/* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under both the BSD-style license (found in the * LICENSE file in the root directory of this source tree) and the GPLv2 (found * in the COPYING file in the root directory of this source tree). * You may select, at your option, one of the above-listed licenses. */ /*-************************************* * Dependencies ***************************************/ #include "../common/allocations.h" /* ZSTD_customMalloc, ZSTD_customCalloc, ZSTD_customFree */ #include "../common/zstd_deps.h" /* INT_MAX, ZSTD_memset, ZSTD_memcpy */ #include "../common/mem.h" #include "hist.h" /* HIST_countFast_wksp */ #define FSE_STATIC_LINKING_ONLY /* FSE_encodeSymbol */ #include "../common/fse.h" #include "../common/huf.h" #include "zstd_compress_internal.h" #include "zstd_compress_sequences.h" #include "zstd_compress_literals.h" #include "zstd_fast.h" #include "zstd_double_fast.h" #include "zstd_lazy.h" #include "zstd_opt.h" #include "zstd_ldm.h" #include "zstd_compress_superblock.h" #include "../common/bits.h" /* ZSTD_highbit32 */ /* *************************************************************** * Tuning parameters *****************************************************************/ /*! * COMPRESS_HEAPMODE : * Select how default decompression function ZSTD_compress() allocates its context, * on stack (0, default), or into heap (1). * Note that functions with explicit context such as ZSTD_compressCCtx() are unaffected. */ #ifndef ZSTD_COMPRESS_HEAPMODE # define ZSTD_COMPRESS_HEAPMODE 0 #endif /*! * ZSTD_HASHLOG3_MAX : * Maximum size of the hash table dedicated to find 3-bytes matches, * in log format, aka 17 => 1 << 17 == 128Ki positions. * This structure is only used in zstd_opt. * Since allocation is centralized for all strategies, it has to be known here. * The actual (selected) size of the hash table is then stored in ZSTD_matchState_t.hashLog3, * so that zstd_opt.c doesn't need to know about this constant. */ #ifndef ZSTD_HASHLOG3_MAX # define ZSTD_HASHLOG3_MAX 17 #endif /*-************************************* * Helper functions ***************************************/ /* ZSTD_compressBound() * Note that the result from this function is only valid for * the one-pass compression functions. * When employing the streaming mode, * if flushes are frequently altering the size of blocks, * the overhead from block headers can make the compressed data larger * than the return value of ZSTD_compressBound(). */ size_t ZSTD_compressBound(size_t srcSize) { size_t const r = ZSTD_COMPRESSBOUND(srcSize); if (r==0) return ERROR(srcSize_wrong); return r; } /*-************************************* * Context memory management ***************************************/ struct ZSTD_CDict_s { const void* dictContent; size_t dictContentSize; ZSTD_dictContentType_e dictContentType; /* The dictContentType the CDict was created with */ U32* entropyWorkspace; /* entropy workspace of HUF_WORKSPACE_SIZE bytes */ ZSTD_cwksp workspace; ZSTD_matchState_t matchState; ZSTD_compressedBlockState_t cBlockState; ZSTD_customMem customMem; U32 dictID; int compressionLevel; /* 0 indicates that advanced API was used to select CDict params */ ZSTD_paramSwitch_e useRowMatchFinder; /* Indicates whether the CDict was created with params that would use * row-based matchfinder. Unless the cdict is reloaded, we will use * the same greedy/lazy matchfinder at compression time. */ }; /* typedef'd to ZSTD_CDict within "zstd.h" */ ZSTD_CCtx* ZSTD_createCCtx(void) { return ZSTD_createCCtx_advanced(ZSTD_defaultCMem); } static void ZSTD_initCCtx(ZSTD_CCtx* cctx, ZSTD_customMem memManager) { assert(cctx != NULL); ZSTD_memset(cctx, 0, sizeof(*cctx)); cctx->customMem = memManager; cctx->bmi2 = ZSTD_cpuSupportsBmi2(); { size_t const err = ZSTD_CCtx_reset(cctx, ZSTD_reset_parameters); assert(!ZSTD_isError(err)); (void)err; } } ZSTD_CCtx* ZSTD_createCCtx_advanced(ZSTD_customMem customMem) { ZSTD_STATIC_ASSERT(zcss_init==0); ZSTD_STATIC_ASSERT(ZSTD_CONTENTSIZE_UNKNOWN==(0ULL - 1)); if ((!customMem.customAlloc) ^ (!customMem.customFree)) return NULL; { ZSTD_CCtx* const cctx = (ZSTD_CCtx*)ZSTD_customMalloc(sizeof(ZSTD_CCtx), customMem); if (!cctx) return NULL; ZSTD_initCCtx(cctx, customMem); return cctx; } } ZSTD_CCtx* ZSTD_initStaticCCtx(void* workspace, size_t workspaceSize) { ZSTD_cwksp ws; ZSTD_CCtx* cctx; if (workspaceSize <= sizeof(ZSTD_CCtx)) return NULL; /* minimum size */ if ((size_t)workspace & 7) return NULL; /* must be 8-aligned */ ZSTD_cwksp_init(&ws, workspace, workspaceSize, ZSTD_cwksp_static_alloc); cctx = (ZSTD_CCtx*)ZSTD_cwksp_reserve_object(&ws, sizeof(ZSTD_CCtx)); if (cctx == NULL) return NULL; ZSTD_memset(cctx, 0, sizeof(ZSTD_CCtx)); ZSTD_cwksp_move(&cctx->workspace, &ws); cctx->staticSize = workspaceSize; /* statically sized space. entropyWorkspace never moves (but prev/next block swap places) */ if (!ZSTD_cwksp_check_available(&cctx->workspace, ENTROPY_WORKSPACE_SIZE + 2 * sizeof(ZSTD_compressedBlockState_t))) return NULL; cctx->blockState.prevCBlock = (ZSTD_compressedBlockState_t*)ZSTD_cwksp_reserve_object(&cctx->workspace, sizeof(ZSTD_compressedBlockState_t)); cctx->blockState.nextCBlock = (ZSTD_compressedBlockState_t*)ZSTD_cwksp_reserve_object(&cctx->workspace, sizeof(ZSTD_compressedBlockState_t)); cctx->entropyWorkspace = (U32*)ZSTD_cwksp_reserve_object(&cctx->workspace, ENTROPY_WORKSPACE_SIZE); cctx->bmi2 = ZSTD_cpuid_bmi2(ZSTD_cpuid()); return cctx; } /** * Clears and frees all of the dictionaries in the CCtx. */ static void ZSTD_clearAllDicts(ZSTD_CCtx* cctx) { ZSTD_customFree(cctx->localDict.dictBuffer, cctx->customMem); ZSTD_freeCDict(cctx->localDict.cdict); ZSTD_memset(&cctx->localDict, 0, sizeof(cctx->localDict)); ZSTD_memset(&cctx->prefixDict, 0, sizeof(cctx->prefixDict)); cctx->cdict = NULL; } static size_t ZSTD_sizeof_localDict(ZSTD_localDict dict) { size_t const bufferSize = dict.dictBuffer != NULL ? dict.dictSize : 0; size_t const cdictSize = ZSTD_sizeof_CDict(dict.cdict); return bufferSize + cdictSize; } static void ZSTD_freeCCtxContent(ZSTD_CCtx* cctx) { assert(cctx != NULL); assert(cctx->staticSize == 0); ZSTD_clearAllDicts(cctx); #ifdef ZSTD_MULTITHREAD ZSTDMT_freeCCtx(cctx->mtctx); cctx->mtctx = NULL; #endif ZSTD_cwksp_free(&cctx->workspace, cctx->customMem); } size_t ZSTD_freeCCtx(ZSTD_CCtx* cctx) { if (cctx==NULL) return 0; /* support free on NULL */ RETURN_ERROR_IF(cctx->staticSize, memory_allocation, "not compatible with static CCtx"); { int cctxInWorkspace = ZSTD_cwksp_owns_buffer(&cctx->workspace, cctx); ZSTD_freeCCtxContent(cctx); if (!cctxInWorkspace) ZSTD_customFree(cctx, cctx->customMem); } return 0; } static size_t ZSTD_sizeof_mtctx(const ZSTD_CCtx* cctx) { #ifdef ZSTD_MULTITHREAD return ZSTDMT_sizeof_CCtx(cctx->mtctx); #else (void)cctx; return 0; #endif } size_t ZSTD_sizeof_CCtx(const ZSTD_CCtx* cctx) { if (cctx==NULL) return 0; /* support sizeof on NULL */ /* cctx may be in the workspace */ return (cctx->workspace.workspace == cctx ? 0 : sizeof(*cctx)) + ZSTD_cwksp_sizeof(&cctx->workspace) + ZSTD_sizeof_localDict(cctx->localDict) + ZSTD_sizeof_mtctx(cctx); } size_t ZSTD_sizeof_CStream(const ZSTD_CStream* zcs) { return ZSTD_sizeof_CCtx(zcs); /* same object */ } /* private API call, for dictBuilder only */ const seqStore_t* ZSTD_getSeqStore(const ZSTD_CCtx* ctx) { return &(ctx->seqStore); } /* Returns true if the strategy supports using a row based matchfinder */ static int ZSTD_rowMatchFinderSupported(const ZSTD_strategy strategy) { return (strategy >= ZSTD_greedy && strategy <= ZSTD_lazy2); } /* Returns true if the strategy and useRowMatchFinder mode indicate that we will use the row based matchfinder * for this compression. */ static int ZSTD_rowMatchFinderUsed(const ZSTD_strategy strategy, const ZSTD_paramSwitch_e mode) { assert(mode != ZSTD_ps_auto); return ZSTD_rowMatchFinderSupported(strategy) && (mode == ZSTD_ps_enable); } /* Returns row matchfinder usage given an initial mode and cParams */ static ZSTD_paramSwitch_e ZSTD_resolveRowMatchFinderMode(ZSTD_paramSwitch_e mode, const ZSTD_compressionParameters* const cParams) { #if defined(ZSTD_ARCH_X86_SSE2) || defined(ZSTD_ARCH_ARM_NEON) int const kHasSIMD128 = 1; #else int const kHasSIMD128 = 0; #endif if (mode != ZSTD_ps_auto) return mode; /* if requested enabled, but no SIMD, we still will use row matchfinder */ mode = ZSTD_ps_disable; if (!ZSTD_rowMatchFinderSupported(cParams->strategy)) return mode; if (kHasSIMD128) { if (cParams->windowLog > 14) mode = ZSTD_ps_enable; } else { if (cParams->windowLog > 17) mode = ZSTD_ps_enable; } return mode; } /* Returns block splitter usage (generally speaking, when using slower/stronger compression modes) */ static ZSTD_paramSwitch_e ZSTD_resolveBlockSplitterMode(ZSTD_paramSwitch_e mode, const ZSTD_compressionParameters* const cParams) { if (mode != ZSTD_ps_auto) return mode; return (cParams->strategy >= ZSTD_btopt && cParams->windowLog >= 17) ? ZSTD_ps_enable : ZSTD_ps_disable; } /* Returns 1 if the arguments indicate that we should allocate a chainTable, 0 otherwise */ static int ZSTD_allocateChainTable(const ZSTD_strategy strategy, const ZSTD_paramSwitch_e useRowMatchFinder, const U32 forDDSDict) { assert(useRowMatchFinder != ZSTD_ps_auto); /* We always should allocate a chaintable if we are allocating a matchstate for a DDS dictionary matchstate. * We do not allocate a chaintable if we are using ZSTD_fast, or are using the row-based matchfinder. */ return forDDSDict || ((strategy != ZSTD_fast) && !ZSTD_rowMatchFinderUsed(strategy, useRowMatchFinder)); } /* Returns ZSTD_ps_enable if compression parameters are such that we should * enable long distance matching (wlog >= 27, strategy >= btopt). * Returns ZSTD_ps_disable otherwise. */ static ZSTD_paramSwitch_e ZSTD_resolveEnableLdm(ZSTD_paramSwitch_e mode, const ZSTD_compressionParameters* const cParams) { if (mode != ZSTD_ps_auto) return mode; return (cParams->strategy >= ZSTD_btopt && cParams->windowLog >= 27) ? ZSTD_ps_enable : ZSTD_ps_disable; } static int ZSTD_resolveExternalSequenceValidation(int mode) { return mode; } /* Resolves maxBlockSize to the default if no value is present. */ static size_t ZSTD_resolveMaxBlockSize(size_t maxBlockSize) { if (maxBlockSize == 0) { return ZSTD_BLOCKSIZE_MAX; } else { return maxBlockSize; } } static ZSTD_paramSwitch_e ZSTD_resolveExternalRepcodeSearch(ZSTD_paramSwitch_e value, int cLevel) { if (value != ZSTD_ps_auto) return value; if (cLevel < 10) { return ZSTD_ps_disable; } else { return ZSTD_ps_enable; } } /* Returns 1 if compression parameters are such that CDict hashtable and chaintable indices are tagged. * If so, the tags need to be removed in ZSTD_resetCCtx_byCopyingCDict. */ static int ZSTD_CDictIndicesAreTagged(const ZSTD_compressionParameters* const cParams) { return cParams->strategy == ZSTD_fast || cParams->strategy == ZSTD_dfast; } static ZSTD_CCtx_params ZSTD_makeCCtxParamsFromCParams( ZSTD_compressionParameters cParams) { ZSTD_CCtx_params cctxParams; /* should not matter, as all cParams are presumed properly defined */ ZSTD_CCtxParams_init(&cctxParams, ZSTD_CLEVEL_DEFAULT); cctxParams.cParams = cParams; /* Adjust advanced params according to cParams */ cctxParams.ldmParams.enableLdm = ZSTD_resolveEnableLdm(cctxParams.ldmParams.enableLdm, &cParams); if (cctxParams.ldmParams.enableLdm == ZSTD_ps_enable) { ZSTD_ldm_adjustParameters(&cctxParams.ldmParams, &cParams); assert(cctxParams.ldmParams.hashLog >= cctxParams.ldmParams.bucketSizeLog); assert(cctxParams.ldmParams.hashRateLog < 32); } cctxParams.useBlockSplitter = ZSTD_resolveBlockSplitterMode(cctxParams.useBlockSplitter, &cParams); cctxParams.useRowMatchFinder = ZSTD_resolveRowMatchFinderMode(cctxParams.useRowMatchFinder, &cParams); cctxParams.validateSequences = ZSTD_resolveExternalSequenceValidation(cctxParams.validateSequences); cctxParams.maxBlockSize = ZSTD_resolveMaxBlockSize(cctxParams.maxBlockSize); cctxParams.searchForExternalRepcodes = ZSTD_resolveExternalRepcodeSearch(cctxParams.searchForExternalRepcodes, cctxParams.compressionLevel); assert(!ZSTD_checkCParams(cParams)); return cctxParams; } static ZSTD_CCtx_params* ZSTD_createCCtxParams_advanced( ZSTD_customMem customMem) { ZSTD_CCtx_params* params; if ((!customMem.customAlloc) ^ (!customMem.customFree)) return NULL; params = (ZSTD_CCtx_params*)ZSTD_customCalloc( sizeof(ZSTD_CCtx_params), customMem); if (!params) { return NULL; } ZSTD_CCtxParams_init(params, ZSTD_CLEVEL_DEFAULT); params->customMem = customMem; return params; } ZSTD_CCtx_params* ZSTD_createCCtxParams(void) { return ZSTD_createCCtxParams_advanced(ZSTD_defaultCMem); } size_t ZSTD_freeCCtxParams(ZSTD_CCtx_params* params) { if (params == NULL) { return 0; } ZSTD_customFree(params, params->customMem); return 0; } size_t ZSTD_CCtxParams_reset(ZSTD_CCtx_params* params) { return ZSTD_CCtxParams_init(params, ZSTD_CLEVEL_DEFAULT); } size_t ZSTD_CCtxParams_init(ZSTD_CCtx_params* cctxParams, int compressionLevel) { RETURN_ERROR_IF(!cctxParams, GENERIC, "NULL pointer!"); ZSTD_memset(cctxParams, 0, sizeof(*cctxParams)); cctxParams->compressionLevel = compressionLevel; cctxParams->fParams.contentSizeFlag = 1; return 0; } #define ZSTD_NO_CLEVEL 0 /** * Initializes `cctxParams` from `params` and `compressionLevel`. * @param compressionLevel If params are derived from a compression level then that compression level, otherwise ZSTD_NO_CLEVEL. */ static void ZSTD_CCtxParams_init_internal(ZSTD_CCtx_params* cctxParams, const ZSTD_parameters* params, int compressionLevel) { assert(!ZSTD_checkCParams(params->cParams)); ZSTD_memset(cctxParams, 0, sizeof(*cctxParams)); cctxParams->cParams = params->cParams; cctxParams->fParams = params->fParams; /* Should not matter, as all cParams are presumed properly defined. * But, set it for tracing anyway. */ cctxParams->compressionLevel = compressionLevel; cctxParams->useRowMatchFinder = ZSTD_resolveRowMatchFinderMode(cctxParams->useRowMatchFinder, ¶ms->cParams); cctxParams->useBlockSplitter = ZSTD_resolveBlockSplitterMode(cctxParams->useBlockSplitter, ¶ms->cParams); cctxParams->ldmParams.enableLdm = ZSTD_resolveEnableLdm(cctxParams->ldmParams.enableLdm, ¶ms->cParams); cctxParams->validateSequences = ZSTD_resolveExternalSequenceValidation(cctxParams->validateSequences); cctxParams->maxBlockSize = ZSTD_resolveMaxBlockSize(cctxParams->maxBlockSize); cctxParams->searchForExternalRepcodes = ZSTD_resolveExternalRepcodeSearch(cctxParams->searchForExternalRepcodes, compressionLevel); DEBUGLOG(4, "ZSTD_CCtxParams_init_internal: useRowMatchFinder=%d, useBlockSplitter=%d ldm=%d", cctxParams->useRowMatchFinder, cctxParams->useBlockSplitter, cctxParams->ldmParams.enableLdm); } size_t ZSTD_CCtxParams_init_advanced(ZSTD_CCtx_params* cctxParams, ZSTD_parameters params) { RETURN_ERROR_IF(!cctxParams, GENERIC, "NULL pointer!"); FORWARD_IF_ERROR( ZSTD_checkCParams(params.cParams) , ""); ZSTD_CCtxParams_init_internal(cctxParams, ¶ms, ZSTD_NO_CLEVEL); return 0; } /** * Sets cctxParams' cParams and fParams from params, but otherwise leaves them alone. * @param params Validated zstd parameters. */ static void ZSTD_CCtxParams_setZstdParams( ZSTD_CCtx_params* cctxParams, const ZSTD_parameters* params) { assert(!ZSTD_checkCParams(params->cParams)); cctxParams->cParams = params->cParams; cctxParams->fParams = params->fParams; /* Should not matter, as all cParams are presumed properly defined. * But, set it for tracing anyway. */ cctxParams->compressionLevel = ZSTD_NO_CLEVEL; } ZSTD_bounds ZSTD_cParam_getBounds(ZSTD_cParameter param) { ZSTD_bounds bounds = { 0, 0, 0 }; switch(param) { case ZSTD_c_compressionLevel: bounds.lowerBound = ZSTD_minCLevel(); bounds.upperBound = ZSTD_maxCLevel(); return bounds; case ZSTD_c_windowLog: bounds.lowerBound = ZSTD_WINDOWLOG_MIN; bounds.upperBound = ZSTD_WINDOWLOG_MAX; return bounds; case ZSTD_c_hashLog: bounds.lowerBound = ZSTD_HASHLOG_MIN; bounds.upperBound = ZSTD_HASHLOG_MAX; return bounds; case ZSTD_c_chainLog: bounds.lowerBound = ZSTD_CHAINLOG_MIN; bounds.upperBound = ZSTD_CHAINLOG_MAX; return bounds; case ZSTD_c_searchLog: bounds.lowerBound = ZSTD_SEARCHLOG_MIN; bounds.upperBound = ZSTD_SEARCHLOG_MAX; return bounds; case ZSTD_c_minMatch: bounds.lowerBound = ZSTD_MINMATCH_MIN; bounds.upperBound = ZSTD_MINMATCH_MAX; return bounds; case ZSTD_c_targetLength: bounds.lowerBound = ZSTD_TARGETLENGTH_MIN; bounds.upperBound = ZSTD_TARGETLENGTH_MAX; return bounds; case ZSTD_c_strategy: bounds.lowerBound = ZSTD_STRATEGY_MIN; bounds.upperBound = ZSTD_STRATEGY_MAX; return bounds; case ZSTD_c_contentSizeFlag: bounds.lowerBound = 0; bounds.upperBound = 1; return bounds; case ZSTD_c_checksumFlag: bounds.lowerBound = 0; bounds.upperBound = 1; return bounds; case ZSTD_c_dictIDFlag: bounds.lowerBound = 0; bounds.upperBound = 1; return bounds; case ZSTD_c_nbWorkers: bounds.lowerBound = 0; #ifdef ZSTD_MULTITHREAD bounds.upperBound = ZSTDMT_NBWORKERS_MAX; #else bounds.upperBound = 0; #endif return bounds; case ZSTD_c_jobSize: bounds.lowerBound = 0; #ifdef ZSTD_MULTITHREAD bounds.upperBound = ZSTDMT_JOBSIZE_MAX; #else bounds.upperBound = 0; #endif return bounds; case ZSTD_c_overlapLog: #ifdef ZSTD_MULTITHREAD bounds.lowerBound = ZSTD_OVERLAPLOG_MIN; bounds.upperBound = ZSTD_OVERLAPLOG_MAX; #else bounds.lowerBound = 0; bounds.upperBound = 0; #endif return bounds; case ZSTD_c_enableDedicatedDictSearch: bounds.lowerBound = 0; bounds.upperBound = 1; return bounds; case ZSTD_c_enableLongDistanceMatching: bounds.lowerBound = (int)ZSTD_ps_auto; bounds.upperBound = (int)ZSTD_ps_disable; return bounds; case ZSTD_c_ldmHashLog: bounds.lowerBound = ZSTD_LDM_HASHLOG_MIN; bounds.upperBound = ZSTD_LDM_HASHLOG_MAX; return bounds; case ZSTD_c_ldmMinMatch: bounds.lowerBound = ZSTD_LDM_MINMATCH_MIN; bounds.upperBound = ZSTD_LDM_MINMATCH_MAX; return bounds; case ZSTD_c_ldmBucketSizeLog: bounds.lowerBound = ZSTD_LDM_BUCKETSIZELOG_MIN; bounds.upperBound = ZSTD_LDM_BUCKETSIZELOG_MAX; return bounds; case ZSTD_c_ldmHashRateLog: bounds.lowerBound = ZSTD_LDM_HASHRATELOG_MIN; bounds.upperBound = ZSTD_LDM_HASHRATELOG_MAX; return bounds; /* experimental parameters */ case ZSTD_c_rsyncable: bounds.lowerBound = 0; bounds.upperBound = 1; return bounds; case ZSTD_c_forceMaxWindow : bounds.lowerBound = 0; bounds.upperBound = 1; return bounds; case ZSTD_c_format: ZSTD_STATIC_ASSERT(ZSTD_f_zstd1 < ZSTD_f_zstd1_magicless); bounds.lowerBound = ZSTD_f_zstd1; bounds.upperBound = ZSTD_f_zstd1_magicless; /* note : how to ensure at compile time that this is the highest value enum ? */ return bounds; case ZSTD_c_forceAttachDict: ZSTD_STATIC_ASSERT(ZSTD_dictDefaultAttach < ZSTD_dictForceLoad); bounds.lowerBound = ZSTD_dictDefaultAttach; bounds.upperBound = ZSTD_dictForceLoad; /* note : how to ensure at compile time that this is the highest value enum ? */ return bounds; case ZSTD_c_literalCompressionMode: ZSTD_STATIC_ASSERT(ZSTD_ps_auto < ZSTD_ps_enable && ZSTD_ps_enable < ZSTD_ps_disable); bounds.lowerBound = (int)ZSTD_ps_auto; bounds.upperBound = (int)ZSTD_ps_disable; return bounds; case ZSTD_c_targetCBlockSize: bounds.lowerBound = ZSTD_TARGETCBLOCKSIZE_MIN; bounds.upperBound = ZSTD_TARGETCBLOCKSIZE_MAX; return bounds; case ZSTD_c_srcSizeHint: bounds.lowerBound = ZSTD_SRCSIZEHINT_MIN; bounds.upperBound = ZSTD_SRCSIZEHINT_MAX; return bounds; case ZSTD_c_stableInBuffer: case ZSTD_c_stableOutBuffer: bounds.lowerBound = (int)ZSTD_bm_buffered; bounds.upperBound = (int)ZSTD_bm_stable; return bounds; case ZSTD_c_blockDelimiters: bounds.lowerBound = (int)ZSTD_sf_noBlockDelimiters; bounds.upperBound = (int)ZSTD_sf_explicitBlockDelimiters; return bounds; case ZSTD_c_validateSequences: bounds.lowerBound = 0; bounds.upperBound = 1; return bounds; case ZSTD_c_useBlockSplitter: bounds.lowerBound = (int)ZSTD_ps_auto; bounds.upperBound = (int)ZSTD_ps_disable; return bounds; case ZSTD_c_useRowMatchFinder: bounds.lowerBound = (int)ZSTD_ps_auto; bounds.upperBound = (int)ZSTD_ps_disable; return bounds; case ZSTD_c_deterministicRefPrefix: bounds.lowerBound = 0; bounds.upperBound = 1; return bounds; case ZSTD_c_prefetchCDictTables: bounds.lowerBound = (int)ZSTD_ps_auto; bounds.upperBound = (int)ZSTD_ps_disable; return bounds; case ZSTD_c_enableSeqProducerFallback: bounds.lowerBound = 0; bounds.upperBound = 1; return bounds; case ZSTD_c_maxBlockSize: bounds.lowerBound = ZSTD_BLOCKSIZE_MAX_MIN; bounds.upperBound = ZSTD_BLOCKSIZE_MAX; return bounds; case ZSTD_c_searchForExternalRepcodes: bounds.lowerBound = (int)ZSTD_ps_auto; bounds.upperBound = (int)ZSTD_ps_disable; return bounds; default: bounds.error = ERROR(parameter_unsupported); return bounds; } } /* ZSTD_cParam_clampBounds: * Clamps the value into the bounded range. */ static size_t ZSTD_cParam_clampBounds(ZSTD_cParameter cParam, int* value) { ZSTD_bounds const bounds = ZSTD_cParam_getBounds(cParam); if (ZSTD_isError(bounds.error)) return bounds.error; if (*value < bounds.lowerBound) *value = bounds.lowerBound; if (*value > bounds.upperBound) *value = bounds.upperBound; return 0; } #define BOUNDCHECK(cParam, val) { \ RETURN_ERROR_IF(!ZSTD_cParam_withinBounds(cParam,val), \ parameter_outOfBound, "Param out of bounds"); \ } static int ZSTD_isUpdateAuthorized(ZSTD_cParameter param) { switch(param) { case ZSTD_c_compressionLevel: case ZSTD_c_hashLog: case ZSTD_c_chainLog: case ZSTD_c_searchLog: case ZSTD_c_minMatch: case ZSTD_c_targetLength: case ZSTD_c_strategy: return 1; case ZSTD_c_format: case ZSTD_c_windowLog: case ZSTD_c_contentSizeFlag: case ZSTD_c_checksumFlag: case ZSTD_c_dictIDFlag: case ZSTD_c_forceMaxWindow : case ZSTD_c_nbWorkers: case ZSTD_c_jobSize: case ZSTD_c_overlapLog: case ZSTD_c_rsyncable: case ZSTD_c_enableDedicatedDictSearch: case ZSTD_c_enableLongDistanceMatching: case ZSTD_c_ldmHashLog: case ZSTD_c_ldmMinMatch: case ZSTD_c_ldmBucketSizeLog: case ZSTD_c_ldmHashRateLog: case ZSTD_c_forceAttachDict: case ZSTD_c_literalCompressionMode: case ZSTD_c_targetCBlockSize: case ZSTD_c_srcSizeHint: case ZSTD_c_stableInBuffer: case ZSTD_c_stableOutBuffer: case ZSTD_c_blockDelimiters: case ZSTD_c_validateSequences: case ZSTD_c_useBlockSplitter: case ZSTD_c_useRowMatchFinder: case ZSTD_c_deterministicRefPrefix: case ZSTD_c_prefetchCDictTables: case ZSTD_c_enableSeqProducerFallback: case ZSTD_c_maxBlockSize: case ZSTD_c_searchForExternalRepcodes: default: return 0; } } size_t ZSTD_CCtx_setParameter(ZSTD_CCtx* cctx, ZSTD_cParameter param, int value) { DEBUGLOG(4, "ZSTD_CCtx_setParameter (%i, %i)", (int)param, value); if (cctx->streamStage != zcss_init) { if (ZSTD_isUpdateAuthorized(param)) { cctx->cParamsChanged = 1; } else { RETURN_ERROR(stage_wrong, "can only set params in cctx init stage"); } } switch(param) { case ZSTD_c_nbWorkers: RETURN_ERROR_IF((value!=0) && cctx->staticSize, parameter_unsupported, "MT not compatible with static alloc"); break; case ZSTD_c_compressionLevel: case ZSTD_c_windowLog: case ZSTD_c_hashLog: case ZSTD_c_chainLog: case ZSTD_c_searchLog: case ZSTD_c_minMatch: case ZSTD_c_targetLength: case ZSTD_c_strategy: case ZSTD_c_ldmHashRateLog: case ZSTD_c_format: case ZSTD_c_contentSizeFlag: case ZSTD_c_checksumFlag: case ZSTD_c_dictIDFlag: case ZSTD_c_forceMaxWindow: case ZSTD_c_forceAttachDict: case ZSTD_c_literalCompressionMode: case ZSTD_c_jobSize: case ZSTD_c_overlapLog: case ZSTD_c_rsyncable: case ZSTD_c_enableDedicatedDictSearch: case ZSTD_c_enableLongDistanceMatching: case ZSTD_c_ldmHashLog: case ZSTD_c_ldmMinMatch: case ZSTD_c_ldmBucketSizeLog: case ZSTD_c_targetCBlockSize: case ZSTD_c_srcSizeHint: case ZSTD_c_stableInBuffer: case ZSTD_c_stableOutBuffer: case ZSTD_c_blockDelimiters: case ZSTD_c_validateSequences: case ZSTD_c_useBlockSplitter: case ZSTD_c_useRowMatchFinder: case ZSTD_c_deterministicRefPrefix: case ZSTD_c_prefetchCDictTables: case ZSTD_c_enableSeqProducerFallback: case ZSTD_c_maxBlockSize: case ZSTD_c_searchForExternalRepcodes: break; default: RETURN_ERROR(parameter_unsupported, "unknown parameter"); } return ZSTD_CCtxParams_setParameter(&cctx->requestedParams, param, value); } size_t ZSTD_CCtxParams_setParameter(ZSTD_CCtx_params* CCtxParams, ZSTD_cParameter param, int value) { DEBUGLOG(4, "ZSTD_CCtxParams_setParameter (%i, %i)", (int)param, value); switch(param) { case ZSTD_c_format : BOUNDCHECK(ZSTD_c_format, value); CCtxParams->format = (ZSTD_format_e)value; return (size_t)CCtxParams->format; case ZSTD_c_compressionLevel : { FORWARD_IF_ERROR(ZSTD_cParam_clampBounds(param, &value), ""); if (value == 0) CCtxParams->compressionLevel = ZSTD_CLEVEL_DEFAULT; /* 0 == default */ else CCtxParams->compressionLevel = value; if (CCtxParams->compressionLevel >= 0) return (size_t)CCtxParams->compressionLevel; return 0; /* return type (size_t) cannot represent negative values */ } case ZSTD_c_windowLog : if (value!=0) /* 0 => use default */ BOUNDCHECK(ZSTD_c_windowLog, value); CCtxParams->cParams.windowLog = (U32)value; return CCtxParams->cParams.windowLog; case ZSTD_c_hashLog : if (value!=0) /* 0 => use default */ BOUNDCHECK(ZSTD_c_hashLog, value); CCtxParams->cParams.hashLog = (U32)value; return CCtxParams->cParams.hashLog; case ZSTD_c_chainLog : if (value!=0) /* 0 => use default */ BOUNDCHECK(ZSTD_c_chainLog, value); CCtxParams->cParams.chainLog = (U32)value; return CCtxParams->cParams.chainLog; case ZSTD_c_searchLog : if (value!=0) /* 0 => use default */ BOUNDCHECK(ZSTD_c_searchLog, value); CCtxParams->cParams.searchLog = (U32)value; return (size_t)value; case ZSTD_c_minMatch : if (value!=0) /* 0 => use default */ BOUNDCHECK(ZSTD_c_minMatch, value); CCtxParams->cParams.minMatch = (U32)value; return CCtxParams->cParams.minMatch; case ZSTD_c_targetLength : BOUNDCHECK(ZSTD_c_targetLength, value); CCtxParams->cParams.targetLength = (U32)value; return CCtxParams->cParams.targetLength; case ZSTD_c_strategy : if (value!=0) /* 0 => use default */ BOUNDCHECK(ZSTD_c_strategy, value); CCtxParams->cParams.strategy = (ZSTD_strategy)value; return (size_t)CCtxParams->cParams.strategy; case ZSTD_c_contentSizeFlag : /* Content size written in frame header _when known_ (default:1) */ DEBUGLOG(4, "set content size flag = %u", (value!=0)); CCtxParams->fParams.contentSizeFlag = value != 0; return (size_t)CCtxParams->fParams.contentSizeFlag; case ZSTD_c_checksumFlag : /* A 32-bits content checksum will be calculated and written at end of frame (default:0) */ CCtxParams->fParams.checksumFlag = value != 0; return (size_t)CCtxParams->fParams.checksumFlag; case ZSTD_c_dictIDFlag : /* When applicable, dictionary's dictID is provided in frame header (default:1) */ DEBUGLOG(4, "set dictIDFlag = %u", (value!=0)); CCtxParams->fParams.noDictIDFlag = !value; return !CCtxParams->fParams.noDictIDFlag; case ZSTD_c_forceMaxWindow : CCtxParams->forceWindow = (value != 0); return (size_t)CCtxParams->forceWindow; case ZSTD_c_forceAttachDict : { const ZSTD_dictAttachPref_e pref = (ZSTD_dictAttachPref_e)value; BOUNDCHECK(ZSTD_c_forceAttachDict, (int)pref); CCtxParams->attachDictPref = pref; return CCtxParams->attachDictPref; } case ZSTD_c_literalCompressionMode : { const ZSTD_paramSwitch_e lcm = (ZSTD_paramSwitch_e)value; BOUNDCHECK(ZSTD_c_literalCompressionMode, (int)lcm); CCtxParams->literalCompressionMode = lcm; return CCtxParams->literalCompressionMode; } case ZSTD_c_nbWorkers : #ifndef ZSTD_MULTITHREAD RETURN_ERROR_IF(value!=0, parameter_unsupported, "not compiled with multithreading"); return 0; #else FORWARD_IF_ERROR(ZSTD_cParam_clampBounds(param, &value), ""); CCtxParams->nbWorkers = value; return CCtxParams->nbWorkers; #endif case ZSTD_c_jobSize : #ifndef ZSTD_MULTITHREAD RETURN_ERROR_IF(value!=0, parameter_unsupported, "not compiled with multithreading"); return 0; #else /* Adjust to the minimum non-default value. */ if (value != 0 && value < ZSTDMT_JOBSIZE_MIN) value = ZSTDMT_JOBSIZE_MIN; FORWARD_IF_ERROR(ZSTD_cParam_clampBounds(param, &value), ""); assert(value >= 0); CCtxParams->jobSize = value; return CCtxParams->jobSize; #endif case ZSTD_c_overlapLog : #ifndef ZSTD_MULTITHREAD RETURN_ERROR_IF(value!=0, parameter_unsupported, "not compiled with multithreading"); return 0; #else FORWARD_IF_ERROR(ZSTD_cParam_clampBounds(ZSTD_c_overlapLog, &value), ""); CCtxParams->overlapLog = value; return CCtxParams->overlapLog; #endif case ZSTD_c_rsyncable : #ifndef ZSTD_MULTITHREAD RETURN_ERROR_IF(value!=0, parameter_unsupported, "not compiled with multithreading"); return 0; #else FORWARD_IF_ERROR(ZSTD_cParam_clampBounds(ZSTD_c_overlapLog, &value), ""); CCtxParams->rsyncable = value; return CCtxParams->rsyncable; #endif case ZSTD_c_enableDedicatedDictSearch : CCtxParams->enableDedicatedDictSearch = (value!=0); return (size_t)CCtxParams->enableDedicatedDictSearch; case ZSTD_c_enableLongDistanceMatching : BOUNDCHECK(ZSTD_c_enableLongDistanceMatching, value); CCtxParams->ldmParams.enableLdm = (ZSTD_paramSwitch_e)value; return CCtxParams->ldmParams.enableLdm; case ZSTD_c_ldmHashLog : if (value!=0) /* 0 ==> auto */ BOUNDCHECK(ZSTD_c_ldmHashLog, value); CCtxParams->ldmParams.hashLog = (U32)value; return CCtxParams->ldmParams.hashLog; case ZSTD_c_ldmMinMatch : if (value!=0) /* 0 ==> default */ BOUNDCHECK(ZSTD_c_ldmMinMatch, value); CCtxParams->ldmParams.minMatchLength = (U32)value; return CCtxParams->ldmParams.minMatchLength; case ZSTD_c_ldmBucketSizeLog : if (value!=0) /* 0 ==> default */ BOUNDCHECK(ZSTD_c_ldmBucketSizeLog, value); CCtxParams->ldmParams.bucketSizeLog = (U32)value; return CCtxParams->ldmParams.bucketSizeLog; case ZSTD_c_ldmHashRateLog : if (value!=0) /* 0 ==> default */ BOUNDCHECK(ZSTD_c_ldmHashRateLog, value); CCtxParams->ldmParams.hashRateLog = (U32)value; return CCtxParams->ldmParams.hashRateLog; case ZSTD_c_targetCBlockSize : if (value!=0) /* 0 ==> default */ BOUNDCHECK(ZSTD_c_targetCBlockSize, value); CCtxParams->targetCBlockSize = (U32)value; return CCtxParams->targetCBlockSize; case ZSTD_c_srcSizeHint : if (value!=0) /* 0 ==> default */ BOUNDCHECK(ZSTD_c_srcSizeHint, value); CCtxParams->srcSizeHint = value; return (size_t)CCtxParams->srcSizeHint; case ZSTD_c_stableInBuffer: BOUNDCHECK(ZSTD_c_stableInBuffer, value); CCtxParams->inBufferMode = (ZSTD_bufferMode_e)value; return CCtxParams->inBufferMode; case ZSTD_c_stableOutBuffer: BOUNDCHECK(ZSTD_c_stableOutBuffer, value); CCtxParams->outBufferMode = (ZSTD_bufferMode_e)value; return CCtxParams->outBufferMode; case ZSTD_c_blockDelimiters: BOUNDCHECK(ZSTD_c_blockDelimiters, value); CCtxParams->blockDelimiters = (ZSTD_sequenceFormat_e)value; return CCtxParams->blockDelimiters; case ZSTD_c_validateSequences: BOUNDCHECK(ZSTD_c_validateSequences, value); CCtxParams->validateSequences = value; return CCtxParams->validateSequences; case ZSTD_c_useBlockSplitter: BOUNDCHECK(ZSTD_c_useBlockSplitter, value); CCtxParams->useBlockSplitter = (ZSTD_paramSwitch_e)value; return CCtxParams->useBlockSplitter; case ZSTD_c_useRowMatchFinder: BOUNDCHECK(ZSTD_c_useRowMatchFinder, value); CCtxParams->useRowMatchFinder = (ZSTD_paramSwitch_e)value; return CCtxParams->useRowMatchFinder; case ZSTD_c_deterministicRefPrefix: BOUNDCHECK(ZSTD_c_deterministicRefPrefix, value); CCtxParams->deterministicRefPrefix = !!value; return CCtxParams->deterministicRefPrefix; case ZSTD_c_prefetchCDictTables: BOUNDCHECK(ZSTD_c_prefetchCDictTables, value); CCtxParams->prefetchCDictTables = (ZSTD_paramSwitch_e)value; return CCtxParams->prefetchCDictTables; case ZSTD_c_enableSeqProducerFallback: BOUNDCHECK(ZSTD_c_enableSeqProducerFallback, value); CCtxParams->enableMatchFinderFallback = value; return CCtxParams->enableMatchFinderFallback; case ZSTD_c_maxBlockSize: if (value!