAAAoMoFSVdddZXs3btXHn74YXMz2bZt28qnn34qderUkcpKh/vpfZ2KDvuD/3HtA4vrHzhc+8Di+gcO1z5wuPaBxfX3r0pd3Q4AAAAAnFap5yQBAAAAgNMIkgAAAADAhiAJAAAAAGwIkgAAAADAhiCpHFJSUuS6664zN+7SG9UOHTpU0tLSjrhPZmamDB8+XGrWrCnVqlWT/v37H3aTXDV79mw57bTTJCYmRmrXrm32gXPXX+3bt08aNGggYWFhsn//fj+dRXDyx7X/6aef5JprrjF3DY+NjZWWLVvKc88958DZVH5Tp06VJk2amN8H55xzjnz33XdH3H7+/PnSokULs/2pp54qH3/8caH1WqdHK4XWq1fPXOtu3brJxo0b/XwWwakir312drbcd9995vn4+Hhzl/eBAwfKjh07HDiT4FTRP/t2w4YNM7/f9ZYicOba//rrr3LZZZeZG3jqv4GzzjpLtm7d6sezCE4Vfe317/Ptt99uPtPo7/xWrVrJjBkz/HwWIUSr26FsLr74Yuv000+3VqxYYX3zzTdWs2bNrGuuueaI+wwbNsxq2LChtWjRImvVqlVWhw4drHPPPbfQNpMnT7bq169vvf7669amTZusn376yXrvvff8fDbBx1/X36dPnz5Wz549teqj9ffff/vpLIKTP679zJkzrTvvvNP6+uuvrd9//936z3/+Y8XGxlovvPCCVZW9+eablsvlsl555RVr3bp11k033WTVqFHD2r17d7HbL1261IqIiLAmTZpkrV+/3nrwwQetqKgo65dffsnf5sknn7QSExOtd9991/x+ueyyy6ymTZtahw4dcvDMqt61379/v9WtWzfrrbfesv73v/9Zy5cvt84++2yrXbt2Dp9Z1f3Z93nnnXfM7zD9WztlyhQHzia4+OPa6+eZpKQka9SoUdYPP/xgHutnm5Jes6ryx7XX1zjppJOsxYsXW5s3b7Zeeuklsw+fLUuHIKmM9AdRPzx///33+c998sknVlhYmPXnn38Wu4/+gdQf3Pnz5+c/9+uvv5rX0T+WKiUlxXww/PLLLx04i+Dlr+vvM23aNOv88883H+gJkpy99na33Xab1aVLF6sq0w/Rw4cPz3/s8XjMB7uJEycWu/2AAQOs3r17F3runHPOsW655RbT9nq9Vt26da2nn3660PsTHR1tvfHGG347j2BU0de+ON999535d7Bly5YKPPLQ4K/rv337duuEE06w1q5dazVu3JggyaFrf9VVV1nXX3+9H486NPjj2rdu3dp69NFHC21z5plnWmPHjq3w4w9FDLcro+XLl5thRu3bt89/ToeshIeHy8qVK4vdZ/Xq1Wa4hW7no+nRRo0amddTX3zxhXi9Xvnzzz/NcCNNjQ4YMEC2bdvmwFkFD39df7V+/Xp59NFHZc6cOeb14Ny1Lyo1NVWSkpKkqnK73eba2a+bXmd9XNJ10+ft26sePXrkb79582ZzQ277Njr0RYd0HOm9qGr8ce1L+hnXIV/6bwr+v/769/WGG26QUaNGSevWrf14BsHLH9der/tHH30kJ598snlepxHo75x3333Xz2cTXPz1c3/uuefK+++/bz5bamJk8eLF8ttvv0n37t39eDahg0+CZaQfMvQfuV1kZKT5QKfrStrH5XId9sewTp06+fv88ccf5pfJE088YcZJL1iwwMz/uOiii8w/Hvj3+mdlZZl5MU8//bT5AA/nrn1Ry5Ytk7feektuvvlmqar++usv8Xg85jqV9rrp80fa3vf/srxmVeSPa1/cPD2do6S/c3R+H/x//Z966inz++rOO+/005EHP39c+z179ph5MU8++aRcfPHF8vnnn0vfvn2lX79+smTJEj+eTXDx18/9Cy+8YOYh6Rfv+rdY3wOd9/SPf/zDT2cSWgiS8tx///3mW70jLf/73//81r8GSPqN+/PPP2++CejQoYO88cYbZlK1Rv6hLtDXf8yYMSaDd/3110tVE+hrb7d27Vrp06ePjBs3jm+6EJL097yOEtBvdadPnx7ow6kS9Bt6LQajhZH09xmco59tlP5eHzFihLRt29b8zbnkkksoIOAADZJWrFhhskn672Dy5MmmkNKXX34Z6EMLCpGBPoDK4p577pHBgwcfcZsTTzxR6tata74ZscvJyTFZH11XHH1es0FaKc3+jbpW+PLto9WmlEb8PrVq1ZLjjz++SlSACfT1/+qrr+SXX34xGTylH2CUXv+xY8fKI488IqEq0NfePtyxa9euJoP04IMPSlWmP3cRERGHVWAs7rr56PNH2t73f33O9/vG91g/uMB/175ogLRlyxbzO4cskjPX/5tvvjG/u+yjBPRbe/3dpyM3kpOT/XIuwcYf115fUzN49s82Sr+U/Pbbbyv8HIKVP679oUOH5IEHHpCFCxdK7969zXNaPXnNmjXyz3/+87ChejgcmSRbQKJzJY60aKqyY8eO5gOfRuQ++sdOvy3RcbbFadeunURFRcmiRYvyn9uwYYMJfvT1VKdOnfKf99EPn5qCbdy4sYS6QF//t99+25Si1l8euvz73//O/+Ma6mXYA33t1bp166RLly4yaNAgmTBhglR1er312tmvm15nfWy/bnb6vH1731xH3/ZNmzY1fzzt2xw4cMDMJyvpNasif1x7e4CkowP0W1wtiQ9nrr/ORfr555/zf7/romXYdX7SZ5995uczqtrXXl9Ty33bP9sonRdTFT7bBPLa6+8cXYrOsdZgzJfhw1EEunJEsJZBPuOMM6yVK1da3377rdW8efNCZZC1gs4pp5xi1tvLIDdq1Mj66quvTBnkjh07mqVo6WmtRKJlHbWE4yWXXGK1atXKcrvdjp5fVb3+dlouk+p2zlx7/VmvVauWqX60c+fO/GXPnj1WVS8Hq5XnZs+ebSoL3nzzzaYc7K5du8z6G264wbr//vvzt9ffG5GRkdY///lPU0Fw3LhxxZYA19fQ8q8///yz+Z1DCXD/X3v9Ha7l1hs0aGCtWbOm0M95VlZWwM6zKv3sF0V1O+euvZZd1+defvlla+PGjeb2DlqGWm8jAf9ee63Wq58r9TPNH3/8Yc2aNcuKiYkxlXxxdARJ5bBv3z7zwbBatWpWQkKCNWTIEOvgwYP567UWvX7A1h9KH/0QomWNjzvuOCsuLs7q27ev+QNpl5qaat14443mH4XeU0C32bp1q6PnVpWvvx1BknPXXn+x6z5FF/0QU9XphwkNMPXeGVoeVu9PZf/jN2jQoELbz5s3zzr55JPN9vqH8aOPPiq0XsuAP/TQQ1adOnXMH+OuXbtaGzZscOx8quq19/27KG6x/1uB/372iyJIcvba6/3w9L56+gFd71Ol92qD/6+9/q0dPHiwKSWu116/xNR7curfAhxdmP7naNkmAAAAAKgqmJMEAAAAADYESQAAAABgQ5AEAAAAADYESQAAAABgQ5AEAAAAADYESQAAAABgQ5AEAAAAADYESQAAAABgQ5AEAAAAADYESQCAgBs8eLCEhYWZJSoqSpo2bSqjR4+WzMzMUu3/9ddfm33379/v92MFAIS+yEAfAAAA6uKLL5ZZs2ZJdna2rF69WgYNGmQCn6eeesrR49D+NVADAFRdZJIAAJVCdHS01K1bVxo2bCiXX365dOvWTb744guzzuv1ysSJE02GKTY2Vk4//XRZsGCBWZecnCxdunQx7eOOO84EVpqZUk2aNJFnn322UD9t27aV8ePH5z/W7adPny6XXXaZxMfHy4QJE8x63e4///mPeY3ExES5+uqr5eDBg/n7af+nnnqqOZ6aNWua401PT3fkWgEA/IsgCQBQ6axdu1aWLVsmLpfLPNYAac6cOTJjxgxZt26djBgxQq6//npZsmSJCarefvtts92GDRtk586d8txzz5WpPw2K+vbtK7/88ovceOON5rnff/9d3n33Xfnwww/Non09+eSTZp32cc0115htf/31VzPcr1+/fmJZVoVfCwCA8xhuBwCoFDQQqVatmuTk5EhWVpaEh4fLiy++aNpPPPGEfPnll9KxY0ez7YknnijffvutvPTSS3L++edLUlKSeb527dpSo0aNMvd97bXXypAhQwo9p9mr2bNnS/Xq1c3jG264QRYtWmQyTRok6XFqYNS4cWOzXrNKAIDQQJAEAKgUdMicDnvTIWtTpkyRyMhI6d+/v8kcZWRkyEUXXVRoe7fbLWeccUaF9N2+ffvDntNhdr4ASdWrV0/27Nlj2jrcr2vXriYw6tGjh3Tv3l2uuOIKM9wPABD8CJIAAJWCzgdq1qyZab/yyismEJk5c6a0adPGPPfRRx/JCSeccNg8piPRbFTRIXBamKG4vosqWrxB5y5pdklFRESY+VI6JPDzzz+XF154QcaOHSsrV64086YAAMGNOUkAgEpHg5sHHnhAHnzwQWnVqpUJhrZu3WqCKPui85GUb+6Sx+Mp9Dq1atUyQ+N8Dhw4IJs3b66QY9SgqVOnTvLII4/Ijz/+aI5h4cKFFfLaAIDAIpMEAKiUrrzyShk1apSZd3TvvfeaYg2ayencubOkpqbK0qVLJSEhwZQK13lBGrTovKZevXqZinM6v+nCCy8084ouvfRSM1fp4YcfNlmgY6UZI52fpMPsdB6UPt67d6+0bNmyQs4dABBYBEkAgEpJ5yTdfvvtMmnSJJP90ayQVrn7448/TMBz5plnmmyT0mF4mtG5//77TQGGgQMHmuBozJgxZt9LLrnElPF+7LHHKiSTpMHZf//7X1NeXLNTGqRNnjxZevbsWQFnDgAItDCLeqUAAAAAkI85SQAAAABgQ5AEAAAAADYESQAAAABgQ5AEAAAAADYESQAAAABgQ5AEAAAAADYESQAAAABgQ5AEAAAAADYESQAAAABgQ5AEAAAAADYESQAAAAAgBf4fRmCb2tMgnwwAAAAASUVORK5CYII="
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"execution_count": 10
|
|
},
|
|
{
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2025-02-16T14:41:05.352334Z",
|
|
"start_time": "2025-02-16T14:41:05.346646Z"
|
|
}
|
|
},
|
|
"cell_type": "code",
|
|
"source": [
|
|
"value = aapl_portfolio.value_at_risk(0.1, 1_000_000.)\n",
|
|
"value"
|
|
],
|
|
"id": "aa1bd5ee47522592",
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"21443.681951589417"
|
|
]
|
|
},
|
|
"execution_count": 11,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"execution_count": 11
