
Multi-Source Holoportation

Andy Pack

Mid-Term Report

Department of Electrical and Electronic Engineering
Faculty of Engineering and Physical Sciences

University of Surrey

1



CONTENTS CONTENTS

Abstract

The scope and current state of the multi-source holoportation project is examined. The aim is to extend a suite of 3D
video capture software from it’s current capabilities supporting multiple sensors but a single captured environment to
handling multiple surroundings concurrently during frame collection and display.

Currently the display methods have been developed in line with the specification in order to allow simultaneous display
and arbitrary real-time placement within the display space.

The future work for the project is described including the current designs these endeavours. The bulk of this remaining
work involves developing the network capabilities of the software to accommodate multiple sources, this is on track to be
completed by May 2020.
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2 LITERATURE REVIEW

Figure 1: Demonstration of a multi-source holoportation system including single and multiple view camera configurations

1 Introduction

The aim of this project is to develop a piece of software capable of supporting multi-source holoportation (hologram
teleportation) using the LIVESCAN3D[1] suite of software as a base.

As the spaces of augmented and virtual reality become more commonplace and mature, the ability to capture and stream
3D renders of objects and people over the internet using consumer-grade hardware has many possible applications.

This represents one of the most direct evolutions of traditional video streaming when applied to this new technological
space.

A view of what multi-source achieves can be seen in figure 1. Both single and multi-view configurations of cameras are
shown, the latter allowing more complete renders of the subject to be acquired. Both shapes are presented through the
user experience, control schemes and visual language can vary between implementations across AR/VR and traditional 2D
displays.

LIVESCAN3D is a suite of 3D video software capable of recording and transmitting video from client to server for rendering.
The suite is fast and uses consumer grade hardware for capture in the form of XBOX KINECT cameras, it is used in various
projects at the UNIVERSITY OF SURREY and has multiple setups in dedicated lab space.

LIVESCAN3D’S use of XBOX KINECT cameras allows the capture and stream of 3D renders in single or multi-view configu-
rations using calibrated cameras however the server is only able to process and reconstruct one environment at a time.

The capability to concurrently receive and reconstruct streams of different objects further broadens the landscape of
possible applications, analogous to the movement from traditional phone calls to conference calling.

2 Literature Review

The significance of 3D video like that captured and relayed using the LIVESCAN suite is related to the development of new
technologies able to immersively display such video content. Therefore before discussing the specific extension that this
project will make to the LIVESCAN software it is important to contextualise it within the space of 3D video capture while
also considering it’s implications for AR and VR applications.
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2 LITERATURE REVIEW 2.1 Cross Reality (XR)

2.1 Cross Reality (XR)

Cross reality is a broad term describing the combination of technology with a user’s experience of their surroundings in
order to alter the experience of reality. It is used as an umbrella term for virtual, mixed and augmented reality experiences
and technology. Before continuing, the differences between these technologies is considered.

Virtual The replacement of a user’s experience of their surroundings, rendering a new space that the user appears to in-
habit. Typically achieved through face mounted headsets (Facebook Oculus, HTC Vive, Playstation VR, Valve Index).

Augmented The augmentation of a users surroundings by overlaying the environment with digital alterations. Can be
achieved with translucent/transparent headsets (Microsoft Hololens, Google Glass) or through mobile experiences
(Android ARCore, Apple ARKit) both when head mounted (Google Cardboard, Google Daydream, Samsung Gear VR)
and handheld (Pokemon GO).

Mixed A combination of virtual and augmented elements in order to allow interaction with an augmented reality. Can be
achieved in different ways typically starting with either a typical AR or VR experience and including aspects of the
other. At a higher level, mixed reality can be described as a continuous scale between the entirely real and entirely
virtual with augmented reality occurring in between.

The burgeoning of these three forms of XR via consumer hardware such as the MICROSOFT HOLOLENS and OCULUS RIFT

represents a new space for the consumption of interactive media experiences.

