Revert "to C"

This reverts commit 7218fe63b4.
This commit is contained in:
neuecc 2023-02-28 18:13:22 +09:00 committed by Ikiru Yoshizaki
parent 7218fe63b4
commit 502bd033e7
87 changed files with 0 additions and 62327 deletions

View File

@ -1,761 +0,0 @@
#ifndef PHYSICS_CLIENT_C_API_H
#define PHYSICS_CLIENT_C_API_H
//#include "SharedMemoryBlock.h"
#include "SharedMemoryPublic.h"
#define B3_DECLARE_HANDLE(name) \
typedef struct name##__ \
{ \
int unused; \
} * name
B3_DECLARE_HANDLE(b3PhysicsClientHandle);
B3_DECLARE_HANDLE(b3SharedMemoryCommandHandle);
B3_DECLARE_HANDLE(b3SharedMemoryStatusHandle);
#ifdef _WIN32
#define B3_SHARED_API __declspec(dllexport)
#elif defined(__GNUC__)
#define B3_SHARED_API __attribute__((visibility("default")))
#else
#define B3_SHARED_API
#endif
///There are several connection methods, see following header files:
#include "PhysicsClientSharedMemory_C_API.h"
#include "PhysicsClientSharedMemory2_C_API.h"
#include "PhysicsDirectC_API.h"
#ifdef BT_ENABLE_ENET
#include "PhysicsClientUDP_C_API.h"
#endif
#ifdef BT_ENABLE_CLSOCKET
#include "PhysicsClientTCP_C_API.h"
#endif
#ifdef __cplusplus
extern "C"
{
#endif
///b3DisconnectSharedMemory will disconnect the client from the server and cleanup memory.
B3_SHARED_API void b3DisconnectSharedMemory(b3PhysicsClientHandle physClient);
///There can only be 1 outstanding command. Check if a command can be send.
B3_SHARED_API int b3CanSubmitCommand(b3PhysicsClientHandle physClient);
///blocking submit command and wait for status
B3_SHARED_API b3SharedMemoryStatusHandle b3SubmitClientCommandAndWaitStatus(b3PhysicsClientHandle physClient, b3SharedMemoryCommandHandle commandHandle);
///In general it is better to use b3SubmitClientCommandAndWaitStatus. b3SubmitClientCommand is a non-blocking submit
///command, which requires checking for the status manually, using b3ProcessServerStatus. Also, before sending the
///next command, make sure to check if you can send a command using 'b3CanSubmitCommand'.
B3_SHARED_API int b3SubmitClientCommand(b3PhysicsClientHandle physClient, b3SharedMemoryCommandHandle commandHandle);
///non-blocking check status
B3_SHARED_API b3SharedMemoryStatusHandle b3ProcessServerStatus(b3PhysicsClientHandle physClient);
/// Get the physics server return status type. See EnumSharedMemoryServerStatus in SharedMemoryPublic.h for error codes.
B3_SHARED_API int b3GetStatusType(b3SharedMemoryStatusHandle statusHandle);
///Plugin system, load and unload a plugin, execute a command
B3_SHARED_API b3SharedMemoryCommandHandle b3CreateCustomCommand(b3PhysicsClientHandle physClient);
B3_SHARED_API void b3CustomCommandLoadPlugin(b3SharedMemoryCommandHandle commandHandle, const char* pluginPath);
B3_SHARED_API void b3CustomCommandLoadPluginSetPostFix(b3SharedMemoryCommandHandle commandHandle, const char* postFix);
B3_SHARED_API int b3GetStatusPluginUniqueId(b3SharedMemoryStatusHandle statusHandle);
B3_SHARED_API int b3GetStatusPluginCommandResult(b3SharedMemoryStatusHandle statusHandle);
B3_SHARED_API int b3GetStatusPluginCommandReturnData(b3PhysicsClientHandle physClient, struct b3UserDataValue* valueOut);
B3_SHARED_API void b3CustomCommandUnloadPlugin(b3SharedMemoryCommandHandle commandHandle, int pluginUniqueId);
B3_SHARED_API void b3CustomCommandExecutePluginCommand(b3SharedMemoryCommandHandle commandHandle, int pluginUniqueId, const char* textArguments);
B3_SHARED_API void b3CustomCommandExecuteAddIntArgument(b3SharedMemoryCommandHandle commandHandle, int intVal);
B3_SHARED_API void b3CustomCommandExecuteAddFloatArgument(b3SharedMemoryCommandHandle commandHandle, float floatVal);
B3_SHARED_API int b3GetStatusBodyIndices(b3SharedMemoryStatusHandle statusHandle, int* bodyIndicesOut, int bodyIndicesCapacity);
B3_SHARED_API int b3GetStatusBodyIndex(b3SharedMemoryStatusHandle statusHandle);
B3_SHARED_API int b3GetStatusActualState(b3SharedMemoryStatusHandle statusHandle,
int* bodyUniqueId,
int* numDegreeOfFreedomQ,
int* numDegreeOfFreedomU,
const double* rootLocalInertialFrame[],
const double* actualStateQ[],
const double* actualStateQdot[],
const double* jointReactionForces[]);
B3_SHARED_API int b3GetStatusActualState2(b3SharedMemoryStatusHandle statusHandle,
int* bodyUniqueId,
int* numLinks,
int* numDegreeOfFreedomQ,
int* numDegreeOfFreedomU,
const double* rootLocalInertialFrame[],
const double* actualStateQ[],
const double* actualStateQdot[],
const double* jointReactionForces[],
const double* linkLocalInertialFrames[],
const double* jointMotorForces[],
const double* linkStates[],
const double* linkWorldVelocities[]);
B3_SHARED_API b3SharedMemoryCommandHandle b3RequestCollisionInfoCommandInit(b3PhysicsClientHandle physClient, int bodyUniqueId);
B3_SHARED_API int b3GetStatusAABB(b3SharedMemoryStatusHandle statusHandle, int linkIndex, double aabbMin[/*3*/], double aabbMax[/*3*/]);
///If you re-connected to an existing server, or server changed otherwise, sync the body info and user constraints etc.
B3_SHARED_API b3SharedMemoryCommandHandle b3InitSyncBodyInfoCommand(b3PhysicsClientHandle physClient);
// Sync the body info of a single body. Useful when a new body has been added by a different client (e,g, when detecting through a body added notification).
B3_SHARED_API b3SharedMemoryCommandHandle b3InitRequestBodyInfoCommand(b3PhysicsClientHandle physClient, int bodyUniqueId);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitRemoveBodyCommand(b3PhysicsClientHandle physClient, int bodyUniqueId);
///return the total number of bodies in the simulation
B3_SHARED_API int b3GetNumBodies(b3PhysicsClientHandle physClient);
/// return the body unique id, given the index in range [0 , b3GetNumBodies() )
B3_SHARED_API int b3GetBodyUniqueId(b3PhysicsClientHandle physClient, int serialIndex);
///given a body unique id, return the body information. See b3BodyInfo in SharedMemoryPublic.h
B3_SHARED_API int b3GetBodyInfo(b3PhysicsClientHandle physClient, int bodyUniqueId, struct b3BodyInfo* info);
///give a unique body index (after loading the body) return the number of joints.
B3_SHARED_API int b3GetNumJoints(b3PhysicsClientHandle physClient, int bodyUniqueId);
///give a unique body index (after loading the body) return the number of degrees of freedom (DoF).
