csbindgen/csbindgen-tests/c/zstd/compress/zstd_compress_internal.h
2023-02-28 18:13:22 +09:00

1479 lines
60 KiB
C

/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* This header contains definitions
* that shall **only** be used by modules within lib/compress.
*/
#ifndef ZSTD_COMPRESS_H
#define ZSTD_COMPRESS_H
/*-*************************************
* Dependencies
***************************************/
#include "../common/zstd_internal.h"
#include "zstd_cwksp.h"
#ifdef ZSTD_MULTITHREAD
# include "zstdmt_compress.h"
#endif
#include "../common/bits.h" /* ZSTD_highbit32, ZSTD_NbCommonBytes */
#if defined (__cplusplus)
extern "C" {
#endif
/*-*************************************
* Constants
***************************************/
#define kSearchStrength 8
#define HASH_READ_SIZE 8
#define ZSTD_DUBT_UNSORTED_MARK 1 /* For btlazy2 strategy, index ZSTD_DUBT_UNSORTED_MARK==1 means "unsorted".
It could be confused for a real successor at index "1", if sorted as larger than its predecessor.
It's not a big deal though : candidate will just be sorted again.
Additionally, candidate position 1 will be lost.
But candidate 1 cannot hide a large tree of candidates, so it's a minimal loss.
The benefit is that ZSTD_DUBT_UNSORTED_MARK cannot be mishandled after table re-use with a different strategy.
This constant is required by ZSTD_compressBlock_btlazy2() and ZSTD_reduceTable_internal() */
/*-*************************************
* Context memory management
***************************************/
typedef enum { ZSTDcs_created=0, ZSTDcs_init, ZSTDcs_ongoing, ZSTDcs_ending } ZSTD_compressionStage_e;
typedef enum { zcss_init=0, zcss_load, zcss_flush } ZSTD_cStreamStage;
typedef struct ZSTD_prefixDict_s {
const void* dict;
size_t dictSize;
ZSTD_dictContentType_e dictContentType;
} ZSTD_prefixDict;
typedef struct {
void* dictBuffer;
void const* dict;
size_t dictSize;
ZSTD_dictContentType_e dictContentType;
ZSTD_CDict* cdict;
} ZSTD_localDict;
typedef struct {
HUF_CElt CTable[HUF_CTABLE_SIZE_ST(255)];
HUF_repeat repeatMode;
} ZSTD_hufCTables_t;
typedef struct {
FSE_CTable offcodeCTable[FSE_CTABLE_SIZE_U32(OffFSELog, MaxOff)];
FSE_CTable matchlengthCTable[FSE_CTABLE_SIZE_U32(MLFSELog, MaxML)];
FSE_CTable litlengthCTable[FSE_CTABLE_SIZE_U32(LLFSELog, MaxLL)];
FSE_repeat offcode_repeatMode;
FSE_repeat matchlength_repeatMode;
FSE_repeat litlength_repeatMode;
} ZSTD_fseCTables_t;
typedef struct {
ZSTD_hufCTables_t huf;
ZSTD_fseCTables_t fse;
} ZSTD_entropyCTables_t;
/***********************************************
* Entropy buffer statistics structs and funcs *
***********************************************/
/** ZSTD_hufCTablesMetadata_t :
* Stores Literals Block Type for a super-block in hType, and
* huffman tree description in hufDesBuffer.
* hufDesSize refers to the size of huffman tree description in bytes.
* This metadata is populated in ZSTD_buildBlockEntropyStats_literals() */
typedef struct {
symbolEncodingType_e hType;
BYTE hufDesBuffer[ZSTD_MAX_HUF_HEADER_SIZE];
size_t hufDesSize;
} ZSTD_hufCTablesMetadata_t;
/** ZSTD_fseCTablesMetadata_t :
* Stores symbol compression modes for a super-block in {ll, ol, ml}Type, and
* fse tables in fseTablesBuffer.
* fseTablesSize refers to the size of fse tables in bytes.
* This metadata is populated in ZSTD_buildBlockEntropyStats_sequences() */
typedef struct {
symbolEncodingType_e llType;
symbolEncodingType_e ofType;
symbolEncodingType_e mlType;
BYTE fseTablesBuffer[ZSTD_MAX_FSE_HEADERS_SIZE];
size_t fseTablesSize;
size_t lastCountSize; /* This is to account for bug in 1.3.4. More detail in ZSTD_entropyCompressSeqStore_internal() */
} ZSTD_fseCTablesMetadata_t;
typedef struct {
ZSTD_hufCTablesMetadata_t hufMetadata;
ZSTD_fseCTablesMetadata_t fseMetadata;
} ZSTD_entropyCTablesMetadata_t;
/** ZSTD_buildBlockEntropyStats() :
* Builds entropy for the block.
* @return : 0 on success or error code */
size_t ZSTD_buildBlockEntropyStats(
const seqStore_t* seqStorePtr,
const ZSTD_entropyCTables_t* prevEntropy,
ZSTD_entropyCTables_t* nextEntropy,
const ZSTD_CCtx_params* cctxParams,
ZSTD_entropyCTablesMetadata_t* entropyMetadata,
void* workspace, size_t wkspSize);
/*********************************
* Compression internals structs *
*********************************/
typedef struct {
U32 off; /* Offset sumtype code for the match, using ZSTD_storeSeq() format */
U32 len; /* Raw length of match */
} ZSTD_match_t;
typedef struct {
U32 offset; /* Offset of sequence */
U32 litLength; /* Length of literals prior to match */
U32 matchLength; /* Raw length of match */
} rawSeq;
typedef struct {
rawSeq* seq; /* The start of the sequences */
size_t pos; /* The index in seq where reading stopped. pos <= size. */
size_t posInSequence; /* The position within the sequence at seq[pos] where reading
stopped. posInSequence <= seq[pos].litLength + seq[pos].matchLength */
size_t size; /* The number of sequences. <= capacity. */
size_t capacity; /* The capacity starting from `seq` pointer */
} rawSeqStore_t;
typedef struct {
U32 idx; /* Index in array of ZSTD_Sequence */
U32 posInSequence; /* Position within sequence at idx */
size_t posInSrc; /* Number of bytes given by sequences provided so far */
} ZSTD_sequencePosition;
UNUSED_ATTR static const rawSeqStore_t kNullRawSeqStore = {NULL, 0, 0, 0, 0};
typedef struct {
int price;
U32 off;
U32 mlen;
U32 litlen;
U32 rep[ZSTD_REP_NUM];
} ZSTD_optimal_t;
typedef enum { zop_dynamic=0, zop_predef } ZSTD_OptPrice_e;
typedef struct {
/* All tables are allocated inside cctx->workspace by ZSTD_resetCCtx_internal() */
unsigned* litFreq; /* table of literals statistics, of size 256 */
unsigned* litLengthFreq; /* table of litLength statistics, of size (MaxLL+1) */
unsigned* matchLengthFreq; /* table of matchLength statistics, of size (MaxML+1) */
unsigned* offCodeFreq; /* table of offCode statistics, of size (MaxOff+1) */
ZSTD_match_t* matchTable; /* list of found matches, of size ZSTD_OPT_NUM+1 */
ZSTD_optimal_t* priceTable; /* All positions tracked by optimal parser, of size ZSTD_OPT_NUM+1 */
U32 litSum; /* nb of literals */
U32 litLengthSum; /* nb of litLength codes */
U32 matchLengthSum; /* nb of matchLength codes */
U32 offCodeSum; /* nb of offset codes */
U32 litSumBasePrice; /* to compare to log2(litfreq) */
U32 litLengthSumBasePrice; /* to compare to log2(llfreq) */
U32 matchLengthSumBasePrice;/* to compare to log2(mlfreq) */
U32 offCodeSumBasePrice; /* to compare to log2(offreq) */
ZSTD_OptPrice_e priceType; /* prices can be determined dynamically, or follow a pre-defined cost structure */
const ZSTD_entropyCTables_t* symbolCosts; /* pre-calculated dictionary statistics */
ZSTD_paramSwitch_e literalCompressionMode;
} optState_t;
typedef struct {
ZSTD_entropyCTables_t entropy;
U32 rep[ZSTD_REP_NUM];
} ZSTD_compressedBlockState_t;
typedef struct {
BYTE const* nextSrc; /* next block here to continue on current prefix */
BYTE const* base; /* All regular indexes relative to this position */
BYTE const* dictBase; /* extDict indexes relative to this position */
U32 dictLimit; /* below that point, need extDict */
U32 lowLimit; /* below that point, no more valid data */
U32 nbOverflowCorrections; /* Number of times overflow correction has run since
* ZSTD_window_init(). Useful for debugging coredumps
* and for ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY.