Although VR and AR headsets have accelerated the development of XR technology, they are not the only way to construct
XR experiences. Jones, Sodhi, Murdock, et al.[2] demonstrate RoomAlive, an AR experience using depth cameras and
projectors (refereed to as procams) to construct experiences in any room. This is presented through games and visual
alterations to the users surroundings. A strength of the system is it’s self contained nature, able to automatically calibrate
the camera arrangements using correspondences found between each view. Experience level heuristics are also discussed
regarding capturing and maintaining user attention in an environment where the experience can be occurring anywhere,
including behind the user .

A point is also made about how the nature of this room based experience breaks much of the typical game-user interaction
established by virtual reality and video games. In contrast to traditional and virtual reality game experiences where the
game is ultimately in control of the user or user avatar, AR experiences of this type have no physical control over the user
and extra considerations must be made when designing such systems.

Traditional media consumption is not the only area of interest for developing interactive experiences, an investigation
into the value of AR and VR for improving construction safety is presented by Li, Yi, Chi, et al.[3]. A broad look at the
applicability is taken with assessments including VR experiences for developing worker balance to aid in working at ele-
vation and AR experiences incorporated into the workplace for aiding in task sequencing to reduce the effect of memory
on safety.

Lindlbauer and Wilson[4] demonstrate an example of mixed reality through the use of KINECT cameras and a virtual reality
headset. Users are placed in a virtual space constructed from 3D renders of the physical environment around the user.
Virtual manipulation of the space can then be achieved with visual, spatial and temporal changes supported. Objects can
be scaled and sculpted in realtime while the environment can be paused and rewinded. The strength of mixed reality
comes with the immersion of being virtually placed in a version of the physical surroundings, tactile feedback from the
environment compounds this.

2.2 Kinect and RGB-D Cameras

Initially designed as a motion control accessory for the XBOX, the KINECT is a series of depth aware cameras produced my
MICROSOFT. The device uses additional infrared lights and sensors alongside an RGB camera in a configuration referred to
as a time of flight camera to generate 3D renders of a surroundings. The device also includes motion tracking and skeleton
isolation for figures in view.

Following the release of an SDK for Windows in 2012, Zhang at MICROSOFT RESEARCH reflects on the original camera’s
capabilities and the applications to computer vision research in [5].

Here 3D conference calling of the type described in the introduction without AR or VR applications is presented, instead
users watch a composite conference space on a screen with all participants rendered within. Work was undertaken to
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2.3 Holoportation and Telepresence 2 LITERATURE REVIEW

Figure 2: An example of stereoscopic projection of depth aware footage captured by Fuchs, State, and Bazin[11]

achieve mutual gaze between participants, a marked advantage over traditional conference calls where the lack of such
aspects of group interaction make the experience more impersonal. Methods of achieving more natural virtual interac-
tions or telepresence are covered in section 2.3.

A second version of the camera, v2, was released alongside the XBOX ONE in 2013 and presented many improvements
over the original. A higher quality RGB camera captures 1080p video at up to 30 frames per second with a wider field of
view than the original[6]. The physical capabilities of the camera are discussed by Lachat, Macher, Landes, et al.[7]. The
second version of the camera was found to gather more accurate depth data than the original and was less sensitive to
daylight. Wasenmüller and Stricker[8] found similar results with the v2 achieving higher accuracy results over the original.
The second version did, however, achieve lower precision results than the v1 with recommendations made to include
pre-processing on acquired depth images to control for random noise, flying pixels and multipath interference.

The KINECT is used successfully by Nissimov, Goldberger, and Alchanatis[9] for object detection in the context of an
autonomous vehicle navigating a greenhouse. The depth information was used in conjunction with the RGB information
to identify obstacles, while the paper lays out some limitations of the camera it was found to be effective in it’s aim and
was capable of running on a reasonable computer.

This second iteration on the KINECT is frequently used in computer vision experiments with many of the works cited here
using it for acquisition.