=0) /* 0 ==> default */ BOUNDCHECK(ZSTD_c_maxBlockSize, value); CCtxParams->maxBlockSize = value; return CCtxParams->maxBlockSize; case ZSTD_c_searchForExternalRepcodes: BOUNDCHECK(ZSTD_c_searchForExternalRepcodes, value); CCtxParams->searchForExternalRepcodes = (ZSTD_paramSwitch_e)value; return CCtxParams->searchForExternalRepcodes; default: RETURN_ERROR(parameter_unsupported, "unknown parameter"); } } size_t ZSTD_CCtx_getParameter(ZSTD_CCtx const* cctx, ZSTD_cParameter param, int* value) { return ZSTD_CCtxParams_getParameter(&cctx->requestedParams, param, value); } size_t ZSTD_CCtxParams_getParameter( ZSTD_CCtx_params const* CCtxParams, ZSTD_cParameter param, int* value) { switch(param) { case ZSTD_c_format : *value = CCtxParams->format; break; case ZSTD_c_compressionLevel : *value = CCtxParams->compressionLevel; break; case ZSTD_c_windowLog : *value = (int)CCtxParams->cParams.windowLog; break; case ZSTD_c_hashLog : *value = (int)CCtxParams->cParams.hashLog; break; case ZSTD_c_chainLog : *value = (int)CCtxParams->cParams.chainLog; break; case ZSTD_c_searchLog : *value = CCtxParams->cParams.searchLog; break; case ZSTD_c_minMatch : *value = CCtxParams->cParams.minMatch; break; case ZSTD_c_targetLength : *value = CCtxParams->cParams.targetLength; break; case ZSTD_c_strategy : *value = (unsigned)CCtxParams->cParams.strategy; break; case ZSTD_c_contentSizeFlag : *value = CCtxParams->fParams.contentSizeFlag; break; case ZSTD_c_checksumFlag : *value = CCtxParams->fParams.checksumFlag; break; case ZSTD_c_dictIDFlag : *value = !CCtxParams->fParams.noDictIDFlag; break; case ZSTD_c_forceMaxWindow : *value = CCtxParams->forceWindow; break; case ZSTD_c_forceAttachDict : *value = CCtxParams->attachDictPref; break; case ZSTD_c_literalCompressionMode : *value = CCtxParams->literalCompressionMode; break; case ZSTD_c_nbWorkers : #ifndef ZSTD_MULTITHREAD assert(CCtxParams->nbWorkers == 0); #endif *value = CCtxParams->nbWorkers; break; case ZSTD_c_jobSize : #ifndef ZSTD_MULTITHREAD RETURN_ERROR(parameter_unsupported, "not compiled with multithreading"); #else assert(CCtxParams->jobSize <= INT_MAX); *value = (int)CCtxParams->jobSize; break; #endif case ZSTD_c_overlapLog : #ifndef ZSTD_MULTITHREAD RETURN_ERROR(parameter_unsupported, "not compiled with multithreading"); #else *value = CCtxParams->overlapLog; break; #endif case ZSTD_c_rsyncable : #ifndef ZSTD_MULTITHREAD RETURN_ERROR(parameter_unsupported, "not compiled with multithreading"); #else *value = CCtxParams->rsyncable; break; #endif case ZSTD_c_enableDedicatedDictSearch : *value = CCtxParams->enableDedicatedDictSearch; break; case ZSTD_c_enableLongDistanceMatching : *value = CCtxParams->ldmParams.enableLdm; break; case ZSTD_c_ldmHashLog : *value = CCtxParams->ldmParams.hashLog; break; case ZSTD_c_ldmMinMatch : *value = CCtxParams->ldmParams.minMatchLength; break; case ZSTD_c_ldmBucketSizeLog : *value = CCtxParams->ldmParams.bucketSizeLog; break; case ZSTD_c_ldmHashRateLog : *value = CCtxParams->ldmParams.hashRateLog; break; case ZSTD_c_targetCBlockSize : *value = (int)CCtxParams->targetCBlockSize; break; case ZSTD_c_srcSizeHint : *value = (int)CCtxParams->srcSizeHint; break; case ZSTD_c_stableInBuffer : *value = (int)CCtxParams->inBufferMode; break; case ZSTD_c_stableOutBuffer : *value = (int)CCtxParams->outBufferMode; break; case ZSTD_c_blockDelimiters : *value = (int)CCtxParams->blockDelimiters; break; case ZSTD_c_validateSequences : *value = (int)CCtxParams->validateSequences; break; case ZSTD_c_useBlockSplitter : *value = (int)CCtxParams->useBlockSplitter; break; case ZSTD_c_useRowMatchFinder : *value = (int)CCtxParams->useRowMatchFinder; break; case ZSTD_c_deterministicRefPrefix: *value = (int)CCtxParams->deterministicRefPrefix; break; case ZSTD_c_prefetchCDictTables: *value = (int)CCtxParams->prefetchCDictTables; break; case ZSTD_c_enableSeqProducerFallback: *value = CCtxParams->enableMatchFinderFallback; break; case ZSTD_c_maxBlockSize: *value = (int)CCtxParams->maxBlockSize; break; case ZSTD_c_searchForExternalRepcodes: *value = (int)CCtxParams->searchForExternalRepcodes; break; default: RETURN_ERROR(parameter_unsupported, "unknown parameter"); } return 0; } /** ZSTD_CCtx_setParametersUsingCCtxParams() : * just applies `params` into `cctx` * no action is performed, parameters are merely stored. * If ZSTDMT is enabled, parameters are pushed to cctx->mtctx. * This is possible even if a compression is ongoing. * In which case, new parameters will be applied on the fly, starting with next compression job. */ size_t ZSTD_CCtx_setParametersUsingCCtxParams( ZSTD_CCtx* cctx, const ZSTD_CCtx_params* params) { DEBUGLOG(4, "ZSTD_CCtx_setParametersUsingCCtxParams"); RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong, "The context is in the wrong stage!"); RETURN_ERROR_IF(cctx->cdict, stage_wrong, "Can't override parameters with cdict attached (some must " "be inherited from the cdict)."); cctx->requestedParams = *params; return 0; } size_t ZSTD_CCtx_setCParams(ZSTD_CCtx* cctx, ZSTD_compressionParameters cparams) { DEBUGLOG(4, "ZSTD_CCtx_setCParams"); assert(cctx != NULL); if (cctx->streamStage != zcss_init) { /* All parameters in @cparams are allowed to be updated during MT compression. * This must be signaled, so that MT compression picks up the changes */ cctx->cParamsChanged = 1; } /* only update if parameters are valid */ FORWARD_IF_ERROR(ZSTD_checkCParams(cparams), ""); cctx->requestedParams.cParams = cparams; return 0; } size_t ZSTD_CCtx_setPledgedSrcSize(ZSTD_CCtx* cctx, unsigned long long pledgedSrcSize) { DEBUGLOG(4, "ZSTD_CCtx_setPledgedSrcSize to %llu bytes", pledgedSrcSize); RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong, "Can't set pledgedSrcSize when not in init stage."); cctx->pledgedSrcSizePlusOne = pledgedSrcSize+1; return 0; } static ZSTD_compressionParameters ZSTD_dedicatedDictSearch_getCParams( int const compressionLevel, size_t const dictSize); static int ZSTD_dedicatedDictSearch_isSupported( const ZSTD_compressionParameters* cParams); static void ZSTD_dedicatedDictSearch_revertCParams( ZSTD_compressionParameters* cParams); /** * Initializes the local dict using the requested parameters. * NOTE: This does not use the pledged src size, because it may be used for more * than one compression. */ static size_t ZSTD_initLocalDict(ZSTD_CCtx* cctx) { ZSTD_localDict* const dl = &cctx->localDict; if (dl->dict == NULL) { /* No local dictionary. */ assert(dl->dictBuffer == NULL); assert(dl->cdict == NULL); assert(dl->dictSize == 0); return 0; } if (dl->cdict != NULL) { assert(cctx->cdict == dl->cdict); /* Local dictionary already initialized. */ return 0; } assert(dl->dictSize > 0); assert(cctx->cdict == NULL); assert(cctx->prefixDict.dict == NULL); dl->cdict = ZSTD_createCDict_advanced2( dl->dict, dl->dictSize, ZSTD_dlm_byRef, dl->dictContentType, &cctx->requestedParams, cctx->customMem); RETURN_ERROR_IF(!dl->cdict, memory_allocation, "ZSTD_createCDict_advanced failed"); cctx->cdict = dl->cdict; return 0; } size_t ZSTD_CCtx_loadDictionary_advanced( ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType) { RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong, "Can't load a dictionary when ctx is not in init stage."); DEBUGLOG(4, "ZSTD_CCtx_loadDictionary_advanced (size: %u)", (U32)dictSize); ZSTD_clearAllDicts(cctx); /* in case one already exists */ if (dict == NULL || dictSize == 0) /* no dictionary mode */ return 0; if (dictLoadMethod == ZSTD_dlm_byRef) { cctx->localDict.dict = dict; } else { void* dictBuffer; RETURN_ERROR_IF(cctx->staticSize, memory_allocation, "no malloc for static CCtx"); dictBuffer = ZSTD_customMalloc(dictSize, cctx->customMem); RETURN_ERROR_IF(!dictBuffer, memory_allocation, "NULL pointer!"); ZSTD_memcpy(dictBuffer, dict, dictSize); cctx->localDict.dictBuffer = dictBuffer; cctx->localDict.dict = dictBuffer; } cctx->localDict.dictSize = dictSize; cctx->localDict.dictContentType = dictContentType; return 0; } size_t ZSTD_CCtx_loadDictionary_byReference( ZSTD_CCtx* cctx, const void* dict, size_t dictSize) { return ZSTD_CCtx_loadDictionary_advanced( cctx, dict, dictSize, ZSTD_dlm_byRef, ZSTD_dct_auto); } size_t ZSTD_CCtx_loadDictionary(ZSTD_CCtx* cctx, const void* dict, size_t dictSize) { return ZSTD_CCtx_loadDictionary_advanced( cctx, dict, dictSize, ZSTD_dlm_byCopy, ZSTD_dct_auto); } size_t ZSTD_CCtx_refCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict) { RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong, "Can't ref a dict when ctx not in init stage."); /* Free the existing local cdict (if any) to save memory. */ ZSTD_clearAllDicts(cctx); cctx->cdict = cdict; return 0; } size_t ZSTD_CCtx_refThreadPool(ZSTD_CCtx* cctx, ZSTD_threadPool* pool) { RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong, "Can't ref a pool when ctx not in init stage."); cctx->pool = pool; return 0; } size_t ZSTD_CCtx_refPrefix(ZSTD_CCtx* cctx, const void* prefix, size_t prefixSize) { return ZSTD_CCtx_refPrefix_advanced(cctx, prefix, prefixSize, ZSTD_dct_rawContent); } size_t ZSTD_CCtx_refPrefix_advanced( ZSTD_CCtx* cctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType) { RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong, "Can't ref a prefix when ctx not in init stage."); ZSTD_clearAllDicts(cctx); if (prefix != NULL && prefixSize > 0) { cctx->prefixDict.dict = prefix; cctx->prefixDict.dictSize = prefixSize; cctx->prefixDict.dictContentType = dictContentType; } return 0; } /*! ZSTD_CCtx_reset() : * Also dumps dictionary */ size_t ZSTD_CCtx_reset(ZSTD_CCtx* cctx, ZSTD_ResetDirective reset) { if ( (reset == ZSTD_reset_session_only) || (reset == ZSTD_reset_session_and_parameters) ) { cctx->streamStage = zcss_init; cctx->pledgedSrcSizePlusOne = 0; } if ( (reset == ZSTD_reset_parameters) || (reset == ZSTD_reset_session_and_parameters) ) { RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong, "Can't reset parameters only when not in init stage."); ZSTD_clearAllDicts(cctx); ZSTD_memset(&cctx->externalMatchCtx, 0, sizeof(cctx->externalMatchCtx)); return ZSTD_CCtxParams_reset(&cctx->requestedParams); } return 0; } /** ZSTD_checkCParams() : control CParam values remain within authorized range. @return : 0, or an error code if one value is beyond authorized range */ size_t ZSTD_checkCParams(ZSTD_compressionParameters cParams) { BOUNDCHECK(ZSTD_c_windowLog, (int)cParams.windowLog); BOUNDCHECK(ZSTD_c_chainLog, (int)cParams.chainLog); BOUNDCHECK(ZSTD_c_hashLog, (int)cParams.hashLog); BOUNDCHECK(ZSTD_c_searchLog, (int)cParams.searchLog); BOUNDCHECK(ZSTD_c_minMatch, (int)cParams.minMatch); BOUNDCHECK(ZSTD_c_targetLength,(int)cParams.targetLength); BOUNDCHECK(ZSTD_c_strategy, cParams.strategy); return 0; } /** ZSTD_clampCParams() : * make CParam values within valid range. * @return : valid CParams */ static ZSTD_compressionParameters ZSTD_clampCParams(ZSTD_compressionParameters cParams) { # define CLAMP_TYPE(cParam, val, type) { \ ZSTD_bounds const bounds = ZSTD_cParam_getBounds(cParam); \ if ((int)valbounds.upperBound) val=(type)bounds.upperBound; \ } # define CLAMP(cParam, val) CLAMP_TYPE(cParam, val, unsigned) CLAMP(ZSTD_c_windowLog, cParams.windowLog); CLAMP(ZSTD_c_chainLog, cParams.chainLog); CLAMP(ZSTD_c_hashLog, cParams.hashLog); CLAMP(ZSTD_c_searchLog, cParams.searchLog); CLAMP(ZSTD_c_minMatch, cParams.minMatch); CLAMP(ZSTD_c_targetLength,cParams.targetLength); CLAMP_TYPE(ZSTD_c_strategy,cParams.strategy, ZSTD_strategy); return cParams; } /** ZSTD_cycleLog() : * condition for correct operation : hashLog > 1 */ U32 ZSTD_cycleLog(U32 hashLog, ZSTD_strategy strat) { U32 const btScale = ((U32)strat >= (U32)ZSTD_btlazy2); return hashLog - btScale; } /** ZSTD_dictAndWindowLog() : * Returns an adjusted window log that is large enough to fit the source and the dictionary. * The zstd format says that the entire dictionary is valid if one byte of the dictionary * is within the window. So the hashLog and chainLog should be large enough to reference both * the dictionary and the window. So we must use this adjusted dictAndWindowLog when downsizing * the hashLog and windowLog. * NOTE: srcSize must not be ZSTD_CONTENTSIZE_UNKNOWN. */ static U32 ZSTD_dictAndWindowLog(U32 windowLog, U64 srcSize, U64 dictSize) { const U64 maxWindowSize = 1ULL << ZSTD_WINDOWLOG_MAX; /* No dictionary ==> No change */ if (dictSize == 0) { return windowLog; } assert(windowLog <= ZSTD_WINDOWLOG_MAX); assert(srcSize != ZSTD_CONTENTSIZE_UNKNOWN); /* Handled in ZSTD_adjustCParams_internal() */ { U64 const windowSize = 1ULL << windowLog; U64 const dictAndWindowSize = dictSize + windowSize; /* If the window size is already large enough to fit both the source and the dictionary * then just use the window size. Otherwise adjust so that it fits the dictionary and * the window. */ if (windowSize >= dictSize + srcSize) { return windowLog; /* Window size large enough already */ } else if (dictAndWindowSize >= maxWindowSize) { return ZSTD_WINDOWLOG_MAX; /* Larger than max window log */ } else { return ZSTD_highbit32((U32)dictAndWindowSize - 1) + 1; } } } /** ZSTD_adjustCParams_internal() : * optimize `cPar` for a specified input (`srcSize` and `dictSize`). * mostly downsize to reduce memory consumption and initialization latency. * `srcSize` can be ZSTD_CONTENTSIZE_UNKNOWN when not known. * `mode` is the mode for parameter adjustment. See docs for `ZSTD_cParamMode_e`. * note : `srcSize==0` means 0! * condition : cPar is presumed validated (can be checked using ZSTD_checkCParams()). */ static ZSTD_compressionParameters ZSTD_adjustCParams_internal(ZSTD_compressionParameters cPar, unsigned long long srcSize, size_t dictSize, ZSTD_cParamMode_e mode, ZSTD_paramSwitch_e useRowMatchFinder) { const U64 minSrcSize = 513; /* (1<<9) + 1 */ const U64 maxWindowResize = 1ULL << (ZSTD_WINDOWLOG_MAX-1); assert(ZSTD_checkCParams(cPar)==0); switch (mode) { case ZSTD_cpm_unknown: case ZSTD_cpm_noAttachDict: /* If we don't know the source size, don't make any * assumptions about it. We will already have selected * smaller parameters if a dictionary is in use. */ break; case ZSTD_cpm_createCDict: /* Assume a small source size when creating a dictionary * with an unknown source size. */ if (dictSize && srcSize == ZSTD_CONTENTSIZE_UNKNOWN) srcSize = minSrcSize; break; case ZSTD_cpm_attachDict: /* Dictionary has its own dedicated parameters which have * already been selected. We are selecting parameters * for only the source. */ dictSize = 0; break; default: assert(0); break; } /* resize windowLog if input is small enough, to use less memory */ if ( (srcSize <= maxWindowResize) && (dictSize <= maxWindowResize) ) { U32 const tSize = (U32)(srcSize + dictSize); static U32 const hashSizeMin = 1 << ZSTD_HASHLOG_MIN; U32 const srcLog = (tSize < hashSizeMin) ? ZSTD_HASHLOG_MIN : ZSTD_highbit32(tSize-1) + 1; if (cPar.windowLog > srcLog) cPar.windowLog = srcLog; } if (srcSize != ZSTD_CONTENTSIZE_UNKNOWN) { U32 const dictAndWindowLog = ZSTD_dictAndWindowLog(cPar.windowLog, (U64)srcSize, (U64)dictSize); U32 const cycleLog = ZSTD_cycleLog(cPar.chainLog, cPar.strategy); if (cPar.hashLog > dictAndWindowLog+1) cPar.hashLog = dictAndWindowLog+1; if (cycleLog > dictAndWindowLog) cPar.chainLog -= (cycleLog - dictAndWindowLog); } if (cPar.windowLog < ZSTD_WINDOWLOG_ABSOLUTEMIN) cPar.windowLog = ZSTD_WINDOWLOG_ABSOLUTEMIN; /* minimum wlog required for valid frame header */ /* We can't use more than 32 bits of hash in total, so that means that we require: * (hashLog + 8) <= 32 && (chainLog + 8) <= 32 */ if (mode == ZSTD_cpm_createCDict && ZSTD_CDictIndicesAreTagged(&cPar)) { U32 const maxShortCacheHashLog = 32 - ZSTD_SHORT_CACHE_TAG_BITS; if (cPar.hashLog > maxShortCacheHashLog) { cPar.hashLog = maxShortCacheHashLog; } if (cPar.chainLog > maxShortCacheHashLog) { cPar.chainLog = maxShortCacheHashLog; } } /* At this point, we aren't 100% sure if we are using the row match finder. * Unless it is explicitly disabled, conservatively assume that it is enabled. * In this case it will only be disabled for small sources, so shrinking the * hash log a little bit shouldn't result in any ratio loss. */ if (useRowMatchFinder == ZSTD_ps_auto) useRowMatchFinder = ZSTD_ps_enable; /* We can't hash more than 32-bits in total. So that means that we require: * (hashLog - rowLog + 8) <= 32 */ if (ZSTD_rowMatchFinderUsed(cPar.strategy, useRowMatchFinder)) { /* Switch to 32-entry rows if searchLog is 5 (or more) */ U32 const rowLog = BOUNDED(4, cPar.searchLog, 6); U32 const maxRowHashLog = 32 - ZSTD_ROW_HASH_TAG_BITS; U32 const maxHashLog = maxRowHashLog + rowLog; assert(cPar.hashLog >= rowLog); if (cPar.hashLog > maxHashLog) { cPar.hashLog = maxHashLog; } } return cPar; } ZSTD_compressionParameters ZSTD_adjustCParams(ZSTD_compressionParameters cPar, unsigned long long srcSize, size_t dictSize) { cPar = ZSTD_clampCParams(cPar); /* resulting cPar is necessarily valid (all parameters within range) */ if (srcSize == 0) srcSize = ZSTD_CONTENTSIZE_UNKNOWN; return ZSTD_adjustCParams_internal(cPar, srcSize, dictSize, ZSTD_cpm_unknown, ZSTD_ps_auto); } static ZSTD_compressionParameters ZSTD_getCParams_internal(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize, ZSTD_cParamMode_e mode); static ZSTD_parameters ZSTD_getParams_internal(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize, ZSTD_cParamMode_e mode); static void ZSTD_overrideCParams( ZSTD_compressionParameters* cParams, const ZSTD_compressionParameters* overrides) { if (overrides->windowLog) cParams->windowLog = overrides->windowLog; if (overrides->hashLog) cParams->hashLog = overrides->hashLog; if (overrides->chainLog) cParams->chainLog = overrides->chainLog; if (overrides->searchLog) cParams->searchLog = overrides->searchLog; if (overrides->minMatch) cParams->minMatch = overrides->minMatch; if (overrides->targetLength) cParams->targetLength = overrides->targetLength; if (overrides->strategy) cParams->strategy = overrides->strategy; } ZSTD_compressionParameters ZSTD_getCParamsFromCCtxParams( const ZSTD_CCtx_params* CCtxParams, U64 srcSizeHint, size_t dictSize, ZSTD_cParamMode_e mode) { ZSTD_compressionParameters cParams; if (srcSizeHint == ZSTD_CONTENTSIZE_UNKNOWN && CCtxParams->srcSizeHint > 0) { srcSizeHint = CCtxParams->srcSizeHint; } cParams = ZSTD_getCParams_internal(CCtxParams->compressionLevel, srcSizeHint, dictSize, mode); if (CCtxParams->ldmParams.enableLdm == ZSTD_ps_enable) cParams.windowLog = ZSTD_LDM_DEFAULT_WINDOW_LOG; ZSTD_overrideCParams(&cParams, &CCtxParams->cParams); assert(!ZSTD_checkCParams(cParams)); /* srcSizeHint == 0 means 0 */ return ZSTD_adjustCParams_internal(cParams, srcSizeHint, dictSize, mode, CCtxParams->useRowMatchFinder); } static size_t ZSTD_sizeof_matchState(const ZSTD_compressionParameters* const cParams, const ZSTD_paramSwitch_e useRowMatchFinder, const U32 enableDedicatedDictSearch, const U32 forCCtx) { /* chain table size should be 0 for fast or row-hash strategies */ size_t const chainSize = ZSTD_allocateChainTable(cParams->strategy, useRowMatchFinder, enableDedicatedDictSearch && !forCCtx) ? ((size_t)1 << cParams->chainLog) : 0; size_t const hSize = ((size_t)1) << cParams->hashLog; U32 const hashLog3 = (forCCtx && cParams->minMatch==3) ? MIN(ZSTD_HASHLOG3_MAX, cParams->windowLog) : 0; size_t const h3Size = hashLog3 ? ((size_t)1) << hashLog3 : 0; /* We don't use ZSTD_cwksp_alloc_size() here because the tables aren't * surrounded by redzones in ASAN. */ size_t const tableSpace = chainSize * sizeof(U32) + hSize * sizeof(U32) + h3Size * sizeof(U32); size_t const optPotentialSpace = ZSTD_cwksp_aligned_alloc_size((MaxML+1) * sizeof(U32)) + ZSTD_cwksp_aligned_alloc_size((MaxLL+1) * sizeof(U32)) + ZSTD_cwksp_aligned_alloc_size((MaxOff+1) * sizeof(U32)) + ZSTD_cwksp_aligned_alloc_size((1<strategy, useRowMatchFinder) ? ZSTD_cwksp_aligned_alloc_size(hSize*sizeof(U16)) : 0; size_t const optSpace = (forCCtx && (cParams->strategy >= ZSTD_btopt)) ? optPotentialSpace : 0; size_t const slackSpace = ZSTD_cwksp_slack_space_required(); /* tables are guaranteed to be sized in multiples of 64 bytes (or 16 uint32_t) */ ZSTD_STATIC_ASSERT(ZSTD_HASHLOG_MIN >= 4 && ZSTD_WINDOWLOG_MIN >= 4 && ZSTD_CHAINLOG_MIN >= 4); assert(useRowMatchFinder != ZSTD_ps_auto); DEBUGLOG(4, "chainSize: %u - hSize: %u - h3Size: %u", (U32)chainSize, (U32)hSize, (U32)h3Size); return tableSpace + optSpace + slackSpace + lazyAdditionalSpace; } /* Helper function for calculating memory requirements. * Gives a tighter bound than ZSTD_sequenceBound() by taking minMatch into account. */ static size_t ZSTD_maxNbSeq(size_t blockSize, unsigned minMatch, int useSequenceProducer) { U32 const divider = (minMatch==3 || useSequenceProducer) ? 3 : 4; return blockSize / divider; } static size_t ZSTD_estimateCCtxSize_usingCCtxParams_internal( const ZSTD_compressionParameters* cParams, const ldmParams_t* ldmParams, const int isStatic, const ZSTD_paramSwitch_e useRowMatchFinder, const size_t buffInSize, const size_t buffOutSize, const U64 pledgedSrcSize, int useSequenceProducer, size_t maxBlockSize) { size_t const windowSize = (size_t) BOUNDED(1ULL, 1ULL << cParams->windowLog, pledgedSrcSize); size_t const blockSize = MIN(ZSTD_resolveMaxBlockSize(maxBlockSize), windowSize); size_t const maxNbSeq = ZSTD_maxNbSeq(blockSize, cParams->minMatch, useSequenceProducer); size_t const tokenSpace = ZSTD_cwksp_alloc_size(WILDCOPY_OVERLENGTH + blockSize) + ZSTD_cwksp_aligned_alloc_size(maxNbSeq * sizeof(seqDef)) + 3 * ZSTD_cwksp_alloc_size(maxNbSeq * sizeof(BYTE)); size_t const entropySpace = ZSTD_cwksp_alloc_size(ENTROPY_WORKSPACE_SIZE); size_t const blockStateSpace = 2 * ZSTD_cwksp_alloc_size(sizeof(ZSTD_compressedBlockState_t)); size_t const matchStateSize = ZSTD_sizeof_matchState(cParams, useRowMatchFinder, /* enableDedicatedDictSearch */ 0, /* forCCtx */ 1); size_t const ldmSpace = ZSTD_ldm_getTableSize(*ldmParams); size_t const maxNbLdmSeq = ZSTD_ldm_getMaxNbSeq(*ldmParams, blockSize); size_t const ldmSeqSpace = ldmParams->enableLdm == ZSTD_ps_enable ? ZSTD_cwksp_aligned_alloc_size(maxNbLdmSeq * sizeof(rawSeq)) : 0; size_t const bufferSpace = ZSTD_cwksp_alloc_size(buffInSize) + ZSTD_cwksp_alloc_size(buffOutSize); size_t const cctxSpace = isStatic ? ZSTD_cwksp_alloc_size(sizeof(ZSTD_CCtx)) : 0; size_t const maxNbExternalSeq = ZSTD_sequenceBound(blockSize); size_t const externalSeqSpace = useSequenceProducer ? ZSTD_cwksp_aligned_alloc_size(maxNbExternalSeq * sizeof(ZSTD_Sequence)) : 0; size_t const neededSpace = cctxSpace + entropySpace + blockStateSpace + ldmSpace + ldmSeqSpace + matchStateSize + tokenSpace + bufferSpace + externalSeqSpace; DEBUGLOG(5, "estimate workspace : %u", (U32)neededSpace); return neededSpace; } size_t ZSTD_estimateCCtxSize_usingCCtxParams(const ZSTD_CCtx_params* params) { ZSTD_compressionParameters const cParams = ZSTD_getCParamsFromCCtxParams(params, ZSTD_CONTENTSIZE_UNKNOWN, 0, ZSTD_cpm_noAttachDict); ZSTD_paramSwitch_e const useRowMatchFinder = ZSTD_resolveRowMatchFinderMode(params->useRowMatchFinder, &cParams); RETURN_ERROR_IF(params->nbWorkers > 0, GENERIC, "Estimate CCtx size is supported for single-threaded compression only."); /* estimateCCtxSize is for one-shot compression. So no buffers should * be needed. However, we still allocate two 0-sized buffers, which can * take space under ASAN. */ return ZSTD_estimateCCtxSize_usingCCtxParams_internal( &cParams, ¶ms->ldmParams, 1, useRowMatchFinder, 0, 0, ZSTD_CONTENTSIZE_UNKNOWN, params->useSequenceProducer, params->maxBlockSize); } size_t ZSTD_estimateCCtxSize_usingCParams(ZSTD_compressionParameters cParams) { ZSTD_CCtx_params initialParams = ZSTD_makeCCtxParamsFromCParams(cParams); if (ZSTD_rowMatchFinderSupported(cParams.strategy)) { /* Pick bigger of not using and using row-based matchfinder for greedy and lazy strategies */ size_t noRowCCtxSize; size_t rowCCtxSize; initialParams.useRowMatchFinder = ZSTD_ps_disable; noRowCCtxSize = ZSTD_estimateCCtxSize_usingCCtxParams(&initialParams); initialParams.useRowMatchFinder = ZSTD_ps_enable; rowCCtxSize = ZSTD_estimateCCtxSize_usingCCtxParams(&initialParams); return MAX(noRowCCtxSize, rowCCtxSize); } else { return ZSTD_estimateCCtxSize_usingCCtxParams(&initialParams); } } static size_t ZSTD_estimateCCtxSize_internal(int compressionLevel) { int tier = 0; size_t largestSize = 0; static const unsigned long long srcSizeTiers[4] = {16 KB, 128 KB, 256 KB, ZSTD_CONTENTSIZE_UNKNOWN}; for (; tier < 4; ++tier) { /* Choose the set of cParams for a given level across all srcSizes that give the largest cctxSize */ ZSTD_compressionParameters const cParams = ZSTD_getCParams_internal(compressionLevel, srcSizeTiers[tier], 0, ZSTD_cpm_noAttachDict); largestSize = MAX(ZSTD_estimateCCtxSize_usingCParams(cParams), largestSize); } return largestSize; } size_t ZSTD_estimateCCtxSize(int compressionLevel) { int level; size_t memBudget = 0; for (level=MIN(compressionLevel, 1); level<=compressionLevel; level++) { /* Ensure monotonically increasing memory usage as compression level increases */ size_t const newMB = ZSTD_estimateCCtxSize_internal(level); if (newMB > memBudget) memBudget = newMB; } return memBudget; } size_t ZSTD_estimateCStreamSize_usingCCtxParams(const ZSTD_CCtx_params* params) { RETURN_ERROR_IF(params->nbWorkers > 0, GENERIC, "Estimate CCtx size is supported for single-threaded compression only."); { ZSTD_compressionParameters const cParams = ZSTD_getCParamsFromCCtxParams(params, ZSTD_CONTENTSIZE_UNKNOWN, 0, ZSTD_cpm_noAttachDict); size_t const blockSize = MIN(ZSTD_resolveMaxBlockSize(params->maxBlockSize), (size_t)1 << cParams.windowLog); size_t const inBuffSize = (params->inBufferMode == ZSTD_bm_buffered) ? ((size_t)1 << cParams.windowLog) + blockSize : 0; size_t const outBuffSize = (params->outBufferMode == ZSTD_bm_buffered) ? ZSTD_compressBound(blockSize) + 1 : 0; ZSTD_paramSwitch_e const useRowMatchFinder = ZSTD_resolveRowMatchFinderMode(params->useRowMatchFinder, ¶ms->cParams); return ZSTD_estimateCCtxSize_usingCCtxParams_internal( &cParams, ¶ms->ldmParams, 1, useRowMatchFinder, inBuffSize, outBuffSize, ZSTD_CONTENTSIZE_UNKNOWN, params->useSequenceProducer, params->maxBlockSize); } } size_t ZSTD_estimateCStreamSize_usingCParams(ZSTD_compressionParameters cParams) { ZSTD_CCtx_params initialParams = ZSTD_makeCCtxParamsFromCParams(cParams); if (ZSTD_rowMatchFinderSupported(cParams.strategy)) { /* Pick bigger of not using and using row-based matchfinder for greedy and lazy strategies */ size_t noRowCCtxSize; size_t rowCCtxSize; initialParams.useRowMatchFinder = ZSTD_ps_disable; noRowCCtxSize = ZSTD_estimateCStreamSize_usingCCtxParams(&initialParams); initialParams.useRowMatchFinder = ZSTD_ps_enable; rowCCtxSize = ZSTD_estimateCStreamSize_usingCCtxParams(&initialParams); return MAX(noRowCCtxSize, rowCCtxSize); } else { return ZSTD_estimateCStreamSize_usingCCtxParams(&initialParams); } } static size_t ZSTD_estimateCStreamSize_internal(int compressionLevel) { ZSTD_compressionParameters const cParams = ZSTD_getCParams_internal(compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN, 0, ZSTD_cpm_noAttachDict); return ZSTD_estimateCStreamSize_usingCParams(cParams); } size_t ZSTD_estimateCStreamSize(int compressionLevel) { int level; size_t memBudget = 0; for (level=MIN(compressionLevel, 1); level<=compressionLevel; level++) { size_t const newMB = ZSTD_estimateCStreamSize_internal(level); if (newMB > memBudget) memBudget = newMB; } return memBudget; } /* ZSTD_getFrameProgression(): * tells how much data has been consumed (input) and produced (output) for current frame. * able to count progression inside worker threads (non-blocking mode). */ ZSTD_frameProgression ZSTD_getFrameProgression(const ZSTD_CCtx* cctx) { #ifdef ZSTD_MULTITHREAD if (cctx->appliedParams.nbWorkers > 0) { return ZSTDMT_getFrameProgression(cctx->mtctx); } #endif { ZSTD_frameProgression fp; size_t const buffered = (cctx->inBuff == NULL) ? 0 : cctx->inBuffPos - cctx->inToCompress; if (buffered) assert(cctx->inBuffPos >= cctx->inToCompress); assert(buffered <= ZSTD_BLOCKSIZE_MAX); fp.ingested = cctx->consumedSrcSize + buffered; fp.consumed = cctx->consumedSrcSize; fp.produced = cctx->producedCSize; fp.flushed = cctx->producedCSize; /* simplified; some data might still be left within streaming output buffer */ fp.currentJobID = 0; fp.nbActiveWorkers = 0; return fp; } } /*! ZSTD_toFlushNow() * Only useful for multithreading scenarios currently (nbWorkers >= 1). */ size_t ZSTD_toFlushNow(ZSTD_CCtx* cctx) { #ifdef ZSTD_MULTITHREAD if (cctx->appliedParams.nbWorkers > 0) { return ZSTDMT_toFlushNow(cctx->mtctx); } #endif (void)cctx; return 0; /* over-simplification; could also check if context is currently running in streaming mode, and in which case, report how many bytes are left to be flushed within output buffer */ } static void ZSTD_assertEqualCParams(ZSTD_compressionParameters cParams1, ZSTD_compressionParameters cParams2) { (void)cParams1; (void)cParams2; assert(cParams1.windowLog == cParams2.windowLog); assert(cParams1.chainLog == cParams2.chainLog); assert(cParams1.hashLog == cParams2.hashLog); assert(cParams1.searchLog == cParams2.searchLog); assert(cParams1.minMatch == cParams2.minMatch); assert(cParams1.targetLength == cParams2.targetLength); assert(cParams1.strategy == cParams2.strategy); } void ZSTD_reset_compressedBlockState(ZSTD_compressedBlockState_t* bs) { int i; for (i = 0; i < ZSTD_REP_NUM; ++i) bs->rep[i] = repStartValue[i]; bs->entropy.huf.repeatMode = HUF_repeat_none; bs->entropy.fse.offcode_repeatMode = FSE_repeat_none; bs->entropy.fse.matchlength_repeatMode = FSE_repeat_none; bs->entropy.fse.litlength_repeatMode = FSE_repeat_none; } /*! ZSTD_invalidateMatchState() * Invalidate all the matches in the match finder tables. * Requires nextSrc and base to be set (can be NULL). */ static void ZSTD_invalidateMatchState(ZSTD_matchState_t* ms) { ZSTD_window_clear(&ms->window); ms->nextToUpdate = ms->window.dictLimit; ms->loadedDictEnd = 0; ms->opt.litLengthSum = 0; /* force reset of btopt stats */ ms->dictMatchState = NULL; } /** * Controls, for this matchState reset, whether the tables need to be cleared / * prepared for the coming compression (ZSTDcrp_makeClean), or whether the * tables can be left unclean (ZSTDcrp_leaveDirty), because we know that a * subsequent operation will overwrite the table space anyways (e.g., copying * the matchState contents in from a CDict). */ typedef enum { ZSTDcrp_makeClean, ZSTDcrp_leaveDirty } ZSTD_compResetPolicy_e; /** * Controls, for this matchState reset, whether indexing can continue where it * left off (ZSTDirp_continue), or whether it needs to be restarted from zero * (ZSTDirp_reset). */ typedef enum { ZSTDirp_continue, ZSTDirp_reset } ZSTD_indexResetPolicy_e; typedef enum { ZSTD_resetTarget_CDict, ZSTD_resetTarget_CCtx } ZSTD_resetTarget_e; static size_t ZSTD_reset_matchState(ZSTD_matchState_t* ms, ZSTD_cwksp* ws, const ZSTD_compressionParameters* cParams, const ZSTD_paramSwitch_e useRowMatchFinder, const ZSTD_compResetPolicy_e crp, const ZSTD_indexResetPolicy_e forceResetIndex, const ZSTD_resetTarget_e forWho) { /* disable chain table allocation for fast or row-based strategies */ size_t const chainSize = ZSTD_allocateChainTable(cParams->strategy, useRowMatchFinder, ms->dedicatedDictSearch && (forWho == ZSTD_resetTarget_CDict)) ? ((size_t)1 << cParams->chainLog) : 0; size_t const hSize = ((size_t)1) << cParams->hashLog; U32 const hashLog3 = ((forWho == ZSTD_resetTarget_CCtx) && cParams->minMatch==3) ? MIN(ZSTD_HASHLOG3_MAX, cParams->windowLog) : 0; size_t const h3Size = hashLog3 ? ((size_t)1) << hashLog3 : 0; DEBUGLOG(4, "reset indices : %u", forceResetIndex == ZSTDirp_reset); assert(useRowMatchFinder != ZSTD_ps_auto); if (forceResetIndex == ZSTDirp_reset) { ZSTD_window_init(&ms->window); ZSTD_cwksp_mark_tables_dirty(ws); } ms->hashLog3 = hashLog3; ZSTD_invalidateMatchState(ms); assert(!ZSTD_cwksp_reserve_failed(ws)); /* check that allocation hasn't already failed */ ZSTD_cwksp_clear_tables(ws); DEBUGLOG(5, "reserving table space"); /* table Space */ ms->hashTable = (U32*)ZSTD_cwksp_reserve_table(ws, hSize * sizeof(U32)); ms->chainTable = (U32*)ZSTD_cwksp_reserve_table(ws, chainSize * sizeof(U32)); ms->hashTable3 = (U32*)ZSTD_cwksp_reserve_table(ws, h3Size * sizeof(U32)); RETURN_ERROR_IF(ZSTD_cwksp_reserve_failed(ws), memory_allocation, "failed a workspace allocation in ZSTD_reset_matchState"); DEBUGLOG(4, "reset table : %u", crp!