*/
} ZSTD_window_t;
#define ZSTD_WINDOW_START_INDEX 2
typedef struct ZSTD_matchState_t ZSTD_matchState_t;
#define ZSTD_ROW_HASH_CACHE_SIZE 8 /* Size of prefetching hash cache for row-based matchfinder */
struct ZSTD_matchState_t {
ZSTD_window_t window; /* State for window round buffer management */
U32 loadedDictEnd; /* index of end of dictionary, within context's referential.
* When loadedDictEnd != 0, a dictionary is in use, and still valid.
* This relies on a mechanism to set loadedDictEnd=0 when dictionary is no longer within distance.
* Such mechanism is provided within ZSTD_window_enforceMaxDist() and ZSTD_checkDictValidity().
* When dict referential is copied into active context (i.e. not attached),
* loadedDictEnd == dictSize, since referential starts from zero.
*/
U32 nextToUpdate; /* index from which to continue table update */
U32 hashLog3; /* dispatch table for matches of len==3 : larger == faster, more memory */
U32 rowHashLog; /* For row-based matchfinder: Hashlog based on nb of rows in the hashTable.*/
U16* tagTable; /* For row-based matchFinder: A row-based table containing the hashes and head index. */
U32 hashCache[ZSTD_ROW_HASH_CACHE_SIZE]; /* For row-based matchFinder: a cache of hashes to improve speed */
U32* hashTable;
U32* hashTable3;
U32* chainTable;
U32 forceNonContiguous; /* Non-zero if we should force non-contiguous load for the next window update. */
int dedicatedDictSearch; /* Indicates whether this matchState is using the
* dedicated dictionary search structure.
*/
optState_t opt; /* optimal parser state */
const ZSTD_matchState_t* dictMatchState;
ZSTD_compressionParameters cParams;
const rawSeqStore_t* ldmSeqStore;
/* Controls prefetching in some dictMatchState matchfinders.
* This behavior is controlled from the cctx ms.
* This parameter has no effect in the cdict ms. */
int prefetchCDictTables;
};
typedef struct {
ZSTD_compressedBlockState_t* prevCBlock;
ZSTD_compressedBlockState_t* nextCBlock;
ZSTD_matchState_t matchState;
} ZSTD_blockState_t;
typedef struct {
U32 offset;
U32 checksum;
} ldmEntry_t;
typedef struct {
BYTE const* split;
U32 hash;
U32 checksum;
ldmEntry_t* bucket;
} ldmMatchCandidate_t;
#define LDM_BATCH_SIZE 64
typedef struct {
ZSTD_window_t window; /* State for the window round buffer management */
ldmEntry_t* hashTable;
U32 loadedDictEnd;
BYTE* bucketOffsets; /* Next position in bucket to insert entry */
size_t splitIndices[LDM_BATCH_SIZE];
ldmMatchCandidate_t matchCandidates[LDM_BATCH_SIZE];
} ldmState_t;
typedef struct {
ZSTD_paramSwitch_e enableLdm; /* ZSTD_ps_enable to enable LDM. ZSTD_ps_auto by default */
U32 hashLog; /* Log size of hashTable */
U32 bucketSizeLog; /* Log bucket size for collision resolution, at most 8 */
U32 minMatchLength; /* Minimum match length */
U32 hashRateLog; /* Log number of entries to skip */
U32 windowLog; /* Window log for the LDM */
} ldmParams_t;
typedef struct {
int collectSequences;
ZSTD_Sequence* seqStart;
size_t seqIndex;
size_t maxSequences;
} SeqCollector;
struct ZSTD_CCtx_params_s {
ZSTD_format_e format;
ZSTD_compressionParameters cParams;
ZSTD_frameParameters fParams;
int compressionLevel;
int forceWindow; /* force back-references to respect limit of
* 1<<wLog, even for dictionary */
size_t targetCBlockSize; /* Tries to fit compressed block size to be around targetCBlockSize.
* No target when targetCBlockSize == 0.
* There is no guarantee on compressed block size */
int srcSizeHint; /* User's best guess of source size.
* Hint is not valid when srcSizeHint == 0.
* There is no guarantee that hint is close to actual source size */
ZSTD_dictAttachPref_e attachDictPref;
ZSTD_paramSwitch_e literalCompressionMode;
/* Multithreading: used to pass parameters to mtctx */
int nbWorkers;
size_t jobSize;
int overlapLog;
int rsyncable;
/* Long distance matching parameters */
ldmParams_t ldmParams;
/* Dedicated dict search algorithm trigger */
int enableDedicatedDictSearch;
/* Input/output buffer modes */
ZSTD_bufferMode_e inBufferMode;
ZSTD_bufferMode_e outBufferMode;
/* Sequence compression API */
ZSTD_sequenceFormat_e blockDelimiters;
int validateSequences;
/* Block splitting */
ZSTD_paramSwitch_e useBlockSplitter;
/* Param for deciding whether to use row-based matchfinder */
ZSTD_paramSwitch_e useRowMatchFinder;
/* Always load a dictionary in ext-dict mode (not prefix mode)? */
int deterministicRefPrefix;
/* Internal use, for createCCtxParams() and freeCCtxParams() only */
ZSTD_customMem customMem;
/* Controls prefetching in some dictMatchState matchfinders */
ZSTD_paramSwitch_e prefetchCDictTables;
/* Controls whether zstd will fall back to an internal matchfinder
* if the external matchfinder returns an error code. */
int enableMatchFinderFallback;
/* Indicates whether an external matchfinder has been referenced.
* Users can't set this externally.
* It is set internally in ZSTD_registerSequenceProducer(). */
int useSequenceProducer;
/* Adjust the max block size*/
size_t maxBlockSize;
/* Controls repcode search in external sequence parsing */
ZSTD_paramSwitch_e searchForExternalRepcodes;
}; /* typedef'd to ZSTD_CCtx_params within "zstd.h" */
#define COMPRESS_SEQUENCES_WORKSPACE_SIZE (sizeof(unsigned) * (MaxSeq + 2))
#define ENTROPY_WORKSPACE_SIZE (HUF_WORKSPACE_SIZE + COMPRESS_SEQUENCES_WORKSPACE_SIZE)
/**
* Indicates whether this compression proceeds directly from user-provided
* source buffer to user-provided destination buffer (ZSTDb_not_buffered), or
* whether the context needs to buffer the input/output (ZSTDb_buffered).
*/
typedef enum {
ZSTDb_not_buffered,
ZSTDb_buffered
} ZSTD_buffered_policy_e;
/**
* Struct that contains all elements of block splitter that should be allocated
* in a wksp.