B3_SHARED_API int b3GetNumDofs(b3PhysicsClientHandle physClient, int bodyUniqueId);
///compute the number of degrees of freedom for this body.
///Return -1 for unsupported spherical joint, -2 for unsupported planar joint.
B3_SHARED_API int b3ComputeDofCount(b3PhysicsClientHandle physClient, int bodyUniqueId);
///given a body and joint index, return the joint information. See b3JointInfo in SharedMemoryPublic.h
B3_SHARED_API int b3GetJointInfo(b3PhysicsClientHandle physClient, int bodyUniqueId, int jointIndex, struct b3JointInfo* info);
///user data handling
B3_SHARED_API b3SharedMemoryCommandHandle b3InitSyncUserDataCommand(b3PhysicsClientHandle physClient);
B3_SHARED_API void b3AddBodyToSyncUserDataRequest(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitAddUserDataCommand(b3PhysicsClientHandle physClient, int bodyUniqueId, int linkIndex, int visualShapeIndex, const char* key, enum UserDataValueType valueType, int valueLength, const void* valueData);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitRemoveUserDataCommand(b3PhysicsClientHandle physClient, int userDataId);
B3_SHARED_API int b3GetUserData(b3PhysicsClientHandle physClient, int userDataId, struct b3UserDataValue* valueOut);
B3_SHARED_API int b3GetUserDataId(b3PhysicsClientHandle physClient, int bodyUniqueId, int linkIndex, int visualShapeIndex, const char* key);
B3_SHARED_API int b3GetUserDataIdFromStatus(b3SharedMemoryStatusHandle statusHandle);
B3_SHARED_API int b3GetNumUserData(b3PhysicsClientHandle physClient, int bodyUniqueId);
B3_SHARED_API void b3GetUserDataInfo(b3PhysicsClientHandle physClient, int bodyUniqueId, int userDataIndex, const char** keyOut, int* userDataIdOut, int* linkIndexOut, int* visualShapeIndexOut);
B3_SHARED_API b3SharedMemoryCommandHandle b3GetDynamicsInfoCommandInit(b3PhysicsClientHandle physClient, int bodyUniqueId, int linkIndex);
B3_SHARED_API b3SharedMemoryCommandHandle b3GetDynamicsInfoCommandInit2(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex);
///given a body unique id and link index, return the dynamics information. See b3DynamicsInfo in SharedMemoryPublic.h
B3_SHARED_API int b3GetDynamicsInfo(b3SharedMemoryStatusHandle statusHandle, struct b3DynamicsInfo* info);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitChangeDynamicsInfo(b3PhysicsClientHandle physClient);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitChangeDynamicsInfo2(b3SharedMemoryCommandHandle commandHandle);
B3_SHARED_API int b3ChangeDynamicsInfoSetMass(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, double mass);
B3_SHARED_API int b3ChangeDynamicsInfoSetLocalInertiaDiagonal(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, const double localInertiaDiagonal[]);
B3_SHARED_API int b3ChangeDynamicsInfoSetAnisotropicFriction(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, const double anisotropicFriction[]);
B3_SHARED_API int b3ChangeDynamicsInfoSetJointLimit(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, double jointLowerLimit, double jointUpperLimit);
B3_SHARED_API int b3ChangeDynamicsInfoSetJointLimitForce(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, double jointLimitForce);
B3_SHARED_API int b3ChangeDynamicsInfoSetDynamicType(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, int dynamicType);
B3_SHARED_API int b3ChangeDynamicsInfoSetSleepThreshold(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, double sleepThreshold);
B3_SHARED_API int b3ChangeDynamicsInfoSetLateralFriction(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, double lateralFriction);
B3_SHARED_API int b3ChangeDynamicsInfoSetSpinningFriction(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, double friction);
B3_SHARED_API int b3ChangeDynamicsInfoSetRollingFriction(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, double friction);
B3_SHARED_API int b3ChangeDynamicsInfoSetRestitution(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, double restitution);
B3_SHARED_API int b3ChangeDynamicsInfoSetLinearDamping(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, double linearDamping);
B3_SHARED_API int b3ChangeDynamicsInfoSetAngularDamping(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, double angularDamping);
B3_SHARED_API int b3ChangeDynamicsInfoSetJointDamping(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, double jointDamping);
B3_SHARED_API int b3ChangeDynamicsInfoSetContactStiffnessAndDamping(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, double contactStiffness, double contactDamping);
B3_SHARED_API int b3ChangeDynamicsInfoSetFrictionAnchor(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, int frictionAnchor);
B3_SHARED_API int b3ChangeDynamicsInfoSetCcdSweptSphereRadius(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, double ccdSweptSphereRadius);
B3_SHARED_API int b3ChangeDynamicsInfoSetContactProcessingThreshold(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, double contactProcessingThreshold);
B3_SHARED_API int b3ChangeDynamicsInfoSetActivationState(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int activationState);
B3_SHARED_API int b3ChangeDynamicsInfoSetMaxJointVelocity(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, double maxJointVelocity);
B3_SHARED_API int b3ChangeDynamicsInfoSetCollisionMargin(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, double collisionMargin);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitCreateUserConstraintCommand(b3PhysicsClientHandle physClient, int parentBodyUniqueId, int parentJointIndex, int childBodyUniqueId, int childJointIndex, struct b3JointInfo* info);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitCreateUserConstraintCommand2(b3SharedMemoryCommandHandle commandHandle, int parentBodyUniqueId, int parentJointIndex, int childBodyUniqueId, int childJointIndex, struct b3JointInfo* info);
///return a unique id for the user constraint, after successful creation, or -1 for an invalid constraint id
B3_SHARED_API int b3GetStatusUserConstraintUniqueId(b3SharedMemoryStatusHandle statusHandle);
///change parameters of an existing user constraint
B3_SHARED_API b3SharedMemoryCommandHandle b3InitChangeUserConstraintCommand(b3PhysicsClientHandle physClient, int userConstraintUniqueId);
B3_SHARED_API int b3InitChangeUserConstraintSetPivotInB(b3SharedMemoryCommandHandle commandHandle, const double jointChildPivot[/*3*/]);
B3_SHARED_API int b3InitChangeUserConstraintSetFrameInB(b3SharedMemoryCommandHandle commandHandle, const double jointChildFrameOrn[/*4*/]);
B3_SHARED_API int b3InitChangeUserConstraintSetMaxForce(b3SharedMemoryCommandHandle commandHandle, double maxAppliedForce);
B3_SHARED_API int b3InitChangeUserConstraintSetGearRatio(b3SharedMemoryCommandHandle commandHandle, double gearRatio);
B3_SHARED_API int b3InitChangeUserConstraintSetGearAuxLink(b3SharedMemoryCommandHandle commandHandle, int gearAuxLink);
B3_SHARED_API int b3InitChangeUserConstraintSetRelativePositionTarget(b3SharedMemoryCommandHandle commandHandle, double relativePositionTarget);
B3_SHARED_API int b3InitChangeUserConstraintSetERP(b3SharedMemoryCommandHandle commandHandle, double erp);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitRemoveUserConstraintCommand(b3PhysicsClientHandle physClient, int userConstraintUniqueId);