2.3 Holoportation and Telepresence

The term Holoportation is defined and exemplified in a MICROSOFT RESEARCH paper by Orts, Rhemann, Fanello, et al.[10]
where an end-to-end pipeline is laid out for the acquisition, transmission and display of 3D video facilitating real-time AR
and VR experiences. The MICROSOFT RESEARCH paper builds on works including by Fuchs, State, and Bazin[11] 2 years
earlier which describes attempts at achieving “telepresence”, a term coined by Marvin Minksy to describe the transparent
and intuitive remote control of robot arms as if they were the controllers own[12]. The term was broadened by Bill Bux-
ton[13] to include the space of telecommunications to describe technology being used to make someone feel present in a
different environment. In the context of holoportation this is through the use of 3D video reconstruction. The aforemen-
tioned work by Fuchs, State, and Bazin[11] used 10 KINECT cameras to capture a room before virtually reconstructing the
models.

In service of demonstrating it’s applicability to achieving telepresence, a figure was isolated from the surroundings and
stereoscopically rear-projected onto a screen for a single participant, a result of this can be seen in figure 2.

January 2020 6 Andy Pack



3 LIVESCAN3D 2.4 Multi-Source Holoportation

Figure 3: World in Miniature render demonstrated in a multi-source holoportation context by Beck, Kunert, Kulik, et al.[15]

The MICROSOFT RESEARCH paper demonstrates a system using 8 cameras surrounding a space. Each camera captured
both Near Infra-Red and colour images to construct a colour-depth video stream, a more complex camera configuration
than in the others cited.

Fender and Müller[14] demonstrates a similar holoportation experience to LIVESCAN3D capable of supporting multi-view
configurations, it also supports both point clouds and meshes. Calibrating multiple view points is completed using the
extrinsics and intrinsics of the camera. The extrinsics are the relative positions of each KINECT camera while the intrinsics
describe the internal properties of each camera, the focal length and optical centre.

The intrinsics of the KINECT camera can be retrieved from the KINECT SDK while the extrinsics are obtained in one of
two ways. Extrinsics can be imported and parsed from XML for manual selection or estimated using OPENCV and a
checkerboard pattern. When considering holoportation systems of this kind, comparatively few implement multiple views
as a result the increased complexity involved in calibration.

2.4 Multi-Source Holoportation

The space of multi-source holoportation has been explored by Beck, Kunert, Kulik, et al.[15] in the context of shared
architectural design spaces in virtual reality similar to a conference call. Two groups of people were captured in 3D using
clusters of KINECT cameras before having these renders transmitted to the other group. Each group reconstructs the
other’s render for display in virtual reality in conjunction with their own. In doing so a shared virtual space for the two
groups has been created and it can be seen to implement the process of holoportation. The strength of the system as a
shared architectural design experience is emergent of the semantics of the virtual space where a World in Miniature (WIM)
metaphor is used.

The Worlds in Miniature is described by Stoakley, Conway, and Pausch[16] as a set of interfaces between the user and the
virtual space they experience using tactile and visual tools. The interface involves providing the user with a miniature
render of the world they are inhabiting that can interacted with in order to affect the full scale environment around them.

This navigation tool maps well to Beck, Kunert, Kulik, et al.’s[15] architecture groupware design, an image captured during
the work can be seen in figure 3.

3 LiveScan3D

LIVESCAN3D is a suite of software developed by Marek Kowalski, Jacek Naruniec and Michal Daniluk of the Warsaw Uni-
versity of Technology in 2015[1]. The suite utilises the XBOX KINECT v2 camera to record and transmit 3D renders over an
IP network. A server can manage multiple clients simultaneously and is responsible for processing, reconstructing and
displaying the renderings in real-time.
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3.1 LIVESCAN Client 3 LIVESCAN3D

Figure 4: Initial architecture of the LIVESCAN3D server

These renderings take the form of a point cloud, a collection of 3D co-ordinates indicating the position of each voxel (3D
pixel) and it’s associated RGB colour value. As a result of it’s analogous nature to a traditional frame of 2D video, the terms
“render”, “point cloud” and “frame” are used interchangeably from here.

The majority of the development being conducted in this project is regarding the server component of the software and
as such this is covered in more detail.