=ZSTDcrp_leaveDirty); if (crp!=ZSTDcrp_leaveDirty) { /* reset tables only */ ZSTD_cwksp_clean_tables(ws); } /* opt parser space */ if ((forWho == ZSTD_resetTarget_CCtx) && (cParams->strategy >= ZSTD_btopt)) { DEBUGLOG(4, "reserving optimal parser space"); ms->opt.litFreq = (unsigned*)ZSTD_cwksp_reserve_aligned(ws, (1<opt.litLengthFreq = (unsigned*)ZSTD_cwksp_reserve_aligned(ws, (MaxLL+1) * sizeof(unsigned)); ms->opt.matchLengthFreq = (unsigned*)ZSTD_cwksp_reserve_aligned(ws, (MaxML+1) * sizeof(unsigned)); ms->opt.offCodeFreq = (unsigned*)ZSTD_cwksp_reserve_aligned(ws, (MaxOff+1) * sizeof(unsigned)); ms->opt.matchTable = (ZSTD_match_t*)ZSTD_cwksp_reserve_aligned(ws, (ZSTD_OPT_NUM+1) * sizeof(ZSTD_match_t)); ms->opt.priceTable = (ZSTD_optimal_t*)ZSTD_cwksp_reserve_aligned(ws, (ZSTD_OPT_NUM+1) * sizeof(ZSTD_optimal_t)); } if (ZSTD_rowMatchFinderUsed(cParams->strategy, useRowMatchFinder)) { { /* Row match finder needs an additional table of hashes ("tags") */ size_t const tagTableSize = hSize*sizeof(U16); ms->tagTable = (U16*)ZSTD_cwksp_reserve_aligned(ws, tagTableSize); if (ms->tagTable) ZSTD_memset(ms->tagTable, 0, tagTableSize); } { /* Switch to 32-entry rows if searchLog is 5 (or more) */ U32 const rowLog = BOUNDED(4, cParams->searchLog, 6); assert(cParams->hashLog >= rowLog); ms->rowHashLog = cParams->hashLog - rowLog; } } ms->cParams = *cParams; RETURN_ERROR_IF(ZSTD_cwksp_reserve_failed(ws), memory_allocation, "failed a workspace allocation in ZSTD_reset_matchState"); return 0; } /* ZSTD_indexTooCloseToMax() : * minor optimization : prefer memset() rather than reduceIndex() * which is measurably slow in some circumstances (reported for Visual Studio). * Works when re-using a context for a lot of smallish inputs : * if all inputs are smaller than ZSTD_INDEXOVERFLOW_MARGIN, * memset() will be triggered before reduceIndex(). */ #define ZSTD_INDEXOVERFLOW_MARGIN (16 MB) static int ZSTD_indexTooCloseToMax(ZSTD_window_t w) { return (size_t)(w.nextSrc - w.base) > (ZSTD_CURRENT_MAX - ZSTD_INDEXOVERFLOW_MARGIN); } /** ZSTD_dictTooBig(): * When dictionaries are larger than ZSTD_CHUNKSIZE_MAX they can't be loaded in * one go generically. So we ensure that in that case we reset the tables to zero, * so that we can load as much of the dictionary as possible. */ static int ZSTD_dictTooBig(size_t const loadedDictSize) { return loadedDictSize > ZSTD_CHUNKSIZE_MAX; } /*! ZSTD_resetCCtx_internal() : * @param loadedDictSize The size of the dictionary to be loaded * into the context, if any. If no dictionary is used, or the * dictionary is being attached / copied, then pass 0. * note : `params` are assumed fully validated at this stage. */ static size_t ZSTD_resetCCtx_internal(ZSTD_CCtx* zc, ZSTD_CCtx_params const* params, U64 const pledgedSrcSize, size_t const loadedDictSize, ZSTD_compResetPolicy_e const crp, ZSTD_buffered_policy_e const zbuff) { ZSTD_cwksp* const ws = &zc->workspace; DEBUGLOG(4, "ZSTD_resetCCtx_internal: pledgedSrcSize=%u, wlog=%u, useRowMatchFinder=%d useBlockSplitter=%d", (U32)pledgedSrcSize, params->cParams.windowLog, (int)params->useRowMatchFinder, (int)params->useBlockSplitter); assert(!ZSTD_isError(ZSTD_checkCParams(params->cParams))); zc->isFirstBlock = 1; /* Set applied params early so we can modify them for LDM, * and point params at the applied params. */ zc->appliedParams = *params; params = &zc->appliedParams; assert(params->useRowMatchFinder != ZSTD_ps_auto); assert(params->useBlockSplitter != ZSTD_ps_auto); assert(params->ldmParams.enableLdm != ZSTD_ps_auto); assert(params->maxBlockSize != 0); if (params->ldmParams.enableLdm == ZSTD_ps_enable) { /* Adjust long distance matching parameters */ ZSTD_ldm_adjustParameters(&zc->appliedParams.ldmParams, ¶ms->cParams); assert(params->ldmParams.hashLog >= params->ldmParams.bucketSizeLog); assert(params->ldmParams.hashRateLog < 32); } { size_t const windowSize = MAX(1, (size_t)MIN(((U64)1 << params->cParams.windowLog), pledgedSrcSize)); size_t const blockSize = MIN(params->maxBlockSize, windowSize); size_t const maxNbSeq = ZSTD_maxNbSeq(blockSize, params->cParams.minMatch, params->useSequenceProducer); size_t const buffOutSize = (zbuff == ZSTDb_buffered && params->outBufferMode == ZSTD_bm_buffered) ? ZSTD_compressBound(blockSize) + 1 : 0; size_t const buffInSize = (zbuff == ZSTDb_buffered && params->inBufferMode == ZSTD_bm_buffered) ? windowSize + blockSize : 0; size_t const maxNbLdmSeq = ZSTD_ldm_getMaxNbSeq(params->ldmParams, blockSize); int const indexTooClose = ZSTD_indexTooCloseToMax(zc->blockState.matchState.window); int const dictTooBig = ZSTD_dictTooBig(loadedDictSize); ZSTD_indexResetPolicy_e needsIndexReset = (indexTooClose || dictTooBig || !zc->initialized) ? ZSTDirp_reset : ZSTDirp_continue; size_t const neededSpace = ZSTD_estimateCCtxSize_usingCCtxParams_internal( ¶ms->cParams, ¶ms->ldmParams, zc->staticSize != 0, params->useRowMatchFinder, buffInSize, buffOutSize, pledgedSrcSize, params->useSequenceProducer, params->maxBlockSize); int resizeWorkspace; FORWARD_IF_ERROR(neededSpace, "cctx size estimate failed!"); if (!zc->staticSize) ZSTD_cwksp_bump_oversized_duration(ws, 0); { /* Check if workspace is large enough, alloc a new one if needed */ int const workspaceTooSmall = ZSTD_cwksp_sizeof(ws) < neededSpace; int const workspaceWasteful = ZSTD_cwksp_check_wasteful(ws, neededSpace); resizeWorkspace = workspaceTooSmall || workspaceWasteful; DEBUGLOG(4, "Need %zu B workspace", neededSpace); DEBUGLOG(4, "windowSize: %zu - blockSize: %zu", windowSize, blockSize); if (resizeWorkspace) { DEBUGLOG(4, "Resize workspaceSize from %zuKB to %zuKB", ZSTD_cwksp_sizeof(ws) >> 10, neededSpace >> 10); RETURN_ERROR_IF(zc->staticSize, memory_allocation, "static cctx : no resize"); needsIndexReset = ZSTDirp_reset; ZSTD_cwksp_free(ws, zc->customMem); FORWARD_IF_ERROR(ZSTD_cwksp_create(ws, neededSpace, zc->customMem), ""); DEBUGLOG(5, "reserving object space"); /* Statically sized space. * entropyWorkspace never moves, * though prev/next block swap places */ assert(ZSTD_cwksp_check_available(ws, 2 * sizeof(ZSTD_compressedBlockState_t))); zc->blockState.prevCBlock = (ZSTD_compressedBlockState_t*) ZSTD_cwksp_reserve_object(ws, sizeof(ZSTD_compressedBlockState_t)); RETURN_ERROR_IF(zc->blockState.prevCBlock == NULL, memory_allocation, "couldn't allocate prevCBlock"); zc->blockState.nextCBlock = (ZSTD_compressedBlockState_t*) ZSTD_cwksp_reserve_object(ws, sizeof(ZSTD_compressedBlockState_t)); RETURN_ERROR_IF(zc->blockState.nextCBlock == NULL, memory_allocation, "couldn't allocate nextCBlock"); zc->entropyWorkspace = (U32*) ZSTD_cwksp_reserve_object(ws, ENTROPY_WORKSPACE_SIZE); RETURN_ERROR_IF(zc->entropyWorkspace == NULL, memory_allocation, "couldn't allocate entropyWorkspace"); } } ZSTD_cwksp_clear(ws); /* init params */ zc->blockState.matchState.cParams = params->cParams; zc->blockState.matchState.prefetchCDictTables = params->prefetchCDictTables == ZSTD_ps_enable; zc->pledgedSrcSizePlusOne = pledgedSrcSize+1; zc->consumedSrcSize = 0; zc->producedCSize = 0; if (pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN) zc->appliedParams.fParams.contentSizeFlag = 0; DEBUGLOG(4, "pledged content size : %u ; flag : %u", (unsigned)pledgedSrcSize, zc->appliedParams.fParams.contentSizeFlag); zc->blockSize = blockSize; XXH64_reset(&zc->xxhState, 0); zc->stage = ZSTDcs_init; zc->dictID = 0; zc->dictContentSize = 0; ZSTD_reset_compressedBlockState(zc->blockState.prevCBlock); /* ZSTD_wildcopy() is used to copy into the literals buffer, * so we have to oversize the buffer by WILDCOPY_OVERLENGTH bytes. */ zc->seqStore.litStart = ZSTD_cwksp_reserve_buffer(ws, blockSize + WILDCOPY_OVERLENGTH); zc->seqStore.maxNbLit = blockSize; /* buffers */ zc->bufferedPolicy = zbuff; zc->inBuffSize = buffInSize; zc->inBuff = (char*)ZSTD_cwksp_reserve_buffer(ws, buffInSize); zc->outBuffSize = buffOutSize; zc->outBuff = (char*)ZSTD_cwksp_reserve_buffer(ws, buffOutSize); /* ldm bucketOffsets table */ if (params->ldmParams.enableLdm == ZSTD_ps_enable) { /* TODO: avoid memset? */ size_t const numBuckets = ((size_t)1) << (params->ldmParams.hashLog - params->ldmParams.bucketSizeLog); zc->ldmState.bucketOffsets = ZSTD_cwksp_reserve_buffer(ws, numBuckets); ZSTD_memset(zc->ldmState.bucketOffsets, 0, numBuckets); } /* sequences storage */ ZSTD_referenceExternalSequences(zc, NULL, 0); zc->seqStore.maxNbSeq = maxNbSeq; zc->seqStore.llCode = ZSTD_cwksp_reserve_buffer(ws, maxNbSeq * sizeof(BYTE)); zc->seqStore.mlCode = ZSTD_cwksp_reserve_buffer(ws, maxNbSeq * sizeof(BYTE)); zc->seqStore.ofCode = ZSTD_cwksp_reserve_buffer(ws, maxNbSeq * sizeof(BYTE)); zc->seqStore.sequencesStart = (seqDef*)ZSTD_cwksp_reserve_aligned(ws, maxNbSeq * sizeof(seqDef)); FORWARD_IF_ERROR(ZSTD_reset_matchState( &zc->blockState.matchState, ws, ¶ms->cParams, params->useRowMatchFinder, crp, needsIndexReset, ZSTD_resetTarget_CCtx), ""); /* ldm hash table */ if (params->ldmParams.enableLdm == ZSTD_ps_enable) { /* TODO: avoid memset? */ size_t const ldmHSize = ((size_t)1) << params->ldmParams.hashLog; zc->ldmState.hashTable = (ldmEntry_t*)ZSTD_cwksp_reserve_aligned(ws, ldmHSize * sizeof(ldmEntry_t)); ZSTD_memset(zc->ldmState.hashTable, 0, ldmHSize * sizeof(ldmEntry_t)); zc->ldmSequences = (rawSeq*)ZSTD_cwksp_reserve_aligned(ws, maxNbLdmSeq * sizeof(rawSeq)); zc->maxNbLdmSequences = maxNbLdmSeq; ZSTD_window_init(&zc->ldmState.window); zc->ldmState.loadedDictEnd = 0; } /* reserve space for block-level external sequences */ if (params->useSequenceProducer) { size_t const maxNbExternalSeq = ZSTD_sequenceBound(blockSize); zc->externalMatchCtx.seqBufferCapacity = maxNbExternalSeq; zc->externalMatchCtx.seqBuffer = (ZSTD_Sequence*)ZSTD_cwksp_reserve_aligned(ws, maxNbExternalSeq * sizeof(ZSTD_Sequence)); } DEBUGLOG(3, "wksp: finished allocating, %zd bytes remain available", ZSTD_cwksp_available_space(ws)); assert(ZSTD_cwksp_estimated_space_within_bounds(ws, neededSpace, resizeWorkspace)); zc->initialized = 1; return 0; } } /* ZSTD_invalidateRepCodes() : * ensures next compression will not use repcodes from previous block. * Note : only works with regular variant; * do not use with extDict variant ! */ void ZSTD_invalidateRepCodes(ZSTD_CCtx* cctx) { int i; for (i=0; iblockState.prevCBlock->rep[i] = 0; assert(!ZSTD_window_hasExtDict(cctx->blockState.matchState.window)); } /* These are the approximate sizes for each strategy past which copying the * dictionary tables into the working context is faster than using them * in-place. */ static const size_t attachDictSizeCutoffs[ZSTD_STRATEGY_MAX+1] = { 8 KB, /* unused */ 8 KB, /* ZSTD_fast */ 16 KB, /* ZSTD_dfast */ 32 KB, /* ZSTD_greedy */ 32 KB, /* ZSTD_lazy */ 32 KB, /* ZSTD_lazy2 */ 32 KB, /* ZSTD_btlazy2 */ 32 KB, /* ZSTD_btopt */ 8 KB, /* ZSTD_btultra */ 8 KB /* ZSTD_btultra2 */ }; static int ZSTD_shouldAttachDict(const ZSTD_CDict* cdict, const ZSTD_CCtx_params* params, U64 pledgedSrcSize) { size_t cutoff = attachDictSizeCutoffs[cdict->matchState.cParams.strategy]; int const dedicatedDictSearch = cdict->matchState.dedicatedDictSearch; return dedicatedDictSearch || ( ( pledgedSrcSize <= cutoff || pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN || params->attachDictPref == ZSTD_dictForceAttach ) && params->attachDictPref != ZSTD_dictForceCopy && !params->forceWindow ); /* dictMatchState isn't correctly * handled in _enforceMaxDist */ } static size_t ZSTD_resetCCtx_byAttachingCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict, ZSTD_CCtx_params params, U64 pledgedSrcSize, ZSTD_buffered_policy_e zbuff) { DEBUGLOG(4, "ZSTD_resetCCtx_byAttachingCDict() pledgedSrcSize=%llu", (unsigned long long)pledgedSrcSize); { ZSTD_compressionParameters adjusted_cdict_cParams = cdict->matchState.cParams; unsigned const windowLog = params.cParams.windowLog; assert(windowLog != 0); /* Resize working context table params for input only, since the dict * has its own tables. */ /* pledgedSrcSize == 0 means 0! */ if (cdict->matchState.dedicatedDictSearch) { ZSTD_dedicatedDictSearch_revertCParams(&adjusted_cdict_cParams); } params.cParams = ZSTD_adjustCParams_internal(adjusted_cdict_cParams, pledgedSrcSize, cdict->dictContentSize, ZSTD_cpm_attachDict, params.useRowMatchFinder); params.cParams.windowLog = windowLog; params.useRowMatchFinder = cdict->useRowMatchFinder; /* cdict overrides */ FORWARD_IF_ERROR(ZSTD_resetCCtx_internal(cctx, ¶ms, pledgedSrcSize, /* loadedDictSize */ 0, ZSTDcrp_makeClean, zbuff), ""); assert(cctx->appliedParams.cParams.strategy == adjusted_cdict_cParams.strategy); } { const U32 cdictEnd = (U32)( cdict->matchState.window.nextSrc - cdict->matchState.window.base); const U32 cdictLen = cdictEnd - cdict->matchState.window.dictLimit; if (cdictLen == 0) { /* don't even attach dictionaries with no contents */ DEBUGLOG(4, "skipping attaching empty dictionary"); } else { DEBUGLOG(4, "attaching dictionary into context"); cctx->blockState.matchState.dictMatchState = &cdict->matchState; /* prep working match state so dict matches never have negative indices * when they are translated to the working context's index space. */ if (cctx->blockState.matchState.window.dictLimit < cdictEnd) { cctx->blockState.matchState.window.nextSrc = cctx->blockState.matchState.window.base + cdictEnd; ZSTD_window_clear(&cctx->blockState.matchState.window); } /* loadedDictEnd is expressed within the referential of the active context */ cctx->blockState.matchState.loadedDictEnd = cctx->blockState.matchState.window.dictLimit; } } cctx->dictID = cdict->dictID; cctx->dictContentSize = cdict->dictContentSize; /* copy block state */ ZSTD_memcpy(cctx->blockState.prevCBlock, &cdict->cBlockState, sizeof(cdict->cBlockState)); return 0; } static void ZSTD_copyCDictTableIntoCCtx(U32* dst, U32 const* src, size_t tableSize, ZSTD_compressionParameters const* cParams) { if (ZSTD_CDictIndicesAreTagged(cParams)){ /* Remove tags from the CDict table if they are present. * See docs on "short cache" in zstd_compress_internal.h for context. */ size_t i; for (i = 0; i < tableSize; i++) { U32 const taggedIndex = src[i]; U32 const index = taggedIndex >> ZSTD_SHORT_CACHE_TAG_BITS; dst[i] = index; } } else { ZSTD_memcpy(dst, src, tableSize * sizeof(U32)); } } static size_t ZSTD_resetCCtx_byCopyingCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict, ZSTD_CCtx_params params, U64 pledgedSrcSize, ZSTD_buffered_policy_e zbuff) { const ZSTD_compressionParameters *cdict_cParams = &cdict->matchState.cParams; assert(!cdict->matchState.dedicatedDictSearch); DEBUGLOG(4, "ZSTD_resetCCtx_byCopyingCDict() pledgedSrcSize=%llu", (unsigned long long)pledgedSrcSize); { unsigned const windowLog = params.cParams.windowLog; assert(windowLog != 0); /* Copy only compression parameters related to tables. */ params.cParams = *cdict_cParams; params.cParams.windowLog = windowLog; params.useRowMatchFinder = cdict->useRowMatchFinder; FORWARD_IF_ERROR(ZSTD_resetCCtx_internal(cctx, ¶ms, pledgedSrcSize, /* loadedDictSize */ 0, ZSTDcrp_leaveDirty, zbuff), ""); assert(cctx->appliedParams.cParams.strategy == cdict_cParams->strategy); assert(cctx->appliedParams.cParams.hashLog == cdict_cParams->hashLog); assert(cctx->appliedParams.cParams.chainLog == cdict_cParams->chainLog); } ZSTD_cwksp_mark_tables_dirty(&cctx->workspace); assert(params.useRowMatchFinder != ZSTD_ps_auto); /* copy tables */ { size_t const chainSize = ZSTD_allocateChainTable(cdict_cParams->strategy, cdict->useRowMatchFinder, 0 /* DDS guaranteed disabled */) ? ((size_t)1 << cdict_cParams->chainLog) : 0; size_t const hSize = (size_t)1 << cdict_cParams->hashLog; ZSTD_copyCDictTableIntoCCtx(cctx->blockState.matchState.hashTable, cdict->matchState.hashTable, hSize, cdict_cParams); /* Do not copy cdict's chainTable if cctx has parameters such that it would not use chainTable */ if (ZSTD_allocateChainTable(cctx->appliedParams.cParams.strategy, cctx->appliedParams.useRowMatchFinder, 0 /* forDDSDict */)) { ZSTD_copyCDictTableIntoCCtx(cctx->blockState.matchState.chainTable, cdict->matchState.chainTable, chainSize, cdict_cParams); } /* copy tag table */ if (ZSTD_rowMatchFinderUsed(cdict_cParams->strategy, cdict->useRowMatchFinder)) { size_t const tagTableSize = hSize*sizeof(U16); ZSTD_memcpy(cctx->blockState.matchState.tagTable, cdict->matchState.tagTable, tagTableSize); } } /* Zero the hashTable3, since the cdict never fills it */ { int const h3log = cctx->blockState.matchState.hashLog3; size_t const h3Size = h3log ? ((size_t)1 << h3log) : 0; assert(cdict->matchState.hashLog3 == 0); ZSTD_memset(cctx->blockState.matchState.hashTable3, 0, h3Size * sizeof(U32)); } ZSTD_cwksp_mark_tables_clean(&cctx->workspace); /* copy dictionary offsets */ { ZSTD_matchState_t const* srcMatchState = &cdict->matchState; ZSTD_matchState_t* dstMatchState = &cctx->blockState.matchState; dstMatchState->window = srcMatchState->window; dstMatchState->nextToUpdate = srcMatchState->nextToUpdate; dstMatchState->loadedDictEnd= srcMatchState->loadedDictEnd; } cctx->dictID = cdict->dictID; cctx->dictContentSize = cdict->dictContentSize; /* copy block state */ ZSTD_memcpy(cctx->blockState.prevCBlock, &cdict->cBlockState, sizeof(cdict->cBlockState)); return 0; } /* We have a choice between copying the dictionary context into the working * context, or referencing the dictionary context from the working context * in-place. We decide here which strategy to use. */ static size_t ZSTD_resetCCtx_usingCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict, const ZSTD_CCtx_params* params, U64 pledgedSrcSize, ZSTD_buffered_policy_e zbuff) { DEBUGLOG(4, "ZSTD_resetCCtx_usingCDict (pledgedSrcSize=%u)", (unsigned)pledgedSrcSize); if (ZSTD_shouldAttachDict(cdict, params, pledgedSrcSize)) { return ZSTD_resetCCtx_byAttachingCDict( cctx, cdict, *params, pledgedSrcSize, zbuff); } else { return ZSTD_resetCCtx_byCopyingCDict( cctx, cdict, *params, pledgedSrcSize, zbuff); } } /*! ZSTD_copyCCtx_internal() : * Duplicate an existing context `srcCCtx` into another one `dstCCtx`. * Only works during stage ZSTDcs_init (i.e. after creation, but before first call to ZSTD_compressContinue()). * The "context", in this case, refers to the hash and chain tables, * entropy tables, and dictionary references. * `windowLog` value is enforced if != 0, otherwise value is copied from srcCCtx. * @return : 0, or an error code */ static size_t ZSTD_copyCCtx_internal(ZSTD_CCtx* dstCCtx, const ZSTD_CCtx* srcCCtx, ZSTD_frameParameters fParams, U64 pledgedSrcSize, ZSTD_buffered_policy_e zbuff) { RETURN_ERROR_IF(srcCCtx->stage!=ZSTDcs_init, stage_wrong, "Can't copy a ctx that's not in init stage."); DEBUGLOG(5, "ZSTD_copyCCtx_internal"); ZSTD_memcpy(&dstCCtx->customMem, &srcCCtx->customMem, sizeof(ZSTD_customMem)); { ZSTD_CCtx_params params = dstCCtx->requestedParams; /* Copy only compression parameters related to tables. */ params.cParams = srcCCtx->appliedParams.cParams; assert(srcCCtx->appliedParams.useRowMatchFinder != ZSTD_ps_auto); assert(srcCCtx->appliedParams.useBlockSplitter != ZSTD_ps_auto); assert(srcCCtx->appliedParams.ldmParams.enableLdm != ZSTD_ps_auto); params.useRowMatchFinder = srcCCtx->appliedParams.useRowMatchFinder; params.useBlockSplitter = srcCCtx->appliedParams.useBlockSplitter; params.ldmParams = srcCCtx->appliedParams.ldmParams; params.fParams = fParams; params.maxBlockSize = srcCCtx->appliedParams.maxBlockSize; ZSTD_resetCCtx_internal(dstCCtx, ¶ms, pledgedSrcSize, /* loadedDictSize */ 0, ZSTDcrp_leaveDirty, zbuff); assert(dstCCtx->appliedParams.cParams.windowLog == srcCCtx->appliedParams.cParams.windowLog); assert(dstCCtx->appliedParams.cParams.strategy == srcCCtx->appliedParams.cParams.strategy); assert(dstCCtx->appliedParams.cParams.hashLog == srcCCtx->appliedParams.cParams.hashLog); assert(dstCCtx->appliedParams.cParams.chainLog == srcCCtx->appliedParams.cParams.chainLog); assert(dstCCtx->blockState.matchState.hashLog3 == srcCCtx->blockState.matchState.hashLog3); } ZSTD_cwksp_mark_tables_dirty(&dstCCtx->workspace); /* copy tables */ { size_t const chainSize = ZSTD_allocateChainTable(srcCCtx->appliedParams.cParams.strategy, srcCCtx->appliedParams.useRowMatchFinder, 0 /* forDDSDict */) ? ((size_t)1 << srcCCtx->appliedParams.cParams.chainLog) : 0; size_t const hSize = (size_t)1 << srcCCtx->appliedParams.cParams.hashLog; int const h3log = srcCCtx->blockState.matchState.hashLog3; size_t const h3Size = h3log ? ((size_t)1 << h3log) : 0; ZSTD_memcpy(dstCCtx->blockState.matchState.hashTable, srcCCtx->blockState.matchState.hashTable, hSize * sizeof(U32)); ZSTD_memcpy(dstCCtx->blockState.matchState.chainTable, srcCCtx->blockState.matchState.chainTable, chainSize * sizeof(U32)); ZSTD_memcpy(dstCCtx->blockState.matchState.hashTable3, srcCCtx->blockState.matchState.hashTable3, h3Size * sizeof(U32)); } ZSTD_cwksp_mark_tables_clean(&dstCCtx->workspace); /* copy dictionary offsets */ { const ZSTD_matchState_t* srcMatchState = &srcCCtx->blockState.matchState; ZSTD_matchState_t* dstMatchState = &dstCCtx->blockState.matchState; dstMatchState->window = srcMatchState->window; dstMatchState->nextToUpdate = srcMatchState->nextToUpdate; dstMatchState->loadedDictEnd= srcMatchState->loadedDictEnd; } dstCCtx->dictID = srcCCtx->dictID; dstCCtx->dictContentSize = srcCCtx->dictContentSize; /* copy block state */ ZSTD_memcpy(dstCCtx->blockState.prevCBlock, srcCCtx->blockState.prevCBlock, sizeof(*srcCCtx->blockState.prevCBlock)); return 0; } /*! ZSTD_copyCCtx() : * Duplicate an existing context `srcCCtx` into another one `dstCCtx`. * Only works during stage ZSTDcs_init (i.e. after creation, but before first call to ZSTD_compressContinue()). * pledgedSrcSize==0 means "unknown". * @return : 0, or an error code */ size_t ZSTD_copyCCtx(ZSTD_CCtx* dstCCtx, const ZSTD_CCtx* srcCCtx, unsigned long long pledgedSrcSize) { ZSTD_frameParameters fParams = { 1 /*content*/, 0 /*checksum*/, 0 /*noDictID*/ }; ZSTD_buffered_policy_e const zbuff = srcCCtx->bufferedPolicy; ZSTD_STATIC_ASSERT((U32)ZSTDb_buffered==1); if (pledgedSrcSize==0) pledgedSrcSize = ZSTD_CONTENTSIZE_UNKNOWN; fParams.contentSizeFlag = (pledgedSrcSize != ZSTD_CONTENTSIZE_UNKNOWN); return ZSTD_copyCCtx_internal(dstCCtx, srcCCtx, fParams, pledgedSrcSize, zbuff); } #define ZSTD_ROWSIZE 16 /*! ZSTD_reduceTable() : * reduce table indexes by `reducerValue`, or squash to zero. * PreserveMark preserves "unsorted mark" for btlazy2 strategy. * It must be set to a clear 0/1 value, to remove branch during inlining. * Presume table size is a multiple of ZSTD_ROWSIZE * to help auto-vectorization */ FORCE_INLINE_TEMPLATE void ZSTD_reduceTable_internal (U32* const table, U32 const size, U32 const reducerValue, int const preserveMark) { int const nbRows = (int)size / ZSTD_ROWSIZE; int cellNb = 0; int rowNb; /* Protect special index values < ZSTD_WINDOW_START_INDEX. */ U32 const reducerThreshold = reducerValue + ZSTD_WINDOW_START_INDEX; assert((size & (ZSTD_ROWSIZE-1)) == 0); /* multiple of ZSTD_ROWSIZE */ assert(size < (1U<<31)); /* can be casted to int */ #if ZSTD_MEMORY_SANITIZER && !defined (ZSTD_MSAN_DONT_POISON_WORKSPACE) /* To validate that the table re-use logic is sound, and that we don't * access table space that we haven't cleaned, we re-"poison" the table * space every time we mark it dirty. * * This function however is intended to operate on those dirty tables and * re-clean them. So when this function is used correctly, we can unpoison * the memory it operated on. This introduces a blind spot though, since * if we now try to operate on __actually__ poisoned memory, we will not * detect that. */ __msan_unpoison(table, size * sizeof(U32)); #endif for (rowNb=0 ; rowNb < nbRows ; rowNb++) { int column; for (column=0; columncParams.hashLog; ZSTD_reduceTable(ms->hashTable, hSize, reducerValue); } if (ZSTD_allocateChainTable(params->cParams.strategy, params->useRowMatchFinder, (U32)ms->dedicatedDictSearch)) { U32 const chainSize = (U32)1 << params->cParams.chainLog; if (params->cParams.strategy == ZSTD_btlazy2) ZSTD_reduceTable_btlazy2(ms->chainTable, chainSize, reducerValue); else ZSTD_reduceTable(ms->chainTable, chainSize, reducerValue); } if (ms->hashLog3) { U32 const h3Size = (U32)1 << ms->hashLog3; ZSTD_reduceTable(ms->hashTable3, h3Size, reducerValue); } } /*-******************************************************* * Block entropic compression *********************************************************/ /* See doc/zstd_compression_format.md for detailed format description */ int ZSTD_seqToCodes(const seqStore_t* seqStorePtr) { const seqDef* const sequences = seqStorePtr->sequencesStart; BYTE* const llCodeTable = seqStorePtr->llCode; BYTE* const ofCodeTable = seqStorePtr->ofCode; BYTE* const mlCodeTable = seqStorePtr->mlCode; U32 const nbSeq = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart); U32 u; int longOffsets = 0; assert(nbSeq <= seqStorePtr->maxNbSeq); for (u=0; u= STREAM_ACCUMULATOR_MIN)); if (MEM_32bits() && ofCode >= STREAM_ACCUMULATOR_MIN) longOffsets = 1; } if (seqStorePtr->longLengthType==ZSTD_llt_literalLength) llCodeTable[seqStorePtr->longLengthPos] = MaxLL; if (seqStorePtr->longLengthType==ZSTD_llt_matchLength) mlCodeTable[seqStorePtr->longLengthPos] = MaxML; return longOffsets; } /* ZSTD_useTargetCBlockSize(): * Returns if target compressed block size param is being used. * If used, compression will do best effort to make a compressed block size to be around targetCBlockSize. * Returns 1 if true, 0 otherwise. */ static int ZSTD_useTargetCBlockSize(const ZSTD_CCtx_params* cctxParams) { DEBUGLOG(5, "ZSTD_useTargetCBlockSize (targetCBlockSize=%zu)", cctxParams->targetCBlockSize); return (cctxParams->targetCBlockSize != 0); } /* ZSTD_blockSplitterEnabled(): * Returns if block splitting param is being used * If used, compression will do best effort to split a block in order to improve compression ratio. * At the time this function is called, the parameter must be finalized. * Returns 1 if true, 0 otherwise. */ static int ZSTD_blockSplitterEnabled(ZSTD_CCtx_params* cctxParams) { DEBUGLOG(5, "ZSTD_blockSplitterEnabled (useBlockSplitter=%d)", cctxParams->useBlockSplitter); assert(cctxParams->useBlockSplitter != ZSTD_ps_auto); return (cctxParams->useBlockSplitter == ZSTD_ps_enable); } /* Type returned by ZSTD_buildSequencesStatistics containing finalized symbol encoding types * and size of the sequences statistics */ typedef struct { U32 LLtype; U32 Offtype; U32 MLtype; size_t size; size_t lastCountSize; /* Accounts for bug in 1.3.4. More detail in ZSTD_entropyCompressSeqStore_internal() */ int longOffsets; } ZSTD_symbolEncodingTypeStats_t; /* ZSTD_buildSequencesStatistics(): * Returns a ZSTD_symbolEncodingTypeStats_t, or a zstd error code in the `size` field. * Modifies `nextEntropy` to have the appropriate values as a side effect. * nbSeq must be greater than 0. * * entropyWkspSize must be of size at least ENTROPY_WORKSPACE_SIZE - (MaxSeq + 1)*sizeof(U32) */ static ZSTD_symbolEncodingTypeStats_t ZSTD_buildSequencesStatistics( const seqStore_t* seqStorePtr, size_t nbSeq, const ZSTD_fseCTables_t* prevEntropy, ZSTD_fseCTables_t* nextEntropy, BYTE* dst, const BYTE* const dstEnd, ZSTD_strategy strategy, unsigned* countWorkspace, void* entropyWorkspace, size_t entropyWkspSize) { BYTE* const ostart = dst; const BYTE* const oend = dstEnd; BYTE* op = ostart; FSE_CTable* CTable_LitLength = nextEntropy->litlengthCTable; FSE_CTable* CTable_OffsetBits = nextEntropy->offcodeCTable; FSE_CTable* CTable_MatchLength = nextEntropy->matchlengthCTable; const BYTE* const ofCodeTable = seqStorePtr->ofCode; const BYTE* const llCodeTable = seqStorePtr->llCode; const BYTE* const mlCodeTable = seqStorePtr->mlCode; ZSTD_symbolEncodingTypeStats_t stats; stats.lastCountSize = 0; /* convert length/distances into codes */ stats.longOffsets = ZSTD_seqToCodes(seqStorePtr); assert(op <= oend); assert(nbSeq != 0); /* ZSTD_selectEncodingType() divides by nbSeq */ /* build CTable for Literal Lengths */ { unsigned max = MaxLL; size_t const mostFrequent = HIST_countFast_wksp(countWorkspace, &max, llCodeTable, nbSeq, entropyWorkspace, entropyWkspSize); /* can't fail */ DEBUGLOG(5, "Building LL table"); nextEntropy->litlength_repeatMode = prevEntropy->litlength_repeatMode; stats.LLtype = ZSTD_selectEncodingType(&nextEntropy->litlength_repeatMode, countWorkspace, max, mostFrequent, nbSeq, LLFSELog, prevEntropy->litlengthCTable, LL_defaultNorm, LL_defaultNormLog, ZSTD_defaultAllowed, strategy); assert(set_basic < set_compressed && set_rle < set_compressed); assert(!(stats.LLtype < set_compressed && nextEntropy->litlength_repeatMode != FSE_repeat_none)); /* We don't copy tables */ { size_t const countSize = ZSTD_buildCTable( op, (size_t)(oend - op), CTable_LitLength, LLFSELog, (symbolEncodingType_e)stats.LLtype, countWorkspace, max, llCodeTable, nbSeq, LL_defaultNorm, LL_defaultNormLog, MaxLL, prevEntropy->litlengthCTable, sizeof(prevEntropy->litlengthCTable), entropyWorkspace, entropyWkspSize); if (ZSTD_isError(countSize)) { DEBUGLOG(3, "ZSTD_buildCTable for LitLens failed"); stats.size = countSize; return stats; } if (stats.LLtype == set_compressed) stats.lastCountSize = countSize; op += countSize; assert(op <= oend); } } /* build CTable for Offsets */ { unsigned max = MaxOff; size_t const mostFrequent = HIST_countFast_wksp( countWorkspace, &max, ofCodeTable, nbSeq, entropyWorkspace, entropyWkspSize); /* can't fail */ /* We can only use the basic table if max <= DefaultMaxOff, otherwise the offsets are too large */ ZSTD_defaultPolicy_e const defaultPolicy = (max <= DefaultMaxOff) ? ZSTD_defaultAllowed : ZSTD_defaultDisallowed; DEBUGLOG(5, "Building OF table"); nextEntropy->offcode_repeatMode = prevEntropy->offcode_repeatMode; stats.Offtype = ZSTD_selectEncodingType(&nextEntropy->offcode_repeatMode, countWorkspace, max, mostFrequent, nbSeq, OffFSELog, prevEntropy->offcodeCTable, OF_defaultNorm, OF_defaultNormLog, defaultPolicy, strategy); assert(!(stats.Offtype < set_compressed && nextEntropy->offcode_repeatMode != FSE_repeat_none)); /* We don't copy tables */ { size_t const countSize = ZSTD_buildCTable( op, (size_t)(oend - op), CTable_OffsetBits, OffFSELog, (symbolEncodingType_e)stats.Offtype, countWorkspace, max, ofCodeTable, nbSeq, OF_defaultNorm, OF_defaultNormLog, DefaultMaxOff, prevEntropy->offcodeCTable, sizeof(prevEntropy->offcodeCTable), entropyWorkspace, entropyWkspSize); if (ZSTD_isError(countSize)) { DEBUGLOG(3, "ZSTD_buildCTable for Offsets failed"); stats.size = countSize; return stats; } if (stats.Offtype == set_compressed) stats.lastCountSize = countSize; op += countSize; assert(op <= oend); } } /* build CTable for MatchLengths */ { unsigned max = MaxML; size_t const mostFrequent = HIST_countFast_wksp( countWorkspace, &max, mlCodeTable, nbSeq, entropyWorkspace, entropyWkspSize); /* can't fail */ DEBUGLOG(5, "Building ML table (remaining space : %i)", (int)(oend-op)); nextEntropy->matchlength_repeatMode = prevEntropy->matchlength_repeatMode; stats.MLtype = ZSTD_selectEncodingType(&nextEntropy->matchlength_repeatMode, countWorkspace, max, mostFrequent, nbSeq, MLFSELog, prevEntropy->matchlengthCTable, ML_defaultNorm, ML_defaultNormLog, ZSTD_defaultAllowed, strategy); assert(!