B3_SHARED_API int b3GetNumUserConstraints(b3PhysicsClientHandle physClient);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitGetUserConstraintStateCommand(b3PhysicsClientHandle physClient, int constraintUniqueId);
B3_SHARED_API int b3GetStatusUserConstraintState(b3SharedMemoryStatusHandle statusHandle, struct b3UserConstraintState* constraintState);
B3_SHARED_API int b3GetUserConstraintInfo(b3PhysicsClientHandle physClient, int constraintUniqueId, struct b3UserConstraint* info);
/// return the user constraint id, given the index in range [0 , b3GetNumUserConstraints() )
B3_SHARED_API int b3GetUserConstraintId(b3PhysicsClientHandle physClient, int serialIndex);
///Request physics debug lines for debug visualization. The flags in debugMode are the same as used in Bullet
///See btIDebugDraw::DebugDrawModes in Bullet/src/LinearMath/btIDebugDraw.h
B3_SHARED_API b3SharedMemoryCommandHandle b3InitRequestDebugLinesCommand(b3PhysicsClientHandle physClient, int debugMode);
///Get the pointers to the physics debug line information, after b3InitRequestDebugLinesCommand returns
///status CMD_DEBUG_LINES_COMPLETED
B3_SHARED_API void b3GetDebugLines(b3PhysicsClientHandle physClient, struct b3DebugLines* lines);
///configure the 3D OpenGL debug visualizer (enable/disable GUI widgets, shadows, position camera etc)
B3_SHARED_API b3SharedMemoryCommandHandle b3InitConfigureOpenGLVisualizer(b3PhysicsClientHandle physClient);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitConfigureOpenGLVisualizer2(b3SharedMemoryCommandHandle commandHandle);
B3_SHARED_API void b3ConfigureOpenGLVisualizerSetVisualizationFlags(b3SharedMemoryCommandHandle commandHandle, int flag, int enabled);
B3_SHARED_API void b3ConfigureOpenGLVisualizerSetLightPosition(b3SharedMemoryCommandHandle commandHandle, const float lightPosition[3]);
B3_SHARED_API void b3ConfigureOpenGLVisualizerSetShadowMapResolution(b3SharedMemoryCommandHandle commandHandle, int shadowMapResolution);
B3_SHARED_API void b3ConfigureOpenGLVisualizerSetShadowMapIntensity(b3SharedMemoryCommandHandle commandHandle, double shadowMapIntensity);
B3_SHARED_API void b3ConfigureOpenGLVisualizerSetLightRgbBackground(b3SharedMemoryCommandHandle commandHandle, const float rgbBackground[3]);
B3_SHARED_API void b3ConfigureOpenGLVisualizerSetShadowMapWorldSize(b3SharedMemoryCommandHandle commandHandle, int shadowMapWorldSize);
B3_SHARED_API void b3ConfigureOpenGLVisualizerSetRemoteSyncTransformInterval(b3SharedMemoryCommandHandle commandHandle, double remoteSyncTransformInterval);
B3_SHARED_API void b3ConfigureOpenGLVisualizerSetViewMatrix(b3SharedMemoryCommandHandle commandHandle, float cameraDistance, float cameraPitch, float cameraYaw, const float cameraTargetPosition[/*3*/]);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitRequestOpenGLVisualizerCameraCommand(b3PhysicsClientHandle physClient);
B3_SHARED_API int b3GetStatusOpenGLVisualizerCamera(b3SharedMemoryStatusHandle statusHandle, struct b3OpenGLVisualizerCameraInfo* camera);
/// Add/remove user-specific debug lines and debug text messages
B3_SHARED_API b3SharedMemoryCommandHandle b3InitUserDebugDrawAddLine3D(b3PhysicsClientHandle physClient, const double fromXYZ[/*3*/], const double toXYZ[/*3*/], const double colorRGB[/*3*/], double lineWidth, double lifeTime);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitUserDebugDrawAddPoints3D(b3PhysicsClientHandle physClient, const double positionsXYZ[/*3n*/], const double colorsRGB[/*3*/], double pointSize, double lifeTime, int pointNum);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitUserDebugDrawAddText3D(b3PhysicsClientHandle physClient, const char* txt, const double positionXYZ[/*3*/], const double colorRGB[/*3*/], double textSize, double lifeTime);
B3_SHARED_API void b3UserDebugTextSetOptionFlags(b3SharedMemoryCommandHandle commandHandle, int optionFlags);
B3_SHARED_API void b3UserDebugTextSetOrientation(b3SharedMemoryCommandHandle commandHandle, const double orientation[/*4*/]);
B3_SHARED_API void b3UserDebugItemSetReplaceItemUniqueId(b3SharedMemoryCommandHandle commandHandle, int replaceItem);
B3_SHARED_API void b3UserDebugItemSetParentObject(b3SharedMemoryCommandHandle commandHandle, int objectUniqueId, int linkIndex);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitUserDebugAddParameter(b3PhysicsClientHandle physClient, const char* txt, double rangeMin, double rangeMax, double startValue);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitUserDebugReadParameter(b3PhysicsClientHandle physClient, int debugItemUniqueId);
B3_SHARED_API int b3GetStatusDebugParameterValue(b3SharedMemoryStatusHandle statusHandle, double* paramValue);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitUserDebugDrawRemove(b3PhysicsClientHandle physClient, int debugItemUniqueId);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitUserDebugDrawRemoveAll(b3PhysicsClientHandle physClient);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitUserRemoveAllParameters(b3PhysicsClientHandle physClient);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitDebugDrawingCommand(b3PhysicsClientHandle physClient);
B3_SHARED_API void b3SetDebugObjectColor(b3SharedMemoryCommandHandle commandHandle, int objectUniqueId, int linkIndex, const double objectColorRGB[/*3*/]);
B3_SHARED_API void b3RemoveDebugObjectColor(b3SharedMemoryCommandHandle commandHandle, int objectUniqueId, int linkIndex);
///All debug items unique Ids are positive: a negative unique Id means failure.
B3_SHARED_API int b3GetDebugItemUniqueId(b3SharedMemoryStatusHandle statusHandle);
///request an image from a simulated camera, using a software renderer.
B3_SHARED_API b3SharedMemoryCommandHandle b3InitRequestCameraImage(b3PhysicsClientHandle physClient);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitRequestCameraImage2(b3SharedMemoryCommandHandle commandHandle);
B3_SHARED_API void b3RequestCameraImageSetCameraMatrices(b3SharedMemoryCommandHandle commandHandle, float viewMatrix[/*16*/], float projectionMatrix[/*16*/]);
B3_SHARED_API void b3RequestCameraImageSetPixelResolution(b3SharedMemoryCommandHandle commandHandle, int width, int height);
B3_SHARED_API void b3RequestCameraImageSetLightDirection(b3SharedMemoryCommandHandle commandHandle, const float lightDirection[/*3*/]);
B3_SHARED_API void b3RequestCameraImageSetLightColor(b3SharedMemoryCommandHandle commandHandle, const float lightColor[/*3*/]);
B3_SHARED_API void b3RequestCameraImageSetLightDistance(b3SharedMemoryCommandHandle commandHandle, float lightDistance);
B3_SHARED_API void b3RequestCameraImageSetLightAmbientCoeff(b3SharedMemoryCommandHandle commandHandle, float lightAmbientCoeff);
B3_SHARED_API void b3RequestCameraImageSetLightDiffuseCoeff(b3SharedMemoryCommandHandle commandHandle, float lightDiffuseCoeff);
B3_SHARED_API void b3RequestCameraImageSetLightSpecularCoeff(b3SharedMemoryCommandHandle commandHandle, float lightSpecularCoeff);
B3_SHARED_API void b3RequestCameraImageSetShadow(b3SharedMemoryCommandHandle commandHandle, int hasShadow);
B3_SHARED_API void b3RequestCameraImageSelectRenderer(b3SharedMemoryCommandHandle commandHandle, int renderer);
B3_SHARED_API void b3RequestCameraImageSetFlags(b3SharedMemoryCommandHandle commandHandle, int flags);
B3_SHARED_API void b3GetCameraImageData(b3PhysicsClientHandle physClient, struct b3CameraImageData* imageData);
///set projective texture camera matrices.