|
|
},
|
|
{
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2025-02-16T14:41:07.301479Z",
|
|
"start_time": "2025-02-16T14:41:07.224601Z"
|
|
}
|
|
},
|
|
"cell_type": "code",
|
|
"source": [
|
|
"# Calculate n Day VaR\n",
|
|
"var_array = []\n",
|
|
"num_days = int(15)\n",
|
|
"for x in range(1, num_days+1):\n",
|
|
" var_array.append(np.round(pyfinlib.risk.value_at_risk.scale_value_at_risk(value, x),2))\n",
|
|
" print(str(x) + \" day VaR @ 95% confidence: \" + str(np.round(pyfinlib.risk.value_at_risk.scale_value_at_risk(value, x))))\n",
|
|
"\n",
|
|
"# Build plot\n",
|
|
"plt.xlabel(\"Day #\")\n",
|
|
"plt.ylabel(\"Max portfolio loss (USD)\")\n",
|
|
"plt.title(f\"Max portfolio loss (VaR) over {num_days}-day period\")\n",
|
|
"plt.plot(var_array, \"r\")"
|
|
],
|
|
"id": "ddeb6ada3ab526b5",
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"1 day VaR @ 95% confidence: 21444.0\n",
|
|
"2 day VaR @ 95% confidence: 30326.0\n",
|
|
"3 day VaR @ 95% confidence: 37142.0\n",
|
|
"4 day VaR @ 95% confidence: 42887.0\n",
|
|
"5 day VaR @ 95% confidence: 47950.0\n",
|
|
"6 day VaR @ 95% confidence: 52526.0\n",
|
|
"7 day VaR @ 95% confidence: 56735.0\n",
|
|
"8 day VaR @ 95% confidence: 60652.0\n",
|
|
"9 day VaR @ 95% confidence: 64331.0\n",
|
|
"10 day VaR @ 95% confidence: 67811.0\n",
|
|
"11 day VaR @ 95% confidence: 71121.0\n",
|
|
"12 day VaR @ 95% confidence: 74283.0\n",
|
|
"13 day VaR @ 95% confidence: 77316.0\n",
|
|
"14 day VaR @ 95% confidence: 80235.0\n",
|
|
"15 day VaR @ 95% confidence: 83051.0\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[<matplotlib.lines.Line2D at 0x115896f60>]"
|
|
]
|
|
},
|
|
"execution_count": 12,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"<Figure size 640x480 with 1 Axes>"
|
|
],
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHHCAYAAACiOWx7AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAaVNJREFUeJzt3Qd4FNXXBvA3hDRq6E1CkSahgyBN/ggSEUWKgogIItKlfgGCFHsoiiKEYgNUpClFukhT6UU6IkKQGhAkoYUA4X7PueMsmxBgF5LMlvf3PMtmZi+zdzebmbO3nOujlFIgIiIiorvKcPeHiYiIiEgwaCIiIiJyAIMmIiIiIgcwaCIiIiJyAIMmIiIiIgcwaCIiIiJyAIMmIiIiIgcwaCIiIiJyAIMmIiIiIgcwaCJyEaNHj0bx4sXh6+uLSpUqOfV///e//+mb6ciRI/Dx8cHUqVNTpW6pfbzU9vTTT+P111+Hq5g0aRJCQkKQkJBgdVU8jnwG5bMon0lPVrRoUXTo0CHVjrdmzRr9vsk93T8GTZQuJzi5/fbbb7c9Lqv4FC5cWD/+zDPPwJPt27cPb731Voon+59++gkDBgxA7dq1MWXKFHzwwQeW1NEdrVu3Tr9/AwcO1Nu9evXSn6e//vrrjv/nzTff1GV27drl8POYn2Pzli1bNtSrVw+LFy++raxc7K5du4bJkyfD07z//vto2rQp8uXLp98H+UynRPYnf8/kFhgYmO51JkotGVPtSER3ISfK7777DnXq1Emyf+3atTh+/DgCAgLg6SRoevvtt3WLkHyLtLdq1SpkyJABX375Jfz9/R/4uYoUKYL4+Hj4+fnBG1roGjRogBIlSujttm3bYty4cfrzNmzYsBT/z4wZM1C+fHlUqFDBqed68skn8corr+hg/++//8bEiRPx7LPPYunSpQgLC0vyeW/fvj3GjBmDN954QwcLnmLIkCHInz8/KleujOXLl9+zvLxHWbJksW1LSyrd24EDB/Q5gVwLgyZKt+6TOXPm4NNPP0XGjLc+dnJhq1q1Ks6ePQtPdfXq1XsGQmfOnEFQUFCqBEzCW77Ry/smLT3SHWaqUaOGDqAkMEopaNqwYQOio6MxYsQIp5+vVKlSePnll23bLVu2RNmyZTF27NgkQZNo1aoVRo0ahdWrV+OJJ56Au7h8+TIyZ858x8flvZOgX/5m8+TJc8/jPf/888idO3cq19IzSTAu5ws5F3jDF0l3xDCW0kWbNm1w7tw5rFixwrZPui++//57vPTSSyn+nw8//BC1atVCrly59ElEgispb0+6siRA+Oqrr5Lsl+4t2b9kyZK71ktO/tItKN07Mo5IAg25CM6dO/e2socPH8YLL7yAnDlzIlOmTHjsscdu65oxxw3MnDlTfyMvVKiQLivBovxfUb9+fVtXhVleXodcrMz95tihGzdu4N1338XDDz+sT6JS38GDB99zrMydxiBJi1bdunX1RTE4OBjPPfcc9u/fj/vlyPEuXryIPn366LrLa8ibN69usdm+fbutzMGDB3UAIi0Y8jt46KGH8OKLLyIuLu6uzy/vv7xHDRs2TLJfWpv++OOPJM9hH6jLeyOfSfkMSmAln63s2bPr1yGvRwIdRzzyyCM6IDh06NBtj8kx5bOyYMECh44lXyrk/8hnXY4pwdmJEyeS/D1IvaWFK7mIiAgdcJ8/f962b9OmTXjqqaf065LPoHQlSldmSl1o0goqf4c5cuS4rTU4ueStpI4EAhcuXND3ztq7d68OOOU9kc/Ee++9h5s3b95WTt7jJk2aoGDBgvozJn8v8neTmJhoKzN8+HDd8vrPP//c9v87d+6sP78SsNyJdLlKi5mcByRAls+KPN8777xz22uTOn7yyScIDQ3Vn2fpyuzSpUuS34/9+Uda7KpVq6Zfp9mlm9KYJkfOQUJa75s1a6brKH9vffv25fi61KKI0tCUKVPkbKK2bNmiatWqpdq1a2d7bP78+SpDhgzqxIkTqkiRIqpJkyZJ/u9DDz2kunfvrsaPH6/GjBmjqlevro+1aNGiJOWeeeYZlT17dnX06FG9vWvXLuXv769ee+21e9ZPnrdUqVIqODhYDRo0SD9P+fLldb1++uknW7mYmBiVL18+lTVrVvXmm2/qchUrVtTl5s6dayu3evVqXceyZcuqSpUq6XKRkZFq7969qlevXvqxwYMHq2+++Ubf5LhyX7duXRUQEGDbf+jQIX289u3b6//z/PPPq6ioKPXKK6/o7WbNmiV5HfXq1dM3U3R0tC4n779pxYoVKmPGjPr1jho1Sr399tsqd+7cKkeOHLr83TzI8V566SX9++jXr5/64osv1MiRI9Wzzz6rvv32W/14QkKCKlasmCpYsKB67733dBk51qOPPqqOHDly13p16tRJ5cqV67b9f/75p65v//79k+y/ceOGyps3r3r88cf19j///KMKFCig6zZx4kT9OkqXLq38/PzU77//nuT/yvF69OiRZF9sbKzy9fVVNWrUSLF+DRs2VFWrVlWO/p3Ia/7444/1ZzEoKEgVLVpUnT9/Xpf5+++/lY+Pj65jcsWLF0/y97Ny5Ur9ntesWVN99NFH+pgVKlTQ+zZt2mQrN3z4cNvn9bnnnlMTJkzQnzNHyHsn/1eOkRLz2FmyZNH3mTNnVm3bttWfeUecOnVK5cmTR3+e3nrrLTV69GhVsmRJ/TrkePafMfl7aNWqlS4jv8cXXnhBl/m///s/W5mDBw/qfePGjUvyPPL5k+fo2LHjXesjf4uBgYG6DnIek/OSnHvkmEOHDr3tcyl/G6+//rqaNGmSGjhwoH798vu9du1akvNPiRIl9PPL71zKyjnEfEye09lz0JUrV/TfpNR1wIAB6pNPPtGfQfN9M49P94dBE6Vb0CQnGfmDlz9qISe2+vXr659TCprMciY52ZQrV0498cQTt51cc+bMqZ588kl9AqxcubIKCQlRcXFx96yfPK/U74cffrDtk/8nF1I5jqlPnz663K+//mrbd/HiRX2xlwtbYmJikqBJLmLJ6z9nzpw7nrTk5CgnVXs7duzQ5eUEbE8uBLJ/1apVTgVNEsRJwHDu3Dnbvp07d+qTrgRjd/Mgx5OANnmwYU+CEzm2vD/OqlOnzh2DErlASeBt/m7EsmXL9HNNnjzZFkTJZ8aeBClycUp+EZX/J4G4BAtnzpxRW7duVU899ZTeLxfrlHTu3FkHP3cjn2t5H+WzHR8fb9svXw7k2MOGDbPtkyAo+evdvHmzLvf111/r7Zs3b+oLe1hYmP7ZJJ9H+bzK30nywKZNmzbKWfcKmuRi3bNnTzV9+nT1/fffq969e+tAQurmyN+m+TdnH+TJ+y6fp+RBU/K/NdGlSxeVKVMmdfXq1STvX/IAVwIOR4IJ8wvMG2+8Ydsn76+ctyQYlfdDyDlCysnrtmd+9uz3m+cfeSy55EGTo+cged+l3OzZs23lLl++rIMzBk0PjkETpVvQJCc8OWnKH/OFCxf0xeTzzz+/Y9Bk799//9UnpW7duulWoeRmzJihn0dao+Tb+M8//+xQ/eR5pYXD/uIi5JuhHE8CMiHf3OTYyUkrkpTbvXt3kqBJWkqSczZo+uCDD3T5ffv2JdkvdUreinKvoOnkyZN6W755JicXV2khupsHOZ68x9WqVdMtiik5fPiwLTiUk7szHnnkEd2ak5KxY8fe9n5LMCcXOPk8JScXHQkA5XMmn0UJCu3JsZLfpEVK3gP7wCylz9HdXtf69et1GWnlSa5MmTJJgiTzgvjXX3/Z9snnQFopzUBk+/btusy0adP0a7G/yXssZc36mkHT2rVrVWoHTSmRgEH+j/zd3Iv8zT322GO37ZfW5+RBkz05t0jdpCVTysmXD5O0QiV//1q2bKkKFy582zngTkHTgQMHkuxfunSp3i/nICEtyhLYyfku+fsvrW72X4Lkb0OCnpQkD5ocPQc1atRIf+lL/nqkhZJB04PjmCZKNzJoVMaeyJgSGTMk4w1kkOidLFq0SPfZy5gA6cOX/y8zcVIa5yLjX2RMw+bNm3W+HplN5SgZNJx8dpMM+BVmegAZR1K6dOkUx7SYj9srVqwYHpQcU2bPmLPCTDLuR8ZfpDS25W7HEnd6DTKoV8ZUpcXxZDD0nj17dGqJ6tWr63E0MjbD/r3q168fvvjiCz2WR8aLREVF3XM8k+lOY2XkMyEzteTzJmS8yrx589C4cWM9dsc0bdo0PYtOPmcyfk4+ZzJOJKXnlzFbMi5PHjfHA125cuWOs5zMut1t9tzd3ssyZcok+T3LeBZ5rlmzZtmOL2Oh5DVJCgRzfJiQ2XvyWuxv8h7L2Jbkry01Pq+OkHFT8vn9+eefbftiYmKS3GTWp5DXXbJkyduOkdL7JGOfmjdvrsdvyfsgr9UcsG//Wlu3bq3HPE2fPt32mJxnZAycIzMc5b2XXGp3O1fI+y/HlbFEyd//S5cu6ckL9/PeO3oOkvuUzmkp/V9yHmfPUbqSk6YENXJylBO9XPxT8uuvv+pcMI8//jgmTJiAAgUK6EGcMmDavAjak0HmW7du1T/LoFYZiGnldF0Z0Jla3H26uswik8HVErDIgHtJETBy5EgdOMtnQHz00Ud60KsM6JUykmspMjISGzdu1AOA70SCnOSDa03mgPMffvhBB2ELFy7Ug9LlAmn69ttv9fPKoNnw8HD9fyTQkudOaXC31MUcdC4zQiXI69mzpx7c36JFi9vKS91kwG5qfR5k4LG8l7Nnz9YTAuT9OXr0qH4/TeZAaXmf75Qk1T4FQGp/Xu9Fgud///3Xti1/2/bkb9yZpI6xsbF6kLsESzIoWwaBSwAskwAkd5f9wHEJlmXgtQRNMgFAJpZIEGk/I/JByfPJ58gMzJJLPuMwPd97enAMmihdybdBmUUiJ3vz23JK5EInJz6ZVWI/9VZOqCnp0aOHviDKxU5mEsnMFWm9cIQkQZRv7PbByZ9//plkppDkPZK8KcnJDC3z8dQOfuSYcgKWb67mt0lx+vRpfaFw5DntjyXu9Brk4n+3aeYPejy5MHbv3l3f5Jt2lSpVdJJEM2gSkjdJbjLrcP369TrRp6QSkBlTdyItMfJZuRMJkJYtW6bzKEmwLRdWyatkkoumtBxIAGf/+5GZVo6Qz/LHH3+s6yyf7eS/Y5meb/+7u9d7mTw1gexL/nuW1hJ5H+Ux+RuSoMz+NUnQIOS1Jp9VaDX5O5MWGcnxZLKfUStkxpmQ1222mtlL/pmTGajypUl+h/Ily/69T4nk2ZIWwy1btujARupiPue9yN+jtJKarUspnSvk/ZeWNPn8pmZA5Og5SO6lZTf5OS2l/0vOY/ccpSv5hitdbNK1YX+iT06+7csfvP2UYTnZzp8//7aycuGTi4fk3Rk0aJDulpGLmHkyu5eTJ0/qVhCTTI/++uuv9bd06UowWxWk609y/Jik++mzzz7TJ0tJU3AvZhAhAY8j5DmFBID2JGGikO5IR0nQIq9HuqLsn19OrtKyYz5Xah9Pfn/Ju4LkW7i0mJhToOX9lrQB9iR4kpbCe02Trlmzpm7Nse/usyctSBJUSGulBE7SGmSfv8pMtGjfxSdT9e1/z3cjOcf69++v0yyklFpAWjskbcbdyFRzeU8kQLR/vVJfOW7y37OkZpB6Sx4q6ZqTlhP7AFXSFsiFW1IUSHdQcilNuU8LKT2P/O3LfkmFYJLAzv5mtjzJZ0i+XMnfnf0xk7fgpPQ7lFQS8jtPiQTqEtRL65wk13W2lWn8+PG2n+U5ZVtawc0hAdKyKp97SXmQnHzOHf37T87Rc5CUk3OafXoW6UKWcpQKUmFcFJFDA8HvJvlAcJkyLf9PpuLL4E0ZWC0zjMxps6bTp0/rQccyC88c+Hj27Fk9+0lmytxpgO6dUg7I1Gwz5YD9jBZzuq8M8JTpxVJOBgrLoPOUUg6kNBNMBnDL9HQZ3Dp16lQ9cFTqf6eB4OZ+OZ5Mp5ap4Ob2g6QckMHFMtvrnXfesU3plsHYd3O/x5OZaPK6pN4yRfqzzz7Tr0WOJVPhxbx581ShQoX07CAZDP3pp5/qmW8yyHrDhg13rZf8XqQO5my4lEjKA3PgttTZ3ldffaX3N23aVB9DPgPyWQgNDdWfjXulHDBnbslnMPmgZZldJ//HkUkJ5t+JzOySwd4RERF65pd9ygF7MvhdZqImn/lp/zmUKecyi1QGasv7LveSakGmyZvMgeDmzC9HyCy9d999V9dR/q/87cm23OxTRMhEjw4dOujfs3x2ZYae/L3I340jA/5lsoGkk7hXygH5e5cy8vuS55LPmcx8len4dxr4LLP65DH5e5TncYR9ygGZUCCvyUw5IGlEks/ck/2NGzfW5wqZOSyzB2XSif254W4TYO6UcuBe5yBzppzUVSYiMOVA6mLQRC4ZNIkvv/xSn6Bkto9cmOVY5kne1KJFC33xSJ7PZ8GCBbqc5ARy5HmXL1+uTyrmc6UU9EjuJMmXJBdVOSHJTJbkOaPuFjQJmS0o6QjkZG1/ArtT0HT9+nUdMMoMGwkiZJaPXKzsp1E7GjQJuYDXrl1bX9CyZcum8yUln52Xkvs9nkznDw8P1xcw+T3Ja5Sf7WeKSYAl0/sffvhh/b5K+gi5EDs6A1ICngYNGtzx8cWLF+u6y4yi5EG0BNoyS1E+B/K7l4ut/E7l9+Fo0CTkop78giQXLAla7jUryzRr1iz9/FIPeQ8kp9Hx48fv+DmS55P31D5NQfJUDvL3IYGHHFNejwSs8oXkQYIm+ZylNJMw+euXWWKS/0nqKJ9duZDLeyKz2xwlOdfk+eRzIYG1BGZyXkg+e27dunU6aJXPoQQmMqNR/qbvFCSYaRpkppmjzL9ROQ/I/5OgVoIYeQ9T+nImgaoEK1IneQ/ky5jUyz5IcyZocvQcZOb0kr8LqaME9BKwmSkPGDQ9GB/5JzVarIjckTRrlytXTs+gIfckkwZkPT8Z25HSbCsrSDebfLaku7h3795WV4eS2blzp+5elm74du3aOfR/ZHC6dHml1OVJ3oNjmojIrclsskaNGunUBq5CJizIOJeuXbtaXRVKweeff67HV6Y045Hobjh7jojcngyadiUSLDFgcj2SdkJSksigaEkV4cyMUSLBoImIiLzCG2+8oVN2yAyzt99+2+rqkBvimCYiIiIiB3BMExEREZEDGDQREREROYBjmlKJpNeXLKxZs2Z1+7XCiIiIvIVSSi/DJSsV3GvNUgZNqUQCJlmIkoiIiNzPsWPH7rpAuGDQlEqkhcl802WhTCIiInJ9sv6lNHqY1/G7YdCUSswuOQmYGDQRERG5F0eG1nAgOBEREZEDGDQREREROYBBExEREZEDGDQREREROYBBExEREZEDGDQREREROYBBExEREZEDGDQREREROYBBExEREZEDGDQREREROYBBExEREZEDGDQREREROYBBExEREbm+HTuAU6csrQKDJiIiInJd69YBTZoAlSsDo0ZZWpWMlj47ERERUXJKAT/9BHzwAfDLL8a+DBmAixdhJQZNRERE5Bpu3gTmzTOCpe3bjX1+fkCHDsCAAUCJEpZWj0ETERERWev6dWDGDCAyEvjjD2NfpkxAly5Av37AQw/BFTBoIiIiImvExwNTphhjlf7+29iXPTvwxhtA795A7txwJQyaiIiIKH1duABMmgSMGQOcPm3sy5vXaFXq1g3Ilg2uiEETERERpY+zZ4FPPwXGjQNiY419ISHGeKWOHYGgILgyBk1ERESUtk6cAD76CJg8GbhyxdhXujQQEQG89JIx2NsNMGgiIiKitPHXX8Z4pWnTgGvXjH1VqgCDBwPNmgG+vnAnDJqIiIgode3eDYwYAcycaaQREHXrAm++CTRqBPj4wB0xaCIiIqLUsXGjkTbgxx9v7Wvc2OiGk6DJzTFoIiIiogfL3r1qlZGQUu6FtCQ9/7wRLMnyJx6CQRMRERE57+ZNYOFCI1javNnYlzEj0K4dMHCgMdDbw1i6YG9iYiKGDh2KYsWKISgoCA8//DDeffddKIla/yM/Dxs2DAUKFNBlGjZsiIMHDyY5zr///ou2bdsiW7ZsCA4OxmuvvYZLly4lKbNr1y7UrVsXgYGBKFy4MEalsOjfnDlzUKZMGV2mfPnyWLJkSRq+eiIiIjd04wYwfTpQoYIxmFsCpsBAIyHloUPAV195ZMCkKQu9//77KleuXGrRokUqOjpazZkzR2XJkkWNHTvWVmbEiBEqe/bsav78+Wrnzp2qadOmqlixYio+Pt5W5qmnnlIVK1ZUGzduVL/++qsqUaKEatOmje3xuLg4lS9fPtW2bVu1Z88eNWPGDBUUFKQmT55sK7Nu3Trl6+urRo0apfbt26eGDBmi/Pz81O7dux16LfIc8nbKPRERkce5elWpSZOUKl5cmjaMW7ZsSkVEKHX6tHJXzly/LQ2amjRpojp27JhkX4sWLXRwI27evKny58+vRo8ebXs8NjZWBQQE6MBHSIAjL3bLli22MkuXLlU+Pj7qxIkTenvChAkqR44cKiEhwVZm4MCBqnTp0rbtVq1a6frYq1GjhurSpYtDr4VBExEReaTLl5X6+GOlChS4FSzlzq3Ue+8pdf68cnfOXL8t7Z6rVasWVq5ciT///FNv79y5E7/99hsay0h7ANHR0YiJidFdcqbs2bOjRo0a2LBhg96We+mSq1atmq2MlM+QIQM2bdpkK/P444/D39/fViYsLAwHDhzA+fPnbWXsn8csYz4PERGRV7l82UhIWbw40LcvcOoUUKgQ8MknwJEjRvqA4GB4E0sHgg8aNAgXLlzQ44h8fX31GKf3339fj08SEjCJfPnyJfl/sm0+Jvd5Zb0aOxkzZkTOnDmTlJFxU8mPYT6WI0cOfX+350kuISFB30zyOoiIiNyejAmeMAH48EPgn3+MfUWLGgkp27cH7BogvI2lQdPs2bMxffp0fPfddwgNDcWOHTvQp08fFCxYEO3lF+PCIiMj8fbbb1tdDSIiotQhX/6joozWpXPnjH3SyiQtSjIjzs89ljpJS5Z2z4WHh+vWphdffFHPVmvXrh369u2rAxKRP39+fX/aXAH5P7JtPib3Z86cSfL4jRs39Iw6+zIpHcP+Oe5Uxnw8uYiICMTFxdlux44de6D3goiIyBJxccB7791qTZKAqUQJYOpU4MABYyFdBkzWB01XrlzRY4/sSTfdzf9SrkuXmgQtMu7JvhtMxirVrFlTb8t9bGwstm3bZiuzatUqfQwZ+2SW+eWXX3D9+nVbmRUrVqB06dK6a84sY/88ZhnzeZILCAjQKQ7sb0RERG4jNhaQHhMJloYOBWSMr6QK+OYbYP9+oytO8i7RLcpC7du3V4UKFbKlHJg7d67KnTu3GjBgQJKUA8HBwWrBggVq165d6rnnnksx5UDlypXVpk2b1G+//aZKliyZJOWAzLiTlAPt2rXTKQdmzpypMmXKdFvKgYwZM6oPP/xQ7d+/Xw0fPpwpB4iIyPOcO6fU0KFGugBzNtwjjyj13XdK3bihvE2cu6QcuHDhgurdu7cKCQlRgYGBqnjx4urNN99MkhpA0g4MHTpUBz2SaqBBgwbqwIEDSY5z7tw5HSRJjqds2bKpV199VV28eDFJGcnxVKdOHX0MCdQkGEtu9uzZqlSpUsrf31+FhoaqxYsXO/xaGDQREZFL++cfpQYPVipr1lvBUrlySs2apVRiovJWcU5cv33kH7uGJ7pP0m0o6RBkfBO76oiIyGXIDDgZ3D1+vJFGQEg272HDgObNgWTDZLzNBSeu3+ysJCIi8kQyuUnSBkj6gCtXjH2yeK4ES02ben2wdD8YNBEREXkSSUI5ejQwaRIQH2/skwTQEiw98wzg42N1Dd0WgyYiIiJPcOIEIIvRf/YZcPWqsU9mkUuwJCttMFh6YAyaiIiI3JnkCRw5EvjiC1muwthXqxYwfDjw5JMMllIRgyYiIiJ3dPSoLE8BfPUVcO2asa9uXSNYeuIJBktpgEETERGRO5HFcj/4wMjYbSZt/t//jG44uWewlGYYNBEREbmDQ4eMYOnrr2W9MGNfgwZGsPT441bXziswaCIiInJl0dHAO+8Yy5skJhr7GjUygqXata2unVdh0EREROSKjh83FtL98stbLUsyC07WibvDuqiUthg0ERERuZKYGGOA9+TJt2bDScuStDb9txA9WYNBExERkSs4e9bIsyTLnZhJKWWskrQ2yaw4shyDJiIiIivFxhprw33yCXDpkrHvsceAd981BnpzNpzLYNBERERkhYsXgbFjjYBJAidzbTgJlp5+msGSC2LQRERElJ5k8dyoKCOL97lzxr7QUCNYataMwZILY9BERESUHmQ9OFkXTnItnT5t7CtVCnjrLaBVK8DX1+oa0j0waCIiIkpLssTJlCnGgG5JIyCKFTOWO2nbFsjIS7G74G+KiIgoLUhupW+/NVIFSIJK8dBDwJAhwKuvAv7+VteQnMSgiYiIKDXdvAnMmmV0u/35p7EvXz5g8GCgc2cgMNDqGtJ9YtBERESUGpQC5s0zljfZu9fYlysXMGgQ0L07kCmT1TWkB8SgiYiI6EGDpSVLjGBp+3ZjX3Aw8H//B/TqBWTNanUNKZUwaCIiIrrfYGnlSmMtuI0bjX1ZsgB9+wL9+hmBE3kUBk1ERETO+vVXI1hau9bYDgoC3ngDCA8Hcue2unaURhg0EREROWrTJiNYWrHC2JYZcF27AhERQP78VteO0hiDJiIionvZscMYs7RwobEtuZU6dQLefNNII0BegUETERHRnRw6ZLQszZhhbGfIALRvb+yTBJXkVRg0ERERJSfLnMhacJMnG0kqxYsvAm+/bSx9Ql6JQRMREZHpwgXgww+BMWOAy5eNfWFhQGQkULmy1bUjizFoIiIiSkgAJk4E3n8fOHvW2Fe9OjBiBFC/vtW1IxfBoImIiLxXYiIwfboxyPvvv4190v32wQdAixaAj4/VNSQXwqCJiIi8N4u3pArYvdvYV7CgsV6cLKYrs+OIkuGngoiIvMuGDcDAgUaCSiGZu2V9OElOyfXh6C4YNBERkXfYtw8YPBhYsMDYDgw0AiUJmHLmtLp25AYYNBERkWc7dgwYPhyYNg24edPItdSxo7GPiSnJCQyaiIjIM507Z6QKGD/emB0nZHC3zJArU8bq2pEbYtBERESe5coVYOxYYORIIC7O2FevnpE+4LHHrK4duTEGTURE5BmuXwe+/BJ45x3g1CljX8WKRmvTU08xfQA9MAZNRETk/ukD5swBhgwBDh409sm6cLIMSps2xhgmolTAoImIiNzXypXG7LetW43tPHmMxXS7dAH8/a2uHXkYBk1EROR+tm83gqUVK4ztLFmA//s/oF8/IGtWq2tHHopBExERuY+//jK64WbNMrb9/ICuXY19efNaXTvycAyaiIjI9cXEGAO8P/8cuHHDGNT90kvGvuLFra4deQkGTURE5LouXwY++shIHyCpBETjxsaMOJkZR5SOGDQREZHrkczd33xjLHty8qSxr0YNI3iSnEtEFmDQRERErmX1aqB/f+D3343tokWNYOmFF5hriSxlafKKokWLwsfH57Zbjx499ONXr17VP+fKlQtZsmRBy5Ytcfr06STHOHr0KJo0aYJMmTIhb968CA8Pxw3p77azZs0aVKlSBQEBAShRogSmTp16W12ioqJ0fQIDA1GjRg1s3rw5jV89ERElceAA8NxzwBNPGAFTtmzAqFHA/v1Aq1YMmMi7g6YtW7bg1KlTttuK/6aOviDfJgD07dsXCxcuxJw5c7B27VqcPHkSLWTdoP8kJibqgOnatWtYv349pk2bpgOiYcOG2cpER0frMvXr18eOHTvQp08fdOrUCcuXL7eVmTVrFvr164fhw4dj+/btqFixIsLCwnDmzJl0fT+IiLx2jbhevYBy5YAffwR8fQH58iwz5cLDgcBAq2tIZFAupHfv3urhhx9WN2/eVLGxscrPz0/NmTPH9vj+/fuVVHnDhg16e8mSJSpDhgwqJibGVmbixIkqW7ZsKiEhQW8PGDBAhYaGJnme1q1bq7CwMNt29erVVY8ePWzbiYmJqmDBgioyMtLhusfFxem6yT0RETng6lWlPvxQqeBgyelt3J55Rql9+6yuGXmROCeu3y6TW15ai7799lt07NhRd9Ft27YN169fR8OGDW1lypQpg5CQEGzYsEFvy3358uWRL18+WxlpIbpw4QL27t1rK2N/DLOMeQx5Xnku+zIZMmTQ22aZlCQkJOjnsb8REZEDJDz6/nugbFkjIWVsrDET7uefgYULgUcesbqGRClymaBp/vz5iI2NRYcOHfR2TEwM/P39ERwcnKScBEjymFnGPmAyHzcfu1sZCXLi4+Nx9uxZ3c2XUhnzGCmJjIxE9uzZbbfChQs/0OsnIvIKmzYBdesag7oPHwYKFAC++grYtg1o0MDq2hG5R9D05ZdfonHjxihYsCDcQUREBOLi4my3Y8eOWV0lIiLX9fffRjLKxx4D1q0DgoKA4cOBP/8EXn3VGMdE5OJcIuXA33//jZ9//hlz58617cufP7/uOpPWJ/vWJpk9J4+ZZZLPcjNn19mXST7jTrazZcuGoKAg+Pr66ltKZcxjpERm4smNiIjuQoYuSCLKjz+WcQ3GDLj27YH33gMKFbK6dkTu19I0ZcoUnS5AZrmZqlatCj8/P6yUFaz/c+DAAZ1ioGbNmnpb7nfv3p1klpvMwJOAqKz0lf9Xxv4YZhnzGNIFKM9lX+bmzZt62yxDREROktQvkyYBJUoAI0YYAVP9+kY33JQpDJjIPSmLyUy1kJAQNXDgwNse69q1q35s1apVauvWrapmzZr6Zrpx44YqV66catSokdqxY4datmyZypMnj4qIiLCVOXz4sMqUKZMKDw/Xs++ioqKUr6+vLmuaOXOmCggIUFOnTlX79u1TnTt3VsHBwUlm5d0LZ88RESmlbt6Uqc1KlS17a0ZcqVJKLVhgPEbkYpy5flseNC1fvlxX9sCBA7c9Fh8fr7p3765y5MihA5/mzZurU6dOJSlz5MgR1bhxYxUUFKRy586t+vfvr65fv56kzOrVq1WlSpWUv7+/Kl68uJoyZcptzzVu3DgdoEkZSUGwceNGp14HgyYi8nq7dinVqNGtYClnTqU+/VSpa9esrhlRqly/feQfq1u7PIHMxpNZdDIoXLoHiYi8hsw0lqTCX35prBnn52ckq3zzTSBHDqtrR5Rq12+XGAhORERu6MoVY4C3jFm6dMnY9/zzxvbDD1tdO6JUx6CJiIicI61J06cDgwcDx48b+6pXB8aMAWrXtrp2RGmGQRMRETnul1+Afv2MWXAiJMRoWWrdWpZTsLp2RGmKQRMREd3bwYPAwIHAvHnGdtasRktT795GokoiL8CgiYiI7p6c8t13gbFjgevXjdakzp2Bt98G8ua1unZE6YpBExERpTxu6dtvjdYlcx3Op54CPvwQCA21unZElmDQRERESW3fDvTsCWzYYGxLVm9paXr6aatrRmQpjtojIiLD2bNAly5AtWpGwJQ5s7Fu3J49DJiI7relSdZ/k0V2r1y5gjx58iA0NJSL1xIRufM6cZMnA0OHAufPG/teegkYNYprxBHdT9B05MgRTJw4ETNnzsTx48dl+RXbY7Lobd26ddG5c2e0bNkSGTjtlIjIfVIIvPEGsGuXsV2xIjBuHFC3rtU1I3I5DkU3vXr1QsWKFREdHY333nsP+/bt0+nGr127hpiYGCxZsgR16tTBsGHDUKFCBWzZsiXta05ERPdPklK2aQPUq2cETLLcSVQUsHUrAyaiB2lpypw5Mw4fPoxcuXLd9ljevHnxxBNP6Nvw4cOxbNkyHDt2DI8++qgjhyYiovSUkGBk7n7/feDyZcDHx0gh8N57QO7cVteOyKVxwd5UwgV7icjlLV4M9OkD/PWXsV2rltEVV6WK1TUj8twFe8+ePavHOPn4+KBo0aIptkAREZELZfPu29cImkSBAsYg77ZtjZYmInKIUyO29+7di8cffxz58uVDjRo1UL16dVv33IEDB5w5FBERpbVLl4CICKBcOSNg8vMDwsMBOV+//DIDJiInOdzSJAO+69Wrp1MMjBkzBmXKlNEz6GRQ+Oeff65nz+3Zs0cHUUREZCEZdTFzphEgnThh7AsLMxJUli5tde2IPH9M08CBA/Hzzz9j3bp1CAwMTPJYfHy8nj3XqFEjREoiNC/EMU1E5BJ27pQpz0YqAVGsGPDJJ8Czz7JliegBr98Od8+tWLFCB07JAyYRFBSE8PBwLF++3NHDERFRavr3X2PpExnULQFTUJCx0O6+fUDTpgyYiNKze05SDlS5ywyLatWq6TJERJSOEhOBL74A3nwTOHfO2PfCC8bCuiEhVteOyDuDposXL9612Spr1qy4JIMOiYgofaxfb2TzlgV2RWgo8OmnwBNPWF0zIo/kVMoBCZxS6p4z+wSZ8omIKB2cOiUDTYFvvjG2s2cH3nkH6NbNmCFHRNYGTRIQlSpV6q6PS94mIiJKI9euGTPgJECSln0553bsCHzwgSzPYHXtiDyew0HT6tWr07YmRER0ZzLRpndvI8eSqF4dGD8e4JJVRK4XNEmOJiIiSmeSZ0lSCMyda2xLi9KIEUD79kAGp/ITE1F6BU03btxAYmIiAgICbPtOnz6NSZMm4fLly2jatKnO1URERKk0Ky4qChgyRAaUAr6+xqDvt94yxjARkesGTa+//jr8/f0xefJk26DwRx99FFevXkWBAgXw8ccfY8GCBXj66afTsr5ERJ5PZsN16QJs3WpsP/YYIOfeChWsrhmRV3O4bVcygbds2dK2/fXXX+uWp4MHD2Lnzp3o168fRo8enVb1JCLyfNKiJAvryjglCZikRWniRDkBM2Aicqeg6cSJEyhZsqRte+XKlTqIktTjon379npBXyIiug/z5wNlyxpLnty8Cbz4IvDHH0DXrhy7ROQiHP5LlPxMssacaePGjahRo0aSx5nckojISUePAs89BzRvDhw/DhQvDixbBsyYAeTPb3XtiOh+gqZKlSrhm/8Sqf366696EPgTdllnDx06hIIFCzp6OCIi73bjBjBmjNG69OOPQMaMwODBwJ49QFiY1bUjogcZCD5s2DA0btwYs2fPxqlTp9ChQwc9ANw0b9481K5d29HDERF5r82bjYHeO3YY2zLzeNIkYxkUIvKMPE1bt27FihUrkD9/frwgC0Ima4mqLsnWiIgoZXFxxsK6EybIMgpAjhyATKB59VWOWyJyAz6KC8alCll7TwbFx8XF3XVhYyLyQnKa/f57I6O3rBsn2rUDPvyQy58QudH12+GWpk9l5ewUyBPJmnQ1a9Z0vqZERJ7uyBGgRw9gyRJjW2YhSxqBBg2srhkROcnhoEmSV6YkNjZWR2e1atXCjz/+iJw5czpbByIiz3P9upw4jQzeMvPY3x8YNAiIiJDpxlbXjojSMmiKjo6+42OHDx/Gyy+/jCFDhmCC9NUTEXmzDRuMgd67dxvbsnanDPQuU8bqmhHRA0iVkYfFixfHiBEj8NNPP6XG4YiI3NP580Yyylq1jIApVy5g6lRg9WoGTETe1NJ0LyEhIYiJiUmtwxERuddA75kzgT59gDNnjH0yI27UKCB3bqtrR0SuFjTt3r0bRYoUSa3DERG5h0OHgG7dgBUrjG1pUZKuOOmSIyLvDJpkSl5KZBD4tm3b0L9/f73+HBGRV7h2zcix9N57wNWrQEAAMGQIEB5u/ExE3hs0BQcHw8fHJ8XHZH+nTp0wSGaGEBF5ul9/NQZ6799vbDdsaCSstFvUnIi8OGhaLQMZUyCJoEqWLIksWbKkZr2IiFzPv/8CAwYAX35pbEtiSlk/7qWX5Nuj1bUjIldaRoWIyGsHen/7LdC/P/DPP8a+118HRowAmJuOyGs4lHLg6NGjTh30xIkTTpWVHE+5cuVCUFAQypcvr9e4M8kqL7JYsCwOLI83bNgQBw8eTHKMf//9F23bttWtXtKN+Nprr+HSpUtJyuzatQt169ZFYGAgChcujFEyqyWZOXPmoEyZMrqM1GOJmcGXiLw7o3ejRsArrxgBkyyq+9tvwGefMWAi8jIOBU2PPvoounTpgi1bttyxjAwI//zzz1GuXDn88MMPDj35+fPnUbt2bfj5+WHp0qXYt28fPvroI+SQRSz/I8GNLOEyadIkbNq0CZkzZ0ZYWBiuysDL/0jAtHfvXr2Y8KJFi/DLL7+gc+fOSQaxN2rUSM/uk0Hro0ePxltvvYXP5KT3n/Xr16NNmzY64Pr999/RrFkzfduzZ49Dr4WIPMzNm8ZyJ+XKAT//bGTxjowEtm8Hate2unZEZAXlgLNnz6q+ffuq7Nmzq3z58qmnn35aderUSfXs2VO1bdtWVa5cWfn7+6vHHntMLV68WDlq4MCBqk6dOnd8/ObNmyp//vxq9OjRtn2xsbEqICBAzZgxQ2/v27dPFhxWW7ZssZVZunSp8vHxUSdOnNDbEyZMUDly5FAJCQlJnrt06dK27VatWqkmTZokef4aNWqoLl26OPRa4uLidD3knojc3OHDStWvL51yxk3OU3/+aXWtiCgNOHP9dqilSbrOxowZg1OnTmH8+PF64PfZs2dt3WTS0iMtOBs2bMDTTz/tcMAma9VVq1YNL7zwAvLmzYvKlSvr1ir7pVskYaZ0ydkvEFyjRg39XELupUtOjmOS8hkyZNAtU2aZxx9/HP6y9tN/pLXqwIEDurXLLGP/PGYZ83mIyEtal6KigPLljSzemTIBY8cCa9dyZhwROZfcUsYUPf/88/qWGmTNuokTJ6Jfv34YPHiw7v7r1auXDm4k55OZYTxfvnxJ/p9sm4/JvQRc9jJmzKgXDrYvU6xYsduOYT4m3YFyf7fnSS4hIUHf7pXHiojcKEnla68ZAZKQyS8yS+7hh62uGRF50tpz9+vmzZuoUqUKPvjgA93KJOOQXn/9dT1+ydVFRkbqVi/zJoPLichNW5c+/RSoUMEImDJnBsaPB1atYsBERK4TNMmMuLJlyybZ98gjj9hm6+XPn1/fnz59OkkZ2TYfk/sz5lpP/7lx44aeUWdfJqVj2D/HncqYjycXERGhB7+bt2PHjt3HO0BElpIhBv/7H9C7N3DlClC/vky1BXr0ADJYenokIhdk6VlBZs7JuCJ7f/75p20NO+lSk6Bl5cqVSbrBZKxSzZo19bbcx8bG6jFVplWrVulWLBn7ZJaRGXXXr1+3lZGZdqVLl7bN1JMy9s9jljGfJ7mAgACd4sD+RkRuIjER+PhjoGJFI7u3JOeVmXIyS654catrR0SuSllo8+bNKmPGjOr9999XBw8eVNOnT1eZMmVS3377ra3MiBEjVHBwsFqwYIHatWuXeu6551SxYsVUfHy8rcxTTz2lZ/Bt2rRJ/fbbb6pkyZKqTZs2SWbcyay/du3aqT179qiZM2fq55k8ebKtzLp163RdPvzwQ7V//341fPhw5efnp3bv3u3Qa+HsOSI38ccfStWqdWtmXIMGSkVHW10rIrKIM9dvS4MmsXDhQlWuXDmdRqBMmTLqs88+uy3twNChQ3XQI2UaNGigDhw4kKTMuXPndJCUJUsWlS1bNvXqq6+qixcvJimzc+dOnd5AjlGoUCEdjCU3e/ZsVapUKZ0+ITQ01Kn0CQyaiFzcjRtKffihUoGBRrCUNatS8sXp5k2ra0ZEFnLm+u0j/zjTMjVt2jTkzp0bTZo00dsDBgzQSSJlbNKMGTNsXWveRroNZUC4jG9iVx2Ri/njD+DVV4GNG41tyfAt6U1CQqyuGRG50fXb6TFNMtNNUg8IyWEUFRWls3ZLINW3b9/7rzURUWq7cUOWFQAqVTICJjkhfvEFsGwZAyYiSts8TUJmiZUoUUL/PH/+fLRs2VKnCpBB3f+TWShERK5g3z6jdWnzZmP7qaeM9eKYHoSI7pPTLU1ZsmTBuXPn9M8//fQTnnzySf2zLHIbHx9/v/UgIkq91qURI4DKlY2AKXt24KuvAFmAmwETEaVnS5MESZ06ddLJKCU9gLlsiiyYW7Ro0QepCxHRg5EFtqV1aetWY1vOT5MnAw89ZHXNiMgbW5pkDJPkLvrnn3/www8/6HXphORJatOmTVrUkYjo7iQH2/vvA1WrGgFTcLDMWgEWLWLARESpxunZc5Qyzp4jsohk8JbWpe3bje1nnjFalwoWtLpmROTts+eWLVuG3377LUnLU6VKlfDSSy/h/Pnz91djIqL7aV16912gWjUjYJLs/t98A/z4IwMmIkoTTgdN4eHhOioTu3fvRv/+/fW4pujoaPTr1y8t6khElNSOHUD16sCwYUbw9NxzMrASePllwMfH6toRkYdyeiC4BEfmIrsypumZZ57RuZu2b99uGxRORJQmrl2TZHHG+CWZJZczJzB+PPDiiwyWiMj1giZ/f39ckdXAIWtb/oxXXnlF/5wzZ05bCxQRUar7/XegQwdjDJNo0QKYMAHIl8/qmhGRl3A6aKpTp47uhpNklps3b8asWbP0fkk/8BBnqRBRWo1dkhamxEQgd24ZTAm88AJbl4jItcc0jR8/HhkzZsT333+PiRMnolChQnr/0qVL8ZRk3CUiSi1//QXUrm0ETRIwPf+8MXapVSsGTESU7phyIJUw5QBRKpLT0tSpwBtvAJcvG3mXJk0CWre2umZE5MXXb6e750RiYqJed27//v16OzQ0FE2bNoWvr+/91ZiIyCSpS7p0AebMMbbr1TNSCXAJFCKymNNB019//aVnyZ04cQKlS5fW+yIjI1G4cGEsXrwYDz/8cFrUk4i8wZo1QLt2wPHjQMaMRrdceDjAL2RE5I5jmnr16qUDo2PHjuk0A3I7evQoihUrph8jIrqvVAKDBgFPPGEETCVLAhs2GPsYMBGRu7Y0rV27Fhs3btQpBkyy/tyIESP0jDoiIqf8+Sfw0kuygKWx3akT8PHHQJYsVteMiOjBWpoCAgJw8eLF2/ZfunRJ53AiInJ4sPcXXwCVKxsBkyyD8v33wOefM2AiIs8ImiQDeOfOnbFp0ybIxDu5SctT165d9WBwIqJ7OnfOSB/w+uuAJMuVbjlJWtmypdU1IyJKvaDp008/1WOaatasicDAQH2TbrkSJUpg7Nixzh6OiLzNypVAhQrA3LmAnx8wahSwYgXA5LhE5GljmoKDg7FgwQIcPHgQf/zxh973yCOP6KCJiOiug72HDAE+/NDompPZt9OnA1WrWl0zIiKH3FeeJlGyZEl9IyK6J/mCJYO9Zf04IXmYPvoIyJzZ6poREaVu0CRrzTlqzJgxjj87EXk2aVH67DOgb18gPl6m2hqDv5s1s7pmRERpEzT9bn47vAcfrgVFRKazZ430AQsWGNsNGwLTpgEFC1pdMyKitAuaVq9efX9HJyLvJAO727cHTp0CJBVJZCTQpw+Qwem5J0RE7j+miYjoNgkJwODB0k9vbD/yCPDdd0ClSlbXjIjogTFoIqLUsW+fMdh7505ju1s3Y6ZcpkxW14yIKFWwrZyIHnyw94QJRuoACZhy5wZ+/NHYx4CJiDwIW5qI6P798w/w2mvAwoXGdlgYMHUqkD+/1TUjIkp1bGkiovuzfDlQvrwRMMlg708+AZYsYcBERB7rvlqaDh06hE8++QT79+/X22XLlkXv3r318ipE5OGuXgUiIowgSYSGGoO9ZWkUIiIP5nRL0/Lly3WQtHnzZlSoUEHfZPHe0NBQrJBpxkTkufbsAapXvxUw9ewJbNnCgImIvIKPUjKK03GVK1dGWFgYRowYkWT/oEGD8NNPP2H79u3wRhcuXED27NkRFxeHbNmyWV0dotQlp4moKOD//s9IK5A3LzBlCvD001bXjIgo3a7fTrc0SZfcazLwM5mOHTtin0w5JiLPy+z9zDPAG28YAVPjxsCuXQyYiMjrOB005cmTBzt27Lhtv+zLK98+ichzbN4MVKliDPAOCADGjQMWLwby5bO6ZkRErj8Q/PXXX0fnzp1x+PBh1KpVS+9bt24dRo4c6dTCvkTk4t1xkyYBvXsD168DJUsCP/xgzJYjIvJSTo9pkuIyc+6jjz7CyZMn9b6CBQsiPDwcvXr18tpFezmmiTzGlStA167AN98Y2y1aGOOX+LkmIi+/fjsdNNm7ePGivs+aNSu8HYMm8ggHDwItWwK7dwO+vsDIkYC0IHvplyEi8nwXnLh+P1BGcAZLRB5k/nygfXs5gxhjlmbNAurVs7pWREQuw6GgqUqVKli5ciVy5MihUw7crQvOW1MOELmtGzeAN98ERo0ytuvUAWbPBgoUsLpmRETuFzQ999xzCJCZMwCaNWuW1nUiovRy+jTw4ovAmjXGtnTFSQ42Pz+ra0ZE5HIeaEwT3cIxTeR21q0DXngBOHUKyJIF+OorY5uIyItcSMvklkTk5uR7kiyD8r//GQFT2bLGUigMmIiIHrx7TsYyOZpK4N9//3WoHBFZQGa8dupkjFkS0jX3+edGSxMRET140CR5mdLCW2+9hbfffjvJvtKlS+OPP/7QP1+9ehX9+/fHzJkzkZCQoNe8mzBhAvLZZSM+evQounXrhtWrVyNLlixo3749IiMjkTHjrZe2Zs0anXhz7969KFy4MIYMGYIOHToked6oqCiMHj0aMTExqFixIsaNG4fqsjApkafYv99IJyD38vcxZoyx4C7TCRARpV7QJIFIWgkNDcXPP/98q0J2wU7fvn2xePFizJkzR/c39uzZEy1atNAZyEViYiKaNGmC/PnzY/369Th16hReeeUV+Pn54YMPPtBloqOjdZmuXbti+vTpehZgp06dUKBAAR2EiVmzZumgatKkSahRo4YOEuWxAwcOcGkY8gzSstSxI3D5MlCokLH9X0Z/IiJykLoPN27cUN9//71699139W3u3Ll6n7OGDx+uKlasmOJjsbGxys/PT82ZM8e2b//+/TJoXW3YsEFvL1myRGXIkEHFxMTYykycOFFly5ZNJSQk6O0BAwao0NDQJMdu3bq1CgsLs21Xr15d9ejRw7admJioChYsqCIjIx1+LXFxcbpuck/kMq5dU6p3bxnFZNzq11fq9Gmra0VE5DKcuX47PRD8r7/+wiOPPKJbdObOnatvL7/8sm4xOnTokLOHw8GDB/UyLMWLF0fbtm11d5vYtm0brl+/joYNG9rKlilTBiEhIdiwYYPelvvy5csn6a6TFiIZCS9dcWYZ+2OYZcxjXLt2TT+XfZkMGTLobbNMSqS7UJ7H/kbkUk6cAOrXB8aONbYjIoCffgLYekpEdF+cDppkfbmHH34Yx44d04ks5SaBTrFixfRjzpCusKlTp2LZsmWYOHGi7kqrW7euXp5Fxhb5+/sjODg4yf+RAEkeE3JvHzCZj5uP3a2MBDnx8fE4e/as7uZLqYx5jJTIuCnpMjRvMlaKyGWsXi1ZaY20AtmzG9m+pcvarvubiIic4/QZdO3atdi4cSNy5sxp25crVy6MGDECtWvXdupYjRs3tv1coUIFHUQVKVIEs2fPRlBQEFxZRESEHgdlkiCMgRNZTjrhRo82WpVu3pQ/LOCHH4ASJayuGRGR97U0SWZwc6Fee5cuXdItQw9CWpVKlSqluwBlcLd0ncXGxiYpc/r0af2YkHvZTv64+djdykgCKwnMcufODV9f3xTLmMe40/sgx7C/EVkqLg5o0QIYONAImF55RfqnGTAREVkVND3zzDPo3LkzNm3aJIPI9U1anmR2WtOmTR+oMhJ4ybgomdlWtWpVPQtOZruZZDabdAXWrFlTb8v97t27cebMGVuZFStW6ACmrCTs+6+M/THMMuYxJNCT57Ivc/PmTb1tliFyebt2AdWqGd1w8uVl8mRg6lQgUyara0ZE5DmcHWV+/vx51bRpU+Xj46P8/f31TWawNWvWTM94c0b//v3VmjVrVHR0tFq3bp1q2LChyp07tzpz5ox+vGvXriokJEStWrVKbd26VdWsWVPfTDJjr1y5cqpRo0Zqx44datmyZSpPnjwqIiLCVubw4cMqU6ZMKjw8XM++i4qKUr6+vrqsaebMmSogIEBNnTpV7du3T3Xu3FkFBwcnmZV3L5w9R5b55hulgoKM2XEhIUpt3mx1jYiI3IYz12+HgqaUDnTw4EH1448/6pv8fD9k6n+BAgV04FWoUCG9/ddff9kej4+PV927d1c5cuTQgU/z5s3VqVOnkhzjyJEjqnHjxiooKEgHXBKIXb9+PUmZ1atXq0qVKunnKV68uJoyZcptdRk3bpwO0KSMpCDYuHGjU6+FQROlu6tXlerW7VY6AUmjcfas1bUiInIrzly/HVqwV8b8SOJISfT4xBNP6DQDyWe1eTsu2EvpSlJzyFpxmzcbGb2HDQOGDpU/VqtrRkTksddvh2bPyfIk586d00GTLEki+ZOIyCKSa+mll4Bz5wCZxfrttzIV1epaERF5PIeCJkn0WL9+fZ3UUjRv3vyOM+VWrVqVujUkIoPMiHv/fWD4cKNDrmpV4PvvgaJFra4ZEZFXcCho+vbbbzFt2jQ9s03yNEn270yclUOUfv79F2jXDliyxNju3NnI9B0YaHXNiIi8hkNjmuxJi9O8efM4pikZjmmiNLNzJ9CsGXDkiBEkTZwIdOhgda2IiLzu+u10niYJmlLqmpMlSd555x1nD0dEdyMtS3XqGAFT8eJGskoGTERE7tHSZD+Tzp45UFzWcfNGbGmiVBcVJYs9GmOZnnjCGL+UI4fVtSIi8ihp2tIkMZaPTHFOZufOnUnWoyOi+yRfPPr0AXr2NAKmjh2BpUsZMBERucuCvTly5NDBktxkfTj7wElal2QJFFlKhYgewKVLRjqBhQuN7chIYy25FL6oEBGRiwZNn3zyiW5l6tixI95++23dlGWSMU5FixblWm1ED+LkSVncEfj9d1kRGvj6a6BVK6trRUREzgZN7du3x40bN3QLk2QFL1y4sKP/lYgcmSEnAdPx40CePMCPPwKPPWZ1rYiI6H7HNGXMmBHdunXDTRlnQUSpO0NOAqYyZYBNmxgwERG5IKcHglevXh2/S/cBEaXODLlnnzXGMskMOUkpUKyY1bUiIqIH6Z4zde/eHf3798fx48dRtWpVZM6cOcnjFSpUcPaQRN45Q65/fyOrt5AZcpK08g7LExERkRvmacqQ4fbGKRnnZKYiYJ4m5mmie+AMOSIit7x+O93SFB0d/SB1I/JunCFHROS2nA6aihQpkjY1IfJ0nCFHRORdQZM4dOiQztu0f/9+vV22bFn07t0bDz/8cGrXj8hzZsi1bm10zckMOdnmgG8iIs+ePbd8+XIdJG3evFkP+pbbpk2bEBoaihUrVqRNLYncGWfIERF550DwypUrIywsDCNGjEiyf9CgQfjpp5+wfft2eCMOBKfbcIYcEZF3L9grXXKvvfbabftleZV9+/Y5ezgizyStSs2b3wqYPvgA+OILBkxERG7M6aApT5482LFjx237ZV/evHlTq15E7j1D7vHHjZQCMkNu1iwgIoIpBYiIvG0g+Ouvv47OnTvj8OHDqFWrlt63bt06jBw5Ev369UuLOhK57wy5BQsALmRNROSdY5qkuMyc++ijj3BSvlEDKFiwIMLDw9GrVy+d4NIbcUwT3TZDbvFioHhxq2tFRESpdP12Omiyd/HiRX2fNWtWeDsGTV5OZsj16gXIYtYyQ+6HH4DgYKtrRUREVg4EN505c0aPY5LbP//8c7+HIXL/GXJ9+gA9exoBk8yQW7qUARMRkQfKcD+tS+3atdNdcvXq1dM3+fnll1/WURqR1+AMOSIir+J00NSpUyedzHLx4sWIjY3Vt0WLFmHr1q3o0qVL2tSSyNVwhhwRkddxekxT5syZdVbwOnXqJNn/66+/4qmnnsLly5fhjTimyYtwhhwRkcdI0zFNuXLl0gdPTvblyJHD2cMRud8MOfnCIAGTzJDbuJEBExGRl3A6aBoyZIjOxxQTE2PbJz9LyoGhQ4emdv2IXHsNOaYUICLyGve19txff/2FhIQEhISE6H1Hjx5FQEAASpYsmaSsN61Dx+45D8Y15IiIPJYz12+nM4I3a9bsQepG5F6uXQNeesnIu2TOkBs0iAO+iYi80AMlt6Rb2NLkgRISgBdeMGbISavSN98ArVpZXSsiInKXliYirxAfb+RgWr4cCAwE5s8HwsKsrhUREVmIQRNRcpI2o2lTYNUqIFMmo6VJBn4TEZFXY9BEZE/WU2zSRBKPAVmyGCkG6ta1ulZEROQCGDQRmWJjgcaNjdxLkots2TLgscesrhUREblrnqarV6/e8bFTp049aH2IrPHvv0DDhkbAJElaV65kwERERA8WNFWpUgU7duy4bf8PP/yAChUqOHs4Iuv9848xZmnbNiB3bmD1aqBqVatrRURE7h40/e9//8Njjz2GkSNH6m1Za65Dhw5o164dBg8enBZ1JEo7ktm+fn1jPbl8+YA1a4CKFa2uFRERecKYpgkTJqBJkybo1KkTFi1apLvksmTJgs2bN6NcuXJpU0uitHDiBNCgAXDgAFCwoDFbrnRpq2tFRESeNBC8cePGaNGiBSZOnIiMGTNi4cKFDJjIvRw9anTJHToEFC5sBEwlSlhdKyIicmFOd88dOnQINWvW1K1My5cvx4ABA9C0aVN9f/369bSpJVFqio4G6tUzAqZixYBffmHAREREqR80VapUCcWKFcPOnTvx5JNP4r333sPq1asxd+5cVK9eHfdrxIgR8PHxQZ8+fZLM1OvRowdy5cqluwBbtmyJ06dPJ/l/sliwdBdmypQJefPmRXh4OG7cuJGkzJo1a/QAdllUuESJEpg6deptzx8VFYWiRYsiMDAQNWrU0N2N5IEOHgQefxw4cgSQBabXrgWKFrW6VkRE5IlBk4xpmjlzJoKDg237atWqhd9//10HJvdjy5YtmDx58m2z7/r27au7/ubMmYO1a9fi5MmTulvQlJiYqAOma9euYf369Zg2bZoOiIYNG2YrEx0drcvUr19fz/qToEzGY0krmWnWrFno168fhg8fju3bt6NixYoICwvDmTNn7uv1kIvav99oYTp+HHjkESNgkq45IiIiRyiLXbx4UZUsWVKtWLFC1atXT/Xu3Vvvj42NVX5+fmrOnDm2svv375fFhdWGDRv09pIlS1SGDBlUTEyMrczEiRNVtmzZVEJCgt4eMGCACg0NTfKcrVu3VmFhYbbt6tWrqx49eti2ExMTVcGCBVVkZKTDryMuLk7XTe7JBe3erVTevLI6tVLlyyt1+rTVNSIiIhfgzPXb6ZYm0759+7Bs2TL8+OOPtpu0CjlLut+kJaihJBa0s23bNj1Gyn5/mTJlEBISgg0bNuhtuS9fvjzyyVTx/0gLkaxYvHfvXluZ5MeWMuYxpJVKnsu+TIYMGfS2WYbc3O+/S64MQFoOK1c28jDlzWt1rYiIyNNnzx0+fBjNmzfH7t279RgkJd/dAf2z2WXmKOnmk+4w6Z5LLiYmBv7+/km6AYUESPKYWcY+YDIfNx+7WxkJrOLj43H+/Hld55TK/PHHH3ese0JCgr6Z5HjkguSz1aiRsUSKjLmTpVEk4zcREZGTnG5p6t27tx4ILuN9ZPC1tOj88ssvqFatmh5w7ahjx47pY02fPl0PvnY3kZGRyJ49u+1WmGNjXM/69cbSKBIw1aoFrFjBgImIiNIvaJIuq3feeQe5c+fW3Vhyq1Onjg4ievXq5fBxpEtMAi8ZPC65nuQmg70//fRT/bO09EjXWaxc8OzI7Ln8+fPrn+U++Ww6c/teZbJly4agoCD9Onx9fVMsYx4jJREREYiLi7PdJAgkFyJpBKSFSVoAZfC3DPzPls3qWhERkTcFTdKVlTVrVv2zBBwyo00UKVIEBySzsoMaNGigu/hkRpt5k9aqtm3b2n728/PDSlk49T9yfEkxIHmihNzLMexnua1YsUIHRGXLlrWVsT+GWcY8hnQBVq1aNUmZmzdv6m2zTEokfYE8j/2NXMTPPwNPPSVr/BgtTUuWAFmyWF0rIiLytjFNkvlbcjRJF53kMxo1apQOPD777DMUL17c4eNI4JU8i3jmzJl1TiZz/2uvvaZTAeTMmVMHJW+88YYOZGTtO9GoUSMdHMm6d1IPGb80ZMgQPbhcghrRtWtXjB8/Xiff7NixI1atWoXZs2dj8eLFtueV52jfvr0O1CTX1CeffKLX1Hv11VedfXvIakuXAs2by6AzSV0PzJ0LuGH3LxERuSBnp+YtW7ZM/fDDD/rngwcPqtKlSysfHx+VO3dutXLlSvUg7FMOiPj4eNW9e3eVI0cOlSlTJtW8eXN16tSpJP/nyJEjqnHjxiooKEjXoX///ur69etJyqxevVpVqlRJ+fv7q+LFi6spU6bc9tzjxo1TISEhuoykINi4caNTdWfKARewYIFS/v5GWoHnnlPq6lWra0RERC7Omeu3j/zzoIHXv//+ixw5cthm0HkjmT0nA8JlfBO76izw/fdAmzaAZIN//nngu+8APz+ra0VERB50/b7vPE32pPvMmwMmspgESC++aARML70EzJjBgImIiKwb0yTjgRzx1VdfPUh9iJwzbRogY8+kwbRDB+CLLwBfX6trRURE3hw0yZpuMkOucuXKtoSWRJb6/HOgSxcjYJL7CRMknbvVtSIiIm8Pmrp164YZM2boBXBlVtnLL7+su+WILBEVBfTsafz8xhvA2LGSlt7qWhERkQdz+Gt5VFQUTp06pafuyxpzkgG7VatWWL58OVueKH2NGXMrYPq//2PARERE6cKpvgzJfdSmTRudHFIW7A0NDUX37t1RtGhRXLp0Ke1qSWSKjAT69zd+fvNNYNQoBkxERJQu7nsAiCyfYi7Y68wivUT3RVoz334bGDzY2H7nHeC99xgwERGRawZNCQkJelzTk08+iVKlSuklTCTbtixtkoXLVFBaBkzSqvTWW8b2iBHA0KFW14qIiLyMwwPBpRtu5syZeiyTpB+Q4EnWniNKcwMHAqNH3xrP1Lev1TUiIiIv5HBGcOmOCwkJ0SkH7pbIcq6s9eWFmBE8jcgg7z59bs2Y697d6hoREZGXXr8dbml65ZVXmPWb0teCBbdalUaOZMBERETuk9ySKN1s2WKsJScNoV27AuHhVteIiIi8HNMnk+uJjgaeeQaIjwcaNwbGjeMsOSIishyDJnIt588DTZoAZ84AlSoBs2YBGR1uECUiIkozDJrIdVy7BrRoAezfDxQqBCxaBGTNanWtiIiINAZN5Bpk7FKnTsCaNUagtGSJETgRERG5CAZN5Bokw/c33wC+vsCcOUCFClbXiIiIKAkGTWS9adNuZfueOBEIC7O6RkRERLdh0ETWWrXK6JYTERHA669bXSMiIqIUMWgi6+zbZwz8vnEDaN3aWICXiIjIRTFoImvExABPPw3ExQG1a0v2VFmrx+paERER3RGvUpT+Ll8Gnn0W+PtvoGRJYP58IDDQ6loRERHdFYMmSl+JiUDbtsDWrUCuXEZqgdy5ra4VERHRPTFoovTVv7+xEG9AAPDjj0CJElbXiIiIyCEMmij9jB1r3ITkZKpVy+oaEREROYxBE6UPaV3q29f4eeRI4IUXrK4RERGRUxg0UdrbsgVo08ZYKqVLFyA83OoaEREROY1BE6Wt6GjgmWeA+HjgqaeA8eMBHx+ra0VEROQ0Bk2Uds6fB5o0Ac6cASpWBGbPBjJmtLpWRERE94VBE6WNa9eAli2B/fuBQoWAxYuBrFmtrhUREdF9Y9BEqU/GLskacqtXA1myGAGTBE5ERERujEETpb533gG+/hrw9QXmzDG65oiIiNwcgyZKXdOmAW+9Zfw8YYIx+JuIiMgDMGii1LNqFdCpk/HzoEFA585W14iIiCjVMGii1LFvH9CiBXDjBtC6NfD++1bXiIiIKFUxaKIHFxMDPP00EBcH1K4NTJ0KZOBHi4iIPAuvbPRgLl8Gnn0W+PtvY/Hd+fOBwECra0VERJTqGDTR/UtMBNq2BbZuBXLlApYsAXLntrpWREREaYJBE92//v2NhXgDAoz7kiWtrhEREVGaYdBE92fsWOMmJCeTjGUiIiLyYAyayHnSqtS3r/HziBFAq1ZW14iIiCjNMWgi52zZArRpYyyVInmYBgywukZERETpgkETOe7IEWOmXHy8kek7Kgrw8bG6VkREROmCQRM5JjbWyMV0+rSxltzs2UDGjFbXioiIyDuCpokTJ6JChQrIli2bvtWsWRNLly61PX716lX06NEDuXLlQpYsWdCyZUuclou2naNHj6JJkybIlCkT8ubNi/DwcNyQrNR21qxZgypVqiAgIAAlSpTAVEm+mExUVBSKFi2KwMBA1KhRA5s3b07DV+5mrl0zsn3v3w8UKgQsWgRkzWp1rYiIiLwnaHrooYcwYsQIbNu2DVu3bsUTTzyB5557Dnv37tWP9+3bFwsXLsScOXOwdu1anDx5Ei3k4v2fxMREHTBdu3YN69evx7Rp03RANGzYMFuZ6OhoXaZ+/frYsWMH+vTpg06dOmH58uW2MrNmzUK/fv0wfPhwbN++HRUrVkRYWBjOnDmTzu+ICzLHLq1eDWTJAixeLL84q2tFRESU/pSLyZEjh/riiy9UbGys8vPzU3PmzLE9tn//fiVV3rBhg95esmSJypAhg4qJibGVmThxosqWLZtKSEjQ2wMGDFChoaFJnqN169YqLCzMtl29enXVo0cP23ZiYqIqWLCgioyMdLjecXFxum5y71G++UbCJqV8feUNt7o2REREqcqZ67fLjGmSVqOZM2fi8uXLuptOWp+uX7+Ohg0b2sqUKVMGISEh2LBhg96W+/LlyyNfvny2MtJCdOHCBVtrlZSxP4ZZxjyGtFLJc9mXyZAhg942y6QkISFBP4/9zeOcOgX06mX8/PbbQOPGVteIiIjIMpYHTbt379bjlWS8UdeuXTFv3jyULVsWMTEx8Pf3R3BwcJLyEiDJY0Lu7QMm83HzsbuVkSAnPj4eZ8+e1QFbSmXMY6QkMjIS2bNnt90KFy4MjyLtS126AOfPA1WrAgMHWl0jIiIi7w6aSpcurccabdq0Cd26dUP79u2xb98+uLqIiAjExcXZbseOHYNH+e47YOFCwM8PmDKFM+WIiMjrWX4llNYkmdEmqlatii1btmDs2LFo3bq17jqLjY1N0toks+fy58+vf5b75LPczNl19mWSz7iTbZmtFxQUBF9fX31LqYx5jJRIy5jcPJK0sL3xhvHz8OFA+fJW14iIiMhylrc0JXfz5k09XkgCKD8/P6xcudL22IEDB3SKARnzJOReuvfsZ7mtWLFCB0TSxWeWsT+GWcY8hgRt8lz2ZaQOsm2W8SrSLde1q9EtV6UKM34TERGZlIUGDRqk1q5dq6Kjo9WuXbv0to+Pj/rpp5/04127dlUhISFq1apVauvWrapmzZr6Zrpx44YqV66catSokdqxY4datmyZypMnj4qIiLCVOXz4sMqUKZMKDw/Xs++ioqKUr6+vLmuaOXOmCggIUFOnTlX79u1TnTt3VsHBwUlm5XnN7Lnp043Zcn5+Su3caXVtiIiI0pQz129Lg6aOHTuqIkWKKH9/fx3sNGjQwBYwifj4eNW9e3edhkACn+bNm6tTp04lOcaRI0dU48aNVVBQkMqdO7fq37+/un79epIyq1evVpUqVdLPU7x4cTVlypTb6jJu3DgdoEkZSUGwceNGp16LRwRN8t7mzGkETe+8Y3VtiIiI0pwz128f+cfW7ET3TWbjySw6GRQu3YNuRz4Gkjh0/nygcmVg0yZjEDgREZEHu+DE9dvlxjSRRWbNMgImmSUny8wwYCIiIkqCQRMZi/D27Gn8PHQoUKGC1TUiIiJyOQyavJ10y3XvDpw7B1SqJAmorK4RERGRS2LQ5O1mzwbmzjW65SSJJbvliIiIUsSgyZtJfqsePYyf33zTaGkiIiKiFDFo8mYSMEm3XMWKwODBVteGiIjIpTFo8lZz5gDff39rtpy/v9U1IiIicmkMmry1W04GfwtpYWK3HBER0T0xaPJGkl7g7FljIV4Zy0RERET3xKDJG7vl5Obry245IiIiJzBo8ib//HNrtpx0y1WpYnWNiIiI3AaDJm/yxhtG4CTdckOGWF0bIiIit8KgyVv88IOxvpx0y0kSS3bLEREROYVBkzeQQd/duhk/DxoEVK1qdY2IiIjcDoMmb+qWK1fOWJCXiIiInMagydPJunIzZ97qlgsIsLpGREREbolBkyeTJVLMbrmBA4Fq1ayuERERkdti0OTp3XKS/btsWWDYMKtrQ0RE5NYYNHmqefOAGTOADBmMJJbsliMiInogDJo8vVtuwADg0UetrhEREZHbY9DkiXr3Bk6fNrrl3nrL6toQERF5BAZNnmbBAmD6dKNbjrPliIiIUg2DJk/y779A167Gz+HhQPXqVteIiIjIYzBo8rRuuZgYoEwZdssRERGlMgZNnuLHH4Fvv701Wy4w0OoaEREReRQGTZ7SLdeli/Hz//0fUKOG1TUiIiLyOAyaPEHfvre65d5+2+raEBEReSQGTe5u4ULg669vzZZjtxwREVGaYNDkzs6fv9Ut168f8NhjVteIiIjIYzFocvduuVOngNKlgXfesbo2REREHo1Bk7tavBiYNg3w8TG65YKCrK4RERGRR2PQ5I5iY4HOnW91y9WsaXWNiIiIPB6DJnftljt5EihVCnj3XatrQ0RE5BUYNLmbJUuM5JXSLffVV+yWIyIiSicMmty1W05am2rXtrpGREREXoNBkzvp3x84cQIoWZLdckREROmMQZO7WLbM6I4zu+UyZbK6RkRERF6FQZM7iIsDXn/d+Ll3b6BOHatrRERE5HUYNLlLt9zx40CJEsD771tdGyIiIq/EoMnVLV8OfPklu+WIiIgsltHqCtA9XLgAZM8OdOgA1K1rdW2IiIi8FoMmV/fCC0bG7xw5rK4JERGRV2PQ5A4eesjqGhAREXk9jmkiIiIicvWgKTIyEo8++iiyZs2KvHnzolmzZjhw4ECSMlevXkWPHj2QK1cuZMmSBS1btsTp06eTlDl69CiaNGmCTJky6eOEh4fjxo0bScqsWbMGVapUQUBAAEqUKIGpshRJMlFRUShatCgCAwNRo0YNbN68OY1eOREREbkbS4OmtWvX6oBo48aNWLFiBa5fv45GjRrh8uXLtjJ9+/bFwoULMWfOHF3+5MmTaNGihe3xxMREHTBdu3YN69evx7Rp03RANGzYMFuZ6OhoXaZ+/frYsWMH+vTpg06dOmG5zEz7z6xZs9CvXz8MHz4c27dvR8WKFREWFoYzZ86k4ztCRERELku5kDNnziip0tq1a/V2bGys8vPzU3PmzLGV2b9/vy6zYcMGvb1kyRKVIUMGFRMTYyszceJElS1bNpWQkKC3BwwYoEJDQ5M8V+vWrVVYWJhtu3r16qpHjx627cTERFWwYEEVGRnpUN3j4uJ0veSeiIiI3IMz12+XGtMUJ5mvAeTMmVPfb9u2Tbc+NWzY0FamTJkyCAkJwYYNG/S23JcvXx758uWzlZEWogsXLmDv3r22MvbHMMuYx5BWKnku+zIZMmTQ22aZ5BISEvRz2N+IiIjIc7lM0HTz5k3dbVa7dm2UK1dO74uJiYG/vz+Cg4OTlJUASR4zy9gHTObj5mN3KyOBTnx8PM6ePau7+VIqYx4jpfFY2bNnt90KFy78wO8BERERuS6XCZpkbNOePXswc+ZMuIOIiAjdMmbejh07ZnWViIiIyNPzNPXs2ROLFi3CL7/8gofschLlz59fd53FxsYmaW2S2XPymFkm+Sw3c3adfZnkM+5kO1u2bAgKCoKvr6++pVTGPEZyMgtPbkREROQdLG1pUkrpgGnevHlYtWoVihUrluTxqlWrws/PDytXrrTtk5QEkmKgpmTJhiTLrondu3cnmeUmM/EkICpbtqytjP0xzDLmMaQLUJ7Lvox0F8q2WYaIiIi8nLJQt27dVPbs2dWaNWvUqVOnbLcrV67YynTt2lWFhISoVatWqa1bt6qaNWvqm+nGjRuqXLlyqlGjRmrHjh1q2bJlKk+ePCoiIsJW5vDhwypTpkwqPDxcz76LiopSvr6+uqxp5syZKiAgQE2dOlXt27dPde7cWQUHByeZlXc3nD1HRETkfpy5flsaNEklU7pNmTLFViY+Pl51795d5ciRQwc+zZs314GVvSNHjqjGjRuroKAglTt3btW/f391/fr1JGVWr16tKlWqpPz9/VXx4sWTPIdp3LhxOkCTMpKCYOPGjQ6/FgZNRERE7seZ67eP/GN1a5cnkJl4MotOBoVL1yARERF51vXbZWbPEREREbkyl5g95wnMBjsmuSQiInIf5nXbkY43Bk2p5OLFi/qeSS6JiIjc8zou3XR3wzFNqURSFMhiwlmzZoWPj0+qR8ESjEkCTW8cL+Xtr194+3vA1+/dr194+3vg7a8/Ld8DCYMkYCpYsKBeQu1u2NKUSuSNtk/MmRbkQ+KtfyzC21+/8Pb3gK/fu1+/8Pb3wNtff1q9B/dqYTJxIDgRERGRAxg0ERERETmAQZMbkDXuhg8f7rVr3Xn76xfe/h7w9Xv36xfe/h54++t3lfeAA8GJiIiIHMCWJiIiIiIHMGgiIiIicgCDJiIiIiIHMGgiIiIicgCDJhcXFRWFokWLIjAwEDVq1MDmzZvhLSIjI/Hoo4/qLOt58+ZFs2bNcODAAXirESNG6Gzzffr0gTc5ceIEXn75ZeTKlQtBQUEoX748tm7dCm+QmJiIoUOHolixYvq1P/zww3j33XcdWiPLXf3yyy949tlndXZm+bzPnz8/yePy2ocNG4YCBQro96Rhw4Y4ePAgvOH1X79+HQMHDtR/A5kzZ9ZlXnnlFb0ahbf8/u117dpVl/nkk0+QXhg0ubBZs2ahX79+eorl9u3bUbFiRYSFheHMmTPwBmvXrkWPHj2wceNGrFixQp8wGjVqhMuXL8PbbNmyBZMnT0aFChXgTc6fP4/atWvDz88PS5cuxb59+/DRRx8hR44c8AYjR47ExIkTMX78eOzfv19vjxo1CuPGjYOnkr9vOdfJF8aUyOv/9NNPMWnSJGzatEkHD3JevHr1Kjz99V+5ckVfCySQlvu5c+fqL5JNmzaFt/z+TfPmzdPXBgmu0pWkHCDXVL16ddWjRw/bdmJioipYsKCKjIxU3ujMmTPy9VqtXbtWeZOLFy+qkiVLqhUrVqh69eqp3r17K28xcOBAVadOHeWtmjRpojp27JhkX4sWLVTbtm2VN5C/93nz5tm2b968qfLnz69Gjx5t2xcbG6sCAgLUjBkzlKe//pRs3rxZl/v777+Vt7z+48ePq0KFCqk9e/aoIkWKqI8//jjd6sSWJhd17do1bNu2TTc9269vJ9sbNmyAN4qLi9P3OXPmhDeR1rYmTZok+Sx4ix9//BHVqlXDCy+8oLtoK1eujM8//xzeolatWli5ciX+/PNPvb1z50789ttvaNy4MbxRdHQ0YmJikvwtyJphMnTBm8+L0kUVHBwMb3Dz5k20a9cO4eHhCA0NTffn54K9Lurs2bN6PEO+fPmS7JftP/74A95G/lBkLI901ZQrVw7eYubMmboZXrrnvNHhw4d195R0Uw8ePFi/D7169YK/vz/at28PTzdo0CC9snuZMmXg6+urzwnvv/8+2rZtC28kAZNI6bxoPuZNpEtSxji1adPGaxbxHTlyJDJmzKjPA1Zg0ERu09qyZ88e/S3bWxw7dgy9e/fW47lkIoA3kmBZWpo++OADvS0tTfI5kPEs3hA0zZ49G9OnT8d3332nv1Xv2LFDf3mQcRze8PrpzmSMZ6tWrfTAePli4Q22bduGsWPH6i+S0rpmBXbPuajcuXPrb5anT59Osl+28+fPD2/Ss2dPLFq0CKtXr8ZDDz0EbyEnCBn0X6VKFf3NSm4yOF4GwcrP0urg6WSGVNmyZZPse+SRR3D06FF4A+mCkNamF198Uc+Ykm6Jvn376pml3sg893n7edEMmP7++2/9pcpbWpl+/fVXfU4MCQmxnRPlPejfv7+eZZ4eGDS5KOl+qFq1qh7PYP+tW7Zr1qwJbyDfoCRgklkSq1at0tOuvUmDBg2we/du3bpg3qTVRbpm5GcJqj2ddMcmTzMh43uKFCkCbyCzpWQsoz35vcu5wBvJOUCCI/vzonRfyiw6bzkvmgGTpFn4+eefdSoOb9GuXTvs2rUryTlRWl3ly8Xy5cvTpQ7snnNhMo5DmuDlQlm9enWdi0KmY7766qvwli456ZZYsGCBztVkjlmQgZ+Sn8XTyWtOPn5LplfLSdJbxnVJq4oMhpbuOblQSJ6yzz77TN+8geSrkTFM8s1auud+//13jBkzBh07doSnunTpEv76668kg7/l4igTQOR9kO7J9957DyVLltRBlEy/lwun5HHz9NcvLa/PP/+87p6S1ndpbTbPi/K4fNn29N9/rmRBoqQjkUC6dOnS6VPBdJunR/dl3LhxKiQkRPn7++sUBBs3blTeQj6eKd2mTJmivJW3pRwQCxcuVOXKldPTysuUKaM+++wz5S0uXLigf99yDggMDFTFixdXb775pkpISFCeavXq1Sn+3bdv396WdmDo0KEqX758+jPRoEEDdeDAAeUNrz86OvqO50X5f97w+08uvVMO+Mg/6ROeEREREbkvjmkiIiIicgCDJiIiIiIHMGgiIiIicgCDJiIiIiIHMGgiIiIicgCDJiIiIiIHMGgiIiIicgCDJiIiIiIHMGgiIo/ToUMHvQq63GSZhXz58uHJJ5/EV199le7rtv3zzz96eQtZAknWDZOlcLxlwWEiT8OgiYg80lNPPYVTp07hyJEjWLp0KerXr4/evXvjmWeewY0bN9KtHhs2bEDFihV1sCRrhplraBGR+2HQREQeKSAgQC/kWahQIVSpUgWDBw/Wiz9LADV16lRbOVkAt3z58jqoKVy4MLp3764XDRXSOpQtWzZ8//33SY49f/58Xf7ixYv3rMf69etRu3Zt/fNvv/1m+5mI3A/XniMij+yei42N1cFNcpUqVULBggWxZMkSvf3JJ5/olqBixYrh8OHDOmh64oknMGHCBP14586dceLECSxevNh2jOeeew7BwcGYNm1ais8v3W8VKlTQP1+5cgW+vr46iIuPj9ddhoGBgXjppZdsz0FE7oFBExF5VdD04osvYteuXdi3b1+K/1dalbp27YqzZ8/q7c2bN6NWrVo4duwYChQogDNnzujWq59//hn16tVL8RjS/Xf8+HFcuHAB1apVw9atW3XLlARsEnxJ91yWLFmQO3fuVH7lRJSW2D1HRF5FvidKa49Jgp8GDRroQChr1qxo164dzp07p1uIRPXq1REaGmprVfr2229RpEgRPP7443d8jowZM6Jo0aL4448/8Oijj+pWp5iYGD0gXf6fPMaAicj9MGgiIq+yf/9+3RUnZJC4DAyXoOaHH37Atm3bEBUVpR+7du2a7f906tTJNg5qypQpePXVV5MEXslJkCUtSRKASUuV/CyBmTyf/CyPE5H7YdBERF5j1apV2L17N1q2bKm3JUiSFAQfffQRHnvsMZQqVQonT5687f+9/PLL+Pvvv/Hpp5/qbr327dvf9XlkvNSOHTv0QHRpmZKfy5Urp8dPyc/meCoici8Zra4AEVFaSEhI0F1iiYmJOH36NJYtW4bIyEjdsvTKK6/oMiVKlNC5k8aNG4dnn30W69atw6RJk247Vo4cOdCiRQuEh4ejUaNGeOihh+763NJ9J88tzyuDxqVVau/evTpYk3FRROSe2NJERB5JgiQJUGT8kORsWr16tW4pkrQDMptNyKw5STkwcuRI3RI0ffp0HVil5LXXXtNddh07dnTo+desWaPHM8lMOemik0CLARORe+PsOSIiB3zzzTfo27ev7r6TDN9E5H3YPUdEdBcyi04yi48YMQJdunRhwETkxdg9R0R0F6NGjUKZMmX0oO6IiAirq0NEFmL3HBEREZED2NJERERE5AAGTUREREQOYNBERERE5AAGTUREREQOYNBERERE5AAGTUREREQOYNBERERE5AAGTUREREQOYNBEREREhHv7f4O+RJT6JYoIAAAAAElFTkSuQmCC"
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"execution_count": 12
|
|
},
|
|
{
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2025-02-16T14:38:31.324523Z",
|
|
"start_time": "2025-02-16T14:38:31.323194Z"
|
|
}
|
|
},
|
|
"cell_type": "code",
|
|
"source": "",
|
|
"id": "17c360afc5728ddc",
|
|
"outputs": [],
|
|
"execution_count": null
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 2
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython2",
|
|
"version": "2.7.6"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|