*/
#define ZSTD_MAX_NB_BLOCK_SPLITS 196
typedef struct {
seqStore_t fullSeqStoreChunk;
seqStore_t firstHalfSeqStore;
seqStore_t secondHalfSeqStore;
seqStore_t currSeqStore;
seqStore_t nextSeqStore;
U32 partitions[ZSTD_MAX_NB_BLOCK_SPLITS];
ZSTD_entropyCTablesMetadata_t entropyMetadata;
} ZSTD_blockSplitCtx;
/* Context for block-level external matchfinder API */
typedef struct {
void* mState;
ZSTD_sequenceProducer_F* mFinder;
ZSTD_Sequence* seqBuffer;
size_t seqBufferCapacity;
} ZSTD_externalMatchCtx;
struct ZSTD_CCtx_s {
ZSTD_compressionStage_e stage;
int cParamsChanged; /* == 1 if cParams(except wlog) or compression level are changed in requestedParams. Triggers transmission of new params to ZSTDMT (if available) then reset to 0. */
int bmi2; /* == 1 if the CPU supports BMI2 and 0 otherwise. CPU support is determined dynamically once per context lifetime. */
ZSTD_CCtx_params requestedParams;
ZSTD_CCtx_params appliedParams;
ZSTD_CCtx_params simpleApiParams; /* Param storage used by the simple API - not sticky. Must only be used in top-level simple API functions for storage. */
U32 dictID;
size_t dictContentSize;
ZSTD_cwksp workspace; /* manages buffer for dynamic allocations */
size_t blockSize;
unsigned long long pledgedSrcSizePlusOne; /* this way, 0 (default) == unknown */
unsigned long long consumedSrcSize;
unsigned long long producedCSize;
XXH64_state_t xxhState;
ZSTD_customMem customMem;
ZSTD_threadPool* pool;
size_t staticSize;
SeqCollector seqCollector;
int isFirstBlock;
int initialized;
seqStore_t seqStore; /* sequences storage ptrs */
ldmState_t ldmState; /* long distance matching state */
rawSeq* ldmSequences; /* Storage for the ldm output sequences */
size_t maxNbLdmSequences;
rawSeqStore_t externSeqStore; /* Mutable reference to external sequences */
ZSTD_blockState_t blockState;
U32* entropyWorkspace; /* entropy workspace of ENTROPY_WORKSPACE_SIZE bytes */
/* Whether we are streaming or not */
ZSTD_buffered_policy_e bufferedPolicy;
/* streaming */
char* inBuff;
size_t inBuffSize;
size_t inToCompress;
size_t inBuffPos;
size_t inBuffTarget;
char* outBuff;
size_t outBuffSize;
size_t outBuffContentSize;
size_t outBuffFlushedSize;
ZSTD_cStreamStage streamStage;
U32 frameEnded;
/* Stable in/out buffer verification */
ZSTD_inBuffer expectedInBuffer;
size_t stableIn_notConsumed; /* nb bytes within stable input buffer that are said to be consumed but are not */
size_t expectedOutBufferSize;
/* Dictionary */
ZSTD_localDict localDict;
const ZSTD_CDict* cdict;
ZSTD_prefixDict prefixDict; /* single-usage dictionary */
/* Multi-threading */
#ifdef ZSTD_MULTITHREAD
ZSTDMT_CCtx* mtctx;
#endif
/* Tracing */
#if ZSTD_TRACE
ZSTD_TraceCtx traceCtx;
#endif
/* Workspace for block splitter */
ZSTD_blockSplitCtx blockSplitCtx;
/* Workspace for external matchfinder */
ZSTD_externalMatchCtx externalMatchCtx;
};
typedef enum { ZSTD_dtlm_fast, ZSTD_dtlm_full } ZSTD_dictTableLoadMethod_e;
typedef enum { ZSTD_tfp_forCCtx, ZSTD_tfp_forCDict } ZSTD_tableFillPurpose_e;
typedef enum {
ZSTD_noDict = 0,
ZSTD_extDict = 1,
ZSTD_dictMatchState = 2,
ZSTD_dedicatedDictSearch = 3
} ZSTD_dictMode_e;
typedef enum {
ZSTD_cpm_noAttachDict = 0, /* Compression with ZSTD_noDict or ZSTD_extDict.
* In this mode we use both the srcSize and the dictSize
* when selecting and adjusting parameters.
*/
ZSTD_cpm_attachDict = 1, /* Compression with ZSTD_dictMatchState or ZSTD_dedicatedDictSearch.
* In this mode we only take the srcSize into account when selecting
* and adjusting parameters.
*/
ZSTD_cpm_createCDict = 2, /* Creating a CDict.
* In this mode we take both the source size and the dictionary size
* into account when selecting and adjusting the parameters.
*/
ZSTD_cpm_unknown = 3 /* ZSTD_getCParams, ZSTD_getParams, ZSTD_adjustParams.
* We don't know what these parameters are for. We default to the legacy
* behavior of taking both the source size and the dict size into account
* when selecting and adjusting parameters.
*/
} ZSTD_cParamMode_e;
typedef size_t (*ZSTD_blockCompressor) (
ZSTD_matchState_t* bs, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, ZSTD_paramSwitch_e rowMatchfinderMode, ZSTD_dictMode_e dictMode);
MEM_STATIC U32 ZSTD_LLcode(U32 litLength)
{
static const BYTE LL_Code[64] = { 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15,
16, 16, 17, 17, 18, 18, 19, 19,
20, 20, 20, 20, 21, 21, 21, 21,
22, 22, 22, 22, 22, 22, 22, 22,
23, 23, 23, 23, 23, 23, 23, 23,
24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24 };
static const U32 LL_deltaCode = 19;
return (litLength > 63) ? ZSTD_highbit32(litLength) + LL_deltaCode : LL_Code[litLength];
}
/* ZSTD_MLcode() :
* note : mlBase = matchLength - MINMATCH;
* because it's the format it's stored in seqStore->sequences */
MEM_STATIC U32 ZSTD_MLcode(U32 mlBase)
{
static const BYTE ML_Code[128] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 36, 36, 37, 37, 37, 37,
38, 38, 38, 38, 38, 38, 38, 38, 39, 39, 39, 39, 39, 39, 39, 39,
40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40,
41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42 };
static const U32 ML_deltaCode = 36;
return (mlBase > 127) ? ZSTD_highbit32(mlBase) + ML_deltaCode : ML_Code[mlBase];
}
/* ZSTD_cParam_withinBounds:
* @return 1 if value is within cParam bounds,
* 0 otherwise */
MEM_STATIC int ZSTD_cParam_withinBounds(ZSTD_cParameter cParam, int value)
{
ZSTD_bounds const bounds = ZSTD_cParam_getBounds(cParam);
if (ZSTD_isError(bounds.error)) return 0;
if (value < bounds.lowerBound) return 0;
if (value > bounds.upperBound) return 0;
return 1;
}
/* ZSTD_noCompressBlock() :
* Writes uncompressed block to dst buffer from given src.
* Returns the size of the block */
MEM_STATIC size_t
ZSTD_noCompressBlock(void* dst, size_t dstCapacity, const void* src, size_t srcSize, U32 lastBlock)
{
U32 const cBlockHeader24 = lastBlock + (((U32)bt_raw)<<1) + (U32)(srcSize << 3);
DEBUGLOG(5, "ZSTD_noCompressBlock (srcSize=%zu, dstCapacity=%zu)", srcSize, dstCapacity);
RETURN_ERROR_IF(srcSize + ZSTD_blockHeaderSize > dstCapacity,
dstSize_tooSmall, "dst buf too small for uncompressed block");
MEM_writeLE24(dst, cBlockHeader24);
ZSTD_memcpy((BYTE*)dst + ZSTD_blockHeaderSize, src, srcSize);
return ZSTD_blockHeaderSize + srcSize;
}
MEM_STATIC size_t
ZSTD_rleCompressBlock(void* dst, size_t dstCapacity, BYTE src, size_t srcSize, U32 lastBlock)
{
BYTE* const op = (BYTE*)dst;
U32 const cBlockHeader = lastBlock + (((U32)bt_rle)<<1) + (U32)(srcSize << 3);
RETURN_ERROR_IF(dstCapacity < 4, dstSize_tooSmall, "");
MEM_writeLE24(op, cBlockHeader);
op[3] = src;
return 4;
}
/* ZSTD_minGain() :
* minimum compression required
* to generate a compress block or a compressed literals section.