B3_SHARED_API void b3RequestCameraImageSetProjectiveTextureMatrices(b3SharedMemoryCommandHandle commandHandle, float viewMatrix[/*16*/], float projectionMatrix[/*16*/]);
///compute a view matrix, helper function for b3RequestCameraImageSetCameraMatrices
B3_SHARED_API void b3ComputeViewMatrixFromPositions(const float cameraPosition[/*3*/], const float cameraTargetPosition[/*3*/], const float cameraUp[/*3*/], float viewMatrix[/*16*/]);
B3_SHARED_API void b3ComputeViewMatrixFromYawPitchRoll(const float cameraTargetPosition[/*3*/], float distance, float yaw, float pitch, float roll, int upAxis, float viewMatrix[/*16*/]);
B3_SHARED_API void b3ComputePositionFromViewMatrix(const float viewMatrix[/*16*/], float cameraPosition[/*3*/], float cameraTargetPosition[/*3*/], float cameraUp[/*3*/]);
///compute a projection matrix, helper function for b3RequestCameraImageSetCameraMatrices
B3_SHARED_API void b3ComputeProjectionMatrix(float left, float right, float bottom, float top, float nearVal, float farVal, float projectionMatrix[/*16*/]);
B3_SHARED_API void b3ComputeProjectionMatrixFOV(float fov, float aspect, float nearVal, float farVal, float projectionMatrix[/*16*/]);
/* obsolete, please use b3ComputeViewProjectionMatrices */
B3_SHARED_API void b3RequestCameraImageSetViewMatrix(b3SharedMemoryCommandHandle commandHandle, const float cameraPosition[/*3*/], const float cameraTargetPosition[/*3*/], const float cameraUp[/*3*/]);
/* obsolete, please use b3ComputeViewProjectionMatrices */
B3_SHARED_API void b3RequestCameraImageSetViewMatrix2(b3SharedMemoryCommandHandle commandHandle, const float cameraTargetPosition[/*3*/], float distance, float yaw, float pitch, float roll, int upAxis);
/* obsolete, please use b3ComputeViewProjectionMatrices */
B3_SHARED_API void b3RequestCameraImageSetProjectionMatrix(b3SharedMemoryCommandHandle commandHandle, float left, float right, float bottom, float top, float nearVal, float farVal);
/* obsolete, please use b3ComputeViewProjectionMatrices */
B3_SHARED_API void b3RequestCameraImageSetFOVProjectionMatrix(b3SharedMemoryCommandHandle commandHandle, float fov, float aspect, float nearVal, float farVal);
///request an contact point information
B3_SHARED_API b3SharedMemoryCommandHandle b3InitRequestContactPointInformation(b3PhysicsClientHandle physClient);
B3_SHARED_API void b3SetContactFilterBodyA(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueIdA);
B3_SHARED_API void b3SetContactFilterBodyB(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueIdB);
B3_SHARED_API void b3SetContactFilterLinkA(b3SharedMemoryCommandHandle commandHandle, int linkIndexA);
B3_SHARED_API void b3SetContactFilterLinkB(b3SharedMemoryCommandHandle commandHandle, int linkIndexB);
B3_SHARED_API void b3GetContactPointInformation(b3PhysicsClientHandle physClient, struct b3ContactInformation* contactPointData);
///compute the closest points between two bodies
B3_SHARED_API b3SharedMemoryCommandHandle b3InitClosestDistanceQuery(b3PhysicsClientHandle physClient);
B3_SHARED_API void b3SetClosestDistanceFilterBodyA(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueIdA);
B3_SHARED_API void b3SetClosestDistanceFilterLinkA(b3SharedMemoryCommandHandle commandHandle, int linkIndexA);
B3_SHARED_API void b3SetClosestDistanceFilterBodyB(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueIdB);
B3_SHARED_API void b3SetClosestDistanceFilterLinkB(b3SharedMemoryCommandHandle commandHandle, int linkIndexB);
B3_SHARED_API void b3SetClosestDistanceThreshold(b3SharedMemoryCommandHandle commandHandle, double distance);
B3_SHARED_API void b3SetClosestDistanceFilterCollisionShapeA(b3SharedMemoryCommandHandle commandHandle, int collisionShapeA);
B3_SHARED_API void b3SetClosestDistanceFilterCollisionShapeB(b3SharedMemoryCommandHandle commandHandle, int collisionShapeB);
B3_SHARED_API void b3SetClosestDistanceFilterCollisionShapePositionA(b3SharedMemoryCommandHandle commandHandle, const double collisionShapePositionA[/*3*/]);
B3_SHARED_API void b3SetClosestDistanceFilterCollisionShapePositionB(b3SharedMemoryCommandHandle commandHandle, const double collisionShapePositionB[/*3*/]);
B3_SHARED_API void b3SetClosestDistanceFilterCollisionShapeOrientationA(b3SharedMemoryCommandHandle commandHandle, const double collisionShapeOrientationA[/*4*/]);
B3_SHARED_API void b3SetClosestDistanceFilterCollisionShapeOrientationB(b3SharedMemoryCommandHandle commandHandle, const double collisionShapeOrientationB[/*4*/]);
B3_SHARED_API void b3GetClosestPointInformation(b3PhysicsClientHandle physClient, struct b3ContactInformation* contactPointInfo);
///get all the bodies that touch a given axis aligned bounding box specified in world space (min and max coordinates)
B3_SHARED_API b3SharedMemoryCommandHandle b3InitAABBOverlapQuery(b3PhysicsClientHandle physClient, const double aabbMin[/*3*/], const double aabbMax[/*3*/]);
B3_SHARED_API void b3GetAABBOverlapResults(b3PhysicsClientHandle physClient, struct b3AABBOverlapData* data);
//request visual shape information
B3_SHARED_API b3SharedMemoryCommandHandle b3InitRequestVisualShapeInformation(b3PhysicsClientHandle physClient, int bodyUniqueIdA);
B3_SHARED_API void b3GetVisualShapeInformation(b3PhysicsClientHandle physClient, struct b3VisualShapeInformation* visualShapeInfo);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitRequestCollisionShapeInformation(b3PhysicsClientHandle physClient, int bodyUniqueId, int linkIndex);
B3_SHARED_API void b3GetCollisionShapeInformation(b3PhysicsClientHandle physClient, struct b3CollisionShapeInformation* collisionShapeInfo);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitLoadTexture(b3PhysicsClientHandle physClient, const char* filename);
B3_SHARED_API int b3GetStatusTextureUniqueId(b3SharedMemoryStatusHandle statusHandle);
B3_SHARED_API b3SharedMemoryCommandHandle b3CreateChangeTextureCommandInit(b3PhysicsClientHandle physClient, int textureUniqueId, int width, int height, const char* rgbPixels);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitUpdateVisualShape(b3PhysicsClientHandle physClient, int bodyUniqueId, int jointIndex, int shapeIndex, int textureUniqueId);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitUpdateVisualShape2(b3PhysicsClientHandle physClient, int bodyUniqueId, int jointIndex, int shapeIndex);