3.1 LIVESCAN Client

The LIVESCAN Client is responsible for interfacing with the KINECT sensor via the KINECT v2 SDK and transmitting frames
to the LIVESCAN Server. Body detection takes place client side, as does calibration when using multiple sensors.

Only one KINECT sensor can be connected to each computer as a result of the SDK’s restrictions. A system used by multiple
clients in this way lends itself well to multi-source configurations over the internet.

3.2 LIVESCAN Server

The server component of the LIVESCAN suite is responsible for managing and receiving 3D renders from connected clients.
These renders are reconstructed in an interactive OPENGL window. When considering the code architecture of this appli-
cation there are three main components.

OpenGLWindow Presentation layer of the application. Separate window spawned by the LIVESCANSERVER responsible
for drawing point clouds and responding to user control.

KinectServer Network layer of the application. The main window make requests of this component to receive transmitted
point clouds.

KinectSocket Child objects contained within the KINECTSERVER. A traditional network socket object representing a sin-
gle TCP connection between the server and a client.

This structure can be seen in figure 4.

Received frames in the form of lists of vertices, RGB values, camera poses and bodies overwrite shared variables between
the main window and the OPENGL window.
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3 LIVESCAN3D 3.3 Calibration & Multi-View Configurations

Figure 5: Example marker used within the LiveScan3D calibration process

3.3 Calibration & Multi-View Configurations

When using a single client setup, frames are transmitted in their own coordinate space with the origin defined as the
KINECT camera and the captured scene rendered in front of it.

When using multiple sensors, the server would be unable to combine these unique Euclidean spaces without knowledge
of the sensors positions relative to each other, the extrinsics of the system.

In order to make a composite frame a calibration process is completed client side following instruction by the server.

Calibration is completed in two steps, an initial estimation followed by a refinement process. The initial estimation is
completed by informing the server of which calibration marker layouts are being used within the space. Client’s identify
possible visible markers like that seen in figure 5 using thresholding. Following this identification, the location of the
marker can be found within the sensors coordinate system.

This information can be used to transform points from the cameras coordinate system to the markers frame of reference.
As the relative locations of different markers are defined at the server, a world coordinate system can be defined as the
centre of these markers. Typically 4 different markers are placed on the faces around the vertical axis of a cuboid allowing
views in 360°.

This world coordinate space has shifted the origin from being the position of the single KINECT sensor to being a point in
the centre of the calibration markers that each camera now orbits. As part of this calibration process the server distributes
transformations to each client defining where they sit within this world coordinate space. Client’s can now transform
acquired renders from their own frame of reference to the world coordinate system at the point of capture and each point
cloud can be merged coherently.

The refinement process is completed server side by requesting a single frame from each connected client and using Itera-
tive Closest Points[17] (ICP) to improve the inter-camera relationships.

The OPENGL display space has it’s origin within the centre of the visible box, this means that for single sensor setups this
is also the location of the camera.

3.4 Design Considerations

When assessing LIVESCAN’s suitability for extension to a multi-source context, the original network design should be
investigated.

The original applications were best suited to a local environment as a result of many of the network functions being
blocking. Should any delays or interruptions have occurred during a network operation, then the application would need
to stop and wait for remediation before continuing. Interruptions of this type are more common when moving from a
LAN environment to communicating over the open internet.

From a network perspective the need to make these actions non-blocking would present benefits for both multi-source
and multi-view configurations.
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4 CURRENT WORK

Additionally, the network polling rates are higher than the frame rate of the produced video, when the server requests a
frame before a new one has been captured by the client, the same previous frame is resent. This presents unnecessary
bandwidth usage.

Moving to a multi-source context implies transmitting over the internet as opposed to local operation, this will make
blocking actions and bloated bandwidth more dangerous to user experience.

Work has been undertaken that allows multiple concurrent TCP connections to be used by each client to increase band-
width. Further work is being undertaken to un-block network actions.

4 Current Work

The required development to take the existing LIVESCAN codebase to the desired multi-source result can be split into two
areas of concern.