(stats.MLtype < set_compressed && nextEntropy->matchlength_repeatMode != FSE_repeat_none)); /* We don't copy tables */ { size_t const countSize = ZSTD_buildCTable( op, (size_t)(oend - op), CTable_MatchLength, MLFSELog, (symbolEncodingType_e)stats.MLtype, countWorkspace, max, mlCodeTable, nbSeq, ML_defaultNorm, ML_defaultNormLog, MaxML, prevEntropy->matchlengthCTable, sizeof(prevEntropy->matchlengthCTable), entropyWorkspace, entropyWkspSize); if (ZSTD_isError(countSize)) { DEBUGLOG(3, "ZSTD_buildCTable for MatchLengths failed"); stats.size = countSize; return stats; } if (stats.MLtype == set_compressed) stats.lastCountSize = countSize; op += countSize; assert(op <= oend); } } stats.size = (size_t)(op-ostart); return stats; } /* ZSTD_entropyCompressSeqStore_internal(): * compresses both literals and sequences * Returns compressed size of block, or a zstd error. */ #define SUSPECT_UNCOMPRESSIBLE_LITERAL_RATIO 20 MEM_STATIC size_t ZSTD_entropyCompressSeqStore_internal( const seqStore_t* seqStorePtr, const ZSTD_entropyCTables_t* prevEntropy, ZSTD_entropyCTables_t* nextEntropy, const ZSTD_CCtx_params* cctxParams, void* dst, size_t dstCapacity, void* entropyWorkspace, size_t entropyWkspSize, const int bmi2) { ZSTD_strategy const strategy = cctxParams->cParams.strategy; unsigned* count = (unsigned*)entropyWorkspace; FSE_CTable* CTable_LitLength = nextEntropy->fse.litlengthCTable; FSE_CTable* CTable_OffsetBits = nextEntropy->fse.offcodeCTable; FSE_CTable* CTable_MatchLength = nextEntropy->fse.matchlengthCTable; const seqDef* const sequences = seqStorePtr->sequencesStart; const size_t nbSeq = (size_t)(seqStorePtr->sequences - seqStorePtr->sequencesStart); const BYTE* const ofCodeTable = seqStorePtr->ofCode; const BYTE* const llCodeTable = seqStorePtr->llCode; const BYTE* const mlCodeTable = seqStorePtr->mlCode; BYTE* const ostart = (BYTE*)dst; BYTE* const oend = ostart + dstCapacity; BYTE* op = ostart; size_t lastCountSize; int longOffsets = 0; entropyWorkspace = count + (MaxSeq + 1); entropyWkspSize -= (MaxSeq + 1) * sizeof(*count); DEBUGLOG(5, "ZSTD_entropyCompressSeqStore_internal (nbSeq=%zu, dstCapacity=%zu)", nbSeq, dstCapacity); ZSTD_STATIC_ASSERT(HUF_WORKSPACE_SIZE >= (1<= HUF_WORKSPACE_SIZE); /* Compress literals */ { const BYTE* const literals = seqStorePtr->litStart; size_t const numSequences = (size_t)(seqStorePtr->sequences - seqStorePtr->sequencesStart); size_t const numLiterals = (size_t)(seqStorePtr->lit - seqStorePtr->litStart); /* Base suspicion of uncompressibility on ratio of literals to sequences */ unsigned const suspectUncompressible = (numSequences == 0) || (numLiterals / numSequences >= SUSPECT_UNCOMPRESSIBLE_LITERAL_RATIO); size_t const litSize = (size_t)(seqStorePtr->lit - literals); size_t const cSize = ZSTD_compressLiterals( op, dstCapacity, literals, litSize, entropyWorkspace, entropyWkspSize, &prevEntropy->huf, &nextEntropy->huf, cctxParams->cParams.strategy, ZSTD_literalsCompressionIsDisabled(cctxParams), suspectUncompressible, bmi2); FORWARD_IF_ERROR(cSize, "ZSTD_compressLiterals failed"); assert(cSize <= dstCapacity); op += cSize; } /* Sequences Header */ RETURN_ERROR_IF((oend-op) < 3 /*max nbSeq Size*/ + 1 /*seqHead*/, dstSize_tooSmall, "Can't fit seq hdr in output buf!"); if (nbSeq < 128) { *op++ = (BYTE)nbSeq; } else if (nbSeq < LONGNBSEQ) { op[0] = (BYTE)((nbSeq>>8) + 0x80); op[1] = (BYTE)nbSeq; op+=2; } else { op[0]=0xFF; MEM_writeLE16(op+1, (U16)(nbSeq - LONGNBSEQ)); op+=3; } assert(op <= oend); if (nbSeq==0) { /* Copy the old tables over as if we repeated them */ ZSTD_memcpy(&nextEntropy->fse, &prevEntropy->fse, sizeof(prevEntropy->fse)); return (size_t)(op - ostart); } { BYTE* const seqHead = op++; /* build stats for sequences */ const ZSTD_symbolEncodingTypeStats_t stats = ZSTD_buildSequencesStatistics(seqStorePtr, nbSeq, &prevEntropy->fse, &nextEntropy->fse, op, oend, strategy, count, entropyWorkspace, entropyWkspSize); FORWARD_IF_ERROR(stats.size, "ZSTD_buildSequencesStatistics failed!"); *seqHead = (BYTE)((stats.LLtype<<6) + (stats.Offtype<<4) + (stats.MLtype<<2)); lastCountSize = stats.lastCountSize; op += stats.size; longOffsets = stats.longOffsets; } { size_t const bitstreamSize = ZSTD_encodeSequences( op, (size_t)(oend - op), CTable_MatchLength, mlCodeTable, CTable_OffsetBits, ofCodeTable, CTable_LitLength, llCodeTable, sequences, nbSeq, longOffsets, bmi2); FORWARD_IF_ERROR(bitstreamSize, "ZSTD_encodeSequences failed"); op += bitstreamSize; assert(op <= oend); /* zstd versions <= 1.3.4 mistakenly report corruption when * FSE_readNCount() receives a buffer < 4 bytes. * Fixed by https://github.com/facebook/zstd/pull/1146. * This can happen when the last set_compressed table present is 2 * bytes and the bitstream is only one byte. * In this exceedingly rare case, we will simply emit an uncompressed * block, since it isn't worth optimizing. */ if (lastCountSize && (lastCountSize + bitstreamSize) < 4) { /* lastCountSize >= 2 && bitstreamSize > 0 ==> lastCountSize == 3 */ assert(lastCountSize + bitstreamSize == 3); DEBUGLOG(5, "Avoiding bug in zstd decoder in versions <= 1.3.4 by " "emitting an uncompressed block."); return 0; } } DEBUGLOG(5, "compressed block size : %u", (unsigned)(op - ostart)); return (size_t)(op - ostart); } MEM_STATIC size_t ZSTD_entropyCompressSeqStore( const seqStore_t* seqStorePtr, const ZSTD_entropyCTables_t* prevEntropy, ZSTD_entropyCTables_t* nextEntropy, const ZSTD_CCtx_params* cctxParams, void* dst, size_t dstCapacity, size_t srcSize, void* entropyWorkspace, size_t entropyWkspSize, int bmi2) { size_t const cSize = ZSTD_entropyCompressSeqStore_internal( seqStorePtr, prevEntropy, nextEntropy, cctxParams, dst, dstCapacity, entropyWorkspace, entropyWkspSize, bmi2); if (cSize == 0) return 0; /* When srcSize <= dstCapacity, there is enough space to write a raw uncompressed block. * Since we ran out of space, block must be not compressible, so fall back to raw uncompressed block. */ if ((cSize == ERROR(dstSize_tooSmall)) & (srcSize <= dstCapacity)) { DEBUGLOG(4, "not enough dstCapacity (%zu) for ZSTD_entropyCompressSeqStore_internal()=> do not compress block", dstCapacity); return 0; /* block not compressed */ } FORWARD_IF_ERROR(cSize, "ZSTD_entropyCompressSeqStore_internal failed"); /* Check compressibility */ { size_t const maxCSize = srcSize - ZSTD_minGain(srcSize, cctxParams->cParams.strategy); if (cSize >= maxCSize) return 0; /* block not compressed */ } DEBUGLOG(5, "ZSTD_entropyCompressSeqStore() cSize: %zu", cSize); /* libzstd decoder before > v1.5.4 is not compatible with compressed blocks of size ZSTD_BLOCKSIZE_MAX exactly. * This restriction is indirectly already fulfilled by respecting ZSTD_minGain() condition above. */ assert(cSize < ZSTD_BLOCKSIZE_MAX); return cSize; } /* ZSTD_selectBlockCompressor() : * Not static, but internal use only (used by long distance matcher) * assumption : strat is a valid strategy */ ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, ZSTD_paramSwitch_e useRowMatchFinder, ZSTD_dictMode_e dictMode) { static const ZSTD_blockCompressor blockCompressor[4][ZSTD_STRATEGY_MAX+1] = { { ZSTD_compressBlock_fast /* default for 0 */, ZSTD_compressBlock_fast, ZSTD_compressBlock_doubleFast, ZSTD_compressBlock_greedy, ZSTD_compressBlock_lazy, ZSTD_compressBlock_lazy2, ZSTD_compressBlock_btlazy2, ZSTD_compressBlock_btopt, ZSTD_compressBlock_btultra, ZSTD_compressBlock_btultra2 }, { ZSTD_compressBlock_fast_extDict /* default for 0 */, ZSTD_compressBlock_fast_extDict, ZSTD_compressBlock_doubleFast_extDict, ZSTD_compressBlock_greedy_extDict, ZSTD_compressBlock_lazy_extDict, ZSTD_compressBlock_lazy2_extDict, ZSTD_compressBlock_btlazy2_extDict, ZSTD_compressBlock_btopt_extDict, ZSTD_compressBlock_btultra_extDict, ZSTD_compressBlock_btultra_extDict }, { ZSTD_compressBlock_fast_dictMatchState /* default for 0 */, ZSTD_compressBlock_fast_dictMatchState, ZSTD_compressBlock_doubleFast_dictMatchState, ZSTD_compressBlock_greedy_dictMatchState, ZSTD_compressBlock_lazy_dictMatchState, ZSTD_compressBlock_lazy2_dictMatchState, ZSTD_compressBlock_btlazy2_dictMatchState, ZSTD_compressBlock_btopt_dictMatchState, ZSTD_compressBlock_btultra_dictMatchState, ZSTD_compressBlock_btultra_dictMatchState }, { NULL /* default for 0 */, NULL, NULL, ZSTD_compressBlock_greedy_dedicatedDictSearch, ZSTD_compressBlock_lazy_dedicatedDictSearch, ZSTD_compressBlock_lazy2_dedicatedDictSearch, NULL, NULL, NULL, NULL } }; ZSTD_blockCompressor selectedCompressor; ZSTD_STATIC_ASSERT((unsigned)ZSTD_fast == 1); assert(ZSTD_cParam_withinBounds(ZSTD_c_strategy, strat)); DEBUGLOG(4, "Selected block compressor: dictMode=%d strat=%d rowMatchfinder=%d", (int)dictMode, (int)strat, (int)useRowMatchFinder); if (ZSTD_rowMatchFinderUsed(strat, useRowMatchFinder)) { static const ZSTD_blockCompressor rowBasedBlockCompressors[4][3] = { { ZSTD_compressBlock_greedy_row, ZSTD_compressBlock_lazy_row, ZSTD_compressBlock_lazy2_row }, { ZSTD_compressBlock_greedy_extDict_row, ZSTD_compressBlock_lazy_extDict_row, ZSTD_compressBlock_lazy2_extDict_row }, { ZSTD_compressBlock_greedy_dictMatchState_row, ZSTD_compressBlock_lazy_dictMatchState_row, ZSTD_compressBlock_lazy2_dictMatchState_row }, { ZSTD_compressBlock_greedy_dedicatedDictSearch_row, ZSTD_compressBlock_lazy_dedicatedDictSearch_row, ZSTD_compressBlock_lazy2_dedicatedDictSearch_row } }; DEBUGLOG(4, "Selecting a row-based matchfinder"); assert(useRowMatchFinder != ZSTD_ps_auto); selectedCompressor = rowBasedBlockCompressors[(int)dictMode][(int)strat - (int)ZSTD_greedy]; } else { selectedCompressor = blockCompressor[(int)dictMode][(int)strat]; } assert(selectedCompressor != NULL); return selectedCompressor; } static void ZSTD_storeLastLiterals(seqStore_t* seqStorePtr, const BYTE* anchor, size_t lastLLSize) { ZSTD_memcpy(seqStorePtr->lit, anchor, lastLLSize); seqStorePtr->lit += lastLLSize; } void ZSTD_resetSeqStore(seqStore_t* ssPtr) { ssPtr->lit = ssPtr->litStart; ssPtr->sequences = ssPtr->sequencesStart; ssPtr->longLengthType = ZSTD_llt_none; } /* ZSTD_postProcessSequenceProducerResult() : * Validates and post-processes sequences obtained through the external matchfinder API: * - Checks whether nbExternalSeqs represents an error condition. * - Appends a block delimiter to outSeqs if one is not already present. * See zstd.h for context regarding block delimiters. * Returns the number of sequences after post-processing, or an error code. */ static size_t ZSTD_postProcessSequenceProducerResult( ZSTD_Sequence* outSeqs, size_t nbExternalSeqs, size_t outSeqsCapacity, size_t srcSize ) { RETURN_ERROR_IF( nbExternalSeqs > outSeqsCapacity, sequenceProducer_failed, "External sequence producer returned error code %lu", (unsigned long)nbExternalSeqs ); RETURN_ERROR_IF( nbExternalSeqs == 0 && srcSize > 0, sequenceProducer_failed, "Got zero sequences from external sequence producer for a non-empty src buffer!" ); if (srcSize == 0) { ZSTD_memset(&outSeqs[0], 0, sizeof(ZSTD_Sequence)); return 1; } { ZSTD_Sequence const lastSeq = outSeqs[nbExternalSeqs - 1]; /* We can return early if lastSeq is already a block delimiter. */ if (lastSeq.offset == 0 && lastSeq.matchLength == 0) { return nbExternalSeqs; } /* This error condition is only possible if the external matchfinder * produced an invalid parse, by definition of ZSTD_sequenceBound(). */ RETURN_ERROR_IF( nbExternalSeqs == outSeqsCapacity, sequenceProducer_failed, "nbExternalSeqs == outSeqsCapacity but lastSeq is not a block delimiter!" ); /* lastSeq is not a block delimiter, so we need to append one. */ ZSTD_memset(&outSeqs[nbExternalSeqs], 0, sizeof(ZSTD_Sequence)); return nbExternalSeqs + 1; } } /* ZSTD_fastSequenceLengthSum() : * Returns sum(litLen) + sum(matchLen) + lastLits for *seqBuf*. * Similar to another function in zstd_compress.c (determine_blockSize), * except it doesn't check for a block delimiter to end summation. * Removing the early exit allows the compiler to auto-vectorize (https://godbolt.org/z/cY1cajz9P). * This function can be deleted and replaced by determine_blockSize after we resolve issue #3456. */ static size_t ZSTD_fastSequenceLengthSum(ZSTD_Sequence const* seqBuf, size_t seqBufSize) { size_t matchLenSum, litLenSum, i; matchLenSum = 0; litLenSum = 0; for (i = 0; i < seqBufSize; i++) { litLenSum += seqBuf[i].litLength; matchLenSum += seqBuf[i].matchLength; } return litLenSum + matchLenSum; } typedef enum { ZSTDbss_compress, ZSTDbss_noCompress } ZSTD_buildSeqStore_e; static size_t ZSTD_buildSeqStore(ZSTD_CCtx* zc, const void* src, size_t srcSize) { ZSTD_matchState_t* const ms = &zc->blockState.matchState; DEBUGLOG(5, "ZSTD_buildSeqStore (srcSize=%zu)", srcSize); assert(srcSize <= ZSTD_BLOCKSIZE_MAX); /* Assert that we have correctly flushed the ctx params into the ms's copy */ ZSTD_assertEqualCParams(zc->appliedParams.cParams, ms->cParams); /* TODO: See 3090. We reduced MIN_CBLOCK_SIZE from 3 to 2 so to compensate we are adding * additional 1. We need to revisit and change this logic to be more consistent */ if (srcSize < MIN_CBLOCK_SIZE+ZSTD_blockHeaderSize+1+1) { if (zc->appliedParams.cParams.strategy >= ZSTD_btopt) { ZSTD_ldm_skipRawSeqStoreBytes(&zc->externSeqStore, srcSize); } else { ZSTD_ldm_skipSequences(&zc->externSeqStore, srcSize, zc->appliedParams.cParams.minMatch); } return ZSTDbss_noCompress; /* don't even attempt compression below a certain srcSize */ } ZSTD_resetSeqStore(&(zc->seqStore)); /* required for optimal parser to read stats from dictionary */ ms->opt.symbolCosts = &zc->blockState.prevCBlock->entropy; /* tell the optimal parser how we expect to compress literals */ ms->opt.literalCompressionMode = zc->appliedParams.literalCompressionMode; /* a gap between an attached dict and the current window is not safe, * they must remain adjacent, * and when that stops being the case, the dict must be unset */ assert(ms->dictMatchState == NULL || ms->loadedDictEnd == ms->window.dictLimit); /* limited update after a very long match */ { const BYTE* const base = ms->window.base; const BYTE* const istart = (const BYTE*)src; const U32 curr = (U32)(istart-base); if (sizeof(ptrdiff_t)==8) assert(istart - base < (ptrdiff_t)(U32)(-1)); /* ensure no overflow */ if (curr > ms->nextToUpdate + 384) ms->nextToUpdate = curr - MIN(192, (U32)(curr - ms->nextToUpdate - 384)); } /* select and store sequences */ { ZSTD_dictMode_e const dictMode = ZSTD_matchState_dictMode(ms); size_t lastLLSize; { int i; for (i = 0; i < ZSTD_REP_NUM; ++i) zc->blockState.nextCBlock->rep[i] = zc->blockState.prevCBlock->rep[i]; } if (zc->externSeqStore.pos < zc->externSeqStore.size) { assert(zc->appliedParams.ldmParams.enableLdm == ZSTD_ps_disable); /* External matchfinder + LDM is technically possible, just not implemented yet. * We need to revisit soon and implement it. */ RETURN_ERROR_IF( zc->appliedParams.useSequenceProducer, parameter_combination_unsupported, "Long-distance matching with external sequence producer enabled is not currently supported." ); /* Updates ldmSeqStore.pos */ lastLLSize = ZSTD_ldm_blockCompress(&zc->externSeqStore, ms, &zc->seqStore, zc->blockState.nextCBlock->rep, zc->appliedParams.useRowMatchFinder, src, srcSize); assert(zc->externSeqStore.pos <= zc->externSeqStore.size); } else if (zc->appliedParams.ldmParams.enableLdm == ZSTD_ps_enable) { rawSeqStore_t ldmSeqStore = kNullRawSeqStore; /* External matchfinder + LDM is technically possible, just not implemented yet. * We need to revisit soon and implement it. */ RETURN_ERROR_IF( zc->appliedParams.useSequenceProducer, parameter_combination_unsupported, "Long-distance matching with external sequence producer enabled is not currently supported." ); ldmSeqStore.seq = zc->ldmSequences; ldmSeqStore.capacity = zc->maxNbLdmSequences; /* Updates ldmSeqStore.size */ FORWARD_IF_ERROR(ZSTD_ldm_generateSequences(&zc->ldmState, &ldmSeqStore, &zc->appliedParams.ldmParams, src, srcSize), ""); /* Updates ldmSeqStore.pos */ lastLLSize = ZSTD_ldm_blockCompress(&ldmSeqStore, ms, &zc->seqStore, zc->blockState.nextCBlock->rep, zc->appliedParams.useRowMatchFinder, src, srcSize); assert(ldmSeqStore.pos == ldmSeqStore.size); } else if (zc->appliedParams.useSequenceProducer) { assert( zc->externalMatchCtx.seqBufferCapacity >= ZSTD_sequenceBound(srcSize) ); assert(zc->externalMatchCtx.mFinder != NULL); { U32 const windowSize = (U32)1 << zc->appliedParams.cParams.windowLog; size_t const nbExternalSeqs = (zc->externalMatchCtx.mFinder)( zc->externalMatchCtx.mState, zc->externalMatchCtx.seqBuffer, zc->externalMatchCtx.seqBufferCapacity, src, srcSize, NULL, 0, /* dict and dictSize, currently not supported */ zc->appliedParams.compressionLevel, windowSize ); size_t const nbPostProcessedSeqs = ZSTD_postProcessSequenceProducerResult( zc->externalMatchCtx.seqBuffer, nbExternalSeqs, zc->externalMatchCtx.seqBufferCapacity, srcSize ); /* Return early if there is no error, since we don't need to worry about last literals */ if (!ZSTD_isError(nbPostProcessedSeqs)) { ZSTD_sequencePosition seqPos = {0,0,0}; size_t const seqLenSum = ZSTD_fastSequenceLengthSum(zc->externalMatchCtx.seqBuffer, nbPostProcessedSeqs); RETURN_ERROR_IF(seqLenSum > srcSize, externalSequences_invalid, "External sequences imply too large a block!"); FORWARD_IF_ERROR( ZSTD_copySequencesToSeqStoreExplicitBlockDelim( zc, &seqPos, zc->externalMatchCtx.seqBuffer, nbPostProcessedSeqs, src, srcSize, zc->appliedParams.searchForExternalRepcodes ), "Failed to copy external sequences to seqStore!" ); ms->ldmSeqStore = NULL; DEBUGLOG(5, "Copied %lu sequences from external sequence producer to internal seqStore.", (unsigned long)nbExternalSeqs); return ZSTDbss_compress; } /* Propagate the error if fallback is disabled */ if (!zc->appliedParams.enableMatchFinderFallback) { return nbPostProcessedSeqs; } /* Fallback to software matchfinder */ { ZSTD_blockCompressor const blockCompressor = ZSTD_selectBlockCompressor(zc->appliedParams.cParams.strategy, zc->appliedParams.useRowMatchFinder, dictMode); ms->ldmSeqStore = NULL; DEBUGLOG( 5, "External sequence producer returned error code %lu. Falling back to internal parser.", (unsigned long)nbExternalSeqs ); lastLLSize = blockCompressor(ms, &zc->seqStore, zc->blockState.nextCBlock->rep, src, srcSize); } } } else { /* not long range mode and no external matchfinder */ ZSTD_blockCompressor const blockCompressor = ZSTD_selectBlockCompressor(zc->appliedParams.cParams.strategy, zc->appliedParams.useRowMatchFinder, dictMode); ms->ldmSeqStore = NULL; lastLLSize = blockCompressor(ms, &zc->seqStore, zc->blockState.nextCBlock->rep, src, srcSize); } { const BYTE* const lastLiterals = (const BYTE*)src + srcSize - lastLLSize; ZSTD_storeLastLiterals(&zc->seqStore, lastLiterals, lastLLSize); } } return ZSTDbss_compress; } static void ZSTD_copyBlockSequences(ZSTD_CCtx* zc) { const seqStore_t* seqStore = ZSTD_getSeqStore(zc); const seqDef* seqStoreSeqs = seqStore->sequencesStart; size_t seqStoreSeqSize = seqStore->sequences - seqStoreSeqs; size_t seqStoreLiteralsSize = (size_t)(seqStore->lit - seqStore->litStart); size_t literalsRead = 0; size_t lastLLSize; ZSTD_Sequence* outSeqs = &zc->seqCollector.seqStart[zc->seqCollector.seqIndex]; size_t i; repcodes_t updatedRepcodes; assert(zc->seqCollector.seqIndex + 1 < zc->seqCollector.maxSequences); /* Ensure we have enough space for last literals "sequence" */ assert(zc->seqCollector.maxSequences >= seqStoreSeqSize + 1); ZSTD_memcpy(updatedRepcodes.rep, zc->blockState.prevCBlock->rep, sizeof(repcodes_t)); for (i = 0; i < seqStoreSeqSize; ++i) { U32 rawOffset = seqStoreSeqs[i].offBase - ZSTD_REP_NUM; outSeqs[i].litLength = seqStoreSeqs[i].litLength; outSeqs[i].matchLength = seqStoreSeqs[i].mlBase + MINMATCH; outSeqs[i].rep = 0; if (i == seqStore->longLengthPos) { if (seqStore->longLengthType == ZSTD_llt_literalLength) { outSeqs[i].litLength += 0x10000; } else if (seqStore->longLengthType == ZSTD_llt_matchLength) { outSeqs[i].matchLength += 0x10000; } } if (seqStoreSeqs[i].offBase <= ZSTD_REP_NUM) { /* Derive the correct offset corresponding to a repcode */ outSeqs[i].rep = seqStoreSeqs[i].offBase; if (outSeqs[i].litLength != 0) { rawOffset = updatedRepcodes.rep[outSeqs[i].rep - 1]; } else { if (outSeqs[i].rep == 3) { rawOffset = updatedRepcodes.rep[0] - 1; } else { rawOffset = updatedRepcodes.rep[outSeqs[i].rep]; } } } outSeqs[i].offset = rawOffset; /* seqStoreSeqs[i].offset == offCode+1, and ZSTD_updateRep() expects offCode so we provide seqStoreSeqs[i].offset - 1 */ ZSTD_updateRep(updatedRepcodes.rep, seqStoreSeqs[i].offBase, seqStoreSeqs[i].litLength == 0); literalsRead += outSeqs[i].litLength; } /* Insert last literals (if any exist) in the block as a sequence with ml == off == 0. * If there are no last literals, then we'll emit (of: 0, ml: 0, ll: 0), which is a marker * for the block boundary, according to the API. */ assert(seqStoreLiteralsSize >= literalsRead); lastLLSize = seqStoreLiteralsSize - literalsRead; outSeqs[i].litLength = (U32)lastLLSize; outSeqs[i].matchLength = outSeqs[i].offset = outSeqs[i].rep = 0; seqStoreSeqSize++; zc->seqCollector.seqIndex += seqStoreSeqSize; } size_t ZSTD_sequenceBound(size_t srcSize) { return (srcSize / ZSTD_MINMATCH_MIN) + 1; } size_t ZSTD_generateSequences(ZSTD_CCtx* zc, ZSTD_Sequence* outSeqs, size_t outSeqsSize, const void* src, size_t srcSize) { const size_t dstCapacity = ZSTD_compressBound(srcSize); void* dst = ZSTD_customMalloc(dstCapacity, ZSTD_defaultCMem); SeqCollector seqCollector; RETURN_ERROR_IF(dst == NULL, memory_allocation, "NULL pointer!"); seqCollector.collectSequences = 1; seqCollector.seqStart = outSeqs; seqCollector.seqIndex = 0; seqCollector.maxSequences = outSeqsSize; zc->seqCollector = seqCollector; ZSTD_compress2(zc, dst, dstCapacity, src, srcSize); ZSTD_customFree(dst, ZSTD_defaultCMem); return zc->seqCollector.seqIndex; } size_t ZSTD_mergeBlockDelimiters(ZSTD_Sequence* sequences, size_t seqsSize) { size_t in = 0; size_t out = 0; for (; in < seqsSize; ++in) { if (sequences[in].offset == 0 && sequences[in].matchLength == 0) { if (in != seqsSize - 1) { sequences[in+1].litLength += sequences[in].litLength; } } else { sequences[out] = sequences[in]; ++out; } } return out; } /* Unrolled loop to read four size_ts of input at a time. Returns 1 if is RLE, 0 if not. */ static int ZSTD_isRLE(const BYTE* src, size_t length) { const BYTE* ip = src; const BYTE value = ip[0]; const size_t valueST = (size_t)((U64)value * 0x0101010101010101ULL); const size_t unrollSize = sizeof(size_t) * 4; const size_t unrollMask = unrollSize - 1; const size_t prefixLength = length & unrollMask; size_t i; if (length == 1) return 1; /* Check if prefix is RLE first before using unrolled loop */ if (prefixLength && ZSTD_count(ip+1, ip, ip+prefixLength) != prefixLength-1) { return 0; } for (i = prefixLength; i != length; i += unrollSize) { size_t u; for (u = 0; u < unrollSize; u += sizeof(size_t)) { if (MEM_readST(ip + i + u) != valueST) { return 0; } } } return 1; } /* Returns true if the given block may be RLE. * This is just a heuristic based on the compressibility. * It may return both false positives and false negatives. */ static int ZSTD_maybeRLE(seqStore_t const* seqStore) { size_t const nbSeqs = (size_t)(seqStore->sequences - seqStore->sequencesStart); size_t const nbLits = (size_t)(seqStore->lit - seqStore->litStart); return nbSeqs < 4 && nbLits < 10; } static void ZSTD_blockState_confirmRepcodesAndEntropyTables(ZSTD_blockState_t* const bs) { ZSTD_compressedBlockState_t* const tmp = bs->prevCBlock; bs->prevCBlock = bs->nextCBlock; bs->nextCBlock = tmp; } /* Writes the block header */ static void writeBlockHeader(void* op, size_t cSize, size_t blockSize, U32 lastBlock) { U32 const cBlockHeader = cSize == 1 ? lastBlock + (((U32)bt_rle)<<1) + (U32)(blockSize << 3) : lastBlock + (((U32)bt_compressed)<<1) + (U32)(cSize << 3); MEM_writeLE24(op, cBlockHeader); DEBUGLOG(3, "writeBlockHeader: cSize: %zu blockSize: %zu lastBlock: %u", cSize, blockSize, lastBlock); } /** ZSTD_buildBlockEntropyStats_literals() : * Builds entropy for the literals. * Stores literals block type (raw, rle, compressed, repeat) and * huffman description table to hufMetadata. * Requires ENTROPY_WORKSPACE_SIZE workspace * @return : size of huffman description table, or an error code */ static size_t ZSTD_buildBlockEntropyStats_literals(void* const src, size_t srcSize, const ZSTD_hufCTables_t* prevHuf, ZSTD_hufCTables_t* nextHuf, ZSTD_hufCTablesMetadata_t* hufMetadata, const int literalsCompressionIsDisabled, void* workspace, size_t wkspSize, int hufFlags) { BYTE* const wkspStart = (BYTE*)workspace; BYTE* const wkspEnd = wkspStart + wkspSize; BYTE* const countWkspStart = wkspStart; unsigned* const countWksp = (unsigned*)workspace; const size_t countWkspSize = (HUF_SYMBOLVALUE_MAX + 1) * sizeof(unsigned); BYTE* const nodeWksp = countWkspStart + countWkspSize; const size_t nodeWkspSize = (size_t)(wkspEnd - nodeWksp); unsigned maxSymbolValue = HUF_SYMBOLVALUE_MAX; unsigned huffLog = LitHufLog; HUF_repeat repeat = prevHuf->repeatMode; DEBUGLOG(5, "ZSTD_buildBlockEntropyStats_literals (srcSize=%zu)", srcSize); /* Prepare nextEntropy assuming reusing the existing table */ ZSTD_memcpy(nextHuf, prevHuf, sizeof(*prevHuf)); if (literalsCompressionIsDisabled) { DEBUGLOG(5, "set_basic - disabled"); hufMetadata->hType = set_basic; return 0; } /* small ? don't even attempt compression (speed opt) */ #ifndef COMPRESS_LITERALS_SIZE_MIN # define COMPRESS_LITERALS_SIZE_MIN 63 /* heuristic */ #endif { size_t const minLitSize = (prevHuf->repeatMode == HUF_repeat_valid) ? 6 : COMPRESS_LITERALS_SIZE_MIN; if (srcSize <= minLitSize) { DEBUGLOG(5, "set_basic - too small"); hufMetadata->hType = set_basic; return 0; } } /* Scan input and build symbol stats */ { size_t const largest = HIST_count_wksp (countWksp, &maxSymbolValue, (const BYTE*)src, srcSize, workspace, wkspSize); FORWARD_IF_ERROR(largest, "HIST_count_wksp failed"); if (largest == srcSize) { /* only one literal symbol */ DEBUGLOG(5, "set_rle"); hufMetadata->hType = set_rle; return 0; } if (largest <= (srcSize >> 7)+4) { /* heuristic: likely not compressible */ DEBUGLOG(5, "set_basic - no gain"); hufMetadata->hType = set_basic; return 0; } } /* Validate the previous Huffman table */ if (repeat == HUF_repeat_check && !HUF_validateCTable((HUF_CElt const*)prevHuf->CTable, countWksp, maxSymbolValue)) { repeat = HUF_repeat_none; } /* Build Huffman Tree */ ZSTD_memset(nextHuf->CTable, 0, sizeof(nextHuf->CTable)); huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue, nodeWksp, nodeWkspSize, nextHuf->CTable, countWksp, hufFlags); assert(huffLog <= LitHufLog); { size_t const maxBits = HUF_buildCTable_wksp((HUF_CElt*)nextHuf->CTable, countWksp, maxSymbolValue, huffLog, nodeWksp, nodeWkspSize); FORWARD_IF_ERROR(maxBits, "HUF_buildCTable_wksp"); huffLog = (U32)maxBits; } { /* Build and write the CTable */ size_t const newCSize = HUF_estimateCompressedSize( (HUF_CElt*)nextHuf->CTable, countWksp, maxSymbolValue); size_t const hSize = HUF_writeCTable_wksp( hufMetadata->hufDesBuffer, sizeof(hufMetadata->hufDesBuffer), (HUF_CElt*)nextHuf->CTable, maxSymbolValue, huffLog, nodeWksp, nodeWkspSize); /* Check against repeating the previous CTable */ if (repeat != HUF_repeat_none) { size_t const oldCSize = HUF_estimateCompressedSize( (HUF_CElt const*)prevHuf->CTable, countWksp, maxSymbolValue); if (oldCSize < srcSize && (oldCSize <= hSize + newCSize || hSize + 12 >= srcSize)) { DEBUGLOG(5, "set_repeat - smaller"); ZSTD_memcpy(nextHuf, prevHuf, sizeof(*prevHuf)); hufMetadata->hType = set_repeat; return 0; } } if (newCSize + hSize >= srcSize) { DEBUGLOG(5, "set_basic - no gains"); ZSTD_memcpy(nextHuf, prevHuf, sizeof(*prevHuf)); hufMetadata->hType = set_basic; return 0; } DEBUGLOG(5, "set_compressed (hSize=%u)", (U32)hSize); hufMetadata->hType = set_compressed; nextHuf->repeatMode = HUF_repeat_check; return hSize; } } /* ZSTD_buildDummySequencesStatistics(): * Returns a ZSTD_symbolEncodingTypeStats_t with all encoding types as set_basic, * and updates nextEntropy to the appropriate repeatMode. */ static ZSTD_symbolEncodingTypeStats_t ZSTD_buildDummySequencesStatistics(ZSTD_fseCTables_t* nextEntropy) { ZSTD_symbolEncodingTypeStats_t stats = {set_basic, set_basic, set_basic, 0, 0, 0}; nextEntropy->litlength_repeatMode = FSE_repeat_none; nextEntropy->offcode_repeatMode = FSE_repeat_none; nextEntropy->matchlength_repeatMode = FSE_repeat_none; return stats; } /** ZSTD_buildBlockEntropyStats_sequences() : * Builds entropy for the sequences. * Stores symbol compression modes and fse table to fseMetadata. * Requires ENTROPY_WORKSPACE_SIZE wksp. * @return : size of fse tables or error code */ static size_t ZSTD_buildBlockEntropyStats_sequences( const seqStore_t* seqStorePtr, const ZSTD_fseCTables_t* prevEntropy, ZSTD_fseCTables_t* nextEntropy, const ZSTD_CCtx_params* cctxParams, ZSTD_fseCTablesMetadata_t* fseMetadata, void* workspace, size_t wkspSize) { ZSTD_strategy const strategy = cctxParams->cParams.strategy; size_t const nbSeq = (size_t)(seqStorePtr->sequences - seqStorePtr->sequencesStart); BYTE* const ostart = fseMetadata->fseTablesBuffer; BYTE* const oend = ostart + sizeof(fseMetadata->fseTablesBuffer); BYTE* op = ostart; unsigned* countWorkspace = (unsigned*)workspace; unsigned* entropyWorkspace = countWorkspace + (MaxSeq + 1); size_t entropyWorkspaceSize = wkspSize - (MaxSeq + 1) * sizeof(*countWorkspace); ZSTD_symbolEncodingTypeStats_t stats; DEBUGLOG(5, "ZSTD_buildBlockEntropyStats_sequences (nbSeq=%zu)", nbSeq); stats = nbSeq != 0 ? ZSTD_buildSequencesStatistics(seqStorePtr, nbSeq, prevEntropy, nextEntropy, op, oend, strategy, countWorkspace, entropyWorkspace, entropyWorkspaceSize) : ZSTD_buildDummySequencesStatistics(nextEntropy); FORWARD_IF_ERROR(stats.size, "ZSTD_buildSequencesStatistics failed!"); fseMetadata->llType = (symbolEncodingType_e) stats.LLtype; fseMetadata->ofType = (symbolEncodingType_e) stats.Offtype; fseMetadata->mlType = (symbolEncodingType_e) stats.MLtype; fseMetadata->lastCountSize = stats.lastCountSize; return stats.size; } /** ZSTD_buildBlockEntropyStats() : * Builds entropy for the block. * Requires workspace size ENTROPY_WORKSPACE_SIZE * @return : 0 on success, or an error code * Note : also employed in superblock */ size_t ZSTD_buildBlockEntropyStats( const seqStore_t* seqStorePtr, const ZSTD_entropyCTables_t* prevEntropy, ZSTD_entropyCTables_t* nextEntropy, const ZSTD_CCtx_params* cctxParams, ZSTD_entropyCTablesMetadata_t* entropyMetadata, void* workspace, size_t wkspSize) { size_t const litSize = (size_t)(seqStorePtr->lit - seqStorePtr->litStart); int const huf_useOptDepth = (cctxParams->cParams.strategy >= HUF_OPTIMAL_DEPTH_THRESHOLD); int const hufFlags = huf_useOptDepth ? HUF_flags_optimalDepth : 0; entropyMetadata->hufMetadata.hufDesSize = ZSTD_buildBlockEntropyStats_literals(seqStorePtr->litStart, litSize, &prevEntropy->huf, &nextEntropy->huf, &entropyMetadata->hufMetadata, ZSTD_literalsCompressionIsDisabled(cctxParams), workspace, wkspSize, hufFlags); FORWARD_IF_ERROR(entropyMetadata->hufMetadata.hufDesSize, "ZSTD_buildBlockEntropyStats_literals