B3_SHARED_API void b3UpdateVisualShapeTexture(b3SharedMemoryCommandHandle commandHandle, int textureUniqueId);
B3_SHARED_API void b3UpdateVisualShapeRGBAColor(b3SharedMemoryCommandHandle commandHandle, const double rgbaColor[/*4*/]);
B3_SHARED_API void b3UpdateVisualShapeFlags(b3SharedMemoryCommandHandle commandHandle, int flags);
B3_SHARED_API void b3UpdateVisualShapeSpecularColor(b3SharedMemoryCommandHandle commandHandle, const double specularColor[/*3*/]);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitPhysicsParamCommand(b3PhysicsClientHandle physClient);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitPhysicsParamCommand2(b3SharedMemoryCommandHandle commandHandle);
B3_SHARED_API int b3PhysicsParamSetGravity(b3SharedMemoryCommandHandle commandHandle, double gravx, double gravy, double gravz);
B3_SHARED_API int b3PhysicsParamSetTimeStep(b3SharedMemoryCommandHandle commandHandle, double timeStep);
B3_SHARED_API int b3PhysicsParamSetDefaultContactERP(b3SharedMemoryCommandHandle commandHandle, double defaultContactERP);
B3_SHARED_API int b3PhysicsParamSetDefaultNonContactERP(b3SharedMemoryCommandHandle commandHandle, double defaultNonContactERP);
B3_SHARED_API int b3PhysicsParamSetDefaultFrictionERP(b3SharedMemoryCommandHandle commandHandle, double frictionERP);
B3_SHARED_API int b3PhysicsParamSetDefaultGlobalCFM(b3SharedMemoryCommandHandle commandHandle, double defaultGlobalCFM);
B3_SHARED_API int b3PhysicsParamSetDefaultFrictionCFM(b3SharedMemoryCommandHandle commandHandle, double frictionCFM);
B3_SHARED_API int b3PhysicsParamSetNumSubSteps(b3SharedMemoryCommandHandle commandHandle, int numSubSteps);
B3_SHARED_API int b3PhysicsParamSetRealTimeSimulation(b3SharedMemoryCommandHandle commandHandle, int enableRealTimeSimulation);
B3_SHARED_API int b3PhysicsParamSetNumSolverIterations(b3SharedMemoryCommandHandle commandHandle, int numSolverIterations);
B3_SHARED_API int b3PhysicsParamSetNumNonContactInnerIterations(b3SharedMemoryCommandHandle commandHandle, int numMotorIterations);
B3_SHARED_API int b3PhysicsParamSetWarmStartingFactor(b3SharedMemoryCommandHandle commandHandle, double warmStartingFactor);
B3_SHARED_API int b3PhysicsParamSetArticulatedWarmStartingFactor(b3SharedMemoryCommandHandle commandHandle, double warmStartingFactor);
B3_SHARED_API int b3PhysicsParamSetCollisionFilterMode(b3SharedMemoryCommandHandle commandHandle, int filterMode);
B3_SHARED_API int b3PhysicsParamSetUseSplitImpulse(b3SharedMemoryCommandHandle commandHandle, int useSplitImpulse);
B3_SHARED_API int b3PhysicsParamSetSplitImpulsePenetrationThreshold(b3SharedMemoryCommandHandle commandHandle, double splitImpulsePenetrationThreshold);
B3_SHARED_API int b3PhysicsParamSetContactBreakingThreshold(b3SharedMemoryCommandHandle commandHandle, double contactBreakingThreshold);
B3_SHARED_API int b3PhysicsParamSetMaxNumCommandsPer1ms(b3SharedMemoryCommandHandle commandHandle, int maxNumCmdPer1ms);
B3_SHARED_API int b3PhysicsParamSetEnableFileCaching(b3SharedMemoryCommandHandle commandHandle, int enableFileCaching);
B3_SHARED_API int b3PhysicsParamSetRestitutionVelocityThreshold(b3SharedMemoryCommandHandle commandHandle, double restitutionVelocityThreshold);
B3_SHARED_API int b3PhysicsParamSetEnableConeFriction(b3SharedMemoryCommandHandle commandHandle, int enableConeFriction);
B3_SHARED_API int b3PhysicsParameterSetDeterministicOverlappingPairs(b3SharedMemoryCommandHandle commandHandle, int deterministicOverlappingPairs);
B3_SHARED_API int b3PhysicsParameterSetAllowedCcdPenetration(b3SharedMemoryCommandHandle commandHandle, double allowedCcdPenetration);
B3_SHARED_API int b3PhysicsParameterSetJointFeedbackMode(b3SharedMemoryCommandHandle commandHandle, int jointFeedbackMode);
B3_SHARED_API int b3PhysicsParamSetSolverResidualThreshold(b3SharedMemoryCommandHandle commandHandle, double solverResidualThreshold);
B3_SHARED_API int b3PhysicsParamSetContactSlop(b3SharedMemoryCommandHandle commandHandle, double contactSlop);
B3_SHARED_API int b3PhysicsParameterSetEnableSAT(b3SharedMemoryCommandHandle commandHandle, int enableSAT);
B3_SHARED_API int b3PhysicsParameterSetConstraintSolverType(b3SharedMemoryCommandHandle commandHandle, int constraintSolverType);
B3_SHARED_API int b3PhysicsParameterSetMinimumSolverIslandSize(b3SharedMemoryCommandHandle commandHandle, int minimumSolverIslandSize);
B3_SHARED_API int b3PhysicsParamSetSolverAnalytics(b3SharedMemoryCommandHandle commandHandle, int reportSolverAnalytics);
B3_SHARED_API int b3PhysicsParameterSetSparseSdfVoxelSize(b3SharedMemoryCommandHandle commandHandle, double sparseSdfVoxelSize);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitRequestPhysicsParamCommand(b3PhysicsClientHandle physClient);
B3_SHARED_API int b3GetStatusPhysicsSimulationParameters(b3SharedMemoryStatusHandle statusHandle, struct b3PhysicsSimulationParameters* params);
//b3PhysicsParamSetInternalSimFlags is for internal/temporary/easter-egg/experimental demo purposes
//Use at own risk: magic things may or my not happen when calling this API
B3_SHARED_API int b3PhysicsParamSetInternalSimFlags(b3SharedMemoryCommandHandle commandHandle, int flags);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitStepSimulationCommand(b3PhysicsClientHandle physClient);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitStepSimulationCommand2(b3SharedMemoryCommandHandle commandHandle);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitPerformCollisionDetectionCommand(b3PhysicsClientHandle physClient);
B3_SHARED_API int b3GetStatusForwardDynamicsAnalyticsData(b3SharedMemoryStatusHandle statusHandle, struct b3ForwardDynamicsAnalyticsArgs* analyticsData);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitResetSimulationCommand(b3PhysicsClientHandle physClient);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitResetSimulationCommand2(b3SharedMemoryCommandHandle commandHandle);
B3_SHARED_API int b3InitResetSimulationSetFlags(b3SharedMemoryCommandHandle commandHandle, int flags);
///Load a robot from a URDF file. Status type will CMD_URDF_LOADING_COMPLETED.