* note : use same formula for both situations */
MEM_STATIC size_t ZSTD_minGain(size_t srcSize, ZSTD_strategy strat)
{
U32 const minlog = (strat>=ZSTD_btultra) ? (U32)(strat) - 1 : 6;
ZSTD_STATIC_ASSERT(ZSTD_btultra == 8);
assert(ZSTD_cParam_withinBounds(ZSTD_c_strategy, (int)strat));
return (srcSize >> minlog) + 2;
}
MEM_STATIC int ZSTD_literalsCompressionIsDisabled(const ZSTD_CCtx_params* cctxParams)
{
switch (cctxParams->literalCompressionMode) {
case ZSTD_ps_enable:
return 0;
case ZSTD_ps_disable:
return 1;
default:
assert(0 /* impossible: pre-validated */);
ZSTD_FALLTHROUGH;
case ZSTD_ps_auto:
return (cctxParams->cParams.strategy == ZSTD_fast) && (cctxParams->cParams.targetLength > 0);
}
}
/*! ZSTD_safecopyLiterals() :
* memcpy() function that won't read beyond more than WILDCOPY_OVERLENGTH bytes past ilimit_w.
* Only called when the sequence ends past ilimit_w, so it only needs to be optimized for single
* large copies.
*/
static void
ZSTD_safecopyLiterals(BYTE* op, BYTE const* ip, BYTE const* const iend, BYTE const* ilimit_w)
{
assert(iend > ilimit_w);
if (ip <= ilimit_w) {
ZSTD_wildcopy(op, ip, ilimit_w - ip, ZSTD_no_overlap);
op += ilimit_w - ip;
ip = ilimit_w;
}
while (ip < iend) *op++ = *ip++;
}
#define REPCODE1_TO_OFFBASE REPCODE_TO_OFFBASE(1)
#define REPCODE2_TO_OFFBASE REPCODE_TO_OFFBASE(2)
#define REPCODE3_TO_OFFBASE REPCODE_TO_OFFBASE(3)
#define REPCODE_TO_OFFBASE(r) (assert((r)>=1), assert((r)<=ZSTD_REP_NUM), (r)) /* accepts IDs 1,2,3 */
#define OFFSET_TO_OFFBASE(o) (assert((o)>0), o + ZSTD_REP_NUM)
#define OFFBASE_IS_OFFSET(o) ((o) > ZSTD_REP_NUM)
#define OFFBASE_IS_REPCODE(o) ( 1 <= (o) && (o) <= ZSTD_REP_NUM)
#define OFFBASE_TO_OFFSET(o) (assert(OFFBASE_IS_OFFSET(o)), (o) - ZSTD_REP_NUM)
#define OFFBASE_TO_REPCODE(o) (assert(OFFBASE_IS_REPCODE(o)), (o)) /* returns ID 1,2,3 */
/*! ZSTD_storeSeq() :
* Store a sequence (litlen, litPtr, offBase and matchLength) into seqStore_t.
* @offBase : Users should employ macros REPCODE_TO_OFFBASE() and OFFSET_TO_OFFBASE().
* @matchLength : must be >= MINMATCH
* Allowed to over-read literals up to litLimit.
*/
HINT_INLINE UNUSED_ATTR void
ZSTD_storeSeq(seqStore_t* seqStorePtr,
size_t litLength, const BYTE* literals, const BYTE* litLimit,
U32 offBase,
size_t matchLength)
{
BYTE const* const litLimit_w = litLimit - WILDCOPY_OVERLENGTH;
BYTE const* const litEnd = literals + litLength;
#if defined(DEBUGLEVEL) && (DEBUGLEVEL >= 6)
static const BYTE* g_start = NULL;
if (g_start==NULL) g_start = (const BYTE*)literals; /* note : index only works for compression within a single segment */
{ U32 const pos = (U32)((const BYTE*)literals - g_start);
DEBUGLOG(6, "Cpos%7u :%3u literals, match%4u bytes at offBase%7u",
pos, (U32)litLength, (U32)matchLength, (U32)offBase);
}
#endif
assert((size_t)(seqStorePtr->sequences - seqStorePtr->sequencesStart) < seqStorePtr->maxNbSeq);
/* copy Literals */
assert(seqStorePtr->maxNbLit <= 128 KB);
assert(seqStorePtr->lit + litLength <= seqStorePtr->litStart + seqStorePtr->maxNbLit);
assert(literals + litLength <= litLimit);
if (litEnd <= litLimit_w) {
/* Common case we can use wildcopy.
* First copy 16 bytes, because literals are likely short.
*/
ZSTD_STATIC_ASSERT(WILDCOPY_OVERLENGTH >= 16);
ZSTD_copy16(seqStorePtr->lit, literals);
if (litLength > 16) {
ZSTD_wildcopy(seqStorePtr->lit+16, literals+16, (ptrdiff_t)litLength-16, ZSTD_no_overlap);
}
} else {
ZSTD_safecopyLiterals(seqStorePtr->lit, literals, litEnd, litLimit_w);
}
seqStorePtr->lit += litLength;
/* literal Length */
if (litLength>0xFFFF) {
assert(seqStorePtr->longLengthType == ZSTD_llt_none); /* there can only be a single long length */
seqStorePtr->longLengthType = ZSTD_llt_literalLength;
seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
}
seqStorePtr->sequences[0].litLength = (U16)litLength;
/* match offset */
seqStorePtr->sequences[0].offBase = offBase;
/* match Length */
assert(matchLength >= MINMATCH);
{ size_t const mlBase = matchLength - MINMATCH;
if (mlBase>0xFFFF) {
assert(seqStorePtr->longLengthType == ZSTD_llt_none); /* there can only be a single long length */
seqStorePtr->longLengthType = ZSTD_llt_matchLength;
seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
}
seqStorePtr->sequences[0].mlBase = (U16)mlBase;
}
seqStorePtr->sequences++;
}
/* ZSTD_updateRep() :
* updates in-place @rep (array of repeat offsets)
* @offBase : sum-type, using numeric representation of ZSTD_storeSeq()
*/
MEM_STATIC void
ZSTD_updateRep(U32 rep[ZSTD_REP_NUM], U32 const offBase, U32 const ll0)
{
if (OFFBASE_IS_OFFSET(offBase)) { /* full offset */
rep[2] = rep[1];
rep[1] = rep[0];
rep[0] = OFFBASE_TO_OFFSET(offBase);
} else { /* repcode */
U32 const repCode = OFFBASE_TO_REPCODE(offBase) - 1 + ll0;
if (repCode > 0) { /* note : if repCode==0, no change */
U32 const currentOffset = (repCode==ZSTD_REP_NUM) ? (rep[0] - 1) : rep[repCode];
rep[2] = (repCode >= 2) ? rep[1] : rep[2];
rep[1] = rep[0];
rep[0] = currentOffset;
} else { /* repCode == 0 */
/* nothing to do */
}
}
}
typedef struct repcodes_s {
U32 rep[3];
} repcodes_t;
MEM_STATIC repcodes_t
ZSTD_newRep(U32 const rep[ZSTD_REP_NUM], U32 const offBase, U32 const ll0)
{
repcodes_t newReps;
ZSTD_memcpy(&newReps, rep, sizeof(newReps));
ZSTD_updateRep(newReps.rep, offBase, ll0);
return newReps;
}
/*-*************************************
* Match length counter
***************************************/
MEM_STATIC size_t ZSTD_count(const BYTE* pIn, const BYTE* pMatch, const BYTE* const pInLimit)
{
const BYTE* const pStart = pIn;
const BYTE* const pInLoopLimit = pInLimit - (sizeof(size_t)-1);
if (pIn < pInLoopLimit) {
{ size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
if (diff) return ZSTD_NbCommonBytes(diff); }
pIn+=sizeof(size_t); pMatch+=sizeof(size_t);
while (pIn < pInLoopLimit) {
size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
if (!diff) { pIn+=sizeof(size_t); pMatch+=sizeof(size_t); continue; }
pIn += ZSTD_NbCommonBytes(diff);
return (size_t)(pIn - pStart);
} }
if (MEM_64bits() && (pIn<(pInLimit-3)) && (MEM_read32(pMatch) == MEM_read32(pIn))) { pIn+=4; pMatch+=4; }
if ((pIn<(pInLimit-1)) && (MEM_read16(pMatch) == MEM_read16(pIn))) { pIn+=2; pMatch+=2; }
if ((pIn<pInLimit) && (*pMatch == *pIn)) pIn++;
return (size_t)(pIn - pStart);
}
/** ZSTD_count_2segments() :
* can count match length with `ip` & `match` in 2 different segments.