failed"); entropyMetadata->fseMetadata.fseTablesSize = ZSTD_buildBlockEntropyStats_sequences(seqStorePtr, &prevEntropy->fse, &nextEntropy->fse, cctxParams, &entropyMetadata->fseMetadata, workspace, wkspSize); FORWARD_IF_ERROR(entropyMetadata->fseMetadata.fseTablesSize, "ZSTD_buildBlockEntropyStats_sequences failed"); return 0; } /* Returns the size estimate for the literals section (header + content) of a block */ static size_t ZSTD_estimateBlockSize_literal(const BYTE* literals, size_t litSize, const ZSTD_hufCTables_t* huf, const ZSTD_hufCTablesMetadata_t* hufMetadata, void* workspace, size_t wkspSize, int writeEntropy) { unsigned* const countWksp = (unsigned*)workspace; unsigned maxSymbolValue = HUF_SYMBOLVALUE_MAX; size_t literalSectionHeaderSize = 3 + (litSize >= 1 KB) + (litSize >= 16 KB); U32 singleStream = litSize < 256; if (hufMetadata->hType == set_basic) return litSize; else if (hufMetadata->hType == set_rle) return 1; else if (hufMetadata->hType == set_compressed || hufMetadata->hType == set_repeat) { size_t const largest = HIST_count_wksp (countWksp, &maxSymbolValue, (const BYTE*)literals, litSize, workspace, wkspSize); if (ZSTD_isError(largest)) return litSize; { size_t cLitSizeEstimate = HUF_estimateCompressedSize((const HUF_CElt*)huf->CTable, countWksp, maxSymbolValue); if (writeEntropy) cLitSizeEstimate += hufMetadata->hufDesSize; if (!singleStream) cLitSizeEstimate += 6; /* multi-stream huffman uses 6-byte jump table */ return cLitSizeEstimate + literalSectionHeaderSize; } } assert(0); /* impossible */ return 0; } /* Returns the size estimate for the FSE-compressed symbols (of, ml, ll) of a block */ static size_t ZSTD_estimateBlockSize_symbolType(symbolEncodingType_e type, const BYTE* codeTable, size_t nbSeq, unsigned maxCode, const FSE_CTable* fseCTable, const U8* additionalBits, short const* defaultNorm, U32 defaultNormLog, U32 defaultMax, void* workspace, size_t wkspSize) { unsigned* const countWksp = (unsigned*)workspace; const BYTE* ctp = codeTable; const BYTE* const ctStart = ctp; const BYTE* const ctEnd = ctStart + nbSeq; size_t cSymbolTypeSizeEstimateInBits = 0; unsigned max = maxCode; HIST_countFast_wksp(countWksp, &max, codeTable, nbSeq, workspace, wkspSize); /* can't fail */ if (type == set_basic) { /* We selected this encoding type, so it must be valid. */ assert(max <= defaultMax); (void)defaultMax; cSymbolTypeSizeEstimateInBits = ZSTD_crossEntropyCost(defaultNorm, defaultNormLog, countWksp, max); } else if (type == set_rle) { cSymbolTypeSizeEstimateInBits = 0; } else if (type == set_compressed || type == set_repeat) { cSymbolTypeSizeEstimateInBits = ZSTD_fseBitCost(fseCTable, countWksp, max); } if (ZSTD_isError(cSymbolTypeSizeEstimateInBits)) { return nbSeq * 10; } while (ctp < ctEnd) { if (additionalBits) cSymbolTypeSizeEstimateInBits += additionalBits[*ctp]; else cSymbolTypeSizeEstimateInBits += *ctp; /* for offset, offset code is also the number of additional bits */ ctp++; } return cSymbolTypeSizeEstimateInBits >> 3; } /* Returns the size estimate for the sequences section (header + content) of a block */ static size_t ZSTD_estimateBlockSize_sequences(const BYTE* ofCodeTable, const BYTE* llCodeTable, const BYTE* mlCodeTable, size_t nbSeq, const ZSTD_fseCTables_t* fseTables, const ZSTD_fseCTablesMetadata_t* fseMetadata, void* workspace, size_t wkspSize, int writeEntropy) { size_t sequencesSectionHeaderSize = 1 /* seqHead */ + 1 /* min seqSize size */ + (nbSeq >= 128) + (nbSeq >= LONGNBSEQ); size_t cSeqSizeEstimate = 0; cSeqSizeEstimate += ZSTD_estimateBlockSize_symbolType(fseMetadata->ofType, ofCodeTable, nbSeq, MaxOff, fseTables->offcodeCTable, NULL, OF_defaultNorm, OF_defaultNormLog, DefaultMaxOff, workspace, wkspSize); cSeqSizeEstimate += ZSTD_estimateBlockSize_symbolType(fseMetadata->llType, llCodeTable, nbSeq, MaxLL, fseTables->litlengthCTable, LL_bits, LL_defaultNorm, LL_defaultNormLog, MaxLL, workspace, wkspSize); cSeqSizeEstimate += ZSTD_estimateBlockSize_symbolType(fseMetadata->mlType, mlCodeTable, nbSeq, MaxML, fseTables->matchlengthCTable, ML_bits, ML_defaultNorm, ML_defaultNormLog, MaxML, workspace, wkspSize); if (writeEntropy) cSeqSizeEstimate += fseMetadata->fseTablesSize; return cSeqSizeEstimate + sequencesSectionHeaderSize; } /* Returns the size estimate for a given stream of literals, of, ll, ml */ static size_t ZSTD_estimateBlockSize(const BYTE* literals, size_t litSize, const BYTE* ofCodeTable, const BYTE* llCodeTable, const BYTE* mlCodeTable, size_t nbSeq, const ZSTD_entropyCTables_t* entropy, const ZSTD_entropyCTablesMetadata_t* entropyMetadata, void* workspace, size_t wkspSize, int writeLitEntropy, int writeSeqEntropy) { size_t const literalsSize = ZSTD_estimateBlockSize_literal(literals, litSize, &entropy->huf, &entropyMetadata->hufMetadata, workspace, wkspSize, writeLitEntropy); size_t const seqSize = ZSTD_estimateBlockSize_sequences(ofCodeTable, llCodeTable, mlCodeTable, nbSeq, &entropy->fse, &entropyMetadata->fseMetadata, workspace, wkspSize, writeSeqEntropy); return seqSize + literalsSize + ZSTD_blockHeaderSize; } /* Builds entropy statistics and uses them for blocksize estimation. * * @return: estimated compressed size of the seqStore, or a zstd error. */ static size_t ZSTD_buildEntropyStatisticsAndEstimateSubBlockSize(seqStore_t* seqStore, ZSTD_CCtx* zc) { ZSTD_entropyCTablesMetadata_t* const entropyMetadata = &zc->blockSplitCtx.entropyMetadata; DEBUGLOG(6, "ZSTD_buildEntropyStatisticsAndEstimateSubBlockSize()"); FORWARD_IF_ERROR(ZSTD_buildBlockEntropyStats(seqStore, &zc->blockState.prevCBlock->entropy, &zc->blockState.nextCBlock->entropy, &zc->appliedParams, entropyMetadata, zc->entropyWorkspace, ENTROPY_WORKSPACE_SIZE), ""); return ZSTD_estimateBlockSize( seqStore->litStart, (size_t)(seqStore->lit - seqStore->litStart), seqStore->ofCode, seqStore->llCode, seqStore->mlCode, (size_t)(seqStore->sequences - seqStore->sequencesStart), &zc->blockState.nextCBlock->entropy, entropyMetadata, zc->entropyWorkspace, ENTROPY_WORKSPACE_SIZE, (int)(entropyMetadata->hufMetadata.hType == set_compressed), 1); } /* Returns literals bytes represented in a seqStore */ static size_t ZSTD_countSeqStoreLiteralsBytes(const seqStore_t* const seqStore) { size_t literalsBytes = 0; size_t const nbSeqs = (size_t)(seqStore->sequences - seqStore->sequencesStart); size_t i; for (i = 0; i < nbSeqs; ++i) { seqDef const seq = seqStore->sequencesStart[i]; literalsBytes += seq.litLength; if (i == seqStore->longLengthPos && seqStore->longLengthType == ZSTD_llt_literalLength) { literalsBytes += 0x10000; } } return literalsBytes; } /* Returns match bytes represented in a seqStore */ static size_t ZSTD_countSeqStoreMatchBytes(const seqStore_t* const seqStore) { size_t matchBytes = 0; size_t const nbSeqs = (size_t)(seqStore->sequences - seqStore->sequencesStart); size_t i; for (i = 0; i < nbSeqs; ++i) { seqDef seq = seqStore->sequencesStart[i]; matchBytes += seq.mlBase + MINMATCH; if (i == seqStore->longLengthPos && seqStore->longLengthType == ZSTD_llt_matchLength) { matchBytes += 0x10000; } } return matchBytes; } /* Derives the seqStore that is a chunk of the originalSeqStore from [startIdx, endIdx). * Stores the result in resultSeqStore. */ static void ZSTD_deriveSeqStoreChunk(seqStore_t* resultSeqStore, const seqStore_t* originalSeqStore, size_t startIdx, size_t endIdx) { *resultSeqStore = *originalSeqStore; if (startIdx > 0) { resultSeqStore->sequences = originalSeqStore->sequencesStart + startIdx; resultSeqStore->litStart += ZSTD_countSeqStoreLiteralsBytes(resultSeqStore); } /* Move longLengthPos into the correct position if necessary */ if (originalSeqStore->longLengthType != ZSTD_llt_none) { if (originalSeqStore->longLengthPos < startIdx || originalSeqStore->longLengthPos > endIdx) { resultSeqStore->longLengthType = ZSTD_llt_none; } else { resultSeqStore->longLengthPos -= (U32)startIdx; } } resultSeqStore->sequencesStart = originalSeqStore->sequencesStart + startIdx; resultSeqStore->sequences = originalSeqStore->sequencesStart + endIdx; if (endIdx == (size_t)(originalSeqStore->sequences - originalSeqStore->sequencesStart)) { /* This accounts for possible last literals if the derived chunk reaches the end of the block */ assert(resultSeqStore->lit == originalSeqStore->lit); } else { size_t const literalsBytes = ZSTD_countSeqStoreLiteralsBytes(resultSeqStore); resultSeqStore->lit = resultSeqStore->litStart + literalsBytes; } resultSeqStore->llCode += startIdx; resultSeqStore->mlCode += startIdx; resultSeqStore->ofCode += startIdx; } /** * Returns the raw offset represented by the combination of offBase, ll0, and repcode history. * offBase must represent a repcode in the numeric representation of ZSTD_storeSeq(). */ static U32 ZSTD_resolveRepcodeToRawOffset(const U32 rep[ZSTD_REP_NUM], const U32 offBase, const U32 ll0) { U32 const adjustedRepCode = OFFBASE_TO_REPCODE(offBase) - 1 + ll0; /* [ 0 - 3 ] */ assert(OFFBASE_IS_REPCODE(offBase)); if (adjustedRepCode == ZSTD_REP_NUM) { assert(ll0); /* litlength == 0 and offCode == 2 implies selection of first repcode - 1 * This is only valid if it results in a valid offset value, aka > 0. * Note : it may happen that `rep[0]==1` in exceptional circumstances. * In which case this function will return 0, which is an invalid offset. * It's not an issue though, since this value will be * compared and discarded within ZSTD_seqStore_resolveOffCodes(). */ return rep[0] - 1; } return rep[adjustedRepCode]; } /** * ZSTD_seqStore_resolveOffCodes() reconciles any possible divergences in offset history that may arise * due to emission of RLE/raw blocks that disturb the offset history, * and replaces any repcodes within the seqStore that may be invalid. * * dRepcodes are updated as would be on the decompression side. * cRepcodes are updated exactly in accordance with the seqStore. * * Note : this function assumes seq->offBase respects the following numbering scheme : * 0 : invalid * 1-3 : repcode 1-3 * 4+ : real_offset+3 */ static void ZSTD_seqStore_resolveOffCodes(repcodes_t* const dRepcodes, repcodes_t* const cRepcodes, const seqStore_t* const seqStore, U32 const nbSeq) { U32 idx = 0; U32 const longLitLenIdx = seqStore->longLengthType == ZSTD_llt_literalLength ? seqStore->longLengthPos : nbSeq; for (; idx < nbSeq; ++idx) { seqDef* const seq = seqStore->sequencesStart + idx; U32 const ll0 = (seq->litLength == 0) && (idx != longLitLenIdx); U32 const offBase = seq->offBase; assert(offBase > 0); if (OFFBASE_IS_REPCODE(offBase)) { U32 const dRawOffset = ZSTD_resolveRepcodeToRawOffset(dRepcodes->rep, offBase, ll0); U32 const cRawOffset = ZSTD_resolveRepcodeToRawOffset(cRepcodes->rep, offBase, ll0); /* Adjust simulated decompression repcode history if we come across a mismatch. Replace * the repcode with the offset it actually references, determined by the compression * repcode history. */ if (dRawOffset != cRawOffset) { seq->offBase = OFFSET_TO_OFFBASE(cRawOffset); } } /* Compression repcode history is always updated with values directly from the unmodified seqStore. * Decompression repcode history may use modified seq->offset value taken from compression repcode history. */ ZSTD_updateRep(dRepcodes->rep, seq->offBase, ll0); ZSTD_updateRep(cRepcodes->rep, offBase, ll0); } } /* ZSTD_compressSeqStore_singleBlock(): * Compresses a seqStore into a block with a block header, into the buffer dst. * * Returns the total size of that block (including header) or a ZSTD error code. */ static size_t ZSTD_compressSeqStore_singleBlock(ZSTD_CCtx* zc, const seqStore_t* const seqStore, repcodes_t* const dRep, repcodes_t* const cRep, void* dst, size_t dstCapacity, const void* src, size_t srcSize, U32 lastBlock, U32 isPartition) { const U32 rleMaxLength = 25; BYTE* op = (BYTE*)dst; const BYTE* ip = (const BYTE*)src; size_t cSize; size_t cSeqsSize; /* In case of an RLE or raw block, the simulated decompression repcode history must be reset */ repcodes_t const dRepOriginal = *dRep; DEBUGLOG(5, "ZSTD_compressSeqStore_singleBlock"); if (isPartition) ZSTD_seqStore_resolveOffCodes(dRep, cRep, seqStore, (U32)(seqStore->sequences - seqStore->sequencesStart)); RETURN_ERROR_IF(dstCapacity < ZSTD_blockHeaderSize, dstSize_tooSmall, "Block header doesn't fit"); cSeqsSize = ZSTD_entropyCompressSeqStore(seqStore, &zc->blockState.prevCBlock->entropy, &zc->blockState.nextCBlock->entropy, &zc->appliedParams, op + ZSTD_blockHeaderSize, dstCapacity - ZSTD_blockHeaderSize, srcSize, zc->entropyWorkspace, ENTROPY_WORKSPACE_SIZE /* statically allocated in resetCCtx */, zc->bmi2); FORWARD_IF_ERROR(cSeqsSize, "ZSTD_entropyCompressSeqStore failed!"); if (!zc->isFirstBlock && cSeqsSize < rleMaxLength && ZSTD_isRLE((BYTE const*)src, srcSize)) { /* We don't want to emit our first block as a RLE even if it qualifies because * doing so will cause the decoder (cli only) to throw a "should consume all input error." * This is only an issue for zstd <= v1.4.3 */ cSeqsSize = 1; } if (zc->seqCollector.collectSequences) { ZSTD_copyBlockSequences(zc); ZSTD_blockState_confirmRepcodesAndEntropyTables(&zc->blockState); return 0; } if (cSeqsSize == 0) { cSize = ZSTD_noCompressBlock(op, dstCapacity, ip, srcSize, lastBlock); FORWARD_IF_ERROR(cSize, "Nocompress block failed"); DEBUGLOG(4, "Writing out nocompress block, size: %zu", cSize); *dRep = dRepOriginal; /* reset simulated decompression repcode history */ } else if (cSeqsSize == 1) { cSize = ZSTD_rleCompressBlock(op, dstCapacity, *ip, srcSize, lastBlock); FORWARD_IF_ERROR(cSize, "RLE compress block failed"); DEBUGLOG(4, "Writing out RLE block, size: %zu", cSize); *dRep = dRepOriginal; /* reset simulated decompression repcode history */ } else { ZSTD_blockState_confirmRepcodesAndEntropyTables(&zc->blockState); writeBlockHeader(op, cSeqsSize, srcSize, lastBlock); cSize = ZSTD_blockHeaderSize + cSeqsSize; DEBUGLOG(4, "Writing out compressed block, size: %zu", cSize); } if (zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode == FSE_repeat_valid) zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode = FSE_repeat_check; return cSize; } /* Struct to keep track of where we are in our recursive calls. */ typedef struct { U32* splitLocations; /* Array of split indices */ size_t idx; /* The current index within splitLocations being worked on */ } seqStoreSplits; #define MIN_SEQUENCES_BLOCK_SPLITTING 300 /* Helper function to perform the recursive search for block splits. * Estimates the cost of seqStore prior to split, and estimates the cost of splitting the sequences in half. * If advantageous to split, then we recurse down the two sub-blocks. * If not, or if an error occurred in estimation, then we do not recurse. * * Note: The recursion depth is capped by a heuristic minimum number of sequences, * defined by MIN_SEQUENCES_BLOCK_SPLITTING. * In theory, this means the absolute largest recursion depth is 10 == log2(maxNbSeqInBlock/MIN_SEQUENCES_BLOCK_SPLITTING). * In practice, recursion depth usually doesn't go beyond 4. * * Furthermore, the number of splits is capped by ZSTD_MAX_NB_BLOCK_SPLITS. * At ZSTD_MAX_NB_BLOCK_SPLITS == 196 with the current existing blockSize * maximum of 128 KB, this value is actually impossible to reach. */ static void ZSTD_deriveBlockSplitsHelper(seqStoreSplits* splits, size_t startIdx, size_t endIdx, ZSTD_CCtx* zc, const seqStore_t* origSeqStore) { seqStore_t* const fullSeqStoreChunk = &zc->blockSplitCtx.fullSeqStoreChunk; seqStore_t* const firstHalfSeqStore = &zc->blockSplitCtx.firstHalfSeqStore; seqStore_t* const secondHalfSeqStore = &zc->blockSplitCtx.secondHalfSeqStore; size_t estimatedOriginalSize; size_t estimatedFirstHalfSize; size_t estimatedSecondHalfSize; size_t midIdx = (startIdx + endIdx)/2; DEBUGLOG(5, "ZSTD_deriveBlockSplitsHelper: startIdx=%zu endIdx=%zu", startIdx, endIdx); assert(endIdx >= startIdx); if (endIdx - startIdx < MIN_SEQUENCES_BLOCK_SPLITTING || splits->idx >= ZSTD_MAX_NB_BLOCK_SPLITS) { DEBUGLOG(6, "ZSTD_deriveBlockSplitsHelper: Too few sequences (%zu)", endIdx - startIdx); return; } ZSTD_deriveSeqStoreChunk(fullSeqStoreChunk, origSeqStore, startIdx, endIdx); ZSTD_deriveSeqStoreChunk(firstHalfSeqStore, origSeqStore, startIdx, midIdx); ZSTD_deriveSeqStoreChunk(secondHalfSeqStore, origSeqStore, midIdx, endIdx); estimatedOriginalSize = ZSTD_buildEntropyStatisticsAndEstimateSubBlockSize(fullSeqStoreChunk, zc); estimatedFirstHalfSize = ZSTD_buildEntropyStatisticsAndEstimateSubBlockSize(firstHalfSeqStore, zc); estimatedSecondHalfSize = ZSTD_buildEntropyStatisticsAndEstimateSubBlockSize(secondHalfSeqStore, zc); DEBUGLOG(5, "Estimated original block size: %zu -- First half split: %zu -- Second half split: %zu", estimatedOriginalSize, estimatedFirstHalfSize, estimatedSecondHalfSize); if (ZSTD_isError(estimatedOriginalSize) || ZSTD_isError(estimatedFirstHalfSize) || ZSTD_isError(estimatedSecondHalfSize)) { return; } if (estimatedFirstHalfSize + estimatedSecondHalfSize < estimatedOriginalSize) { DEBUGLOG(5, "split decided at seqNb:%zu", midIdx); ZSTD_deriveBlockSplitsHelper(splits, startIdx, midIdx, zc, origSeqStore); splits->splitLocations[splits->idx] = (U32)midIdx; splits->idx++; ZSTD_deriveBlockSplitsHelper(splits, midIdx, endIdx, zc, origSeqStore); } } /* Base recursive function. * Populates a table with intra-block partition indices that can improve compression ratio. * * @return: number of splits made (which equals the size of the partition table - 1). */ static size_t ZSTD_deriveBlockSplits(ZSTD_CCtx* zc, U32 partitions[], U32 nbSeq) { seqStoreSplits splits; splits.splitLocations = partitions; splits.idx = 0; if (nbSeq <= 4) { DEBUGLOG(5, "ZSTD_deriveBlockSplits: Too few sequences to split (%u <= 4)", nbSeq); /* Refuse to try and split anything with less than 4 sequences */ return 0; } ZSTD_deriveBlockSplitsHelper(&splits, 0, nbSeq, zc, &zc->seqStore); splits.splitLocations[splits.idx] = nbSeq; DEBUGLOG(5, "ZSTD_deriveBlockSplits: final nb partitions: %zu", splits.idx+1); return splits.idx; } /* ZSTD_compressBlock_splitBlock(): * Attempts to split a given block into multiple blocks to improve compression ratio. * * Returns combined size of all blocks (which includes headers), or a ZSTD error code. */ static size_t ZSTD_compressBlock_splitBlock_internal(ZSTD_CCtx* zc, void* dst, size_t dstCapacity, const void* src, size_t blockSize, U32 lastBlock, U32 nbSeq) { size_t cSize = 0; const BYTE* ip = (const BYTE*)src; BYTE* op = (BYTE*)dst; size_t i = 0; size_t srcBytesTotal = 0; U32* const partitions = zc->blockSplitCtx.partitions; /* size == ZSTD_MAX_NB_BLOCK_SPLITS */ seqStore_t* const nextSeqStore = &zc->blockSplitCtx.nextSeqStore; seqStore_t* const currSeqStore = &zc->blockSplitCtx.currSeqStore; size_t const numSplits = ZSTD_deriveBlockSplits(zc, partitions, nbSeq); /* If a block is split and some partitions are emitted as RLE/uncompressed, then repcode history * may become invalid. In order to reconcile potentially invalid repcodes, we keep track of two * separate repcode histories that simulate repcode history on compression and decompression side, * and use the histories to determine whether we must replace a particular repcode with its raw offset. * * 1) cRep gets updated for each partition, regardless of whether the block was emitted as uncompressed * or RLE. This allows us to retrieve the offset value that an invalid repcode references within * a nocompress/RLE block. * 2) dRep gets updated only for compressed partitions, and when a repcode gets replaced, will use * the replacement offset value rather than the original repcode to update the repcode history. * dRep also will be the final repcode history sent to the next block. * * See ZSTD_seqStore_resolveOffCodes() for more details. */ repcodes_t dRep; repcodes_t cRep; ZSTD_memcpy(dRep.rep, zc->blockState.prevCBlock->rep, sizeof(repcodes_t)); ZSTD_memcpy(cRep.rep, zc->blockState.prevCBlock->rep, sizeof(repcodes_t)); ZSTD_memset(nextSeqStore, 0, sizeof(seqStore_t)); DEBUGLOG(5, "ZSTD_compressBlock_splitBlock_internal (dstCapacity=%u, dictLimit=%u, nextToUpdate=%u)", (unsigned)dstCapacity, (unsigned)zc->blockState.matchState.window.dictLimit, (unsigned)zc->blockState.matchState.nextToUpdate); if (numSplits == 0) { size_t cSizeSingleBlock = ZSTD_compressSeqStore_singleBlock(zc, &zc->seqStore, &dRep, &cRep, op, dstCapacity, ip, blockSize, lastBlock, 0 /* isPartition */); FORWARD_IF_ERROR(cSizeSingleBlock, "Compressing single block from splitBlock_internal() failed!"); DEBUGLOG(5, "ZSTD_compressBlock_splitBlock_internal: No splits"); assert(zc->blockSize <= ZSTD_BLOCKSIZE_MAX); assert(cSizeSingleBlock <= zc->blockSize + ZSTD_blockHeaderSize); return cSizeSingleBlock; } ZSTD_deriveSeqStoreChunk(currSeqStore, &zc->seqStore, 0, partitions[0]); for (i = 0; i <= numSplits; ++i) { size_t cSizeChunk; U32 const lastPartition = (i == numSplits); U32 lastBlockEntireSrc = 0; size_t srcBytes = ZSTD_countSeqStoreLiteralsBytes(currSeqStore) + ZSTD_countSeqStoreMatchBytes(currSeqStore); srcBytesTotal += srcBytes; if (lastPartition) { /* This is the final partition, need to account for possible last literals */ srcBytes += blockSize - srcBytesTotal; lastBlockEntireSrc = lastBlock; } else { ZSTD_deriveSeqStoreChunk(nextSeqStore, &zc->seqStore, partitions[i], partitions[i+1]); } cSizeChunk = ZSTD_compressSeqStore_singleBlock(zc, currSeqStore, &dRep, &cRep, op, dstCapacity, ip, srcBytes, lastBlockEntireSrc, 1 /* isPartition */); DEBUGLOG(5, "Estimated size: %zu vs %zu : actual size", ZSTD_buildEntropyStatisticsAndEstimateSubBlockSize(currSeqStore, zc), cSizeChunk); FORWARD_IF_ERROR(cSizeChunk, "Compressing chunk failed!"); ip += srcBytes; op += cSizeChunk; dstCapacity -= cSizeChunk; cSize += cSizeChunk; *currSeqStore = *nextSeqStore; assert(cSizeChunk <= zc->blockSize + ZSTD_blockHeaderSize); } /* cRep and dRep may have diverged during the compression. * If so, we use the dRep repcodes for the next block. */ ZSTD_memcpy(zc->blockState.prevCBlock->rep, dRep.rep, sizeof(repcodes_t)); return cSize; } static size_t ZSTD_compressBlock_splitBlock(ZSTD_CCtx* zc, void* dst, size_t dstCapacity, const void* src, size_t srcSize, U32 lastBlock) { U32 nbSeq; size_t cSize; DEBUGLOG(4, "ZSTD_compressBlock_splitBlock"); assert(zc->appliedParams.useBlockSplitter == ZSTD_ps_enable); { const size_t bss = ZSTD_buildSeqStore(zc, src, srcSize); FORWARD_IF_ERROR(bss, "ZSTD_buildSeqStore failed"); if (bss == ZSTDbss_noCompress) { if (zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode == FSE_repeat_valid) zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode = FSE_repeat_check; cSize = ZSTD_noCompressBlock(dst, dstCapacity, src, srcSize, lastBlock); FORWARD_IF_ERROR(cSize, "ZSTD_noCompressBlock failed"); DEBUGLOG(4, "ZSTD_compressBlock_splitBlock: Nocompress block"); return cSize; } nbSeq = (U32)(zc->seqStore.sequences - zc->seqStore.sequencesStart); } cSize = ZSTD_compressBlock_splitBlock_internal(zc, dst, dstCapacity, src, srcSize, lastBlock, nbSeq); FORWARD_IF_ERROR(cSize, "Splitting blocks failed!"); return cSize; } static size_t ZSTD_compressBlock_internal(ZSTD_CCtx* zc, void* dst, size_t dstCapacity, const void* src, size_t srcSize, U32 frame) { /* This is an estimated upper bound for the length of an rle block. * This isn't the actual upper bound. * Finding the real threshold needs further investigation. */ const U32 rleMaxLength = 25; size_t cSize; const BYTE* ip = (const BYTE*)src; BYTE* op = (BYTE*)dst; DEBUGLOG(5, "ZSTD_compressBlock_internal (dstCapacity=%u, dictLimit=%u, nextToUpdate=%u)", (unsigned)dstCapacity, (unsigned)zc->blockState.matchState.window.dictLimit, (unsigned)zc->blockState.matchState.nextToUpdate); { const size_t bss = ZSTD_buildSeqStore(zc, src, srcSize); FORWARD_IF_ERROR(bss, "ZSTD_buildSeqStore failed"); if (bss == ZSTDbss_noCompress) { cSize = 0; goto out; } } if (zc->seqCollector.collectSequences) { ZSTD_copyBlockSequences(zc); ZSTD_blockState_confirmRepcodesAndEntropyTables(&zc->blockState); return 0; } /* encode sequences and literals */ cSize = ZSTD_entropyCompressSeqStore(&zc->seqStore, &zc->blockState.prevCBlock->entropy, &zc->blockState.nextCBlock->entropy, &zc->appliedParams, dst, dstCapacity, srcSize, zc->entropyWorkspace, ENTROPY_WORKSPACE_SIZE /* statically allocated in resetCCtx */, zc->bmi2); if (frame && /* We don't want to emit our first block as a RLE even if it qualifies because * doing so will cause the decoder (cli only) to throw a "should consume all input error." * This is only an issue for zstd <= v1.4.3 */ !zc->isFirstBlock && cSize < rleMaxLength && ZSTD_isRLE(ip, srcSize)) { cSize = 1; op[0] = ip[0]; } out: if (!ZSTD_isError(cSize) && cSize > 1) { ZSTD_blockState_confirmRepcodesAndEntropyTables(&zc->blockState); } /* We check that dictionaries have offset codes available for the first * block. After the first block, the offcode table might not have large * enough codes to represent the offsets in the data. */ if (zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode == FSE_repeat_valid) zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode = FSE_repeat_check; return cSize; } static size_t ZSTD_compressBlock_targetCBlockSize_body(ZSTD_CCtx* zc, void* dst, size_t dstCapacity, const void* src, size_t srcSize, const size_t bss, U32 lastBlock) { DEBUGLOG(6, "Attempting ZSTD_compressSuperBlock()"); if (bss == ZSTDbss_compress) { if (/* We don't want to emit our first block as a RLE even if it qualifies because * doing so will cause the decoder (cli only) to throw a "should consume all input error." * This is only an issue for zstd <= v1.4.3 */ !zc->isFirstBlock && ZSTD_maybeRLE(&zc->seqStore) && ZSTD_isRLE((BYTE const*)src, srcSize)) { return ZSTD_rleCompressBlock(dst, dstCapacity, *(BYTE const*)src, srcSize, lastBlock); } /* Attempt superblock compression. * * Note that compressed size of ZSTD_compressSuperBlock() is not bound by the * standard ZSTD_compressBound(). This is a problem, because even if we have * space now, taking an extra byte now could cause us to run out of space later * and violate ZSTD_compressBound(). * * Define blockBound(blockSize) = blockSize + ZSTD_blockHeaderSize. * * In order to respect ZSTD_compressBound() we must attempt to emit a raw * uncompressed block in these cases: * * cSize == 0: Return code for an uncompressed block. * * cSize == dstSize_tooSmall: We may have expanded beyond blockBound(srcSize). * ZSTD_noCompressBlock() will return dstSize_tooSmall if we are really out of * output space. * * cSize >= blockBound(srcSize): We have expanded the block too much so * emit an uncompressed block. */ { size_t const cSize = ZSTD_compressSuperBlock(zc, dst, dstCapacity, src, srcSize, lastBlock); if (cSize != ERROR(dstSize_tooSmall)) { size_t const maxCSize = srcSize - ZSTD_minGain(srcSize, zc->appliedParams.cParams.strategy); FORWARD_IF_ERROR(cSize, "ZSTD_compressSuperBlock failed"); if (cSize != 0 && cSize < maxCSize + ZSTD_blockHeaderSize) { ZSTD_blockState_confirmRepcodesAndEntropyTables(&zc->blockState); return cSize; } } } } /* if (bss == ZSTDbss_compress)*/ DEBUGLOG(6, "Resorting to ZSTD_noCompressBlock()"); /* Superblock compression failed, attempt to emit a single no compress block. * The decoder will be able to stream this block since it is uncompressed. */ return ZSTD_noCompressBlock(dst, dstCapacity, src, srcSize, lastBlock); } static size_t ZSTD_compressBlock_targetCBlockSize(ZSTD_CCtx* zc, void* dst, size_t dstCapacity, const void* src, size_t srcSize, U32 lastBlock) { size_t cSize = 0; const size_t bss = ZSTD_buildSeqStore(zc, src, srcSize); DEBUGLOG(5, "ZSTD_compressBlock_targetCBlockSize (dstCapacity=%u, dictLimit=%u, nextToUpdate=%u, srcSize=%zu)", (unsigned)dstCapacity, (unsigned)zc->blockState.matchState.window.dictLimit, (unsigned)zc->blockState.matchState.nextToUpdate, srcSize); FORWARD_IF_ERROR(bss, "ZSTD_buildSeqStore failed"); cSize = ZSTD_compressBlock_targetCBlockSize_body(zc, dst, dstCapacity, src, srcSize, bss, lastBlock); FORWARD_IF_ERROR(cSize, "ZSTD_compressBlock_targetCBlockSize_body failed"); if (zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode == FSE_repeat_valid) zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode = FSE_repeat_check; return cSize; } static void ZSTD_overflowCorrectIfNeeded(ZSTD_matchState_t* ms, ZSTD_cwksp* ws, ZSTD_CCtx_params const* params, void const* ip, void const* iend) { U32 const cycleLog = ZSTD_cycleLog(params->cParams.chainLog, params->cParams.strategy); U32 const maxDist = (U32)1 << params->cParams.windowLog; if (ZSTD_window_needOverflowCorrection(ms->window, cycleLog, maxDist, ms->loadedDictEnd, ip, iend)) { U32 const correction = ZSTD_window_correctOverflow(&ms->window, cycleLog, maxDist, ip); ZSTD_STATIC_ASSERT(ZSTD_CHAINLOG_MAX <= 30); ZSTD_STATIC_ASSERT(ZSTD_WINDOWLOG_MAX_32 <= 30); ZSTD_STATIC_ASSERT(ZSTD_WINDOWLOG_MAX <= 31); ZSTD_cwksp_mark_tables_dirty(ws); ZSTD_reduceIndex(ms, params, correction); ZSTD_cwksp_mark_tables_clean(ws); if (ms->nextToUpdate < correction) ms->nextToUpdate = 0; else ms->nextToUpdate -= correction; /* invalidate dictionaries on overflow correction */ ms->loadedDictEnd = 0; ms->dictMatchState = NULL; } } /*! ZSTD_compress_frameChunk() : * Compress a chunk of data into one or multiple blocks. * All blocks will be terminated, all input will be consumed. * Function will issue an error if there is not enough `dstCapacity` to hold the compressed content. * Frame is supposed already started (header already produced) * @return : compressed size, or an error code */ static size_t ZSTD_compress_frameChunk(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, U32 lastFrameChunk) { size_t blockSize = cctx->blockSize; size_t remaining = srcSize; const BYTE* ip = (const BYTE*)src; BYTE* const ostart = (BYTE*)dst; BYTE* op = ostart; U32 const maxDist = (U32)1 << cctx->appliedParams.cParams.windowLog; assert(cctx->appliedParams.cParams.windowLog <= ZSTD_WINDOWLOG_MAX); DEBUGLOG(4, "ZSTD_compress_frameChunk (blockSize=%u)", (unsigned)blockSize); if (cctx->appliedParams.fParams.checksumFlag && srcSize) XXH64_update(&cctx->xxhState, src, srcSize); while (remaining) { ZSTD_matchState_t* const ms = &cctx->blockState.matchState; U32 const lastBlock = lastFrameChunk & (blockSize >= remaining); /* TODO: See 3090. We reduced MIN_CBLOCK_SIZE from 3 to 2 so to compensate we are adding * additional 1. We need to revisit and change this logic to be more consistent */ RETURN_ERROR_IF(dstCapacity < ZSTD_blockHeaderSize + MIN_CBLOCK_SIZE + 1, dstSize_tooSmall, "not enough space to store compressed block"); if (remaining < blockSize) blockSize = remaining; ZSTD_overflowCorrectIfNeeded( ms, &cctx->workspace, &cctx->appliedParams, ip, ip + blockSize); ZSTD_checkDictValidity(&ms->window, ip + blockSize, maxDist, &ms->loadedDictEnd, &ms->dictMatchState); ZSTD_window_enforceMaxDist(&ms->window, ip, maxDist, &ms->loadedDictEnd, &ms->dictMatchState); /* Ensure hash/chain table insertion resumes no sooner than lowlimit */ if (ms->nextToUpdate < ms->window.lowLimit) ms->nextToUpdate = ms->window.lowLimit; { size_t cSize; if (ZSTD_useTargetCBlockSize(&cctx->appliedParams)) { cSize = ZSTD_compressBlock_targetCBlockSize(cctx, op, dstCapacity, ip, blockSize, lastBlock); FORWARD_IF_ERROR(cSize, "ZSTD_compressBlock_targetCBlockSize failed"); assert(cSize > 0); assert(cSize <= blockSize + ZSTD_blockHeaderSize); } else if (ZSTD_blockSplitterEnabled(&cctx->appliedParams)) { cSize = ZSTD_compressBlock_splitBlock(cctx, op, dstCapacity, ip, blockSize, lastBlock); FORWARD_IF_ERROR(cSize, "ZSTD_compressBlock_splitBlock failed"); assert(cSize > 0 || cctx->seqCollector.collectSequences == 1); } else { cSize = ZSTD_compressBlock_internal(cctx, op+ZSTD_blockHeaderSize, dstCapacity-ZSTD_blockHeaderSize, ip, blockSize, 1 /* frame */); FORWARD_IF_ERROR(cSize, "ZSTD_compressBlock_internal failed"); if (cSize == 0) { /* block is not compressible */ cSize = ZSTD_noCompressBlock(op, dstCapacity, ip, blockSize, lastBlock); FORWARD_IF_ERROR(cSize, "ZSTD_noCompressBlock failed"); } else { U32 const cBlockHeader = cSize == 1 ? lastBlock + (((U32)bt_rle)<<1) + (U32)(blockSize << 3) : lastBlock + (((U32)bt_compressed)<<1) + (U32)(cSize << 3); MEM_writeLE24(op, cBlockHeader); cSize += ZSTD_blockHeaderSize; } } /* if (ZSTD_useTargetCBlockSize(&cctx->appliedParams))*/ ip += blockSize; assert(remaining >= blockSize); remaining -= blockSize; op += cSize; assert(dstCapacity >= cSize); dstCapacity -= cSize; cctx->isFirstBlock = 0; DEBUGLOG(5, "ZSTD_compress_frameChunk: adding a block of size %u", (unsigned)cSize); } } if (lastFrameChunk && (op>ostart)) cctx->stage = ZSTDcs_ending; return (size_t)(op-ostart); } static size_t ZSTD_writeFrameHeader(void* dst, size_t dstCapacity, const ZSTD_CCtx_params* params, U64 pledgedSrcSize, U32 dictID) { BYTE* const op = (BYTE*)dst; U32 const dictIDSizeCodeLength = (dictID>0) + (dictID>=256) + (dictID>=65536); /* 0-3 */ U32 const dictIDSizeCode = params->fParams.noDictIDFlag ? 