///Access the robot from the unique body index, through b3GetStatusBodyIndex(statusHandle);
B3_SHARED_API b3SharedMemoryCommandHandle b3LoadUrdfCommandInit(b3PhysicsClientHandle physClient, const char* urdfFileName);
B3_SHARED_API b3SharedMemoryCommandHandle b3LoadUrdfCommandInit2(b3SharedMemoryCommandHandle commandHandle, const char* urdfFileName);
B3_SHARED_API int b3LoadUrdfCommandSetStartPosition(b3SharedMemoryCommandHandle commandHandle, double startPosX, double startPosY, double startPosZ);
B3_SHARED_API int b3LoadUrdfCommandSetStartOrientation(b3SharedMemoryCommandHandle commandHandle, double startOrnX, double startOrnY, double startOrnZ, double startOrnW);
B3_SHARED_API int b3LoadUrdfCommandSetUseMultiBody(b3SharedMemoryCommandHandle commandHandle, int useMultiBody);
B3_SHARED_API int b3LoadUrdfCommandSetUseFixedBase(b3SharedMemoryCommandHandle commandHandle, int useFixedBase);
B3_SHARED_API int b3LoadUrdfCommandSetFlags(b3SharedMemoryCommandHandle commandHandle, int flags);
B3_SHARED_API int b3LoadUrdfCommandSetGlobalScaling(b3SharedMemoryCommandHandle commandHandle, double globalScaling);
B3_SHARED_API b3SharedMemoryCommandHandle b3SaveStateCommandInit(b3PhysicsClientHandle physClient);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitRemoveStateCommand(b3PhysicsClientHandle physClient, int stateId);
B3_SHARED_API int b3GetStatusGetStateId(b3SharedMemoryStatusHandle statusHandle);
B3_SHARED_API b3SharedMemoryCommandHandle b3LoadStateCommandInit(b3PhysicsClientHandle physClient);
B3_SHARED_API int b3LoadStateSetStateId(b3SharedMemoryCommandHandle commandHandle, int stateId);
B3_SHARED_API int b3LoadStateSetFileName(b3SharedMemoryCommandHandle commandHandle, const char* fileName);
B3_SHARED_API b3SharedMemoryCommandHandle b3LoadBulletCommandInit(b3PhysicsClientHandle physClient, const char* fileName);
B3_SHARED_API b3SharedMemoryCommandHandle b3SaveBulletCommandInit(b3PhysicsClientHandle physClient, const char* fileName);
B3_SHARED_API b3SharedMemoryCommandHandle b3LoadMJCFCommandInit(b3PhysicsClientHandle physClient, const char* fileName);
B3_SHARED_API b3SharedMemoryCommandHandle b3LoadMJCFCommandInit2(b3SharedMemoryCommandHandle commandHandle, const char* fileName);
B3_SHARED_API void b3LoadMJCFCommandSetFlags(b3SharedMemoryCommandHandle commandHandle, int flags);
B3_SHARED_API void b3LoadMJCFCommandSetUseMultiBody(b3SharedMemoryCommandHandle commandHandle, int useMultiBody);
///compute the forces to achieve an acceleration, given a state q and qdot using inverse dynamics
B3_SHARED_API b3SharedMemoryCommandHandle b3CalculateInverseDynamicsCommandInit(b3PhysicsClientHandle physClient, int bodyUniqueId,
const double* jointPositionsQ, const double* jointVelocitiesQdot, const double* jointAccelerations);
B3_SHARED_API b3SharedMemoryCommandHandle b3CalculateInverseDynamicsCommandInit2(b3PhysicsClientHandle physClient, int bodyUniqueId,
const double* jointPositionsQ, int dofCountQ, const double* jointVelocitiesQdot, const double* jointAccelerations, int dofCountQdot);
B3_SHARED_API void b3CalculateInverseDynamicsSetFlags(b3SharedMemoryCommandHandle commandHandle, int flags);
B3_SHARED_API int b3GetStatusInverseDynamicsJointForces(b3SharedMemoryStatusHandle statusHandle,
int* bodyUniqueId,
int* dofCount,
double* jointForces);
B3_SHARED_API b3SharedMemoryCommandHandle b3CalculateJacobianCommandInit(b3PhysicsClientHandle physClient, int bodyUniqueId, int linkIndex, const double* localPosition, const double* jointPositionsQ, const double* jointVelocitiesQdot, const double* jointAccelerations);
B3_SHARED_API int b3GetStatusJacobian(b3SharedMemoryStatusHandle statusHandle,
int* dofCount,
double* linearJacobian,
double* angularJacobian);
B3_SHARED_API b3SharedMemoryCommandHandle b3CalculateMassMatrixCommandInit(b3PhysicsClientHandle physClient, int bodyUniqueId, const double* jointPositionsQ, int dofCountQ);
B3_SHARED_API void b3CalculateMassMatrixSetFlags(b3SharedMemoryCommandHandle commandHandle, int flags);
///the mass matrix is stored in column-major layout of size dofCount*dofCount
B3_SHARED_API int b3GetStatusMassMatrix(b3PhysicsClientHandle physClient, b3SharedMemoryStatusHandle statusHandle, int* dofCount, double* massMatrix);
///compute the joint positions to move the end effector to a desired target using inverse kinematics
B3_SHARED_API b3SharedMemoryCommandHandle b3CalculateInverseKinematicsCommandInit(b3PhysicsClientHandle physClient, int bodyUniqueId);
B3_SHARED_API void b3CalculateInverseKinematicsAddTargetPurePosition(b3SharedMemoryCommandHandle commandHandle, int endEffectorLinkIndex, const double targetPosition[/*3*/]);
B3_SHARED_API void b3CalculateInverseKinematicsAddTargetsPurePosition(b3SharedMemoryCommandHandle commandHandle, int numEndEffectorLinkIndices, const int* endEffectorIndices, const double* targetPositions);
B3_SHARED_API void b3CalculateInverseKinematicsAddTargetPositionWithOrientation(b3SharedMemoryCommandHandle commandHandle, int endEffectorLinkIndex, const double targetPosition[/*3*/], const double targetOrientation[/*4*/]);
B3_SHARED_API void b3CalculateInverseKinematicsPosWithNullSpaceVel(b3SharedMemoryCommandHandle commandHandle, int numDof, int endEffectorLinkIndex, const double targetPosition[/*3*/], const double* lowerLimit, const double* upperLimit, const double* jointRange, const double* restPose);
B3_SHARED_API void b3CalculateInverseKinematicsPosOrnWithNullSpaceVel(b3SharedMemoryCommandHandle commandHandle, int numDof, int endEffectorLinkIndex, const double targetPosition[/*3*/], const double targetOrientation[/*4*/], const double* lowerLimit, const double* upperLimit, const double* jointRange, const double* restPose);
B3_SHARED_API void b3CalculateInverseKinematicsSetJointDamping(b3SharedMemoryCommandHandle commandHandle, int numDof, const double* jointDampingCoeff);
B3_SHARED_API void b3CalculateInverseKinematicsSelectSolver(b3SharedMemoryCommandHandle commandHandle, int solver);
B3_SHARED_API int b3GetStatusInverseKinematicsJointPositions(b3SharedMemoryStatusHandle statusHandle,
int* bodyUniqueId,
int* dofCount,
double* jointPositions);