* convention : on reaching mEnd, match count continue starting from iStart
*/
MEM_STATIC size_t
ZSTD_count_2segments(const BYTE* ip, const BYTE* match,
const BYTE* iEnd, const BYTE* mEnd, const BYTE* iStart)
{
const BYTE* const vEnd = MIN( ip + (mEnd - match), iEnd);
size_t const matchLength = ZSTD_count(ip, match, vEnd);
if (match + matchLength != mEnd) return matchLength;
DEBUGLOG(7, "ZSTD_count_2segments: found a 2-parts match (current length==%zu)", matchLength);
DEBUGLOG(7, "distance from match beginning to end dictionary = %zi", mEnd - match);
DEBUGLOG(7, "distance from current pos to end buffer = %zi", iEnd - ip);
DEBUGLOG(7, "next byte : ip==%02X, istart==%02X", ip[matchLength], *iStart);
DEBUGLOG(7, "final match length = %zu", matchLength + ZSTD_count(ip+matchLength, iStart, iEnd));
return matchLength + ZSTD_count(ip+matchLength, iStart, iEnd);
}
/*-*************************************
* Hashes
***************************************/
static const U32 prime3bytes = 506832829U;
static U32 ZSTD_hash3(U32 u, U32 h) { assert(h <= 32); return ((u << (32-24)) * prime3bytes) >> (32-h) ; }
MEM_STATIC size_t ZSTD_hash3Ptr(const void* ptr, U32 h) { return ZSTD_hash3(MEM_readLE32(ptr), h); } /* only in zstd_opt.h */
static const U32 prime4bytes = 2654435761U;
static U32 ZSTD_hash4(U32 u, U32 h) { assert(h <= 32); return (u * prime4bytes) >> (32-h) ; }
static size_t ZSTD_hash4Ptr(const void* ptr, U32 h) { return ZSTD_hash4(MEM_readLE32(ptr), h); }
static const U64 prime5bytes = 889523592379ULL;
static size_t ZSTD_hash5(U64 u, U32 h) { assert(h <= 64); return (size_t)(((u << (64-40)) * prime5bytes) >> (64-h)) ; }
static size_t ZSTD_hash5Ptr(const void* p, U32 h) { return ZSTD_hash5(MEM_readLE64(p), h); }
static const U64 prime6bytes = 227718039650203ULL;
static size_t ZSTD_hash6(U64 u, U32 h) { assert(h <= 64); return (size_t)(((u << (64-48)) * prime6bytes) >> (64-h)) ; }
static size_t ZSTD_hash6Ptr(const void* p, U32 h) { return ZSTD_hash6(MEM_readLE64(p), h); }
static const U64 prime7bytes = 58295818150454627ULL;
static size_t ZSTD_hash7(U64 u, U32 h) { assert(h <= 64); return (size_t)(((u << (64-56)) * prime7bytes) >> (64-h)) ; }
static size_t ZSTD_hash7Ptr(const void* p, U32 h) { return ZSTD_hash7(MEM_readLE64(p), h); }
static const U64 prime8bytes = 0xCF1BBCDCB7A56463ULL;
static size_t ZSTD_hash8(U64 u, U32 h) { assert(h <= 64); return (size_t)(((u) * prime8bytes) >> (64-h)) ; }
static size_t ZSTD_hash8Ptr(const void* p, U32 h) { return ZSTD_hash8(MEM_readLE64(p), h); }
MEM_STATIC FORCE_INLINE_ATTR
size_t ZSTD_hashPtr(const void* p, U32 hBits, U32 mls)
{
/* Although some of these hashes do support hBits up to 64, some do not.
* To be on the safe side, always avoid hBits > 32. */
assert(hBits <= 32);
switch(mls)
{
default:
case 4: return ZSTD_hash4Ptr(p, hBits);
case 5: return ZSTD_hash5Ptr(p, hBits);
case 6: return ZSTD_hash6Ptr(p, hBits);
case 7: return ZSTD_hash7Ptr(p, hBits);
case 8: return ZSTD_hash8Ptr(p, hBits);
}
}
/** ZSTD_ipow() :
* Return base^exponent.
*/
static U64 ZSTD_ipow(U64 base, U64 exponent)
{
U64 power = 1;
while (exponent) {
if (exponent & 1) power *= base;
exponent >>= 1;
base *= base;
}
return power;
}
#define ZSTD_ROLL_HASH_CHAR_OFFSET 10
/** ZSTD_rollingHash_append() :
* Add the buffer to the hash value.
*/
static U64 ZSTD_rollingHash_append(U64 hash, void const* buf, size_t size)
{
BYTE const* istart = (BYTE const*)buf;
size_t pos;
for (pos = 0; pos < size; ++pos) {
hash *= prime8bytes;
hash += istart[pos] + ZSTD_ROLL_HASH_CHAR_OFFSET;
}
return hash;
}
/** ZSTD_rollingHash_compute() :
* Compute the rolling hash value of the buffer.
*/
MEM_STATIC U64 ZSTD_rollingHash_compute(void const* buf, size_t size)
{
return ZSTD_rollingHash_append(0, buf, size);
}
/** ZSTD_rollingHash_primePower() :
* Compute the primePower to be passed to ZSTD_rollingHash_rotate() for a hash
* over a window of length bytes.
*/
MEM_STATIC U64 ZSTD_rollingHash_primePower(U32 length)
{
return ZSTD_ipow(prime8bytes, length - 1);
}
/** ZSTD_rollingHash_rotate() :
* Rotate the rolling hash by one byte.
*/
MEM_STATIC U64 ZSTD_rollingHash_rotate(U64 hash, BYTE toRemove, BYTE toAdd, U64 primePower)
{
hash -= (toRemove + ZSTD_ROLL_HASH_CHAR_OFFSET) * primePower;
hash *= prime8bytes;
hash += toAdd + ZSTD_ROLL_HASH_CHAR_OFFSET;
return hash;
}
/*-*************************************
* Round buffer management
***************************************/
#if (ZSTD_WINDOWLOG_MAX_64 > 31)
# error "ZSTD_WINDOWLOG_MAX is too large : would overflow ZSTD_CURRENT_MAX"
#endif
/* Max current allowed */
#define ZSTD_CURRENT_MAX ((3U << 29) + (1U << ZSTD_WINDOWLOG_MAX))
/* Maximum chunk size before overflow correction needs to be called again */
#define ZSTD_CHUNKSIZE_MAX \
( ((U32)-1) /* Maximum ending current index */ \
- ZSTD_CURRENT_MAX) /* Maximum beginning lowLimit */
/**
* ZSTD_window_clear():
* Clears the window containing the history by simply setting it to empty.
*/
MEM_STATIC void ZSTD_window_clear(ZSTD_window_t* window)
{
size_t const endT = (size_t)(window->nextSrc - window->base);
U32 const end = (U32)endT;
window->lowLimit = end;
window->dictLimit = end;
}
MEM_STATIC U32 ZSTD_window_isEmpty(ZSTD_window_t const window)
{
return window.dictLimit == ZSTD_WINDOW_START_INDEX &&
window.lowLimit == ZSTD_WINDOW_START_INDEX &&
(window.nextSrc - window.base) == ZSTD_WINDOW_START_INDEX;
}
/**
* ZSTD_window_hasExtDict():
* Returns non-zero if the window has a non-empty extDict.
*/
MEM_STATIC U32 ZSTD_window_hasExtDict(ZSTD_window_t const window)
{
return window.lowLimit < window.dictLimit;
}
/**
* ZSTD_matchState_dictMode():
* Inspects the provided matchState and figures out what dictMode should be
* passed to the compressor.
*/
MEM_STATIC ZSTD_dictMode_e ZSTD_matchState_dictMode(const ZSTD_matchState_t *ms)
{
return ZSTD_window_hasExtDict(ms->window) ?
ZSTD_extDict :
ms->dictMatchState != NULL ?