Network The network layer of the LIVESCAN server must be updated in order to accommodate multiple clients logically
grouped into “sources” for which separate frames are collected for display.

Display Finally the display element of the server should be extended to allow the simultaneous presentation of multi-
ple point clouds. These objects should be individually arrangeable in the display space allowing both move-
ment and rotation.

As of January 2020 the native method for displaying renderings, the server’s OPENGL window, has been modified such
that it can construct and render point clouds from multiple sources. To do so a dynamic sub-system of geometric trans-
formations has been written in order to coherently arrange sources within the space when reconstructed. The default
arrangements can be overridden with keyboard controls facilitating arbitrary placement and rotation of separate sources
within the window’s co-ordinate space.

4.1 Geometric Transformations

Within the LIVESCAN3D server source code are utility structures and classes which were extended in order to develop
a wider geometric manipulation system. Structures defining Cartesian coordinates in both 2D and 3D spaces called
POINT2F and POINT3F respectively are used in drawing skeletons as captured by the KINECT camera. There is also a
class defining an affine transformation, the definitions for all three can be seen in appendix A.

Affine transformations are a family of geometric transformations that preserve parallel lines within geometric spaces.
Some examples of affine transformations include scaling, reflection, rotation, translation and shearing.

The class definition is made up of a three-by-three transformation matrix and single 3D vector for translation, within the
native codebase it is used for both camera poses and world transformations.

A camera pose is the affine transformation defining the position and orientation of the KINECT camera when drawn in
the OPENGL space as a green cross. The world transformations are used as part of the calibration process when using
multi-view configurations.

When considering how each source’s render would be arranged in the space, the use of this class definition was extended.
As the use of affine transformations is mostly limited to use as a data structure within the base source code, some utility
classes and functions were required in order to fully maximise their effectiveness.

4.1.1 Transformer

The motivation in writing the TRANSFORMER was to create a generic framework of geometric transformations that could
be utilised by the OPENGL display to arrange separate point clouds. At a high level this is done by implementing matrix
arithmetic functions in the context of their use for applying linear transformations to Cartesian coordinates.

The TRANSFORMER class has static methods to apply AFFINETRANSFORMs to both POINT3F structures and lists of raw
vertices as received from LIVESCAN clients.

January 2020 10 Andy Pack



4 CURRENT WORK 4.2 Separation of Network and Presentation Layer

Figure 6: Initial multi-source composite testing frame

Additionally there are utility functions to bidirectionally cast between POINT3F data structures and the lists of received
vertices.

Finally static methods generate common rotation transformations about each axis given an arbitrary angle. This provided
a foundation on which to define how the OPENGL space would arrange separate sources within it’s combined co-ordinate
space.

Currently missing is the ability to combine transformations into compound matrices. Applying multiple transformations
to large numbers of coordinates would be more computationally expensive than applying one compound matrix and
when running in realtime this should be considered. This is not yet included due to the current lack of need to apply
multiple successive transformations. If the need were to arise following further refinements, it would be implemented as
described here.

4.2 Separation of Network and Presentation Layer

During initial testing frames received from a live sensor were intercepted and serialized to XML in local storage. These
frames were loaded into memory as the server was started and merged with those received live before display.

The composite frame can be seen in figure 6.

The objects can be seen to be occupying the same space due to their similar positions in the frame during capture. This is
not a sufficient solution for displaying separate sources and so geometric transformations like those described above were
employed to separate the two. The change in software structure at this stage can be seen in figure 7. A rotation of 180° in
the vertical (y) axis pivoted the frames such that they faced those being received live, the results can be seen in figure 8.

At this point it was noted that transforming and arranging figures within the main window before passing the OPENGL
window a complete point cloud spreads responsibility for the display logic to the main window.

LIVESCAN3D is capable of supporting more display methods than just the native OPENGL implementation with versions
available for both MICROSOFT HOLOLENS and Mobile AR applications. Therefore when designing the multi-source capa-
bilities, the separation of logic between the network and presentation layer is important.

The way in which the OPENGL window arranges the figures in it’s display space should be defined by the OPENGL window
itself. The network layer should be display agnostic and not make assumptions about how the display will process figures.