0 : dictIDSizeCodeLength; /* 0-3 */ U32 const checksumFlag = params->fParams.checksumFlag>0; U32 const windowSize = (U32)1 << params->cParams.windowLog; U32 const singleSegment = params->fParams.contentSizeFlag && (windowSize >= pledgedSrcSize); BYTE const windowLogByte = (BYTE)((params->cParams.windowLog - ZSTD_WINDOWLOG_ABSOLUTEMIN) << 3); U32 const fcsCode = params->fParams.contentSizeFlag ? (pledgedSrcSize>=256) + (pledgedSrcSize>=65536+256) + (pledgedSrcSize>=0xFFFFFFFFU) : 0; /* 0-3 */ BYTE const frameHeaderDescriptionByte = (BYTE)(dictIDSizeCode + (checksumFlag<<2) + (singleSegment<<5) + (fcsCode<<6) ); size_t pos=0; assert(!(params->fParams.contentSizeFlag && pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN)); RETURN_ERROR_IF(dstCapacity < ZSTD_FRAMEHEADERSIZE_MAX, dstSize_tooSmall, "dst buf is too small to fit worst-case frame header size."); DEBUGLOG(4, "ZSTD_writeFrameHeader : dictIDFlag : %u ; dictID : %u ; dictIDSizeCode : %u", !params->fParams.noDictIDFlag, (unsigned)dictID, (unsigned)dictIDSizeCode); if (params->format == ZSTD_f_zstd1) { MEM_writeLE32(dst, ZSTD_MAGICNUMBER); pos = 4; } op[pos++] = frameHeaderDescriptionByte; if (!singleSegment) op[pos++] = windowLogByte; switch(dictIDSizeCode) { default: assert(0); /* impossible */ ZSTD_FALLTHROUGH; case 0 : break; case 1 : op[pos] = (BYTE)(dictID); pos++; break; case 2 : MEM_writeLE16(op+pos, (U16)dictID); pos+=2; break; case 3 : MEM_writeLE32(op+pos, dictID); pos+=4; break; } switch(fcsCode) { default: assert(0); /* impossible */ ZSTD_FALLTHROUGH; case 0 : if (singleSegment) op[pos++] = (BYTE)(pledgedSrcSize); break; case 1 : MEM_writeLE16(op+pos, (U16)(pledgedSrcSize-256)); pos+=2; break; case 2 : MEM_writeLE32(op+pos, (U32)(pledgedSrcSize)); pos+=4; break; case 3 : MEM_writeLE64(op+pos, (U64)(pledgedSrcSize)); pos+=8; break; } return pos; } /* ZSTD_writeSkippableFrame_advanced() : * Writes out a skippable frame with the specified magic number variant (16 are supported), * from ZSTD_MAGIC_SKIPPABLE_START to ZSTD_MAGIC_SKIPPABLE_START+15, and the desired source data. * * Returns the total number of bytes written, or a ZSTD error code. */ size_t ZSTD_writeSkippableFrame(void* dst, size_t dstCapacity, const void* src, size_t srcSize, unsigned magicVariant) { BYTE* op = (BYTE*)dst; RETURN_ERROR_IF(dstCapacity < srcSize + ZSTD_SKIPPABLEHEADERSIZE /* Skippable frame overhead */, dstSize_tooSmall, "Not enough room for skippable frame"); RETURN_ERROR_IF(srcSize > (unsigned)0xFFFFFFFF, srcSize_wrong, "Src size too large for skippable frame"); RETURN_ERROR_IF(magicVariant > 15, parameter_outOfBound, "Skippable frame magic number variant not supported"); MEM_writeLE32(op, (U32)(ZSTD_MAGIC_SKIPPABLE_START + magicVariant)); MEM_writeLE32(op+4, (U32)srcSize); ZSTD_memcpy(op+8, src, srcSize); return srcSize + ZSTD_SKIPPABLEHEADERSIZE; } /* ZSTD_writeLastEmptyBlock() : * output an empty Block with end-of-frame mark to complete a frame * @return : size of data written into `dst` (== ZSTD_blockHeaderSize (defined in zstd_internal.h)) * or an error code if `dstCapacity` is too small (stage != ZSTDcs_init, stage_wrong, "wrong cctx stage"); RETURN_ERROR_IF(cctx->appliedParams.ldmParams.enableLdm == ZSTD_ps_enable, parameter_unsupported, "incompatible with ldm"); cctx->externSeqStore.seq = seq; cctx->externSeqStore.size = nbSeq; cctx->externSeqStore.capacity = nbSeq; cctx->externSeqStore.pos = 0; cctx->externSeqStore.posInSequence = 0; return 0; } static size_t ZSTD_compressContinue_internal (ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, U32 frame, U32 lastFrameChunk) { ZSTD_matchState_t* const ms = &cctx->blockState.matchState; size_t fhSize = 0; DEBUGLOG(5, "ZSTD_compressContinue_internal, stage: %u, srcSize: %u", cctx->stage, (unsigned)srcSize); RETURN_ERROR_IF(cctx->stage==ZSTDcs_created, stage_wrong, "missing init (ZSTD_compressBegin)"); if (frame && (cctx->stage==ZSTDcs_init)) { fhSize = ZSTD_writeFrameHeader(dst, dstCapacity, &cctx->appliedParams, cctx->pledgedSrcSizePlusOne-1, cctx->dictID); FORWARD_IF_ERROR(fhSize, "ZSTD_writeFrameHeader failed"); assert(fhSize <= dstCapacity); dstCapacity -= fhSize; dst = (char*)dst + fhSize; cctx->stage = ZSTDcs_ongoing; } if (!srcSize) return fhSize; /* do not generate an empty block if no input */ if (!ZSTD_window_update(&ms->window, src, srcSize, ms->forceNonContiguous)) { ms->forceNonContiguous = 0; ms->nextToUpdate = ms->window.dictLimit; } if (cctx->appliedParams.ldmParams.enableLdm == ZSTD_ps_enable) { ZSTD_window_update(&cctx->ldmState.window, src, srcSize, /* forceNonContiguous */ 0); } if (!frame) { /* overflow check and correction for block mode */ ZSTD_overflowCorrectIfNeeded( ms, &cctx->workspace, &cctx->appliedParams, src, (BYTE const*)src + srcSize); } DEBUGLOG(5, "ZSTD_compressContinue_internal (blockSize=%u)", (unsigned)cctx->blockSize); { size_t const cSize = frame ? ZSTD_compress_frameChunk (cctx, dst, dstCapacity, src, srcSize, lastFrameChunk) : ZSTD_compressBlock_internal (cctx, dst, dstCapacity, src, srcSize, 0 /* frame */); FORWARD_IF_ERROR(cSize, "%s", frame ? "ZSTD_compress_frameChunk failed" : "ZSTD_compressBlock_internal failed"); cctx->consumedSrcSize += srcSize; cctx->producedCSize += (cSize + fhSize); assert(!(cctx->appliedParams.fParams.contentSizeFlag && cctx->pledgedSrcSizePlusOne == 0)); if (cctx->pledgedSrcSizePlusOne != 0) { /* control src size */ ZSTD_STATIC_ASSERT(ZSTD_CONTENTSIZE_UNKNOWN == (unsigned long long)-1); RETURN_ERROR_IF( cctx->consumedSrcSize+1 > cctx->pledgedSrcSizePlusOne, srcSize_wrong, "error : pledgedSrcSize = %u, while realSrcSize >= %u", (unsigned)cctx->pledgedSrcSizePlusOne-1, (unsigned)cctx->consumedSrcSize); } return cSize + fhSize; } } size_t ZSTD_compressContinue (ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) { DEBUGLOG(5, "ZSTD_compressContinue (srcSize=%u)", (unsigned)srcSize); return ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 1 /* frame mode */, 0 /* last chunk */); } size_t ZSTD_getBlockSize(const ZSTD_CCtx* cctx) { ZSTD_compressionParameters const cParams = cctx->appliedParams.cParams; assert(!ZSTD_checkCParams(cParams)); return MIN(cctx->appliedParams.maxBlockSize, (size_t)1 << cParams.windowLog); } size_t ZSTD_compressBlock(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) { DEBUGLOG(5, "ZSTD_compressBlock: srcSize = %u", (unsigned)srcSize); { size_t const blockSizeMax = ZSTD_getBlockSize(cctx); RETURN_ERROR_IF(srcSize > blockSizeMax, srcSize_wrong, "input is larger than a block"); } return ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 0 /* frame mode */, 0 /* last chunk */); } /*! ZSTD_loadDictionaryContent() : * @return : 0, or an error code */ static size_t ZSTD_loadDictionaryContent(ZSTD_matchState_t* ms, ldmState_t* ls, ZSTD_cwksp* ws, ZSTD_CCtx_params const* params, const void* src, size_t srcSize, ZSTD_dictTableLoadMethod_e dtlm, ZSTD_tableFillPurpose_e tfp) { const BYTE* ip = (const BYTE*) src; const BYTE* const iend = ip + srcSize; int const loadLdmDict = params->ldmParams.enableLdm == ZSTD_ps_enable && ls != NULL; /* Assert that the ms params match the params we're being given */ ZSTD_assertEqualCParams(params->cParams, ms->cParams); { /* Ensure large dictionaries can't cause index overflow */ /* Allow the dictionary to set indices up to exactly ZSTD_CURRENT_MAX. * Dictionaries right at the edge will immediately trigger overflow * correction, but I don't want to insert extra constraints here. */ U32 maxDictSize = ZSTD_CURRENT_MAX - ZSTD_WINDOW_START_INDEX; int const CDictTaggedIndices = ZSTD_CDictIndicesAreTagged(¶ms->cParams); if (CDictTaggedIndices && tfp == ZSTD_tfp_forCDict) { /* Some dictionary matchfinders in zstd use "short cache", * which treats the lower ZSTD_SHORT_CACHE_TAG_BITS of each * CDict hashtable entry as a tag rather than as part of an index. * When short cache is used, we need to truncate the dictionary * so that its indices don't overlap with the tag. */ U32 const shortCacheMaxDictSize = (1u << (32 - ZSTD_SHORT_CACHE_TAG_BITS)) - ZSTD_WINDOW_START_INDEX; maxDictSize = MIN(maxDictSize, shortCacheMaxDictSize); assert(!loadLdmDict); } /* If the dictionary is too large, only load the suffix of the dictionary. */ if (srcSize > maxDictSize) { ip = iend - maxDictSize; src = ip; srcSize = maxDictSize; } } if (srcSize > ZSTD_CHUNKSIZE_MAX) { /* We must have cleared our windows when our source is this large. */ assert(ZSTD_window_isEmpty(ms->window)); if (loadLdmDict) assert(ZSTD_window_isEmpty(ls->window)); } DEBUGLOG(4, "ZSTD_loadDictionaryContent(): useRowMatchFinder=%d", (int)params->useRowMatchFinder); ZSTD_window_update(&ms->window, src, srcSize, /* forceNonContiguous */ 0); ms->loadedDictEnd = params->forceWindow ? 0 : (U32)(iend - ms->window.base); ms->forceNonContiguous = params->deterministicRefPrefix; if (loadLdmDict) { ZSTD_window_update(&ls->window, src, srcSize, /* forceNonContiguous */ 0); ls->loadedDictEnd = params->forceWindow ? 0 : (U32)(iend - ls->window.base); } if (srcSize <= HASH_READ_SIZE) return 0; ZSTD_overflowCorrectIfNeeded(ms, ws, params, ip, iend); if (loadLdmDict) ZSTD_ldm_fillHashTable(ls, ip, iend, ¶ms->ldmParams); switch(params->cParams.strategy) { case ZSTD_fast: ZSTD_fillHashTable(ms, iend, dtlm, tfp); break; case ZSTD_dfast: ZSTD_fillDoubleHashTable(ms, iend, dtlm, tfp); break; case ZSTD_greedy: case ZSTD_lazy: case ZSTD_lazy2: assert(srcSize >= HASH_READ_SIZE); if (ms->dedicatedDictSearch) { assert(ms->chainTable != NULL); ZSTD_dedicatedDictSearch_lazy_loadDictionary(ms, iend-HASH_READ_SIZE); } else { assert(params->useRowMatchFinder != ZSTD_ps_auto); if (params->useRowMatchFinder == ZSTD_ps_enable) { size_t const tagTableSize = ((size_t)1 << params->cParams.hashLog) * sizeof(U16); ZSTD_memset(ms->tagTable, 0, tagTableSize); ZSTD_row_update(ms, iend-HASH_READ_SIZE); DEBUGLOG(4, "Using row-based hash table for lazy dict"); } else { ZSTD_insertAndFindFirstIndex(ms, iend-HASH_READ_SIZE); DEBUGLOG(4, "Using chain-based hash table for lazy dict"); } } break; case ZSTD_btlazy2: /* we want the dictionary table fully sorted */ case ZSTD_btopt: case ZSTD_btultra: case ZSTD_btultra2: assert(srcSize >= HASH_READ_SIZE); ZSTD_updateTree(ms, iend-HASH_READ_SIZE, iend); break; default: assert(0); /* not possible : not a valid strategy id */ } ms->nextToUpdate = (U32)(iend - ms->window.base); return 0; } /* Dictionaries that assign zero probability to symbols that show up causes problems * when FSE encoding. Mark dictionaries with zero probability symbols as FSE_repeat_check * and only dictionaries with 100% valid symbols can be assumed valid. */ static FSE_repeat ZSTD_dictNCountRepeat(short* normalizedCounter, unsigned dictMaxSymbolValue, unsigned maxSymbolValue) { U32 s; if (dictMaxSymbolValue < maxSymbolValue) { return FSE_repeat_check; } for (s = 0; s <= maxSymbolValue; ++s) { if (normalizedCounter[s] == 0) { return FSE_repeat_check; } } return FSE_repeat_valid; } size_t ZSTD_loadCEntropy(ZSTD_compressedBlockState_t* bs, void* workspace, const void* const dict, size_t dictSize) { short offcodeNCount[MaxOff+1]; unsigned offcodeMaxValue = MaxOff; const BYTE* dictPtr = (const BYTE*)dict; /* skip magic num and dict ID */ const BYTE* const dictEnd = dictPtr + dictSize; dictPtr += 8; bs->entropy.huf.repeatMode = HUF_repeat_check; { unsigned maxSymbolValue = 255; unsigned hasZeroWeights = 1; size_t const hufHeaderSize = HUF_readCTable((HUF_CElt*)bs->entropy.huf.CTable, &maxSymbolValue, dictPtr, dictEnd-dictPtr, &hasZeroWeights); /* We only set the loaded table as valid if it contains all non-zero * weights. Otherwise, we set it to check */ if (!hasZeroWeights) bs->entropy.huf.repeatMode = HUF_repeat_valid; RETURN_ERROR_IF(HUF_isError(hufHeaderSize), dictionary_corrupted, ""); RETURN_ERROR_IF(maxSymbolValue < 255, dictionary_corrupted, ""); dictPtr += hufHeaderSize; } { unsigned offcodeLog; size_t const offcodeHeaderSize = FSE_readNCount(offcodeNCount, &offcodeMaxValue, &offcodeLog, dictPtr, dictEnd-dictPtr); RETURN_ERROR_IF(FSE_isError(offcodeHeaderSize), dictionary_corrupted, ""); RETURN_ERROR_IF(offcodeLog > OffFSELog, dictionary_corrupted, ""); /* fill all offset symbols to avoid garbage at end of table */ RETURN_ERROR_IF(FSE_isError(FSE_buildCTable_wksp( bs->entropy.fse.offcodeCTable, offcodeNCount, MaxOff, offcodeLog, workspace, HUF_WORKSPACE_SIZE)), dictionary_corrupted, ""); /* Defer checking offcodeMaxValue because we need to know the size of the dictionary content */ dictPtr += offcodeHeaderSize; } { short matchlengthNCount[MaxML+1]; unsigned matchlengthMaxValue = MaxML, matchlengthLog; size_t const matchlengthHeaderSize = FSE_readNCount(matchlengthNCount, &matchlengthMaxValue, &matchlengthLog, dictPtr, dictEnd-dictPtr); RETURN_ERROR_IF(FSE_isError(matchlengthHeaderSize), dictionary_corrupted, ""); RETURN_ERROR_IF(matchlengthLog > MLFSELog, dictionary_corrupted, ""); RETURN_ERROR_IF(FSE_isError(FSE_buildCTable_wksp( bs->entropy.fse.matchlengthCTable, matchlengthNCount, matchlengthMaxValue, matchlengthLog, workspace, HUF_WORKSPACE_SIZE)), dictionary_corrupted, ""); bs->entropy.fse.matchlength_repeatMode = ZSTD_dictNCountRepeat(matchlengthNCount, matchlengthMaxValue, MaxML); dictPtr += matchlengthHeaderSize; } { short litlengthNCount[MaxLL+1]; unsigned litlengthMaxValue = MaxLL, litlengthLog; size_t const litlengthHeaderSize = FSE_readNCount(litlengthNCount, &litlengthMaxValue, &litlengthLog, dictPtr, dictEnd-dictPtr); RETURN_ERROR_IF(FSE_isError(litlengthHeaderSize), dictionary_corrupted, ""); RETURN_ERROR_IF(litlengthLog > LLFSELog, dictionary_corrupted, ""); RETURN_ERROR_IF(FSE_isError(FSE_buildCTable_wksp( bs->entropy.fse.litlengthCTable, litlengthNCount, litlengthMaxValue, litlengthLog, workspace, HUF_WORKSPACE_SIZE)), dictionary_corrupted, ""); bs->entropy.fse.litlength_repeatMode = ZSTD_dictNCountRepeat(litlengthNCount, litlengthMaxValue, MaxLL); dictPtr += litlengthHeaderSize; } RETURN_ERROR_IF(dictPtr+12 > dictEnd, dictionary_corrupted, ""); bs->rep[0] = MEM_readLE32(dictPtr+0); bs->rep[1] = MEM_readLE32(dictPtr+4); bs->rep[2] = MEM_readLE32(dictPtr+8); dictPtr += 12; { size_t const dictContentSize = (size_t)(dictEnd - dictPtr); U32 offcodeMax = MaxOff; if (dictContentSize <= ((U32)-1) - 128 KB) { U32 const maxOffset = (U32)dictContentSize + 128 KB; /* The maximum offset that must be supported */ offcodeMax = ZSTD_highbit32(maxOffset); /* Calculate minimum offset code required to represent maxOffset */ } /* All offset values <= dictContentSize + 128 KB must be representable for a valid table */ bs->entropy.fse.offcode_repeatMode = ZSTD_dictNCountRepeat(offcodeNCount, offcodeMaxValue, MIN(offcodeMax, MaxOff)); /* All repCodes must be <= dictContentSize and != 0 */ { U32 u; for (u=0; u<3; u++) { RETURN_ERROR_IF(bs->rep[u] == 0, dictionary_corrupted, ""); RETURN_ERROR_IF(bs->rep[u] > dictContentSize, dictionary_corrupted, ""); } } } return dictPtr - (const BYTE*)dict; } /* Dictionary format : * See : * https://github.com/facebook/zstd/blob/release/doc/zstd_compression_format.md#dictionary-format */ /*! ZSTD_loadZstdDictionary() : * @return : dictID, or an error code * assumptions : magic number supposed already checked * dictSize supposed >= 8 */ static size_t ZSTD_loadZstdDictionary(ZSTD_compressedBlockState_t* bs, ZSTD_matchState_t* ms, ZSTD_cwksp* ws, ZSTD_CCtx_params const* params, const void* dict, size_t dictSize, ZSTD_dictTableLoadMethod_e dtlm, ZSTD_tableFillPurpose_e tfp, void* workspace) { const BYTE* dictPtr = (const BYTE*)dict; const BYTE* const dictEnd = dictPtr + dictSize; size_t dictID; size_t eSize; ZSTD_STATIC_ASSERT(HUF_WORKSPACE_SIZE >= (1<= 8); assert(MEM_readLE32(dictPtr) == ZSTD_MAGIC_DICTIONARY); dictID = params->fParams.noDictIDFlag ? 0 : MEM_readLE32(dictPtr + 4 /* skip magic number */ ); eSize = ZSTD_loadCEntropy(bs, workspace, dict, dictSize); FORWARD_IF_ERROR(eSize, "ZSTD_loadCEntropy failed"); dictPtr += eSize; { size_t const dictContentSize = (size_t)(dictEnd - dictPtr); FORWARD_IF_ERROR(ZSTD_loadDictionaryContent( ms, NULL, ws, params, dictPtr, dictContentSize, dtlm, tfp), ""); } return dictID; } /** ZSTD_compress_insertDictionary() : * @return : dictID, or an error code */ static size_t ZSTD_compress_insertDictionary(ZSTD_compressedBlockState_t* bs, ZSTD_matchState_t* ms, ldmState_t* ls, ZSTD_cwksp* ws, const ZSTD_CCtx_params* params, const void* dict, size_t dictSize, ZSTD_dictContentType_e dictContentType, ZSTD_dictTableLoadMethod_e dtlm, ZSTD_tableFillPurpose_e tfp, void* workspace) { DEBUGLOG(4, "ZSTD_compress_insertDictionary (dictSize=%u)", (U32)dictSize); if ((dict==NULL) || (dictSize<8)) { RETURN_ERROR_IF(dictContentType == ZSTD_dct_fullDict, dictionary_wrong, ""); return 0; } ZSTD_reset_compressedBlockState(bs); /* dict restricted modes */ if (dictContentType == ZSTD_dct_rawContent) return ZSTD_loadDictionaryContent(ms, ls, ws, params, dict, dictSize, dtlm, tfp); if (MEM_readLE32(dict) != ZSTD_MAGIC_DICTIONARY) { if (dictContentType == ZSTD_dct_auto) { DEBUGLOG(4, "raw content dictionary detected"); return ZSTD_loadDictionaryContent( ms, ls, ws, params, dict, dictSize, dtlm, tfp); } RETURN_ERROR_IF(dictContentType == ZSTD_dct_fullDict, dictionary_wrong, ""); assert(0); /* impossible */ } /* dict as full zstd dictionary */ return ZSTD_loadZstdDictionary( bs, ms, ws, params, dict, dictSize, dtlm, tfp, workspace); } #define ZSTD_USE_CDICT_PARAMS_SRCSIZE_CUTOFF (128 KB) #define ZSTD_USE_CDICT_PARAMS_DICTSIZE_MULTIPLIER (6ULL) /*! ZSTD_compressBegin_internal() : * Assumption : either @dict OR @cdict (or none) is non-NULL, never both * @return : 0, or an error code */ static size_t ZSTD_compressBegin_internal(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_dictContentType_e dictContentType, ZSTD_dictTableLoadMethod_e dtlm, const ZSTD_CDict* cdict, const ZSTD_CCtx_params* params, U64 pledgedSrcSize, ZSTD_buffered_policy_e zbuff) { size_t const dictContentSize = cdict ? cdict->dictContentSize : dictSize; #if ZSTD_TRACE cctx->traceCtx = (ZSTD_trace_compress_begin != NULL) ? ZSTD_trace_compress_begin(cctx) : 0; #endif DEBUGLOG(4, "ZSTD_compressBegin_internal: wlog=%u", params->cParams.windowLog); /* params are supposed to be fully validated at this point */ assert(!ZSTD_isError(ZSTD_checkCParams(params->cParams))); assert(!((dict) && (cdict))); /* either dict or cdict, not both */ if ( (cdict) && (cdict->dictContentSize > 0) && ( pledgedSrcSize < ZSTD_USE_CDICT_PARAMS_SRCSIZE_CUTOFF || pledgedSrcSize < cdict->dictContentSize * ZSTD_USE_CDICT_PARAMS_DICTSIZE_MULTIPLIER || pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN || cdict->compressionLevel == 0) && (params->attachDictPref != ZSTD_dictForceLoad) ) { return ZSTD_resetCCtx_usingCDict(cctx, cdict, params, pledgedSrcSize, zbuff); } FORWARD_IF_ERROR( ZSTD_resetCCtx_internal(cctx, params, pledgedSrcSize, dictContentSize, ZSTDcrp_makeClean, zbuff) , ""); { size_t const dictID = cdict ? ZSTD_compress_insertDictionary( cctx->blockState.prevCBlock, &cctx->blockState.matchState, &cctx->ldmState, &cctx->workspace, &cctx->appliedParams, cdict->dictContent, cdict->dictContentSize, cdict->dictContentType, dtlm, ZSTD_tfp_forCCtx, cctx->entropyWorkspace) : ZSTD_compress_insertDictionary( cctx->blockState.prevCBlock, &cctx->blockState.matchState, &cctx->ldmState, &cctx->workspace, &cctx->appliedParams, dict, dictSize, dictContentType, dtlm, ZSTD_tfp_forCCtx, cctx->entropyWorkspace); FORWARD_IF_ERROR(dictID, "ZSTD_compress_insertDictionary failed"); assert(dictID <= UINT_MAX); cctx->dictID = (U32)dictID; cctx->dictContentSize = dictContentSize; } return 0; } size_t ZSTD_compressBegin_advanced_internal(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_dictContentType_e dictContentType, ZSTD_dictTableLoadMethod_e dtlm, const ZSTD_CDict* cdict, const ZSTD_CCtx_params* params, unsigned long long pledgedSrcSize) { DEBUGLOG(4, "ZSTD_compressBegin_advanced_internal: wlog=%u", params->cParams.windowLog); /* compression parameters verification and optimization */ FORWARD_IF_ERROR( ZSTD_checkCParams(params->cParams) , ""); return ZSTD_compressBegin_internal(cctx, dict, dictSize, dictContentType, dtlm, cdict, params, pledgedSrcSize, ZSTDb_not_buffered); } /*! ZSTD_compressBegin_advanced() : * @return : 0, or an error code */ size_t ZSTD_compressBegin_advanced(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_parameters params, unsigned long long pledgedSrcSize) { ZSTD_CCtx_params cctxParams; ZSTD_CCtxParams_init_internal(&cctxParams, ¶ms, ZSTD_NO_CLEVEL); return ZSTD_compressBegin_advanced_internal(cctx, dict, dictSize, ZSTD_dct_auto, ZSTD_dtlm_fast, NULL /*cdict*/, &cctxParams, pledgedSrcSize); } size_t ZSTD_compressBegin_usingDict(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, int compressionLevel) { ZSTD_CCtx_params cctxParams; { ZSTD_parameters const params = ZSTD_getParams_internal(compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN, dictSize, ZSTD_cpm_noAttachDict); ZSTD_CCtxParams_init_internal(&cctxParams, ¶ms, (compressionLevel == 0) ? ZSTD_CLEVEL_DEFAULT : compressionLevel); } DEBUGLOG(4, "ZSTD_compressBegin_usingDict (dictSize=%u)", (unsigned)dictSize); return ZSTD_compressBegin_internal(cctx, dict, dictSize, ZSTD_dct_auto, ZSTD_dtlm_fast, NULL, &cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, ZSTDb_not_buffered); } size_t ZSTD_compressBegin(ZSTD_CCtx* cctx, int compressionLevel) { return ZSTD_compressBegin_usingDict(cctx, NULL, 0, compressionLevel); } /*! ZSTD_writeEpilogue() : * Ends a frame. * @return : nb of bytes written into dst (or an error code) */ static size_t ZSTD_writeEpilogue(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity) { BYTE* const ostart = (BYTE*)dst; BYTE* op = ostart; size_t fhSize = 0; DEBUGLOG(4, "ZSTD_writeEpilogue"); RETURN_ERROR_IF(cctx->stage == ZSTDcs_created, stage_wrong, "init missing"); /* special case : empty frame */ if (cctx->stage == ZSTDcs_init) { fhSize = ZSTD_writeFrameHeader(dst, dstCapacity, &cctx->appliedParams, 0, 0); FORWARD_IF_ERROR(fhSize, "ZSTD_writeFrameHeader failed"); dstCapacity -= fhSize; op += fhSize; cctx->stage = ZSTDcs_ongoing; } if (cctx->stage != ZSTDcs_ending) { /* write one last empty block, make it the "last" block */ U32 const cBlockHeader24 = 1 /* last block */ + (((U32)bt_raw)<<1) + 0; RETURN_ERROR_IF(dstCapacity<4, dstSize_tooSmall, "no room for epilogue"); MEM_writeLE32(op, cBlockHeader24); op += ZSTD_blockHeaderSize; dstCapacity -= ZSTD_blockHeaderSize; } if (cctx->appliedParams.fParams.checksumFlag) { U32 const checksum = (U32) XXH64_digest(&cctx->xxhState); RETURN_ERROR_IF(dstCapacity<4, dstSize_tooSmall, "no room for checksum"); DEBUGLOG(4, "ZSTD_writeEpilogue: write checksum : %08X", (unsigned)checksum); MEM_writeLE32(op, checksum); op += 4; } cctx->stage = ZSTDcs_created; /* return to "created but no init" status */ return op-ostart; } void ZSTD_CCtx_trace(ZSTD_CCtx* cctx, size_t extraCSize) { #if ZSTD_TRACE if (cctx->traceCtx && ZSTD_trace_compress_end != NULL) { int const streaming = cctx->inBuffSize > 0 || cctx->outBuffSize > 0 || cctx->appliedParams.nbWorkers > 0; ZSTD_Trace trace; ZSTD_memset(&trace, 0, sizeof(trace)); trace.version = ZSTD_VERSION_NUMBER; trace.streaming = streaming; trace.dictionaryID = cctx->dictID; trace.dictionarySize = cctx->dictContentSize; trace.uncompressedSize = cctx->consumedSrcSize; trace.compressedSize = cctx->producedCSize + extraCSize; trace.params = &cctx->appliedParams; trace.cctx = cctx; ZSTD_trace_compress_end(cctx->traceCtx, &trace); } cctx->traceCtx = 0; #else (void)cctx; (void)extraCSize; #endif } size_t ZSTD_compressEnd (ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) { size_t endResult; size_t const cSize = ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 1 /* frame mode */, 1 /* last chunk */); FORWARD_IF_ERROR(cSize, "ZSTD_compressContinue_internal failed"); endResult = ZSTD_writeEpilogue(cctx, (char*)dst + cSize, dstCapacity-cSize); FORWARD_IF_ERROR(endResult, "ZSTD_writeEpilogue failed"); assert(!(cctx->appliedParams.fParams.contentSizeFlag && cctx->pledgedSrcSizePlusOne == 0)); if (cctx->pledgedSrcSizePlusOne != 0) { /* control src size */ ZSTD_STATIC_ASSERT(ZSTD_CONTENTSIZE_UNKNOWN == (unsigned long long)-1); DEBUGLOG(4, "end of frame : controlling src size"); RETURN_ERROR_IF( cctx->pledgedSrcSizePlusOne != cctx->consumedSrcSize+1, srcSize_wrong, "error : pledgedSrcSize = %u, while realSrcSize = %u", (unsigned)cctx->pledgedSrcSizePlusOne-1, (unsigned)cctx->consumedSrcSize); } ZSTD_CCtx_trace(cctx, endResult); return cSize + endResult; } size_t ZSTD_compress_advanced (ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, const void* dict,size_t dictSize, ZSTD_parameters params) { DEBUGLOG(4, "ZSTD_compress_advanced"); FORWARD_IF_ERROR(ZSTD_checkCParams(params.cParams), ""); ZSTD_CCtxParams_init_internal(&cctx->simpleApiParams, ¶ms, ZSTD_NO_CLEVEL); return ZSTD_compress_advanced_internal(cctx, dst, dstCapacity, src, srcSize, dict, dictSize, &cctx->simpleApiParams); } /* Internal */ size_t ZSTD_compress_advanced_internal( ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, const void* dict,size_t dictSize, const ZSTD_CCtx_params* params) { DEBUGLOG(4, "ZSTD_compress_advanced_internal (srcSize:%u)", (unsigned)srcSize); FORWARD_IF_ERROR( ZSTD_compressBegin_internal(cctx, dict, dictSize, ZSTD_dct_auto, ZSTD_dtlm_fast, NULL, params, srcSize, ZSTDb_not_buffered) , ""); return ZSTD_compressEnd(cctx, dst, dstCapacity, src, srcSize); } size_t ZSTD_compress_usingDict(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, const void* dict, size_t dictSize, int compressionLevel) { { ZSTD_parameters const params = ZSTD_getParams_internal(compressionLevel, srcSize, dict ? dictSize : 0, ZSTD_cpm_noAttachDict); assert(params.fParams.contentSizeFlag == 1); ZSTD_CCtxParams_init_internal(&cctx->simpleApiParams, ¶ms, (compressionLevel == 0) ? ZSTD_CLEVEL_DEFAULT: compressionLevel); } DEBUGLOG(4, "ZSTD_compress_usingDict (srcSize=%u)", (unsigned)srcSize); return ZSTD_compress_advanced_internal(cctx, dst, dstCapacity, src, srcSize, dict, dictSize, &cctx->simpleApiParams); } size_t ZSTD_compressCCtx(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, int compressionLevel) { DEBUGLOG(4, "ZSTD_compressCCtx (srcSize=%u)", (unsigned)srcSize); assert(cctx != NULL); return ZSTD_compress_usingDict(cctx, dst, dstCapacity, src, srcSize, NULL, 0, compressionLevel); } size_t ZSTD_compress(void* dst, size_t dstCapacity, const void* src, size_t srcSize, int compressionLevel) { size_t result; #if ZSTD_COMPRESS_HEAPMODE ZSTD_CCtx* cctx = ZSTD_createCCtx(); RETURN_ERROR_IF(!cctx, memory_allocation, "ZSTD_createCCtx failed"); result = ZSTD_compressCCtx(cctx, dst, dstCapacity, src, srcSize, compressionLevel); ZSTD_freeCCtx(cctx); #else ZSTD_CCtx ctxBody; ZSTD_initCCtx(&ctxBody, ZSTD_defaultCMem); result = ZSTD_compressCCtx(&ctxBody, dst, dstCapacity, src, srcSize, compressionLevel); ZSTD_freeCCtxContent(&ctxBody); /* can't free ctxBody itself, as it's on stack; free only heap content */ #endif return result; } /* ===== Dictionary API ===== */ /*! ZSTD_estimateCDictSize_advanced() : * Estimate amount of memory that will be needed to create a dictionary with following arguments */ size_t ZSTD_estimateCDictSize_advanced( size_t dictSize, ZSTD_compressionParameters cParams, ZSTD_dictLoadMethod_e dictLoadMethod) { DEBUGLOG(5, "sizeof(ZSTD_CDict) : %u", (unsigned)sizeof(ZSTD_CDict)); return ZSTD_cwksp_alloc_size(sizeof(ZSTD_CDict)) + ZSTD_cwksp_alloc_size(HUF_WORKSPACE_SIZE) /* enableDedicatedDictSearch == 1 ensures that CDict estimation will not be too small * in case we are using DDS with row-hash. */ + ZSTD_sizeof_matchState(&cParams, ZSTD_resolveRowMatchFinderMode(ZSTD_ps_auto, &cParams), /* enableDedicatedDictSearch */ 1, /* forCCtx */ 0) + (dictLoadMethod == ZSTD_dlm_byRef ? 0 : ZSTD_cwksp_alloc_size(ZSTD_cwksp_align(dictSize, sizeof(void *)))); } size_t ZSTD_estimateCDictSize(size_t dictSize, int compressionLevel) { ZSTD_compressionParameters const cParams = ZSTD_getCParams_internal(compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN, dictSize, ZSTD_cpm_createCDict); return ZSTD_estimateCDictSize_advanced(dictSize, cParams, ZSTD_dlm_byCopy); } size_t ZSTD_sizeof_CDict(const ZSTD_CDict* cdict) { if (cdict==NULL) return 0; /* support sizeof on NULL */ DEBUGLOG(5, "sizeof(*cdict) : %u", (unsigned)sizeof(*cdict)); /* cdict may be in the workspace */ return (cdict->workspace.workspace == cdict ? 0 : sizeof(*cdict)) + ZSTD_cwksp_sizeof(&cdict->workspace); } static size_t ZSTD_initCDict_internal( ZSTD_CDict* cdict, const void* dictBuffer, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType, ZSTD_CCtx_params params) { DEBUGLOG(3, "ZSTD_initCDict_internal (dictContentType:%u)", (unsigned)dictContentType); assert(!ZSTD_checkCParams(params.cParams)); cdict->matchState.cParams = params.cParams; cdict->matchState.dedicatedDictSearch = params.enableDedicatedDictSearch; if ((dictLoadMethod == ZSTD_dlm_byRef) || (!dictBuffer) || (!dictSize)) { cdict->dictContent = dictBuffer; } else { void *internalBuffer = ZSTD_cwksp_reserve_object(&cdict->workspace, ZSTD_cwksp_align(dictSize, sizeof(void*))); RETURN_ERROR_IF(!internalBuffer, memory_allocation, "NULL pointer!"); cdict->dictContent = internalBuffer; ZSTD_memcpy(internalBuffer, dictBuffer, dictSize); } cdict->dictContentSize = dictSize; cdict->dictContentType = dictContentType; cdict->entropyWorkspace = (U32*)ZSTD_cwksp_reserve_object(&cdict->workspace, HUF_WORKSPACE_SIZE); /* Reset the state to no dictionary */ ZSTD_reset_compressedBlockState(&cdict->cBlockState); FORWARD_IF_ERROR(ZSTD_reset_matchState( &cdict->matchState, &cdict->workspace, ¶ms.cParams, params.useRowMatchFinder, ZSTDcrp_makeClean, ZSTDirp_reset, ZSTD_resetTarget_CDict), ""); /* (Maybe) load the dictionary * Skips loading the dictionary if it is < 8 bytes. */ { params.compressionLevel = ZSTD_CLEVEL_DEFAULT; params.fParams.contentSizeFlag = 1; { size_t const dictID = ZSTD_compress_insertDictionary( &cdict->cBlockState, &cdict->matchState, NULL, &cdict->workspace, ¶ms, cdict->dictContent, cdict->dictContentSize, dictContentType, ZSTD_dtlm_full, ZSTD_tfp_forCDict, cdict->entropyWorkspace); FORWARD_IF_ERROR(dictID, "ZSTD_compress_insertDictionary failed"); assert(dictID <= (size_t)(U32)-1); cdict->dictID = (U32)dictID; } } return 0; } static ZSTD_CDict* ZSTD_createCDict_advanced_internal(size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_compressionParameters cParams, ZSTD_paramSwitch_e useRowMatchFinder, U32 enableDedicatedDictSearch, ZSTD_customMem customMem) { if ((!customMem.customAlloc) ^ (!customMem.customFree)) return NULL; { size_t const workspaceSize = ZSTD_cwksp_alloc_size(sizeof(ZSTD_CDict)) + ZSTD_cwksp_alloc_size(HUF_WORKSPACE_SIZE) + ZSTD_sizeof_matchState(&cParams, useRowMatchFinder, enableDedicatedDictSearch, /* forCCtx */ 0) + (dictLoadMethod == ZSTD_dlm_byRef ? 