(ms->dictMatchState->dedicatedDictSearch ? ZSTD_dedicatedDictSearch : ZSTD_dictMatchState) :
ZSTD_noDict;
}
/* Defining this macro to non-zero tells zstd to run the overflow correction
* code much more frequently. This is very inefficient, and should only be
* used for tests and fuzzers.
*/
#ifndef ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY
# ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
# define ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY 1
# else
# define ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY 0
# endif
#endif
/**
* ZSTD_window_canOverflowCorrect():
* Returns non-zero if the indices are large enough for overflow correction
* to work correctly without impacting compression ratio.
*/
MEM_STATIC U32 ZSTD_window_canOverflowCorrect(ZSTD_window_t const window,
U32 cycleLog,
U32 maxDist,
U32 loadedDictEnd,
void const* src)
{
U32 const cycleSize = 1u << cycleLog;
U32 const curr = (U32)((BYTE const*)src - window.base);
U32 const minIndexToOverflowCorrect = cycleSize
+ MAX(maxDist, cycleSize)
+ ZSTD_WINDOW_START_INDEX;
/* Adjust the min index to backoff the overflow correction frequency,
* so we don't waste too much CPU in overflow correction. If this
* computation overflows we don't really care, we just need to make
* sure it is at least minIndexToOverflowCorrect.
*/
U32 const adjustment = window.nbOverflowCorrections + 1;
U32 const adjustedIndex = MAX(minIndexToOverflowCorrect * adjustment,
minIndexToOverflowCorrect);
U32 const indexLargeEnough = curr > adjustedIndex;
/* Only overflow correct early if the dictionary is invalidated already,
* so we don't hurt compression ratio.
*/
U32 const dictionaryInvalidated = curr > maxDist + loadedDictEnd;
return indexLargeEnough && dictionaryInvalidated;
}
/**
* ZSTD_window_needOverflowCorrection():
* Returns non-zero if the indices are getting too large and need overflow
* protection.
*/
MEM_STATIC U32 ZSTD_window_needOverflowCorrection(ZSTD_window_t const window,
U32 cycleLog,
U32 maxDist,
U32 loadedDictEnd,
void const* src,
void const* srcEnd)
{
U32 const curr = (U32)((BYTE const*)srcEnd - window.base);
if (ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY) {
if (ZSTD_window_canOverflowCorrect(window, cycleLog, maxDist, loadedDictEnd, src)) {
return 1;
}
}
return curr > ZSTD_CURRENT_MAX;
}
/**
* ZSTD_window_correctOverflow():
* Reduces the indices to protect from index overflow.
* Returns the correction made to the indices, which must be applied to every
* stored index.
*
* The least significant cycleLog bits of the indices must remain the same,
* which may be 0. Every index up to maxDist in the past must be valid.
*/
MEM_STATIC U32 ZSTD_window_correctOverflow(ZSTD_window_t* window, U32 cycleLog,
U32 maxDist, void const* src)
{
/* preemptive overflow correction:
* 1. correction is large enough:
* lowLimit > (3<<29) ==> current > 3<<29 + 1<<windowLog
* 1<<windowLog <= newCurrent < 1<<chainLog + 1<<windowLog
*
* current - newCurrent
* > (3<<29 + 1<<windowLog) - (1<<windowLog + 1<<chainLog)
* > (3<<29) - (1<<chainLog)
* > (3<<29) - (1<<30) (NOTE: chainLog <= 30)
* > 1<<29
*
* 2. (ip+ZSTD_CHUNKSIZE_MAX - cctx->base) doesn't overflow:
* After correction, current is less than (1<<chainLog + 1<<windowLog).
* In 64-bit mode we are safe, because we have 64-bit ptrdiff_t.
* In 32-bit mode we are safe, because (chainLog <= 29), so
* ip+ZSTD_CHUNKSIZE_MAX - cctx->base < 1<<32.
* 3. (cctx->lowLimit + 1<<windowLog) < 1<<32:
* windowLog <= 31 ==> 3<<29 + 1<<windowLog < 7<<29 < 1<<32.
*/
U32 const cycleSize = 1u << cycleLog;
U32 const cycleMask = cycleSize - 1;
U32 const curr = (U32)((BYTE const*)src - window->base);
U32 const currentCycle = curr & cycleMask;
/* Ensure newCurrent - maxDist >= ZSTD_WINDOW_START_INDEX. */
U32 const currentCycleCorrection = currentCycle < ZSTD_WINDOW_START_INDEX
? MAX(cycleSize, ZSTD_WINDOW_START_INDEX)
: 0;
U32 const newCurrent = currentCycle
+ currentCycleCorrection
+ MAX(maxDist, cycleSize);
U32 const correction = curr - newCurrent;
/* maxDist must be a power of two so that:
* (newCurrent & cycleMask) == (curr & cycleMask)
* This is required to not corrupt the chains / binary tree.
*/
assert((maxDist & (maxDist - 1)) == 0);
assert((curr & cycleMask) == (newCurrent & cycleMask));
assert(curr > newCurrent);
if (!ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY) {
/* Loose bound, should be around 1<<29 (see above) */
assert(correction > 1<<28);
}
window->base += correction;
window->dictBase += correction;
if (window->lowLimit < correction + ZSTD_WINDOW_START_INDEX) {
window->lowLimit = ZSTD_WINDOW_START_INDEX;
} else {
window->lowLimit -= correction;
}
if (window->dictLimit < correction + ZSTD_WINDOW_START_INDEX) {
window->dictLimit = ZSTD_WINDOW_START_INDEX;
} else {
window->dictLimit -= correction;
}
/* Ensure we can still reference the full window. */
assert(newCurrent >= maxDist);
assert(newCurrent - maxDist >= ZSTD_WINDOW_START_INDEX);
/* Ensure that lowLimit and dictLimit didn't underflow. */
assert(window->lowLimit <= newCurrent);
assert(window->dictLimit <= newCurrent);
++window->nbOverflowCorrections;
DEBUGLOG(4, "Correction of 0x%x bytes to lowLimit=0x%x", correction,
window->lowLimit);
return correction;
}
/**
* ZSTD_window_enforceMaxDist():
* Updates lowLimit so that:
* (srcEnd - base) - lowLimit == maxDist + loadedDictEnd
*
* It ensures index is valid as long as index >= lowLimit.
* This must be called before a block compression call.
*
* loadedDictEnd is only defined if a dictionary is in use for current compression.
* As the name implies, loadedDictEnd represents the index at end of dictionary.
* The value lies within context's referential, it can be directly compared to blockEndIdx.
*
* If loadedDictEndPtr is NULL, no dictionary is in use, and we use loadedDictEnd == 0.
* If loadedDictEndPtr is not NULL, we set it to zero after updating lowLimit.
* This is because dictionaries are allowed to be referenced fully
* as long as the last byte of the dictionary is in the window.
* Once input has progressed beyond window size, dictionary cannot be referenced anymore.
*
* In normal dict mode, the dictionary lies between lowLimit and dictLimit.
* In dictMatchState mode, lowLimit and dictLimit are the same,
* and the dictionary is below them.
* forceWindow and dictMatchState are therefore incompatible.
*/
MEM_STATIC void
ZSTD_window_enforceMaxDist(ZSTD_window_t* window,
const void* blockEnd,
U32 maxDist,
U32* loadedDictEndPtr,
const ZSTD_matchState_t** dictMatchStatePtr)
{
U32 const blockEndIdx = (U32)((BYTE const*)blockEnd - window->base);
U32 const loadedDictEnd = (loadedDictEndPtr != NULL) ? *loadedDictEndPtr : 0;
DEBUGLOG(5, "ZSTD_window_enforceMaxDist: blockEndIdx=%u, maxDist=%u, loadedDictEnd=%u",
(unsigned)blockEndIdx, (unsigned)maxDist, (unsigned)loadedDictEnd);
/* - When there is no dictionary : loadedDictEnd == 0.
In which case, the test (blockEndIdx > maxDist) is merely to avoid
overflowing next operation `newLowLimit = blockEndIdx - maxDist`.
- When there is a standard dictionary :
Index referential is copied from the dictionary,
which means it starts from 0.