In order to follow this design the transformations were moved to instead occur within the OPENGL window class. To allow
this the shared variables between the MAINWINDOW and OPENGL were changed. A Frame structure was defined to wrap
an individual point cloud with a client ID to allow differentiation, the definition can be seen in appendix B.1. The structure
holds fields for each of the lists previously shared between the two objects including a list of vertices (co-ordinates) and
the RGB values for each as well as the camera poses and bodies.

January 2020 11 Andy Pack



4.2 Separation of Network and Presentation Layer 4 CURRENT WORK

Figure 7: Initial testing process transforming frames loaded from local storage

Figure 8: Composite testing frame following 180° rotation of recorded source in y axis
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4 CURRENT WORK 4.3 DisplayFrameTransformer

Figure 9: UML diagram for DISPLAYFRAMETRANSFORMER

The original LIVESCAN3D cleared each of these variables before retrieving a new frame, when moving to a multi-source
architecture the ability to individually update source point clouds was prioritised. This would avoid blocking the entire
display when unable to receive frames from a specific client, other clients would still be able to have frames updated
promptly.

To accomplish this a dictionary was used as the shared variable with each client’s frame referenced by it’s client ID. In
doing so only one frame per client is kept and each new frame overrides the last. During rendering the dictionary is
iterated through and each point cloud combined. During combination a client specific transformation is retrieved from
an instance of the DISPLAYFRAMETRANSFORMER class. This object is a member of the OPENGL window and is responsible
for defining the orientation and position of each point cloud.

4.3 DisplayFrameTransformer

The DISPLAYFRAMETRANSFORMER is responsible for generating transformations for the sources displayed within the OPENGL
window, a UML diagram for the class can be seen in figure 9.

Each client is assigned a default transformation which can be overridden using keyboard controls.

Clients are initially arranged in a circle around the origin in the center of the space. This is done by retrieving a transfor-
mation from the TRANSFORMER for a rotation in the y axis for each client, n. Each angle of rotation, α, is calculated using
the below,

α (n) = n∑
cl i ent s

·360°

Similar to the shared variables between the MAINWINDOW and OPENGL window, client transformations are stored within
a dictionary indexed by client ID.

The DISPLAYFRAMETRANSFORMER also has methods to override these initial transforms with the RotateClient() and Trans-
lateClient() methods. When these methods are called for the first time on a point cloud, an object defining the position and
rotation is populated using the default rotation. From here the presence of a client override results in applied transforms
being defined by these values as opposed to the default orientation.

This leaves the current architecture of the server application as described in figure 10.

4.4 Control Scheme

The movement of objects within the OPENGL space is implemented through keyboard controls. While using the mouse
would allow fine-grained and intuitive control, the number of axes for motion and rotation available to objects makes
defining specific keys for each more flexible. This additionally removes the need to redefine or overload the camera con-
trols.

The “I” key is used to cycle through displayed sources, the currently selected source is the subject of each of the movement
actions. Sources are moved across the horizontal plane (x, z) of the display space using a WASD-esque layout of the UHJK
keys. Objects can be rotated about the vertical (y) axis using the B and N keys. Finally the placement of an object can be
reset to default using the R key, the addition of the shift modifier resets all clients.
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Figure 10: Current state of LIVESCAN server structure with OPENGL window-based transformer

Worth noting is that this represents arbitrary placement of sources in only two axes of position and one of rotation. This
was a conscious choice as these are the most common and intuitive axes with which sources will need to be manipulated.
The ability to allow movement in all axes would require only binding these actions to keys.

There is room to improve these controls as the directions of movement are in relation to the fixed axes of the display space
as opposed to the view of the viewpoint camera. In practice this means that when moving objects in the display space the
orientation of the space must be considered in order to identify which direction the object should be moved.

This is less intuitive than could be expected in other areas where such a control scheme is used such as video games or
modelling software. In such implementations when moving objects the directions are typically taken from the camera’s
frame of reference. The feasibility of employing a similar control philosophy should be considered.