0 : ZSTD_cwksp_alloc_size(ZSTD_cwksp_align(dictSize, sizeof(void*)))); void* const workspace = ZSTD_customMalloc(workspaceSize, customMem); ZSTD_cwksp ws; ZSTD_CDict* cdict; if (!workspace) { ZSTD_customFree(workspace, customMem); return NULL; } ZSTD_cwksp_init(&ws, workspace, workspaceSize, ZSTD_cwksp_dynamic_alloc); cdict = (ZSTD_CDict*)ZSTD_cwksp_reserve_object(&ws, sizeof(ZSTD_CDict)); assert(cdict != NULL); ZSTD_cwksp_move(&cdict->workspace, &ws); cdict->customMem = customMem; cdict->compressionLevel = ZSTD_NO_CLEVEL; /* signals advanced API usage */ cdict->useRowMatchFinder = useRowMatchFinder; return cdict; } } ZSTD_CDict* ZSTD_createCDict_advanced(const void* dictBuffer, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType, ZSTD_compressionParameters cParams, ZSTD_customMem customMem) { ZSTD_CCtx_params cctxParams; ZSTD_memset(&cctxParams, 0, sizeof(cctxParams)); ZSTD_CCtxParams_init(&cctxParams, 0); cctxParams.cParams = cParams; cctxParams.customMem = customMem; return ZSTD_createCDict_advanced2( dictBuffer, dictSize, dictLoadMethod, dictContentType, &cctxParams, customMem); } ZSTD_CDict* ZSTD_createCDict_advanced2( const void* dict, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType, const ZSTD_CCtx_params* originalCctxParams, ZSTD_customMem customMem) { ZSTD_CCtx_params cctxParams = *originalCctxParams; ZSTD_compressionParameters cParams; ZSTD_CDict* cdict; DEBUGLOG(3, "ZSTD_createCDict_advanced2, mode %u", (unsigned)dictContentType); if (!customMem.customAlloc ^ !customMem.customFree) return NULL; if (cctxParams.enableDedicatedDictSearch) { cParams = ZSTD_dedicatedDictSearch_getCParams( cctxParams.compressionLevel, dictSize); ZSTD_overrideCParams(&cParams, &cctxParams.cParams); } else { cParams = ZSTD_getCParamsFromCCtxParams( &cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, dictSize, ZSTD_cpm_createCDict); } if (!ZSTD_dedicatedDictSearch_isSupported(&cParams)) { /* Fall back to non-DDSS params */ cctxParams.enableDedicatedDictSearch = 0; cParams = ZSTD_getCParamsFromCCtxParams( &cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, dictSize, ZSTD_cpm_createCDict); } DEBUGLOG(3, "ZSTD_createCDict_advanced2: DDS: %u", cctxParams.enableDedicatedDictSearch); cctxParams.cParams = cParams; cctxParams.useRowMatchFinder = ZSTD_resolveRowMatchFinderMode(cctxParams.useRowMatchFinder, &cParams); cdict = ZSTD_createCDict_advanced_internal(dictSize, dictLoadMethod, cctxParams.cParams, cctxParams.useRowMatchFinder, cctxParams.enableDedicatedDictSearch, customMem); if (ZSTD_isError( ZSTD_initCDict_internal(cdict, dict, dictSize, dictLoadMethod, dictContentType, cctxParams) )) { ZSTD_freeCDict(cdict); return NULL; } return cdict; } ZSTD_CDict* ZSTD_createCDict(const void* dict, size_t dictSize, int compressionLevel) { ZSTD_compressionParameters cParams = ZSTD_getCParams_internal(compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN, dictSize, ZSTD_cpm_createCDict); ZSTD_CDict* const cdict = ZSTD_createCDict_advanced(dict, dictSize, ZSTD_dlm_byCopy, ZSTD_dct_auto, cParams, ZSTD_defaultCMem); if (cdict) cdict->compressionLevel = (compressionLevel == 0) ? ZSTD_CLEVEL_DEFAULT : compressionLevel; return cdict; } ZSTD_CDict* ZSTD_createCDict_byReference(const void* dict, size_t dictSize, int compressionLevel) { ZSTD_compressionParameters cParams = ZSTD_getCParams_internal(compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN, dictSize, ZSTD_cpm_createCDict); ZSTD_CDict* const cdict = ZSTD_createCDict_advanced(dict, dictSize, ZSTD_dlm_byRef, ZSTD_dct_auto, cParams, ZSTD_defaultCMem); if (cdict) cdict->compressionLevel = (compressionLevel == 0) ? ZSTD_CLEVEL_DEFAULT : compressionLevel; return cdict; } size_t ZSTD_freeCDict(ZSTD_CDict* cdict) { if (cdict==NULL) return 0; /* support free on NULL */ { ZSTD_customMem const cMem = cdict->customMem; int cdictInWorkspace = ZSTD_cwksp_owns_buffer(&cdict->workspace, cdict); ZSTD_cwksp_free(&cdict->workspace, cMem); if (!cdictInWorkspace) { ZSTD_customFree(cdict, cMem); } return 0; } } /*! ZSTD_initStaticCDict_advanced() : * Generate a digested dictionary in provided memory area. * workspace: The memory area to emplace the dictionary into. * Provided pointer must 8-bytes aligned. * It must outlive dictionary usage. * workspaceSize: Use ZSTD_estimateCDictSize() * to determine how large workspace must be. * cParams : use ZSTD_getCParams() to transform a compression level * into its relevants cParams. * @return : pointer to ZSTD_CDict*, or NULL if error (size too small) * Note : there is no corresponding "free" function. * Since workspace was allocated externally, it must be freed externally. */ const ZSTD_CDict* ZSTD_initStaticCDict( void* workspace, size_t workspaceSize, const void* dict, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType, ZSTD_compressionParameters cParams) { ZSTD_paramSwitch_e const useRowMatchFinder = ZSTD_resolveRowMatchFinderMode(ZSTD_ps_auto, &cParams); /* enableDedicatedDictSearch == 1 ensures matchstate is not too small in case this CDict will be used for DDS + row hash */ size_t const matchStateSize = ZSTD_sizeof_matchState(&cParams, useRowMatchFinder, /* enableDedicatedDictSearch */ 1, /* forCCtx */ 0); size_t const neededSize = ZSTD_cwksp_alloc_size(sizeof(ZSTD_CDict)) + (dictLoadMethod == ZSTD_dlm_byRef ? 0 : ZSTD_cwksp_alloc_size(ZSTD_cwksp_align(dictSize, sizeof(void*)))) + ZSTD_cwksp_alloc_size(HUF_WORKSPACE_SIZE) + matchStateSize; ZSTD_CDict* cdict; ZSTD_CCtx_params params; if ((size_t)workspace & 7) return NULL; /* 8-aligned */ { ZSTD_cwksp ws; ZSTD_cwksp_init(&ws, workspace, workspaceSize, ZSTD_cwksp_static_alloc); cdict = (ZSTD_CDict*)ZSTD_cwksp_reserve_object(&ws, sizeof(ZSTD_CDict)); if (cdict == NULL) return NULL; ZSTD_cwksp_move(&cdict->workspace, &ws); } DEBUGLOG(4, "(workspaceSize < neededSize) : (%u < %u) => %u", (unsigned)workspaceSize, (unsigned)neededSize, (unsigned)(workspaceSize < neededSize)); if (workspaceSize < neededSize) return NULL; ZSTD_CCtxParams_init(¶ms, 0); params.cParams = cParams; params.useRowMatchFinder = useRowMatchFinder; cdict->useRowMatchFinder = useRowMatchFinder; if (ZSTD_isError( ZSTD_initCDict_internal(cdict, dict, dictSize, dictLoadMethod, dictContentType, params) )) return NULL; return cdict; } ZSTD_compressionParameters ZSTD_getCParamsFromCDict(const ZSTD_CDict* cdict) { assert(cdict != NULL); return cdict->matchState.cParams; } /*! ZSTD_getDictID_fromCDict() : * Provides the dictID of the dictionary loaded into `cdict`. * If @return == 0, the dictionary is not conformant to Zstandard specification, or empty. * Non-conformant dictionaries can still be loaded, but as content-only dictionaries. */ unsigned ZSTD_getDictID_fromCDict(const ZSTD_CDict* cdict) { if (cdict==NULL) return 0; return cdict->dictID; } /* ZSTD_compressBegin_usingCDict_internal() : * Implementation of various ZSTD_compressBegin_usingCDict* functions. */ static size_t ZSTD_compressBegin_usingCDict_internal( ZSTD_CCtx* const cctx, const ZSTD_CDict* const cdict, ZSTD_frameParameters const fParams, unsigned long long const pledgedSrcSize) { ZSTD_CCtx_params cctxParams; DEBUGLOG(4, "ZSTD_compressBegin_usingCDict_internal"); RETURN_ERROR_IF(cdict==NULL, dictionary_wrong, "NULL pointer!"); /* Initialize the cctxParams from the cdict */ { ZSTD_parameters params; params.fParams = fParams; params.cParams = ( pledgedSrcSize < ZSTD_USE_CDICT_PARAMS_SRCSIZE_CUTOFF || pledgedSrcSize < cdict->dictContentSize * ZSTD_USE_CDICT_PARAMS_DICTSIZE_MULTIPLIER || pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN || cdict->compressionLevel == 0 ) ? ZSTD_getCParamsFromCDict(cdict) : ZSTD_getCParams(cdict->compressionLevel, pledgedSrcSize, cdict->dictContentSize); ZSTD_CCtxParams_init_internal(&cctxParams, ¶ms, cdict->compressionLevel); } /* Increase window log to fit the entire dictionary and source if the * source size is known. Limit the increase to 19, which is the * window log for compression level 1 with the largest source size. */ if (pledgedSrcSize != ZSTD_CONTENTSIZE_UNKNOWN) { U32 const limitedSrcSize = (U32)MIN(pledgedSrcSize, 1U << 19); U32 const limitedSrcLog = limitedSrcSize > 1 ? ZSTD_highbit32(limitedSrcSize - 1) + 1 : 1; cctxParams.cParams.windowLog = MAX(cctxParams.cParams.windowLog, limitedSrcLog); } return ZSTD_compressBegin_internal(cctx, NULL, 0, ZSTD_dct_auto, ZSTD_dtlm_fast, cdict, &cctxParams, pledgedSrcSize, ZSTDb_not_buffered); } /* ZSTD_compressBegin_usingCDict_advanced() : * This function is DEPRECATED. * cdict must be != NULL */ size_t ZSTD_compressBegin_usingCDict_advanced( ZSTD_CCtx* const cctx, const ZSTD_CDict* const cdict, ZSTD_frameParameters const fParams, unsigned long long const pledgedSrcSize) { return ZSTD_compressBegin_usingCDict_internal(cctx, cdict, fParams, pledgedSrcSize); } /* ZSTD_compressBegin_usingCDict() : * cdict must be != NULL */ size_t ZSTD_compressBegin_usingCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict) { ZSTD_frameParameters const fParams = { 0 /*content*/, 0 /*checksum*/, 0 /*noDictID*/ }; return ZSTD_compressBegin_usingCDict_internal(cctx, cdict, fParams, ZSTD_CONTENTSIZE_UNKNOWN); } /*! ZSTD_compress_usingCDict_internal(): * Implementation of various ZSTD_compress_usingCDict* functions. */ static size_t ZSTD_compress_usingCDict_internal(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, const ZSTD_CDict* cdict, ZSTD_frameParameters fParams) { FORWARD_IF_ERROR(ZSTD_compressBegin_usingCDict_internal(cctx, cdict, fParams, srcSize), ""); /* will check if cdict != NULL */ return ZSTD_compressEnd(cctx, dst, dstCapacity, src, srcSize); } /*! ZSTD_compress_usingCDict_advanced(): * This function is DEPRECATED. */ size_t ZSTD_compress_usingCDict_advanced(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, const ZSTD_CDict* cdict, ZSTD_frameParameters fParams) { return ZSTD_compress_usingCDict_internal(cctx, dst, dstCapacity, src, srcSize, cdict, fParams); } /*! ZSTD_compress_usingCDict() : * Compression using a digested Dictionary. * Faster startup than ZSTD_compress_usingDict(), recommended when same dictionary is used multiple times. * Note that compression parameters are decided at CDict creation time * while frame parameters are hardcoded */ size_t ZSTD_compress_usingCDict(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, const ZSTD_CDict* cdict) { ZSTD_frameParameters const fParams = { 1 /*content*/, 0 /*checksum*/, 0 /*noDictID*/ }; return ZSTD_compress_usingCDict_internal(cctx, dst, dstCapacity, src, srcSize, cdict, fParams); } /* ****************************************************************** * Streaming ********************************************************************/ ZSTD_CStream* ZSTD_createCStream(void) { DEBUGLOG(3, "ZSTD_createCStream"); return ZSTD_createCStream_advanced(ZSTD_defaultCMem); } ZSTD_CStream* ZSTD_initStaticCStream(void *workspace, size_t workspaceSize) { return ZSTD_initStaticCCtx(workspace, workspaceSize); } ZSTD_CStream* ZSTD_createCStream_advanced(ZSTD_customMem customMem) { /* CStream and CCtx are now same object */ return ZSTD_createCCtx_advanced(customMem); } size_t ZSTD_freeCStream(ZSTD_CStream* zcs) { return ZSTD_freeCCtx(zcs); /* same object */ } /*====== Initialization ======*/ size_t ZSTD_CStreamInSize(void) { return ZSTD_BLOCKSIZE_MAX; } size_t ZSTD_CStreamOutSize(void) { return ZSTD_compressBound(ZSTD_BLOCKSIZE_MAX) + ZSTD_blockHeaderSize + 4 /* 32-bits hash */ ; } static ZSTD_cParamMode_e ZSTD_getCParamMode(ZSTD_CDict const* cdict, ZSTD_CCtx_params const* params, U64 pledgedSrcSize) { if (cdict != NULL && ZSTD_shouldAttachDict(cdict, params, pledgedSrcSize)) return ZSTD_cpm_attachDict; else return ZSTD_cpm_noAttachDict; } /* ZSTD_resetCStream(): * pledgedSrcSize == 0 means "unknown" */ size_t ZSTD_resetCStream(ZSTD_CStream* zcs, unsigned long long pss) { /* temporary : 0 interpreted as "unknown" during transition period. * Users willing to specify "unknown" **must** use ZSTD_CONTENTSIZE_UNKNOWN. * 0 will be interpreted as "empty" in the future. */ U64 const pledgedSrcSize = (pss==0) ? ZSTD_CONTENTSIZE_UNKNOWN : pss; DEBUGLOG(4, "ZSTD_resetCStream: pledgedSrcSize = %u", (unsigned)pledgedSrcSize); FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , ""); FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) , ""); return 0; } /*! ZSTD_initCStream_internal() : * Note : for lib/compress only. Used by zstdmt_compress.c. * Assumption 1 : params are valid * Assumption 2 : either dict, or cdict, is defined, not both */ size_t ZSTD_initCStream_internal(ZSTD_CStream* zcs, const void* dict, size_t dictSize, const ZSTD_CDict* cdict, const ZSTD_CCtx_params* params, unsigned long long pledgedSrcSize) { DEBUGLOG(4, "ZSTD_initCStream_internal"); FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , ""); FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) , ""); assert(!ZSTD_isError(ZSTD_checkCParams(params->cParams))); zcs->requestedParams = *params; assert(!((dict) && (cdict))); /* either dict or cdict, not both */ if (dict) { FORWARD_IF_ERROR( ZSTD_CCtx_loadDictionary(zcs, dict, dictSize) , ""); } else { /* Dictionary is cleared if !cdict */ FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, cdict) , ""); } return 0; } /* ZSTD_initCStream_usingCDict_advanced() : * same as ZSTD_initCStream_usingCDict(), with control over frame parameters */ size_t ZSTD_initCStream_usingCDict_advanced(ZSTD_CStream* zcs, const ZSTD_CDict* cdict, ZSTD_frameParameters fParams, unsigned long long pledgedSrcSize) { DEBUGLOG(4, "ZSTD_initCStream_usingCDict_advanced"); FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , ""); FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) , ""); zcs->requestedParams.fParams = fParams; FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, cdict) , ""); return 0; } /* note : cdict must outlive compression session */ size_t ZSTD_initCStream_usingCDict(ZSTD_CStream* zcs, const ZSTD_CDict* cdict) { DEBUGLOG(4, "ZSTD_initCStream_usingCDict"); FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , ""); FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, cdict) , ""); return 0; } /* ZSTD_initCStream_advanced() : * pledgedSrcSize must be exact. * if srcSize is not known at init time, use value ZSTD_CONTENTSIZE_UNKNOWN. * dict is loaded with default parameters ZSTD_dct_auto and ZSTD_dlm_byCopy. */ size_t ZSTD_initCStream_advanced(ZSTD_CStream* zcs, const void* dict, size_t dictSize, ZSTD_parameters params, unsigned long long pss) { /* for compatibility with older programs relying on this behavior. * Users should now specify ZSTD_CONTENTSIZE_UNKNOWN. * This line will be removed in the future. */ U64 const pledgedSrcSize = (pss==0 && params.fParams.contentSizeFlag==0) ? ZSTD_CONTENTSIZE_UNKNOWN : pss; DEBUGLOG(4, "ZSTD_initCStream_advanced"); FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , ""); FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) , ""); FORWARD_IF_ERROR( ZSTD_checkCParams(params.cParams) , ""); ZSTD_CCtxParams_setZstdParams(&zcs->requestedParams, ¶ms); FORWARD_IF_ERROR( ZSTD_CCtx_loadDictionary(zcs, dict, dictSize) , ""); return 0; } size_t ZSTD_initCStream_usingDict(ZSTD_CStream* zcs, const void* dict, size_t dictSize, int compressionLevel) { DEBUGLOG(4, "ZSTD_initCStream_usingDict"); FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , ""); FORWARD_IF_ERROR( ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel) , ""); FORWARD_IF_ERROR( ZSTD_CCtx_loadDictionary(zcs, dict, dictSize) , ""); return 0; } size_t ZSTD_initCStream_srcSize(ZSTD_CStream* zcs, int compressionLevel, unsigned long long pss) { /* temporary : 0 interpreted as "unknown" during transition period. * Users willing to specify "unknown" **must** use ZSTD_CONTENTSIZE_UNKNOWN. * 0 will be interpreted as "empty" in the future. */ U64 const pledgedSrcSize = (pss==0) ? ZSTD_CONTENTSIZE_UNKNOWN : pss; DEBUGLOG(4, "ZSTD_initCStream_srcSize"); FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , ""); FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, NULL) , ""); FORWARD_IF_ERROR( ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel) , ""); FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) , ""); return 0; } size_t ZSTD_initCStream(ZSTD_CStream* zcs, int compressionLevel) { DEBUGLOG(4, "ZSTD_initCStream"); FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) , ""); FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, NULL) , ""); FORWARD_IF_ERROR( ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel) , ""); return 0; } /*====== Compression ======*/ static size_t ZSTD_nextInputSizeHint(const ZSTD_CCtx* cctx) { if (cctx->appliedParams.inBufferMode == ZSTD_bm_stable) { return cctx->blockSize - cctx->stableIn_notConsumed; } assert(cctx->appliedParams.inBufferMode == ZSTD_bm_buffered); { size_t hintInSize = cctx->inBuffTarget - cctx->inBuffPos; if (hintInSize==0) hintInSize = cctx->blockSize; return hintInSize; } } /** ZSTD_compressStream_generic(): * internal function for all *compressStream*() variants * @return : hint size for next input to complete ongoing block */ static size_t ZSTD_compressStream_generic(ZSTD_CStream* zcs, ZSTD_outBuffer* output, ZSTD_inBuffer* input, ZSTD_EndDirective const flushMode) { const char* const istart = (assert(input != NULL), (const char*)input->src); const char* const iend = (istart != NULL) ? istart + input->size : istart; const char* ip = (istart != NULL) ? istart + input->pos : istart; char* const ostart = (assert(output != NULL), (char*)output->dst); char* const oend = (ostart != NULL) ? ostart + output->size : ostart; char* op = (ostart != NULL) ? ostart + output->pos : ostart; U32 someMoreWork = 1; /* check expectations */ DEBUGLOG(5, "ZSTD_compressStream_generic, flush=%i, srcSize = %zu", (int)flushMode, input->size - input->pos); assert(zcs != NULL); if (zcs->appliedParams.inBufferMode == ZSTD_bm_stable) { assert(input->pos >= zcs->stableIn_notConsumed); input->pos -= zcs->stableIn_notConsumed; ip -= zcs->stableIn_notConsumed; zcs->stableIn_notConsumed = 0; } if (zcs->appliedParams.inBufferMode == ZSTD_bm_buffered) { assert(zcs->inBuff != NULL); assert(zcs->inBuffSize > 0); } if (zcs->appliedParams.outBufferMode == ZSTD_bm_buffered) { assert(zcs->outBuff != NULL); assert(zcs->outBuffSize > 0); } if (input->src == NULL) assert(input->size == 0); assert(input->pos <= input->size); if (output->dst == NULL) assert(output->size == 0); assert(output->pos <= output->size); assert((U32)flushMode <= (U32)ZSTD_e_end); while (someMoreWork) { switch(zcs->streamStage) { case zcss_init: RETURN_ERROR(init_missing, "call ZSTD_initCStream() first!"); case zcss_load: if ( (flushMode == ZSTD_e_end) && ( (size_t)(oend-op) >= ZSTD_compressBound(iend-ip) /* Enough output space */ || zcs->appliedParams.outBufferMode == ZSTD_bm_stable) /* OR we are allowed to return dstSizeTooSmall */ && (zcs->inBuffPos == 0) ) { /* shortcut to compression pass directly into output buffer */ size_t const cSize = ZSTD_compressEnd(zcs, op, oend-op, ip, iend-ip); DEBUGLOG(4, "ZSTD_compressEnd : cSize=%u", (unsigned)cSize); FORWARD_IF_ERROR(cSize, "ZSTD_compressEnd failed"); ip = iend; op += cSize; zcs->frameEnded = 1; ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); someMoreWork = 0; break; } /* complete loading into inBuffer in buffered mode */ if (zcs->appliedParams.inBufferMode == ZSTD_bm_buffered) { size_t const toLoad = zcs->inBuffTarget - zcs->inBuffPos; size_t const loaded = ZSTD_limitCopy( zcs->inBuff + zcs->inBuffPos, toLoad, ip, iend-ip); zcs->inBuffPos += loaded; if (ip) ip += loaded; if ( (flushMode == ZSTD_e_continue) && (zcs->inBuffPos < zcs->inBuffTarget) ) { /* not enough input to fill full block : stop here */ someMoreWork = 0; break; } if ( (flushMode == ZSTD_e_flush) && (zcs->inBuffPos == zcs->inToCompress) ) { /* empty */ someMoreWork = 0; break; } } else { assert(zcs->appliedParams.inBufferMode == ZSTD_bm_stable); if ( (flushMode == ZSTD_e_continue) && ( (size_t)(iend - ip) < zcs->blockSize) ) { /* can't compress a full block : stop here */ zcs->stableIn_notConsumed = (size_t)(iend - ip); ip = iend; /* pretend to have consumed input */ someMoreWork = 0; break; } if ( (flushMode == ZSTD_e_flush) && (ip == iend) ) { /* empty */ someMoreWork = 0; break; } } /* compress current block (note : this stage cannot be stopped in the middle) */ DEBUGLOG(5, "stream compression stage (flushMode==%u)", flushMode); { int const inputBuffered = (zcs->appliedParams.inBufferMode == ZSTD_bm_buffered); void* cDst; size_t cSize; size_t oSize = oend-op; size_t const iSize = inputBuffered ? zcs->inBuffPos - zcs->inToCompress : MIN((size_t)(iend - ip), zcs->blockSize); if (oSize >= ZSTD_compressBound(iSize) || zcs->appliedParams.outBufferMode == ZSTD_bm_stable) cDst = op; /* compress into output buffer, to skip flush stage */ else cDst = zcs->outBuff, oSize = zcs->outBuffSize; if (inputBuffered) { unsigned const lastBlock = (flushMode == ZSTD_e_end) && (ip==iend); cSize = lastBlock ? ZSTD_compressEnd(zcs, cDst, oSize, zcs->inBuff + zcs->inToCompress, iSize) : ZSTD_compressContinue(zcs, cDst, oSize, zcs->inBuff + zcs->inToCompress, iSize); FORWARD_IF_ERROR(cSize, "%s", lastBlock ? "ZSTD_compressEnd failed" : "ZSTD_compressContinue failed"); zcs->frameEnded = lastBlock; /* prepare next block */ zcs->inBuffTarget = zcs->inBuffPos + zcs->blockSize; if (zcs->inBuffTarget > zcs->inBuffSize) zcs->inBuffPos = 0, zcs->inBuffTarget = zcs->blockSize; DEBUGLOG(5, "inBuffTarget:%u / inBuffSize:%u", (unsigned)zcs->inBuffTarget, (unsigned)zcs->inBuffSize); if (!lastBlock) assert(zcs->inBuffTarget <= zcs->inBuffSize); zcs->inToCompress = zcs->inBuffPos; } else { /* !inputBuffered, hence ZSTD_bm_stable */ unsigned const lastBlock = (flushMode == ZSTD_e_end) && (ip + iSize == iend); cSize = lastBlock ? ZSTD_compressEnd(zcs, cDst, oSize, ip, iSize) : ZSTD_compressContinue(zcs, cDst, oSize, ip, iSize); /* Consume the input prior to error checking to mirror buffered mode. */ if (ip) ip += iSize; FORWARD_IF_ERROR(cSize, "%s", lastBlock ? "ZSTD_compressEnd failed" : "ZSTD_compressContinue failed"); zcs->frameEnded = lastBlock; if (lastBlock) assert(ip == iend); } if (cDst == op) { /* no need to flush */ op += cSize; if (zcs->frameEnded) { DEBUGLOG(5, "Frame completed directly in outBuffer"); someMoreWork = 0; ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); } break; } zcs->outBuffContentSize = cSize; zcs->outBuffFlushedSize = 0; zcs->streamStage = zcss_flush; /* pass-through to flush stage */ } ZSTD_FALLTHROUGH; case zcss_flush: DEBUGLOG(5, "flush stage"); assert(zcs->appliedParams.outBufferMode == ZSTD_bm_buffered); { size_t const toFlush = zcs->outBuffContentSize - zcs->outBuffFlushedSize; size_t const flushed = ZSTD_limitCopy(op, (size_t)(oend-op), zcs->outBuff + zcs->outBuffFlushedSize, toFlush); DEBUGLOG(5, "toFlush: %u into %u ==> flushed: %u", (unsigned)toFlush, (unsigned)(oend-op), (unsigned)flushed); if (flushed) op += flushed; zcs->outBuffFlushedSize += flushed; if (toFlush!=flushed) { /* flush not fully completed, presumably because dst is too small */ assert(op==oend); someMoreWork = 0; break; } zcs->outBuffContentSize = zcs->outBuffFlushedSize = 0; if (zcs->frameEnded) { DEBUGLOG(5, "Frame completed on flush"); someMoreWork = 0; ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); break; } zcs->streamStage = zcss_load; break; } default: /* impossible */ assert(0); } } input->pos = ip - istart; output->pos = op - ostart; if (zcs->frameEnded) return 0; return ZSTD_nextInputSizeHint(zcs); } static size_t ZSTD_nextInputSizeHint_MTorST(const ZSTD_CCtx* cctx) { #ifdef ZSTD_MULTITHREAD if (cctx->appliedParams.nbWorkers >= 1) { assert(cctx->mtctx != NULL); return ZSTDMT_nextInputSizeHint(cctx->mtctx); } #endif return ZSTD_nextInputSizeHint(cctx); } size_t ZSTD_compressStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output, ZSTD_inBuffer* input) { FORWARD_IF_ERROR( ZSTD_compressStream2(zcs, output, input, ZSTD_e_continue) , ""); return ZSTD_nextInputSizeHint_MTorST(zcs); } /* After a compression call set the expected input/output buffer. * This is validated at the start of the next compression call. */ static void ZSTD_setBufferExpectations(ZSTD_CCtx* cctx, const ZSTD_outBuffer* output, const ZSTD_inBuffer* input) { DEBUGLOG(5, "ZSTD_setBufferExpectations (for advanced stable in/out modes)"); if (cctx->appliedParams.inBufferMode == ZSTD_bm_stable) { cctx->expectedInBuffer = *input; } if (cctx->appliedParams.outBufferMode == ZSTD_bm_stable) { cctx->expectedOutBufferSize = output->size - output->pos; } } /* Validate that the input/output buffers match the expectations set by * ZSTD_setBufferExpectations. */ static size_t ZSTD_checkBufferStability(ZSTD_CCtx const* cctx, ZSTD_outBuffer const* output, ZSTD_inBuffer const* input, ZSTD_EndDirective endOp) { if (cctx->appliedParams.inBufferMode == ZSTD_bm_stable) { ZSTD_inBuffer const expect = cctx->expectedInBuffer; if (expect.src != input->src || expect.pos != input->pos) RETURN_ERROR(stabilityCondition_notRespected, "ZSTD_c_stableInBuffer enabled but input differs!"); } (void)endOp; if (cctx->appliedParams.outBufferMode == ZSTD_bm_stable) { size_t const outBufferSize = output->size - output->pos; if (cctx->expectedOutBufferSize != outBufferSize) RETURN_ERROR(stabilityCondition_notRespected, "ZSTD_c_stableOutBuffer enabled but output size differs!"); } return 0; } static size_t ZSTD_CCtx_init_compressStream2(ZSTD_CCtx* cctx, ZSTD_EndDirective endOp, size_t inSize) { ZSTD_CCtx_params params = cctx->requestedParams; ZSTD_prefixDict const prefixDict = cctx->prefixDict; FORWARD_IF_ERROR( ZSTD_initLocalDict(cctx) , ""); /* Init the local dict if present. */ ZSTD_memset(&cctx->prefixDict, 0, sizeof(cctx->prefixDict)); /* single usage */ assert(prefixDict.dict==NULL || cctx->cdict==NULL); /* only one can be set */ if (cctx->cdict && !cctx->localDict.cdict) { /* Let the cdict's compression level take priority over the requested params. * But do not take the cdict's compression level if the "cdict" is actually a localDict * generated from ZSTD_initLocalDict(). */ params.compressionLevel = cctx->cdict->compressionLevel; } DEBUGLOG(4, "ZSTD_compressStream2 : transparent init stage"); if (endOp == ZSTD_e_end) cctx->pledgedSrcSizePlusOne = inSize + 1; /* auto-determine pledgedSrcSize */ { size_t const dictSize = prefixDict.dict ? prefixDict.dictSize : (cctx->cdict ? cctx->cdict->dictContentSize : 0); ZSTD_cParamMode_e const mode = ZSTD_getCParamMode(cctx->cdict, ¶ms, cctx->pledgedSrcSizePlusOne - 1); params.cParams = ZSTD_getCParamsFromCCtxParams( ¶ms, cctx->pledgedSrcSizePlusOne-1, dictSize, mode); } params.useBlockSplitter = ZSTD_resolveBlockSplitterMode(params.useBlockSplitter, ¶ms.cParams); params.ldmParams.enableLdm = ZSTD_resolveEnableLdm(params.ldmParams.enableLdm, ¶ms.cParams); params.useRowMatchFinder = ZSTD_resolveRowMatchFinderMode(params.useRowMatchFinder, ¶ms.cParams); params.validateSequences = ZSTD_resolveExternalSequenceValidation(params.validateSequences); params.maxBlockSize = ZSTD_resolveMaxBlockSize(params.maxBlockSize); params.searchForExternalRepcodes = ZSTD_resolveExternalRepcodeSearch(params.searchForExternalRepcodes, params.compressionLevel); #ifdef ZSTD_MULTITHREAD /* If external matchfinder is enabled, make sure to fail before checking job size (for consistency) */ RETURN_ERROR_IF( params.useSequenceProducer == 1 && params.nbWorkers >= 1, parameter_combination_unsupported, "External sequence producer isn't supported with nbWorkers >= 1" ); if ((cctx->pledgedSrcSizePlusOne-1) <= ZSTDMT_JOBSIZE_MIN) { params.nbWorkers = 0; /* do not invoke multi-threading when src size is too small */ } if (params.nbWorkers > 0) { #if ZSTD_TRACE cctx->traceCtx = (ZSTD_trace_compress_begin != NULL) ? ZSTD_trace_compress_begin(cctx) : 0; #endif /* mt context creation */ if (cctx->mtctx == NULL) { DEBUGLOG(4, "ZSTD_compressStream2: creating new mtctx for nbWorkers=%u", params.nbWorkers); cctx->mtctx = ZSTDMT_createCCtx_advanced((U32)params.nbWorkers, cctx->customMem, cctx->pool); RETURN_ERROR_IF(cctx->mtctx == NULL, memory_allocation, "NULL pointer!"); } /* mt compression */ DEBUGLOG(4, "call ZSTDMT_initCStream_internal as nbWorkers=%u", params.nbWorkers); FORWARD_IF_ERROR( ZSTDMT_initCStream_internal( cctx->mtctx, prefixDict.dict, prefixDict.dictSize, prefixDict.dictContentType, cctx->cdict, params, cctx->pledgedSrcSizePlusOne-1) , ""); cctx->dictID = cctx->cdict ? cctx->cdict->dictID : 0; cctx->dictContentSize = cctx->cdict ? cctx->cdict->dictContentSize : prefixDict.dictSize; cctx->consumedSrcSize = 0; cctx->producedCSize = 0; cctx->streamStage = zcss_load; cctx->appliedParams = params; } else #endif /* ZSTD_MULTITHREAD */ { U64 const pledgedSrcSize = cctx->pledgedSrcSizePlusOne - 1; assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams))); FORWARD_IF_ERROR( ZSTD_compressBegin_internal(cctx, prefixDict.dict, prefixDict.dictSize, prefixDict.dictContentType, ZSTD_dtlm_fast, cctx->cdict, ¶ms, pledgedSrcSize, ZSTDb_buffered) , ""); assert(cctx->appliedParams.nbWorkers == 0); cctx->inToCompress = 0; cctx->inBuffPos = 0; if (cctx->appliedParams.inBufferMode == ZSTD_bm_buffered) { /* for small input: avoid automatic flush on reaching end of block, since * it would require to add a 3-bytes null block to end frame */ cctx->inBuffTarget = cctx->blockSize + (cctx->blockSize == pledgedSrcSize); } else { cctx->inBuffTarget = 0; } cctx->outBuffContentSize = cctx->outBuffFlushedSize = 0; cctx->streamStage = zcss_load; cctx->frameEnded = 0; } return 0; } /* @return provides a minimum amount of data remaining to be flushed from internal buffers */ size_t ZSTD_compressStream2( ZSTD_CCtx* cctx, ZSTD_outBuffer* output, ZSTD_inBuffer* input, ZSTD_EndDirective endOp) { DEBUGLOG(5, "ZSTD_compressStream2, endOp=%u ", (unsigned)endOp); /* check conditions */ RETURN_ERROR_IF(output->pos > output->size, dstSize_tooSmall, "invalid output buffer"); RETURN_ERROR_IF(input->pos > input->size, srcSize_wrong, "invalid input buffer"); RETURN_ERROR_IF((U32)endOp > (U32)ZSTD_e_end, parameter_outOfBound, "invalid endDirective"); assert(cctx != NULL); /* transparent initialization stage */ if (cctx->streamStage == zcss_init) { size_t const inputSize = input->size - input->pos; /* no obligation to start from pos==0 */ size_t const totalInputSize = inputSize + cctx->stableIn_notConsumed; if ( (cctx->requestedParams.inBufferMode == ZSTD_bm_stable) /* input is presumed stable, across invocations */ && (endOp == ZSTD_e_continue) /* no flush requested, more input to come */ && (totalInputSize < ZSTD_BLOCKSIZE_MAX) ) { /* not even reached one block yet */ if (cctx->stableIn_notConsumed) { /* not the first time */ /* check stable source guarantees */ RETURN_ERROR_IF(input->src != cctx->expectedInBuffer.src, stabilityCondition_notRespected, "stableInBuffer condition not respected: wrong src pointer"); RETURN_ERROR_IF(input->pos != cctx->expectedInBuffer.size, stabilityCondition_notRespected, "stableInBuffer condition not respected: externally modified pos"); } /* pretend input was consumed, to give a sense forward progress */ input->pos = input->size; /* save stable inBuffer, for later control, and flush/end */ cctx->expectedInBuffer = *input; /* but actually input wasn't consumed, so keep track of position from where compression shall resume */ cctx->stableIn_notConsumed += inputSize; /* don't initialize yet, wait for the first block of flush() order, for better parameters adaptation */ return ZSTD_FRAMEHEADERSIZE_MIN(cctx->requestedParams.format); /* at least some header to produce */ } FORWARD_IF_ERROR(ZSTD_CCtx_init_compressStream2(cctx, endOp, totalInputSize), "compressStream2 initialization failed"); ZSTD_setBufferExpectations(cctx, output, input); /* Set initial buffer expectations now that we've initialized */ } /* end of transparent initialization stage */ FORWARD_IF_ERROR(ZSTD_checkBufferStability(cctx, output, input, endOp), "invalid buffers"); /* compression stage */ #ifdef ZSTD_MULTITHREAD if (cctx->appliedParams.nbWorkers > 0) { size_t flushMin; if (cctx->cParamsChanged) { ZSTDMT_updateCParams_whileCompressing(cctx->mtctx, &cctx->requestedParams); cctx->cParamsChanged = 0; } if (cctx->stableIn_notConsumed) { assert(cctx->appliedParams.inBufferMode == ZSTD_bm_stable); /* some early data was skipped - make it available for consumption */ assert(input->pos >= cctx->stableIn_notConsumed); input->pos -= cctx->stableIn_notConsumed; cctx->stableIn_notConsumed = 0; } for (;;) { size_t const ipos = input->pos; size_t const opos = output->pos; flushMin = ZSTDMT_compressStream_generic(cctx->mtctx, output, input, endOp); cctx->consumedSrcSize += (U64)(input->pos - ipos); cctx->producedCSize += (U64)(output->pos - opos); if ( ZSTD_isError(flushMin) || (endOp == ZSTD_e_end && flushMin == 0) ) { /* compression completed */ if (flushMin == 0) ZSTD_CCtx_trace(cctx, 0); ZSTD_CCtx_reset(cctx, ZSTD_reset_session_only); } FORWARD_IF_ERROR(flushMin, "ZSTDMT_compressStream_generic failed"); if (endOp == ZSTD_e_continue) { /* We only require some progress with ZSTD_e_continue, not maximal progress. * We're done if we've consumed or produced any bytes, or either buffer is * full. */ if (input->pos != ipos || output->pos != opos || input->pos == input->size || output->pos == output->size) break; } else { assert(endOp == ZSTD_e_flush || endOp == ZSTD_e_end); /* We require maximal progress. We're done when the flush is complete or the * output buffer is full. */ if (flushMin == 0 || output->pos == output->size) break; } } DEBUGLOG(5, "completed ZSTD_compressStream2 delegating to ZSTDMT_compressStream_generic"); /* Either we don't require maximum forward progress, we've finished the * flush, or we are out of output space. */ assert(endOp == ZSTD_e_continue || flushMin == 0 || output->pos == output->size); ZSTD_setBufferExpectations(cctx, output, input); return flushMin; } #endif /* ZSTD_MULTITHREAD */ FORWARD_IF_ERROR( ZSTD_compressStream_generic(cctx, output, input, endOp) , ""); DEBUGLOG(5, "completed ZSTD_compressStream2"); ZSTD_setBufferExpectations(cctx, output, input); return cctx->outBuffContentSize - cctx->outBuffFlushedSize; /* remaining to flush */ } size_t ZSTD_compressStream2_simpleArgs ( ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, size_t* dstPos, const void* src, size_t srcSize, size_t* srcPos, ZSTD_EndDirective endOp) { ZSTD_outBuffer output; ZSTD_inBuffer input; output.dst = dst; output.size = dstCapacity; output.pos = *dstPos; input.src = src; input.size = srcSize; input.pos = *srcPos; /* ZSTD_compressStream2() will check validity of dstPos and srcPos */ { size_t const cErr = ZSTD_compressStream2(cctx, &output, &input, endOp); *dstPos = output.pos; *srcPos = input.pos; return cErr; } } size_t ZSTD_compress2(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) { ZSTD_bufferMode_e const originalInBufferMode = cctx->requestedParams.inBufferMode; ZSTD_bufferMode_e const originalOutBufferMode = cctx->requestedParams.outBufferMode; DEBUGLOG(4, "ZSTD_compress2 (srcSize=%u)", (unsigned)srcSize); ZSTD_CCtx_reset(cctx, ZSTD_reset_session_only); /* Enable stable input/output buffers. */ cctx->requestedParams.inBufferMode = ZSTD_bm_stable; cctx->requestedParams.outBufferMode = ZSTD_bm_stable; { size_t oPos = 0; size_t iPos = 0; size_t const result = ZSTD_compressStream2_simpleArgs(cctx, dst, dstCapacity, &oPos, src, srcSize, &iPos, ZSTD_e_end); /* Reset to the original values. */ cctx->requestedParams.inBufferMode = originalInBufferMode; cctx->requestedParams.outBufferMode = originalOutBufferMode; FORWARD_IF_ERROR(result, "ZSTD_compressStream2_simpleArgs failed"); if (result != 0) { /* compression not completed, due to lack of output space */ assert(oPos == dstCapacity); RETURN_ERROR(dstSize_tooSmall, ""); } assert(iPos == srcSize); /* all input is expected consumed */ return oPos; } } /* ZSTD_validateSequence() : * @offCode : is presumed to follow format required by ZSTD_storeSeq() * @returns a ZSTD error code if sequence is not valid */ static size_t ZSTD_validateSequence(U32 offCode, U32 matchLength, U32 minMatch, size_t posInSrc, U32 windowLog, size_t dictSize, int useSequenceProducer) { U32 const windowSize = 1u << windowLog; /* posInSrc represents the amount of data the decoder would decode up to this point. * As long as the amount of data decoded is less than or equal to window size, offsets may be * larger than the total length of output decoded in order to reference the dict, even larger than * window size. After output surpasses windowSize, we're limited to windowSize offsets again. */ size_t const offsetBound = posInSrc > windowSize ? (size_t)windowSize : posInSrc + (size_t)dictSize; size_t const matchLenLowerBound = (minMatch == 3 || useSequenceProducer) ? 3 : 4; RETURN_ERROR_IF(offCode > OFFSET_TO_OFFBASE(offsetBound), externalSequences_invalid, "Offset too large!"); /* Validate maxNbSeq is large enough for the given matchLength and minMatch */ RETURN_ERROR_IF(matchLength < matchLenLowerBound, externalSequences_invalid, "Matchlength too small for the minMatch"); return 0; } /* Returns an offset code, given a sequence's raw offset, the ongoing repcode array, and whether litLength == 0 */ static U32 ZSTD_finalizeOffBase(U32 rawOffset, const U32 rep[ZSTD_REP_NUM], U32 ll0) { U32 offBase = OFFSET_TO_OFFBASE(rawOffset); if (!ll0 && rawOffset == rep[0]) { offBase = REPCODE1_TO_OFFBASE; } else if (rawOffset == rep[1]) { offBase = REPCODE_TO_OFFBASE(2 - ll0); } else if (rawOffset == rep[2]) { offBase = REPCODE_TO_OFFBASE(3 - ll0); } else if (ll0 && rawOffset == rep[0] - 1) { offBase = REPCODE3_TO_OFFBASE; } return offBase; } size_t ZSTD_copySequencesToSeqStoreExplicitBlockDelim(ZSTD_CCtx* cctx, ZSTD_sequencePosition* seqPos, const ZSTD_Sequence* const inSeqs, size_t inSeqsSize, const void* src, size_t blockSize, ZSTD_paramSwitch_e externalRepSearch) { U32 idx = seqPos->idx; U32 const startIdx = idx; BYTE const* ip = (BYTE const*)(src); const BYTE* const iend = ip + blockSize; repcodes_t updatedRepcodes; U32 dictSize; DEBUGLOG(5, "ZSTD_copySequencesToSeqStoreExplicitBlockDelim (blockSize = %zu)", blockSize); if (cctx->cdict) { dictSize = (U32)cctx->cdict->dictContentSize; } else if (cctx->prefixDict.dict) { dictSize = (U32)cctx->prefixDict.dictSize; } else { dictSize = 0; } ZSTD_memcpy(updatedRepcodes.rep, cctx->blockState.prevCBlock->rep, sizeof(repcodes_t)); for (; idx < inSeqsSize && (inSeqs[idx].matchLength != 0 || inSeqs[idx].offset != 0); ++idx) { U32 const litLength = inSeqs[idx].litLength; U32 const matchLength = inSeqs[idx].matchLength; U32 offBase; if (externalRepSearch == ZSTD_ps_disable) { offBase = OFFSET_TO_OFFBASE(inSeqs[idx].offset); } else { U32 const ll0 = (litLength == 0); offBase = ZSTD_finalizeOffBase(inSeqs[idx].offset, updatedRepcodes.rep, ll0); ZSTD_updateRep(updatedRepcodes.rep, offBase, ll0); } DEBUGLOG(6, "Storing sequence: (of: %u, ml: %u, ll: %u)", offBase, matchLength, litLength); if (cctx->appliedParams.validateSequences) { seqPos->posInSrc += litLength + matchLength; FORWARD_IF_ERROR(ZSTD_validateSequence(offBase, matchLength, cctx->appliedParams.cParams.minMatch, seqPos->posInSrc, cctx->appliedParams.cParams.windowLog, dictSize, cctx->appliedParams.useSequenceProducer), "Sequence validation failed"); } RETURN_ERROR_IF(idx - seqPos->idx >= cctx->seqStore.maxNbSeq, externalSequences_invalid, "Not enough memory allocated. Try adjusting ZSTD_c_minMatch."); ZSTD_storeSeq(&cctx->seqStore, litLength, ip, iend, offBase, matchLength); ip += matchLength + litLength; } /* If we skipped repcode search while parsing, we need to update repcodes now */ assert(externalRepSearch != ZSTD_ps_auto); assert(idx >= startIdx); if (externalRepSearch == ZSTD_ps_disable && idx != startIdx) { U32* const rep = updatedRepcodes.rep; U32 lastSeqIdx = idx - 1; /* index of last non-block-delimiter sequence */ if (lastSeqIdx >= startIdx + 2) { rep[2] = inSeqs[lastSeqIdx - 2].offset; rep[1] = inSeqs[lastSeqIdx - 1].offset; rep[0] = inSeqs[lastSeqIdx].offset; } else if (lastSeqIdx == startIdx + 1) { rep[2] = rep[0]; rep[1] = inSeqs[lastSeqIdx - 1].offset; rep[0] = inSeqs[lastSeqIdx].offset; } else { assert(lastSeqIdx == startIdx); rep[2] = rep[1]; rep[1] = rep[0]; rep[0] = inSeqs[lastSeqIdx].offset; } } ZSTD_memcpy(cctx->blockState.nextCBlock->rep, updatedRepcodes.rep, sizeof(repcodes_t)); if (inSeqs[idx].litLength) { DEBUGLOG(6, "Storing last literals of size: %u", inSeqs[idx].litLength); ZSTD_storeLastLiterals(&cctx->seqStore, ip, inSeqs[idx].litLength); ip += inSeqs[idx].litLength; seqPos->posInSrc += inSeqs[idx].litLength; } RETURN_ERROR_IF(ip != iend, externalSequences_invalid, "Blocksize doesn't agree with block delimiter!"); seqPos->idx = idx+1; return 0; } size_t ZSTD_copySequencesToSeqStoreNoBlockDelim(ZSTD_CCtx* cctx, ZSTD_sequencePosition* seqPos, const ZSTD_Sequence* const inSeqs, size_t inSeqsSize, const void* src, size_t blockSize, ZSTD_paramSwitch_e externalRepSearch) { U32 idx = seqPos->idx; U32 startPosInSequence = seqPos->posInSequence; U32 endPosInSequence = seqPos->posInSequence + (U32)blockSize; size_t dictSize; BYTE const* ip = (BYTE const*)(src); BYTE const* iend = ip + blockSize; /* May be adjusted if we decide to process fewer than blockSize bytes */ repcodes_t updatedRepcodes; U32 bytesAdjustment = 0; U32 finalMatchSplit = 0; /* TODO(embg) support fast parsing mode in noBlockDelim mode */ (void)externalRepSearch; if (cctx->cdict) { dictSize = cctx->cdict->dictContentSize; } else if (cctx->prefixDict.dict) { dictSize = cctx->prefixDict.dictSize; } else { dictSize = 0; } DEBUGLOG(5, "ZSTD_copySequencesToSeqStoreNoBlockDelim: idx: %u PIS: %u blockSize: %zu", idx, startPosInSequence, blockSize); DEBUGLOG(5, "Start seq: idx: %u (of: %u ml: %u ll: %u)", idx, inSeqs[idx].offset, inSeqs[idx].matchLength, inSeqs[idx].litLength); ZSTD_memcpy(updatedRepcodes.rep, cctx->blockState.prevCBlock->rep, sizeof(repcodes_t)); while (endPosInSequence && idx < inSeqsSize && !finalMatchSplit) { const ZSTD_Sequence currSeq = inSeqs[idx]; U32 litLength = currSeq.litLength; U32 matchLength = currSeq.matchLength; U32 const rawOffset = currSeq.offset; U32 offBase; /* Modify the sequence depending on where endPosInSequence lies */ if (endPosInSequence >= currSeq.litLength + currSeq.matchLength) { if (startPosInSequence >= litLength) { startPosInSequence -= litLength; litLength = 0; matchLength -= startPosInSequence; } else { litLength -= startPosInSequence; } /* Move to the next sequence */ endPosInSequence -= currSeq.litLength + currSeq.matchLength; startPosInSequence = 0; } else { /* This is the final (partial) sequence we're adding from inSeqs, and endPosInSequence does not reach the end of the match. So, we have to split the sequence */ DEBUGLOG(6, "Require a split: diff: %u, idx: %u PIS: %u", currSeq.litLength + currSeq.matchLength - endPosInSequence, idx, endPosInSequence); if (endPosInSequence > litLength) { U32 firstHalfMatchLength; litLength = startPosInSequence >= litLength ? 0 : litLength - startPosInSequence; firstHalfMatchLength = endPosInSequence - startPosInSequence - litLength; if (matchLength > blockSize && firstHalfMatchLength >= cctx->appliedParams.cParams.minMatch) { /* Only ever split the match if it is larger than the block size */ U32 secondHalfMatchLength = currSeq.matchLength + currSeq.litLength - endPosInSequence; if (secondHalfMatchLength < cctx->appliedParams.cParams.minMatch) { /* Move the endPosInSequence backward so that it creates match of minMatch length */ endPosInSequence -= cctx->appliedParams.cParams.minMatch - secondHalfMatchLength; bytesAdjustment = cctx->appliedParams.cParams.minMatch - secondHalfMatchLength; firstHalfMatchLength -= bytesAdjustment; } matchLength = firstHalfMatchLength; /* Flag that we split the last match - after storing the sequence, exit the loop, but keep the value of endPosInSequence */ finalMatchSplit = 1; } else { /* Move the position in sequence backwards so that we don't split match, and break to store * the last literals. We use the original currSeq.litLength as a marker for where endPosInSequence * should go. We prefer to do this whenever it is not necessary to split the match, or if doing so * would cause the first half of the match to be too small */ bytesAdjustment = endPosInSequence - currSeq.litLength; endPosInSequence = currSeq.litLength; break; } } else { /* This sequence ends inside the literals, break to store the last literals */ break; } } /* Check if this offset can be represented with a repcode */ { U32 const ll0 = (litLength == 0); offBase = ZSTD_finalizeOffBase(rawOffset, updatedRepcodes.rep, ll0); ZSTD_updateRep(updatedRepcodes.rep, offBase, ll0); } if (cctx->appliedParams.validateSequences) { seqPos->posInSrc += litLength + matchLength; FORWARD_IF_ERROR(ZSTD_validateSequence(offBase, matchLength, cctx->appliedParams.cParams.minMatch, seqPos->posInSrc, cctx->appliedParams.cParams.windowLog, dictSize, cctx->appliedParams.useSequenceProducer), "Sequence validation failed"); } DEBUGLOG(6, "Storing sequence: (of: %u, ml: %u, ll: %u)", offBase, matchLength, litLength); RETURN_ERROR_IF(idx - seqPos->idx >= cctx->seqStore.maxNbSeq, externalSequences_invalid, "Not enough memory allocated. Try adjusting ZSTD_c_minMatch."); ZSTD_storeSeq(&cctx->seqStore, litLength, ip, iend, offBase, matchLength); ip += matchLength + litLength; if (!finalMatchSplit) idx++; /* Next Sequence */ } DEBUGLOG(5, "Ending seq: idx: %u (of: %u ml: %u ll: %u)", idx, inSeqs[idx].offset, inSeqs[idx].matchLength, inSeqs[idx].litLength); assert(idx == inSeqsSize || endPosInSequence <= inSeqs[idx].litLength + inSeqs[idx].matchLength); seqPos->idx = idx; seqPos->posInSequence = endPosInSequence; ZSTD_memcpy(cctx->blockState.nextCBlock->rep, updatedRepcodes.rep, sizeof(repcodes_t)); iend -= bytesAdjustment; if (ip != iend) { /* Store any last literals */ U32 lastLLSize = (U32)(iend - ip); assert(ip <= iend); DEBUGLOG(6, "Storing last literals of size: %u", lastLLSize); ZSTD_storeLastLiterals(&cctx->seqStore, ip, lastLLSize); seqPos->posInSrc += lastLLSize; } return bytesAdjustment; } typedef size_t (*ZSTD_sequenceCopier) (ZSTD_CCtx* cctx, ZSTD_sequencePosition* seqPos, const ZSTD_Sequence* const inSeqs, size_t inSeqsSize, const void* src, size_t blockSize, ZSTD_paramSwitch_e externalRepSearch); static ZSTD_sequenceCopier ZSTD_selectSequenceCopier(ZSTD_sequenceFormat_e mode) { ZSTD_sequenceCopier sequenceCopier = NULL; assert(ZSTD_cParam_withinBounds(ZSTD_c_blockDelimiters, mode)); if (mode == ZSTD_sf_explicitBlockDelimiters) { return ZSTD_copySequencesToSeqStoreExplicitBlockDelim; } else if (mode == ZSTD_sf_noBlockDelimiters) { return ZSTD_copySequencesToSeqStoreNoBlockDelim; } assert(sequenceCopier != NULL); return sequenceCopier; } /* Discover the size of next block by searching for the delimiter. * Note that a block delimiter **must** exist in this mode, * otherwise it's an input error. * The block size retrieved will be later compared to ensure it remains within bounds */ static size_t blockSize_explicitDelimiter(const ZSTD_Sequence* inSeqs, size_t inSeqsSize, ZSTD_sequencePosition seqPos) { int end = 0; size_t blockSize = 0; size_t spos = seqPos.idx; DEBUGLOG(6, "blockSize_explicitDelimiter : seq %zu / %zu", spos, inSeqsSize); assert(spos <= inSeqsSize); while (spos < inSeqsSize) { end = (inSeqs[spos].offset == 0); blockSize += inSeqs[spos].litLength + inSeqs[spos].matchLength; if (end) { if (inSeqs[spos].matchLength != 0) RETURN_ERROR(externalSequences_invalid, "delimiter format error : both matchlength and offset must be == 0"); break; } spos++; } if (!end) RETURN_ERROR(externalSequences_invalid, "Reached end of sequences without finding a block delimiter"); return blockSize; } /* More a "target" block size */ static size_t blockSize_noDelimiter(size_t blockSize, size_t remaining) { int const lastBlock = (remaining <= blockSize); return lastBlock ? remaining : blockSize; } static size_t determine_blockSize(ZSTD_sequenceFormat_e mode, size_t blockSize, size_t remaining, const ZSTD_Sequence* inSeqs, size_t inSeqsSize, ZSTD_sequencePosition seqPos) { DEBUGLOG(6, "determine_blockSize : remainingSize = %zu", remaining); if (mode == ZSTD_sf_noBlockDelimiters) return blockSize_noDelimiter(blockSize, remaining); { size_t const explicitBlockSize = blockSize_explicitDelimiter(inSeqs, inSeqsSize, seqPos); FORWARD_IF_ERROR(explicitBlockSize, "Error while determining block size with explicit delimiters"); if (explicitBlockSize > blockSize) RETURN_ERROR(externalSequences_invalid, "sequences incorrectly define a too large block"); if (explicitBlockSize > remaining) RETURN_ERROR(externalSequences_invalid, "sequences define a frame longer than source"); return explicitBlockSize; } } /* Compress, block-by-block, all of the sequences given. * * Returns the cumulative size of all compressed blocks (including their headers), * otherwise a ZSTD error. */ static size_t ZSTD_compressSequences_internal(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const ZSTD_Sequence* inSeqs, size_t inSeqsSize, const void* src, size_t srcSize) { size_t cSize = 0; size_t remaining = srcSize; ZSTD_sequencePosition seqPos = {0, 0, 0}; BYTE const* ip = (BYTE const*)src; BYTE* op = (BYTE*)dst; ZSTD_sequenceCopier const sequenceCopier = ZSTD_selectSequenceCopier(cctx->appliedParams.blockDelimiters); DEBUGLOG(4, "ZSTD_compressSequences_internal srcSize: %zu, inSeqsSize: %zu", srcSize, inSeqsSize); /* Special case: empty frame */ if (remaining == 0) { U32 const cBlockHeader24 = 1 /* last block */ + (((U32)bt_raw)<<1); RETURN_ERROR_IF(dstCapacity<4, dstSize_tooSmall, "No room for empty frame block header"); MEM_writeLE32(op, cBlockHeader24); op += ZSTD_blockHeaderSize; dstCapacity -= ZSTD_blockHeaderSize; cSize += ZSTD_blockHeaderSize; } while (remaining) { size_t compressedSeqsSize; size_t cBlockSize; size_t additionalByteAdjustment; size_t blockSize = determine_blockSize(cctx->appliedParams.blockDelimiters, cctx->blockSize, remaining, inSeqs, inSeqsSize, seqPos); U32 const lastBlock = (blockSize == remaining); FORWARD_IF_ERROR(blockSize, "Error while trying to determine block size"); assert(blockSize <= remaining); ZSTD_resetSeqStore(&cctx->seqStore); DEBUGLOG(5, "Working on new block. Blocksize: %zu (total:%zu)", blockSize, (ip - (const BYTE*)src) + blockSize); additionalByteAdjustment = sequenceCopier(cctx, &seqPos, inSeqs, inSeqsSize, ip, blockSize, cctx->appliedParams.searchForExternalRepcodes); FORWARD_IF_ERROR(additionalByteAdjustment, "Bad sequence copy"); blockSize -= additionalByteAdjustment; /* If blocks are too small, emit as a nocompress block */ /* TODO: See 3090. We reduced MIN_CBLOCK_SIZE from 3 to 2 so to compensate we are adding * additional 1. We need to revisit and change this logic to be more consistent */ if (blockSize < MIN_CBLOCK_SIZE+ZSTD_blockHeaderSize+1+1) { cBlockSize = ZSTD_noCompressBlock(op, dstCapacity, ip, blockSize, lastBlock); FORWARD_IF_ERROR(cBlockSize, "Nocompress block failed"); DEBUGLOG(5, "Block too small, writing out nocompress block: cSize: %zu", cBlockSize); cSize += cBlockSize; ip += blockSize; op += cBlockSize; remaining -= blockSize; dstCapacity -= cBlockSize; continue; } RETURN_ERROR_IF(dstCapacity < ZSTD_blockHeaderSize, dstSize_tooSmall, "not enough dstCapacity to write a new compressed block"); compressedSeqsSize = ZSTD_entropyCompressSeqStore(&cctx->seqStore, &cctx->blockState.prevCBlock->entropy, &cctx->blockState.nextCBlock->entropy, &cctx->appliedParams, op + ZSTD_blockHeaderSize /* Leave space for block header */, dstCapacity - ZSTD_blockHeaderSize, blockSize, cctx->entropyWorkspace, ENTROPY_WORKSPACE_SIZE /* statically allocated in resetCCtx */, cctx->bmi2); FORWARD_IF_ERROR(compressedSeqsSize, "Compressing sequences of block failed"); DEBUGLOG(5, "Compressed sequences size: %zu", compressedSeqsSize); if (!cctx->isFirstBlock && ZSTD_maybeRLE(&cctx->seqStore) && ZSTD_isRLE(ip, blockSize)) { /* We don't want to emit our first block as a RLE even if it qualifies because * doing so will cause the decoder (cli only) to throw a "should consume all input error." * This is only an issue for zstd <= v1.4.3 */ compressedSeqsSize = 1; } if (compressedSeqsSize == 0) { /* ZSTD_noCompressBlock writes the block header as well */ cBlockSize = ZSTD_noCompressBlock(op, dstCapacity, ip, blockSize, lastBlock); FORWARD_IF_ERROR(cBlockSize, "ZSTD_noCompressBlock failed"); DEBUGLOG(5, "Writing out nocompress block, size: %zu", cBlockSize); } else if (compressedSeqsSize == 1) { cBlockSize = ZSTD_rleCompressBlock(op, dstCapacity, *ip, blockSize, lastBlock); FORWARD_IF_ERROR(cBlockSize, "ZSTD_rleCompressBlock failed"); DEBUGLOG(5, "Writing out RLE block, size: %zu", cBlockSize); } else { U32 cBlockHeader; /* Error checking and repcodes update */ ZSTD_blockState_confirmRepcodesAndEntropyTables(&cctx->blockState); if (cctx->blockState.prevCBlock->entropy.fse.offcode_repeatMode == FSE_repeat_valid) cctx->blockState.prevCBlock->entropy.fse.offcode_repeatMode = FSE_repeat_check; /* Write block header into beginning of block*/ cBlockHeader = lastBlock + (((U32)bt_compressed)<<1) + (U32)(compressedSeqsSize << 3); MEM_writeLE24(op, cBlockHeader); cBlockSize = ZSTD_blockHeaderSize + compressedSeqsSize; DEBUGLOG(5, "Writing out compressed block, size: %zu", cBlockSize); } cSize += cBlockSize; if (lastBlock) { break; } else { ip += blockSize; op += cBlockSize; remaining -= blockSize; dstCapacity -= cBlockSize; cctx->isFirstBlock = 0; } DEBUGLOG(5, "cSize running total: %zu (remaining dstCapacity=%zu)", cSize, dstCapacity); } DEBUGLOG(4, "cSize final total: %zu", cSize); return cSize; } size_t ZSTD_compressSequences(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const ZSTD_Sequence* inSeqs, size_t inSeqsSize, const void* src, size_t srcSize) { BYTE* op = (BYTE*)dst; size_t cSize = 0; size_t compressedBlocksSize = 0; size_t frameHeaderSize = 0; /* Transparent initialization stage, same as compressStream2() */ DEBUGLOG(4, "ZSTD_compressSequences (dstCapacity=%zu)", dstCapacity); assert(cctx != NULL); FORWARD_IF_ERROR(ZSTD_CCtx_init_compressStream2(cctx, ZSTD_e_end, srcSize), "CCtx initialization failed"); /* Begin writing output, starting with frame header */ frameHeaderSize = ZSTD_writeFrameHeader(op, dstCapacity, &cctx->appliedParams, srcSize, cctx->dictID); op += frameHeaderSize; dstCapacity -= frameHeaderSize; cSize += frameHeaderSize; if (cctx->appliedParams.fParams.checksumFlag && srcSize) { XXH64_update(&cctx->xxhState, src, srcSize); } /* cSize includes block header size and compressed sequences size */ compressedBlocksSize = ZSTD_compressSequences_internal(cctx, op, dstCapacity, inSeqs, inSeqsSize, src, srcSize); FORWARD_IF_ERROR(compressedBlocksSize, "Compressing blocks failed!"); cSize += compressedBlocksSize; dstCapacity -= compressedBlocksSize; if (cctx->appliedParams.fParams.checksumFlag) { U32 const checksum = (U32) XXH64_digest(&cctx->xxhState); RETURN_ERROR_IF(dstCapacity<4, dstSize_tooSmall, "no room for checksum"); DEBUGLOG(4, "Write checksum : %08X", (unsigned)checksum); MEM_writeLE32((char*)dst + cSize, checksum); cSize += 4; } DEBUGLOG(4, "Final compressed size: %zu", cSize); return cSize; } /*====== Finalize ======*/ static ZSTD_inBuffer inBuffer_forEndFlush(const ZSTD_CStream* zcs) { const ZSTD_inBuffer nullInput = { NULL, 0, 0 }; const int stableInput = (zcs->appliedParams.inBufferMode == ZSTD_bm_stable); return stableInput ? zcs->expectedInBuffer : nullInput; } /*! ZSTD_flushStream() : * @return : amount of data remaining to flush */ size_t ZSTD_flushStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output) { ZSTD_inBuffer input = inBuffer_forEndFlush(zcs); input.size = input.pos; /* do not ingest more input during flush */ return ZSTD_compressStream2(zcs, output, &input, ZSTD_e_flush); } size_t ZSTD_endStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output) { ZSTD_inBuffer input = inBuffer_forEndFlush(zcs); size_t const remainingToFlush = ZSTD_compressStream2(zcs, output, &input, ZSTD_e_end); FORWARD_IF_ERROR(remainingToFlush , "ZSTD_compressStream2(,,ZSTD_e_end) failed"); if (zcs->appliedParams.nbWorkers > 0) return remainingToFlush; /* minimal estimation */ /* single thread mode : attempt to calculate remaining to flush more precisely */ { size_t const lastBlockSize = zcs->frameEnded ? 0 : ZSTD_BLOCKHEADERSIZE; size_t const checksumSize = (size_t)(zcs->frameEnded ? 0 : zcs->appliedParams.fParams.checksumFlag * 4); size_t const toFlush = remainingToFlush + lastBlockSize + checksumSize; DEBUGLOG(4, "ZSTD_endStream : remaining to flush : %u", (unsigned)toFlush); return toFlush; } } /*-===== Pre-defined compression levels =====-*/ #include "clevels.h" int ZSTD_maxCLevel(void) { return ZSTD_MAX_CLEVEL; } int ZSTD_minCLevel(void) { return (int)-ZSTD_TARGETLENGTH_MAX; } int ZSTD_defaultCLevel(void) { return ZSTD_CLEVEL_DEFAULT; } static ZSTD_compressionParameters ZSTD_dedicatedDictSearch_getCParams(int const compressionLevel, size_t const dictSize) { ZSTD_compressionParameters cParams = ZSTD_getCParams_internal(compressionLevel, 0, dictSize, ZSTD_cpm_createCDict); switch (cParams.strategy) { case ZSTD_fast: case ZSTD_dfast: break; case ZSTD_greedy: case ZSTD_lazy: case ZSTD_lazy2: cParams.hashLog += ZSTD_LAZY_DDSS_BUCKET_LOG; break; case ZSTD_btlazy2: case ZSTD_btopt: case ZSTD_btultra: case ZSTD_btultra2: break; } return cParams; } static int ZSTD_dedicatedDictSearch_isSupported( ZSTD_compressionParameters const* cParams) { return (cParams->strategy >= ZSTD_greedy) && (cParams->strategy <= ZSTD_lazy2) && (cParams->hashLog > cParams->chainLog) && (cParams->chainLog <= 24); } /** * Reverses the adjustment applied to cparams when enabling dedicated dict * search. This is used to recover the params set to be used in the working * context. (Otherwise, those tables would also grow.) */ static void ZSTD_dedicatedDictSearch_revertCParams( ZSTD_compressionParameters* cParams) { switch (cParams->strategy) { case ZSTD_fast: case ZSTD_dfast: break; case ZSTD_greedy: case ZSTD_lazy: case ZSTD_lazy2: cParams->hashLog -= ZSTD_LAZY_DDSS_BUCKET_LOG; if (cParams->hashLog < ZSTD_HASHLOG_MIN) { cParams->hashLog = ZSTD_HASHLOG_MIN; } break; case ZSTD_btlazy2: case ZSTD_btopt: case ZSTD_btultra: case ZSTD_btultra2: break; } } static U64 ZSTD_getCParamRowSize(U64 srcSizeHint, size_t dictSize, ZSTD_cParamMode_e mode) { switch (mode) { case ZSTD_cpm_unknown: case ZSTD_cpm_noAttachDict: case ZSTD_cpm_createCDict: break; case ZSTD_cpm_attachDict: dictSize = 0; break; default: assert(0); break; } { int const unknown = srcSizeHint == ZSTD_CONTENTSIZE_UNKNOWN; size_t const addedSize = unknown && dictSize > 0 ? 500 : 0; return unknown && dictSize == 0 ? ZSTD_CONTENTSIZE_UNKNOWN : srcSizeHint+dictSize+addedSize; } } /*! ZSTD_getCParams_internal() : * @return ZSTD_compressionParameters structure for a selected compression level, srcSize and dictSize. * Note: srcSizeHint 0 means 0, use ZSTD_CONTENTSIZE_UNKNOWN for unknown. * Use dictSize == 0 for unknown or unused. * Note: `mode` controls how we treat the `dictSize`. See docs for `ZSTD_cParamMode_e`. */ static ZSTD_compressionParameters ZSTD_getCParams_internal(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize, ZSTD_cParamMode_e mode) { U64 const rSize = ZSTD_getCParamRowSize(srcSizeHint, dictSize, mode); U32 const tableID = (rSize <= 256 KB) + (rSize <= 128 KB) + (rSize <= 16 KB); int row; DEBUGLOG(5, "ZSTD_getCParams_internal (cLevel=%i)", compressionLevel); /* row */ if (compressionLevel == 0) row = ZSTD_CLEVEL_DEFAULT; /* 0 == default */ else if (compressionLevel < 0) row = 0; /* entry 0 is baseline for fast mode */ else if (compressionLevel > ZSTD_MAX_CLEVEL) row = ZSTD_MAX_CLEVEL; else row = compressionLevel; { ZSTD_compressionParameters cp = ZSTD_defaultCParameters[tableID][row]; DEBUGLOG(5, "ZSTD_getCParams_internal selected tableID: %u row: %u strat: %u", tableID, row, (U32)cp.strategy); /* acceleration factor */ if (compressionLevel < 0) { int const clampedCompressionLevel = MAX(ZSTD_minCLevel(), compressionLevel); cp.targetLength = (unsigned)(-clampedCompressionLevel); } /* refine parameters based on srcSize & dictSize */ return ZSTD_adjustCParams_internal(cp, srcSizeHint, dictSize, mode, ZSTD_ps_auto); } } /*! ZSTD_getCParams() : * @return ZSTD_compressionParameters structure for a selected compression level, srcSize and dictSize. * Size values are optional, provide 0 if not known or unused */ ZSTD_compressionParameters ZSTD_getCParams(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize) { if (srcSizeHint == 0) srcSizeHint = ZSTD_CONTENTSIZE_UNKNOWN; return ZSTD_getCParams_internal(compressionLevel, srcSizeHint, dictSize, ZSTD_cpm_unknown); } /*! ZSTD_getParams() : * same idea as ZSTD_getCParams() * @return a `ZSTD_parameters` structure (instead of `ZSTD_compressionParameters`). * Fields of `ZSTD_frameParameters` are set to default values */ static ZSTD_parameters ZSTD_getParams_internal(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize, ZSTD_cParamMode_e mode) { ZSTD_parameters params; ZSTD_compressionParameters const cParams = ZSTD_getCParams_internal(compressionLevel, srcSizeHint, dictSize, mode); DEBUGLOG(5, "ZSTD_getParams (cLevel=%i)", compressionLevel); ZSTD_memset(¶ms, 0, sizeof(params)); params.cParams = cParams; params.fParams.contentSizeFlag = 1; return params; } /*! ZSTD_getParams() : * same idea as ZSTD_getCParams() * @return a `ZSTD_parameters` structure (instead of `ZSTD_compressionParameters`). * Fields of `ZSTD_frameParameters` are set to default values */ ZSTD_parameters ZSTD_getParams(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize) { if (srcSizeHint == 0) srcSizeHint = ZSTD_CONTENTSIZE_UNKNOWN; return ZSTD_getParams_internal(compressionLevel, srcSizeHint, dictSize, ZSTD_cpm_unknown); } void ZSTD_registerSequenceProducer( ZSTD_CCtx* zc, void* mState, ZSTD_sequenceProducer_F* mFinder ) { if (mFinder != NULL) { ZSTD_externalMatchCtx emctx; emctx.mState = mState; emctx.mFinder = mFinder; emctx.seqBuffer = NULL; emctx.seqBufferCapacity = 0; zc->externalMatchCtx = emctx; zc->requestedParams.useSequenceProducer = 1; } else { ZSTD_memset(&zc->externalMatchCtx, 0, sizeof(zc->externalMatchCtx)); zc->requestedParams.useSequenceProducer = 0; } }