B3_SHARED_API void b3CalculateInverseKinematicsSetCurrentPositions(b3SharedMemoryCommandHandle commandHandle, int numDof, const double* currentJointPositions);
B3_SHARED_API void b3CalculateInverseKinematicsSetMaxNumIterations(b3SharedMemoryCommandHandle commandHandle, int maxNumIterations);
B3_SHARED_API void b3CalculateInverseKinematicsSetResidualThreshold(b3SharedMemoryCommandHandle commandHandle, double residualThreshold);
B3_SHARED_API b3SharedMemoryCommandHandle b3CollisionFilterCommandInit(b3PhysicsClientHandle physClient);
B3_SHARED_API void b3SetCollisionFilterPair(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueIdA,
int bodyUniqueIdB, int linkIndexA, int linkIndexB, int enableCollision);
B3_SHARED_API void b3SetCollisionFilterGroupMask(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueIdA,
int linkIndexA, int collisionFilterGroup, int collisionFilterMask);
B3_SHARED_API b3SharedMemoryCommandHandle b3LoadSdfCommandInit(b3PhysicsClientHandle physClient, const char* sdfFileName);
B3_SHARED_API b3SharedMemoryCommandHandle b3LoadSdfCommandInit2(b3SharedMemoryCommandHandle commandHandle, const char* sdfFileName);
B3_SHARED_API int b3LoadSdfCommandSetUseMultiBody(b3SharedMemoryCommandHandle commandHandle, int useMultiBody);
B3_SHARED_API int b3LoadSdfCommandSetUseGlobalScaling(b3SharedMemoryCommandHandle commandHandle, double globalScaling);
B3_SHARED_API b3SharedMemoryCommandHandle b3SaveWorldCommandInit(b3PhysicsClientHandle physClient, const char* sdfFileName);
///The b3JointControlCommandInit method is obsolete, use b3JointControlCommandInit2 instead
B3_SHARED_API b3SharedMemoryCommandHandle b3JointControlCommandInit(b3PhysicsClientHandle physClient, int controlMode);
///Set joint motor control variables such as desired position/angle, desired velocity,
///applied joint forces, dependent on the control mode (CONTROL_MODE_VELOCITY or CONTROL_MODE_TORQUE)
B3_SHARED_API b3SharedMemoryCommandHandle b3JointControlCommandInit2(b3PhysicsClientHandle physClient, int bodyUniqueId, int controlMode);
B3_SHARED_API b3SharedMemoryCommandHandle b3JointControlCommandInit2Internal(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int controlMode);
///Only use when controlMode is CONTROL_MODE_POSITION_VELOCITY_PD
B3_SHARED_API int b3JointControlSetDesiredPosition(b3SharedMemoryCommandHandle commandHandle, int qIndex, double value);
B3_SHARED_API int b3JointControlSetDesiredPositionMultiDof(b3SharedMemoryCommandHandle commandHandle, int qIndex, const double* position, int dofCount);
B3_SHARED_API int b3JointControlSetKp(b3SharedMemoryCommandHandle commandHandle, int dofIndex, double value);
B3_SHARED_API int b3JointControlSetKpMultiDof(b3SharedMemoryCommandHandle commandHandle, int dofIndex, double* kps, int dofCount);
B3_SHARED_API int b3JointControlSetKd(b3SharedMemoryCommandHandle commandHandle, int dofIndex, double value);
B3_SHARED_API int b3JointControlSetKdMultiDof(b3SharedMemoryCommandHandle commandHandle, int dofIndex, double* kds, int dofCount);
B3_SHARED_API int b3JointControlSetMaximumVelocity(b3SharedMemoryCommandHandle commandHandle, int dofIndex, double maximumVelocity);
///Only use when controlMode is CONTROL_MODE_VELOCITY
B3_SHARED_API int b3JointControlSetDesiredVelocity(b3SharedMemoryCommandHandle commandHandle, int dofIndex, double value); /* find a better name for dof/q/u indices, point to b3JointInfo */
B3_SHARED_API int b3JointControlSetDesiredVelocityMultiDof(b3SharedMemoryCommandHandle commandHandle, int dofIndex, const double* velocity, int dofCount);
B3_SHARED_API int b3JointControlSetDesiredVelocityMultiDof2(b3SharedMemoryCommandHandle commandHandle, int dofIndex, const double* velocity, int dofCount);
B3_SHARED_API int b3JointControlSetMaximumForce(b3SharedMemoryCommandHandle commandHandle, int dofIndex, double value);
B3_SHARED_API int b3JointControlSetDesiredForceTorqueMultiDof(b3SharedMemoryCommandHandle commandHandle, int dofIndex, double* forces, int dofCount);
B3_SHARED_API int b3JointControlSetDamping(b3SharedMemoryCommandHandle commandHandle, int dofIndex, double value);
B3_SHARED_API int b3JointControlSetDampingMultiDof(b3SharedMemoryCommandHandle commandHandle, int dofIndex, double* damping, int dofCount);
///Only use if when controlMode is CONTROL_MODE_TORQUE,
B3_SHARED_API int b3JointControlSetDesiredForceTorque(b3SharedMemoryCommandHandle commandHandle, int dofIndex, double value);
///the creation of collision shapes and rigid bodies etc is likely going to change,
///but good to have a b3CreateBoxShapeCommandInit for now
B3_SHARED_API b3SharedMemoryCommandHandle b3CreateCollisionShapeCommandInit(b3PhysicsClientHandle physClient);
B3_SHARED_API int b3CreateCollisionShapeAddSphere(b3SharedMemoryCommandHandle commandHandle, double radius);
B3_SHARED_API int b3CreateCollisionShapeAddBox(b3SharedMemoryCommandHandle commandHandle, const double halfExtents[/*3*/]);
B3_SHARED_API int b3CreateCollisionShapeAddCapsule(b3SharedMemoryCommandHandle commandHandle, double radius, double height);
B3_SHARED_API int b3CreateCollisionShapeAddCylinder(b3SharedMemoryCommandHandle commandHandle, double radius, double height);
B3_SHARED_API int b3CreateCollisionShapeAddHeightfield(b3SharedMemoryCommandHandle commandHandle, const char* fileName, const double meshScale[/*3*/], double textureScaling);
B3_SHARED_API int b3CreateCollisionShapeAddHeightfield2(b3PhysicsClientHandle physClient, b3SharedMemoryCommandHandle commandHandle, const double meshScale[/*3*/], double textureScaling, float* heightfieldData, int numHeightfieldRows, int numHeightfieldColumns, int replaceHeightfieldIndex);
B3_SHARED_API int b3CreateCollisionShapeAddPlane(b3SharedMemoryCommandHandle commandHandle, const double planeNormal[/*3*/], double planeConstant);
B3_SHARED_API int b3CreateCollisionShapeAddMesh(b3SharedMemoryCommandHandle commandHandle, const char* fileName, const double meshScale[/*3*/]);
B3_SHARED_API int b3CreateCollisionShapeAddConvexMesh(b3PhysicsClientHandle physClient, b3SharedMemoryCommandHandle commandHandle, const double meshScale[/*3*/], const double* vertices, int numVertices);