In which case, loadedDictEnd == dictSize,
and it makes sense to compare `blockEndIdx > maxDist + dictSize`
since `blockEndIdx` also starts from zero.
- When there is an attached dictionary :
loadedDictEnd is expressed within the referential of the context,
so it can be directly compared against blockEndIdx.
*/
if (blockEndIdx > maxDist + loadedDictEnd) {
U32 const newLowLimit = blockEndIdx - maxDist;
if (window->lowLimit < newLowLimit) window->lowLimit = newLowLimit;
if (window->dictLimit < window->lowLimit) {
DEBUGLOG(5, "Update dictLimit to match lowLimit, from %u to %u",
(unsigned)window->dictLimit, (unsigned)window->lowLimit);
window->dictLimit = window->lowLimit;
}
/* On reaching window size, dictionaries are invalidated */
if (loadedDictEndPtr) *loadedDictEndPtr = 0;
if (dictMatchStatePtr) *dictMatchStatePtr = NULL;
}
}
/* Similar to ZSTD_window_enforceMaxDist(),
* but only invalidates dictionary
* when input progresses beyond window size.
* assumption : loadedDictEndPtr and dictMatchStatePtr are valid (non NULL)
* loadedDictEnd uses same referential as window->base
* maxDist is the window size */
MEM_STATIC void
ZSTD_checkDictValidity(const ZSTD_window_t* window,
const void* blockEnd,
U32 maxDist,
U32* loadedDictEndPtr,
const ZSTD_matchState_t** dictMatchStatePtr)
{
assert(loadedDictEndPtr != NULL);
assert(dictMatchStatePtr != NULL);
{ U32 const blockEndIdx = (U32)((BYTE const*)blockEnd - window->base);
U32 const loadedDictEnd = *loadedDictEndPtr;
DEBUGLOG(5, "ZSTD_checkDictValidity: blockEndIdx=%u, maxDist=%u, loadedDictEnd=%u",
(unsigned)blockEndIdx, (unsigned)maxDist, (unsigned)loadedDictEnd);
assert(blockEndIdx >= loadedDictEnd);
if (blockEndIdx > loadedDictEnd + maxDist || loadedDictEnd != window->dictLimit) {
/* On reaching window size, dictionaries are invalidated.
* For simplification, if window size is reached anywhere within next block,
* the dictionary is invalidated for the full block.
*
* We also have to invalidate the dictionary if ZSTD_window_update() has detected
* non-contiguous segments, which means that loadedDictEnd != window->dictLimit.
* loadedDictEnd may be 0, if forceWindow is true, but in that case we never use
* dictMatchState, so setting it to NULL is not a problem.
*/
DEBUGLOG(6, "invalidating dictionary for current block (distance > windowSize)");
*loadedDictEndPtr = 0;
*dictMatchStatePtr = NULL;
} else {
if (*loadedDictEndPtr != 0) {
DEBUGLOG(6, "dictionary considered valid for current block");
} } }
}
MEM_STATIC void ZSTD_window_init(ZSTD_window_t* window) {
ZSTD_memset(window, 0, sizeof(*window));
window->base = (BYTE const*)" ";
window->dictBase = (BYTE const*)" ";
ZSTD_STATIC_ASSERT(ZSTD_DUBT_UNSORTED_MARK < ZSTD_WINDOW_START_INDEX); /* Start above ZSTD_DUBT_UNSORTED_MARK */
window->dictLimit = ZSTD_WINDOW_START_INDEX; /* start from >0, so that 1st position is valid */
window->lowLimit = ZSTD_WINDOW_START_INDEX; /* it ensures first and later CCtx usages compress the same */
window->nextSrc = window->base + ZSTD_WINDOW_START_INDEX; /* see issue #1241 */
window->nbOverflowCorrections = 0;
}
/**
* ZSTD_window_update():
* Updates the window by appending [src, src + srcSize) to the window.
* If it is not contiguous, the current prefix becomes the extDict, and we
* forget about the extDict. Handles overlap of the prefix and extDict.
* Returns non-zero if the segment is contiguous.
*/
MEM_STATIC U32 ZSTD_window_update(ZSTD_window_t* window,
void const* src, size_t srcSize,
int forceNonContiguous)
{
BYTE const* const ip = (BYTE const*)src;
U32 contiguous = 1;
DEBUGLOG(5, "ZSTD_window_update");
if (srcSize == 0)
return contiguous;
assert(window->base != NULL);
assert(window->dictBase != NULL);
/* Check if blocks follow each other */
if (src != window->nextSrc || forceNonContiguous) {
/* not contiguous */
size_t const distanceFromBase = (size_t)(window->nextSrc - window->base);
DEBUGLOG(5, "Non contiguous blocks, new segment starts at %u", window->dictLimit);
window->lowLimit = window->dictLimit;
assert(distanceFromBase == (size_t)(U32)distanceFromBase); /* should never overflow */
window->dictLimit = (U32)distanceFromBase;
window->dictBase = window->base;
window->base = ip - distanceFromBase;
/* ms->nextToUpdate = window->dictLimit; */
if (window->dictLimit - window->lowLimit < HASH_READ_SIZE) window->lowLimit = window->dictLimit; /* too small extDict */
contiguous = 0;
}
window->nextSrc = ip + srcSize;
/* if input and dictionary overlap : reduce dictionary (area presumed modified by input) */
if ( (ip+srcSize > window->dictBase + window->lowLimit)
& (ip < window->dictBase + window->dictLimit)) {
ptrdiff_t const highInputIdx = (ip + srcSize) - window->dictBase;
U32 const lowLimitMax = (highInputIdx > (ptrdiff_t)window->dictLimit) ? window->dictLimit : (U32)highInputIdx;
window->lowLimit = lowLimitMax;
DEBUGLOG(5, "Overlapping extDict and input : new lowLimit = %u", window->lowLimit);
}
return contiguous;
}
/**
* Returns the lowest allowed match index. It may either be in the ext-dict or the prefix.
*/
MEM_STATIC U32 ZSTD_getLowestMatchIndex(const ZSTD_matchState_t* ms, U32 curr, unsigned windowLog)
{
U32 const maxDistance = 1U << windowLog;
U32 const lowestValid = ms->window.lowLimit;
U32 const withinWindow = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid;
U32 const isDictionary = (ms->loadedDictEnd != 0);
/* When using a dictionary the entire dictionary is valid if a single byte of the dictionary
* is within the window. We invalidate the dictionary (and set loadedDictEnd to 0) when it isn't
* valid for the entire block. So this check is sufficient to find the lowest valid match index.
*/
U32 const matchLowest = isDictionary ? lowestValid : withinWindow;
return matchLowest;
}
/**
* Returns the lowest allowed match index in the prefix.
*/
MEM_STATIC U32 ZSTD_getLowestPrefixIndex(const ZSTD_matchState_t* ms, U32 curr, unsigned windowLog)
{
U32 const maxDistance = 1U << windowLog;
U32 const lowestValid = ms->window.dictLimit;
U32 const withinWindow = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid;
U32 const isDictionary = (ms->loadedDictEnd != 0);
/* When computing the lowest prefix index we need to take the dictionary into account to handle
* the edge case where the dictionary and the source are contiguous in memory.
*/
U32 const matchLowest = isDictionary ? lowestValid : withinWindow;
return matchLowest;
}
/* debug functions */
#if (DEBUGLEVEL>=2)
MEM_STATIC double ZSTD_fWeight(U32 rawStat)
{
U32 const fp_accuracy = 8;
U32 const fp_multiplier = (1 << fp_accuracy);
U32 const newStat = rawStat + 1;
U32 const hb = ZSTD_highbit32(newStat);
U32 const BWeight = hb * fp_multiplier;
U32 const FWeight = (newStat << fp_accuracy) >> hb;
U32 const weight = BWeight + FWeight;
assert(hb + fp_accuracy < 31);
return (double)weight / fp_multiplier;
}
/* display a table content,
* listing each element, its frequency, and its predicted bit cost */
MEM_STATIC void ZSTD_debugTable(const U32* table, U32 max)
{
unsigned u, sum;
for (u=0, sum=0; u<=max; u++) sum += table[u];
DEBUGLOG(2, "total nb elts: %u", sum);
for (u=0; u<=max; u++) {
DEBUGLOG(2, "%2u: %5u (%.2f)",
u, table[u], ZSTD_fWeight(sum) - ZSTD_fWeight(table[u]) );
}
}
#endif
/* Short Cache */
/* Normally, zstd matchfinders follow this flow:
* 1. Compute hash at ip
* 2. Load index from hashTable[hash]
* 3. Check if *ip == *(base + index)
* In dictionary compression, loading *(base + index) is often an L2 or even L3 miss.