4.5 Challenges

The main challenge encountered throughout the project so far was initially intercepting the live frames and serializing
these as XML files in local storage. With no previous experience developing in C#, the opening steps of the project involved
both getting to grips with the language based on previous work in C-like languages (Java, C) and understanding the layout
of the codebase.

Initial attempts to serialize the frame structures resulted in no output to the file system and the multi-threaded nature
of the graphical application led to no feedback for debugging. This was fixed by removing the affine transformations
representing camera poses from the frame structure for the testing process.

This would imply that something about the nature of the AFFINETRANSFORM class type is causing errors when serializing.
Java requires classes implement a serializable interface in order to successfully save to file and further work will be required
in order to determine whether the same concept is to blame in this situation. However for now the camera poses of local
frames are not displayed in the OPENGL window.

5 Future Work

Following the extension of the OPENGL window, the network layer of the KINECTSERVER can now be developed with the
advantage of a fully functional display method for debugging.

The aim of this aspect of the project will be to alter the the KINECTSERVER in order to allow the logical grouping of con-
nected clients into sources for separate display.

When integrated together the server as a whole will then be able to collect discrete point clouds from different sources and
coherently display them separately in the space, achieving the objectives for this project.
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5.1 Network Layer Design Considerations

Some thought as to the design for the network layer has been undertaken. Although this has not yielded a final design for
implementation, it has made apparent some of the conditions and constraints which must be considered.

When considering the initial steps for the project, it was thought that the network layer should be developed first. The
design would involve separating much of the logic contained within the KINECTSERVER object into a new KINECTSOURCE

object which would represent a group of clients acting as a single source. It would function as a group of KINECTSOCKETs
that could be individually polled for new frames using the same interface currently being used by the KINECTSERVER. The
KINECTSERVER object itself would be reduced to simply managing these KINECTSOURCEs.

An advantage of this approach would be that it provide a suitable location to store additional information which should
exist per source such as the calibration data and settings.

However it would also have represented a significant architecture change in the entire server application and without a
functioning display method it would have been challenging to debug. This was the motivation for initially working on the
display method.

Coming back to the network design following this work, a different design has been considered. A separate body of work
currently being undertaken is investigating the network behaviour of the suite with a focus on unblocking the network
sockets to aid in parallel operation.

In order to ease integration with developments in this work a less disruptive design was proposed.

5.1.1 Socket Handshake

The aim is to implement a method by which clients are grouped into sources that also allows them to identify themselves
consistently when communicating over multiple sockets. Multiple sockets can be used by clients in order to make simul-
taneous connections to the server and increase bandwidth. However when doing so it is important to be able to identify
which sockets represent which client when some may be at the IP address.

A method for doing so would involve a handshake process when new clients connect to the KINECTSERVER. The proposed
handshake would be initiated by the client when connecting to the server, at this point they include which source they
should be grouped with using an integer ID. The server groups the socket as such and, if one has not been received,
responds with a random identifier string that should be used across all sockets to identify the client. Should the newly
connected socket be for a client that is already connected then the client will respond with it’s existing identifier to inform
the server that this ID has been ignored. In doing so the client now has a method of identifying itself agnostic of socket,
and the server has a way of identifying the source which each socket is representing.

5.2 Deliverables and Additional Goals

At this point in the project it is worth considering the viability of the final deliverables with relation to the time remaining.
Based on the work completed so far the original objectives of multi-source holoportation remain viable with a round of
complete testing undertaken.

This testing suite is yet to be defined but will comprise performance evaluation for both the network and display aspects
of the software.

Should the original specification be delivered and evaluated with time remaining, additional goals and investigations
should be examined. Initially, aspects already completed should be investigated for further refinement, namely the control
scheme as mentioned above.

When considering the design principle of network and presentation separation in combination with the relevance of the
technology to the spaces of AR and VR, an interesting analysis could be made into the applicability of multi-source network
developments to additional display methods. Mobile AR and HOLOLENS display for LIVESCAN have both been demon-
strated and either could prove interesting when considered in a multi-source context.
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5.3 Final Report Structure

The final report for the project will, to an extent, be based off of this piece in terms of structure and content. The literature
review will be expanded to include an investigation of simultaneous video streaming in order to contextualise the coming
work on the network layer of the application suite.