*
* Short cache is an optimization which allows us to avoid step 3 most of the time
* when the data doesn't actually match. With short cache, the flow becomes:
* 1. Compute (hash, currentTag) at ip. currentTag is an 8-bit independent hash at ip.
* 2. Load (index, matchTag) from hashTable[hash]. See ZSTD_writeTaggedIndex to understand how this works.
* 3. Only if currentTag == matchTag, check *ip == *(base + index). Otherwise, continue.
*
* Currently, short cache is only implemented in CDict hashtables. Thus, its use is limited to
* dictMatchState matchfinders.
*/
#define ZSTD_SHORT_CACHE_TAG_BITS 8
#define ZSTD_SHORT_CACHE_TAG_MASK ((1u << ZSTD_SHORT_CACHE_TAG_BITS) - 1)
/* Helper function for ZSTD_fillHashTable and ZSTD_fillDoubleHashTable.
* Unpacks hashAndTag into (hash, tag), then packs (index, tag) into hashTable[hash]. */
MEM_STATIC void ZSTD_writeTaggedIndex(U32* const hashTable, size_t hashAndTag, U32 index) {
size_t const hash = hashAndTag >> ZSTD_SHORT_CACHE_TAG_BITS;
U32 const tag = (U32)(hashAndTag & ZSTD_SHORT_CACHE_TAG_MASK);
assert(index >> (32 - ZSTD_SHORT_CACHE_TAG_BITS) == 0);
hashTable[hash] = (index << ZSTD_SHORT_CACHE_TAG_BITS) | tag;
}
/* Helper function for short cache matchfinders.
* Unpacks tag1 and tag2 from lower bits of packedTag1 and packedTag2, then checks if the tags match. */
MEM_STATIC int ZSTD_comparePackedTags(size_t packedTag1, size_t packedTag2) {
U32 const tag1 = packedTag1 & ZSTD_SHORT_CACHE_TAG_MASK;
U32 const tag2 = packedTag2 & ZSTD_SHORT_CACHE_TAG_MASK;
return tag1 == tag2;
}
#if defined (__cplusplus)
}
#endif
/* ===============================================================
* Shared internal declarations
* These prototypes may be called from sources not in lib/compress
* =============================================================== */
/* ZSTD_loadCEntropy() :
* dict : must point at beginning of a valid zstd dictionary.
* return : size of dictionary header (size of magic number + dict ID + entropy tables)
* assumptions : magic number supposed already checked
* and dictSize >= 8 */
size_t ZSTD_loadCEntropy(ZSTD_compressedBlockState_t* bs, void* workspace,
const void* const dict, size_t dictSize);
void ZSTD_reset_compressedBlockState(ZSTD_compressedBlockState_t* bs);
/* ==============================================================
* Private declarations
* These prototypes shall only be called from within lib/compress
* ============================================================== */
/* ZSTD_getCParamsFromCCtxParams() :
* cParams are built depending on compressionLevel, src size hints,
* LDM and manually set compression parameters.
* Note: srcSizeHint == 0 means 0!
*/
ZSTD_compressionParameters ZSTD_getCParamsFromCCtxParams(
const ZSTD_CCtx_params* CCtxParams, U64 srcSizeHint, size_t dictSize, ZSTD_cParamMode_e mode);
/*! ZSTD_initCStream_internal() :
* Private use only. Init streaming operation.
* expects params to be valid.
* must receive dict, or cdict, or none, but not both.
* @return : 0, or an error code */
size_t ZSTD_initCStream_internal(ZSTD_CStream* zcs,
const void* dict, size_t dictSize,
const ZSTD_CDict* cdict,
const ZSTD_CCtx_params* params, unsigned long long pledgedSrcSize);
void ZSTD_resetSeqStore(seqStore_t* ssPtr);
/*! ZSTD_getCParamsFromCDict() :
* as the name implies */
ZSTD_compressionParameters ZSTD_getCParamsFromCDict(const ZSTD_CDict* cdict);
/* ZSTD_compressBegin_advanced_internal() :
* Private use only. To be called from zstdmt_compress.c. */
size_t ZSTD_compressBegin_advanced_internal(ZSTD_CCtx* cctx,
const void* dict, size_t dictSize,
ZSTD_dictContentType_e dictContentType,
ZSTD_dictTableLoadMethod_e dtlm,
const ZSTD_CDict* cdict,
const ZSTD_CCtx_params* params,
unsigned long long pledgedSrcSize);
/* ZSTD_compress_advanced_internal() :
* Private use only. To be called from zstdmt_compress.c. */
size_t ZSTD_compress_advanced_internal(ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict,size_t dictSize,
const ZSTD_CCtx_params* params);
/* ZSTD_writeLastEmptyBlock() :
* output an empty Block with end-of-frame mark to complete a frame
* @return : size of data written into `dst` (== ZSTD_blockHeaderSize (defined in zstd_internal.h))
* or an error code if `dstCapacity` is too small (<ZSTD_blockHeaderSize)
*/
size_t ZSTD_writeLastEmptyBlock(void* dst, size_t dstCapacity);
/* ZSTD_referenceExternalSequences() :
* Must be called before starting a compression operation.
* seqs must parse a prefix of the source.
* This cannot be used when long range matching is enabled.
* Zstd will use these sequences, and pass the literals to a secondary block
* compressor.
* @return : An error code on failure.
* NOTE: seqs are not verified! Invalid sequences can cause out-of-bounds memory
* access and data corruption.
*/
size_t ZSTD_referenceExternalSequences(ZSTD_CCtx* cctx, rawSeq* seq, size_t nbSeq);
/** ZSTD_cycleLog() :
* condition for correct operation : hashLog > 1 */
U32 ZSTD_cycleLog(U32 hashLog, ZSTD_strategy strat);
/** ZSTD_CCtx_trace() :
* Trace the end of a compression call.
*/
void ZSTD_CCtx_trace(ZSTD_CCtx* cctx, size_t extraCSize);
/* Returns 0 on success, and a ZSTD_error otherwise. This function scans through an array of
* ZSTD_Sequence, storing the sequences it finds, until it reaches a block delimiter.
* Note that the block delimiter must include the last literals of the block.
*/
size_t
ZSTD_copySequencesToSeqStoreExplicitBlockDelim(ZSTD_CCtx* cctx,
ZSTD_sequencePosition* seqPos,
const ZSTD_Sequence* const inSeqs, size_t inSeqsSize,
const void* src, size_t blockSize, ZSTD_paramSwitch_e externalRepSearch);
/* Returns the number of bytes to move the current read position back by.
* Only non-zero if we ended up splitting a sequence.
* Otherwise, it may return a ZSTD error if something went wrong.
*
* This function will attempt to scan through blockSize bytes
* represented by the sequences in @inSeqs,
* storing any (partial) sequences.
*
* Occasionally, we may want to change the actual number of bytes we consumed from inSeqs to
* avoid splitting a match, or to avoid splitting a match such that it would produce a match
* smaller than MINMATCH. In this case, we return the number of bytes that we didn't read from this block.
*/
size_t
ZSTD_copySequencesToSeqStoreNoBlockDelim(ZSTD_CCtx* cctx, ZSTD_sequencePosition* seqPos,
const ZSTD_Sequence* const inSeqs, size_t inSeqsSize,
const void* src, size_t blockSize, ZSTD_paramSwitch_e externalRepSearch);
#endif /* ZSTD_COMPRESS_H */