A results section will describe the quantitative and qualitative results of the final product, these will then be evaluated and
discussed in the discussion section. At this point a discussion can also be had about further developments that can be
made, both to the LIVESCAN codebase and the multi-source version presented by this project. The structure will be as
follows,

• Title Page

• Abstract

• Table of Contents

◦ Including lists of figures, code listings

• Acknowledgements

• Introduction

• Literature Review

• Methodology and Developments

• Results

• Discussion

◦ A description of possible further developments

• Conclusion

• References

• Appendices

6 Summary

Within this piece the process of extending the LIVESCAN3D software to include multi-source holoportation has been
introduced. The use of such a system has many applications from those inherited from traditional 2D video such as
conference calls to new utilisations that are wholly unique to the environment.

The literature review contextualises the LIVESCAN suite and the wider spaces of AR, VR, 3D video and multi-source holo-
portation itself. Previous examples of holoportation are described and their aims of achieving telepresence are discussed.

The current state of the project is laid out showing good progress through the required areas of development. Of these
areas of concern, the display element has been extended in order to allow the rendering of multiple environments simul-
taneously with a dynamic sub-system of geometric transformations. The transformations are responsive to user input
allowing arbitrary placement and orientation of individual sources within the display space. While this control interface
allows free movement in the most naturally traversed axes it could use some additional tuning to make it feel more intu-
itive.

The next steps for the project leading up to its completion are presented, the initial and current plans for the remaining
work is described and additional stretch goals are defined for any additional time. How the work will be presented in a
final report is also described.
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7 Conclusions

Holoportation and multi-source configurations thereof are important technologies for cross reality experiences with broad
appeal to many applications. The use of consumer hardware, specifically the KINECT, have accelerated the space.

At roughly halfway through the time allowed for this project the native display has successfully been extended to meet the
deliverable specification. This has resulted in the OPENGL window being capable of simultaneously rendering multiple
sources with arbitrary placement and orientation within the display space.

From this point the network layer of the suite will be developed to also match the specification, allowing connected clients
to be grouped into sources for polling and processing.

Following the development of the two, testing methodologies will be defined and carried out to gather quantitative results
for the final product. A final report on the results will be available in May 2020.
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B NEW DATA STRUCTURES

A Existing Data Structures

Listing 1: Cartesian coordinate in 2 dimensions

public struct Point2f
{

public f l o a t X ;
public f l o a t Y ;

}

Listing 2: Cartesian coordinate in 3 dimensions

public struct Point3f
{

public f l o a t X ;
public f l o a t Y ;
public f l o a t Z ;

}

Listing 3: Affine transformation matrix with translation

[ S e r i a l i z a b l e ]
public class AffineTransform
{

public f l o a t [ , ] R = new f l o a t [ 3 , 3 ] ;
public f l o a t [ ] t = new f l o a t [ 3 ] ;

public AffineTransform ( )
{

for ( int i = 0 ; i < 3 ; i ++)
{

for ( int j = 0 ; j < 3 ; j ++)
{

i f ( i == j )
R[ i , j ] = 1 ;

else
R[ i , j ] = 0 ;

}
t [ i ] = 0 ;

}
}

}

B New Data Structures

B.1 Frame

Listing 4: Point cloud with Client ID

public struct Frame
{

public List <Single > Vert ices ;
public List <byte> RGB;
public List <Body> Bodies ;
public int ClientID ;
public List <AffineTransform > CameraPoses ;

public Frame( List <Single > vertsin ,
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List <byte> rgbin ,
List <Body> bodiesin ,
int clientID ,
List <AffineTransform > cameraPosesin )

{
Vert ices = v e r t s i n ;
RGB = rgbin ;
Bodies = bodiesin ;
ClientID = clientID ;
CameraPoses = cameraPosesin ;

}
}
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