B3_SHARED_API int b3CreateCollisionShapeAddConcaveMesh(b3PhysicsClientHandle physClient, b3SharedMemoryCommandHandle commandHandle, const double meshScale[/*3*/], const double* vertices, int numVertices, const int* indices, int numIndices);
B3_SHARED_API void b3CreateCollisionSetFlag(b3SharedMemoryCommandHandle commandHandle, int shapeIndex, int flags);
B3_SHARED_API void b3CreateCollisionShapeSetChildTransform(b3SharedMemoryCommandHandle commandHandle, int shapeIndex, const double childPosition[/*3*/], const double childOrientation[/*4*/]);
B3_SHARED_API int b3GetStatusCollisionShapeUniqueId(b3SharedMemoryStatusHandle statusHandle);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitRemoveCollisionShapeCommand(b3PhysicsClientHandle physClient, int collisionShapeId);
B3_SHARED_API b3SharedMemoryCommandHandle b3GetMeshDataCommandInit(b3PhysicsClientHandle physClient, int bodyUniqueId, int linkIndex);
B3_SHARED_API b3SharedMemoryCommandHandle b3GetTetraMeshDataCommandInit(b3PhysicsClientHandle physClient, int bodyUniqueId);
B3_SHARED_API void b3GetMeshDataSimulationMesh(b3SharedMemoryCommandHandle commandHandle);
B3_SHARED_API void b3MeshDataSimulationMeshVelocity(b3SharedMemoryCommandHandle commandHandle);
B3_SHARED_API void b3GetMeshDataSetCollisionShapeIndex(b3SharedMemoryCommandHandle commandHandle, int shapeIndex);
B3_SHARED_API void b3GetMeshDataSetFlags(b3SharedMemoryCommandHandle commandHandle, int flags);
B3_SHARED_API void b3GetTetraMeshDataSetFlags(b3SharedMemoryCommandHandle commandHandle, int flags);
B3_SHARED_API void b3GetMeshData(b3PhysicsClientHandle physClient, struct b3MeshData* meshData);
B3_SHARED_API void b3GetTetraMeshData(b3PhysicsClientHandle physClient, struct b3TetraMeshData* meshData);
B3_SHARED_API b3SharedMemoryCommandHandle b3ResetMeshDataCommandInit(b3PhysicsClientHandle physClient, int bodyUniqueId, int num_vertices, const double* vertices);
B3_SHARED_API b3SharedMemoryCommandHandle b3CreateVisualShapeCommandInit(b3PhysicsClientHandle physClient);
B3_SHARED_API int b3CreateVisualShapeAddSphere(b3SharedMemoryCommandHandle commandHandle, double radius);
B3_SHARED_API int b3CreateVisualShapeAddBox(b3SharedMemoryCommandHandle commandHandle, const double halfExtents[/*3*/]);
B3_SHARED_API int b3CreateVisualShapeAddCapsule(b3SharedMemoryCommandHandle commandHandle, double radius, double height);
B3_SHARED_API int b3CreateVisualShapeAddCylinder(b3SharedMemoryCommandHandle commandHandle, double radius, double height);
B3_SHARED_API int b3CreateVisualShapeAddPlane(b3SharedMemoryCommandHandle commandHandle, const double planeNormal[/*3*/], double planeConstant);
B3_SHARED_API int b3CreateVisualShapeAddMesh(b3SharedMemoryCommandHandle commandHandle, const char* fileName, const double meshScale[/*3*/]);
B3_SHARED_API int b3CreateVisualShapeAddMesh2(b3PhysicsClientHandle physClient, b3SharedMemoryCommandHandle commandHandle, const double meshScale[/*3*/], const double* vertices, int numVertices, const int* indices, int numIndices, const double* normals, int numNormals, const double* uvs, int numUVs);
B3_SHARED_API void b3CreateVisualSetFlag(b3SharedMemoryCommandHandle commandHandle, int shapeIndex, int flags);
B3_SHARED_API void b3CreateVisualShapeSetChildTransform(b3SharedMemoryCommandHandle commandHandle, int shapeIndex, const double childPosition[/*3*/], const double childOrientation[/*4*/]);
B3_SHARED_API void b3CreateVisualShapeSetSpecularColor(b3SharedMemoryCommandHandle commandHandle, int shapeIndex, const double specularColor[/*3*/]);
B3_SHARED_API void b3CreateVisualShapeSetRGBAColor(b3SharedMemoryCommandHandle commandHandle, int shapeIndex, const double rgbaColor[/*4*/]);
B3_SHARED_API int b3GetStatusVisualShapeUniqueId(b3SharedMemoryStatusHandle statusHandle);
B3_SHARED_API b3SharedMemoryCommandHandle b3CreateMultiBodyCommandInit(b3PhysicsClientHandle physClient);
B3_SHARED_API int b3CreateMultiBodyBase(b3SharedMemoryCommandHandle commandHandle, double mass, int collisionShapeUnique, int visualShapeUniqueId, const double basePosition[/*3*/], const double baseOrientation[/*4*/], const double baseInertialFramePosition[/*3*/], const double baseInertialFrameOrientation[/*4*/]);
B3_SHARED_API int b3CreateMultiBodyLink(b3SharedMemoryCommandHandle commandHandle, double linkMass, double linkCollisionShapeIndex,
double linkVisualShapeIndex,
const double linkPosition[/*3*/],
const double linkOrientation[/*4*/],
const double linkInertialFramePosition[/*3*/],
const double linkInertialFrameOrientation[/*4*/],
int linkParentIndex,
int linkJointType,
const double linkJointAxis[/*3*/]);
//batch creation is an performance feature to create a large number of multi bodies in one command
B3_SHARED_API int b3CreateMultiBodySetBatchPositions(b3PhysicsClientHandle physClient, b3SharedMemoryCommandHandle commandHandle, double* batchPositions, int numBatchObjects);
//useMaximalCoordinates are disabled by default, enabling them is experimental and not fully supported yet
B3_SHARED_API void b3CreateMultiBodyUseMaximalCoordinates(b3SharedMemoryCommandHandle commandHandle);
B3_SHARED_API void b3CreateMultiBodySetFlags(b3SharedMemoryCommandHandle commandHandle, int flags);
//int b3CreateMultiBodyAddLink(b3SharedMemoryCommandHandle commandHandle, int jointType, int parentLinkIndex, double linkMass, int linkCollisionShapeUnique, int linkVisualShapeUniqueId);
///create a box of size (1,1,1) at world origin (0,0,0) at orientation quat (0,0,0,1)
///after that, you can optionally adjust the initial position, orientation and size
B3_SHARED_API b3SharedMemoryCommandHandle b3CreateBoxShapeCommandInit(b3PhysicsClientHandle physClient);
B3_SHARED_API int b3CreateBoxCommandSetStartPosition(b3SharedMemoryCommandHandle commandHandle, double startPosX, double startPosY, double startPosZ);
B3_SHARED_API int b3CreateBoxCommandSetStartOrientation(b3SharedMemoryCommandHandle commandHandle, double startOrnX, double startOrnY, double startOrnZ, double startOrnW);
B3_SHARED_API int b3CreateBoxCommandSetHalfExtents(b3SharedMemoryCommandHandle commandHandle, double halfExtentsX, double halfExtentsY, double halfExtentsZ);
B3_SHARED_API int b3CreateBoxCommandSetMass(b3SharedMemoryCommandHandle commandHandle, double mass);
B3_SHARED_API int b3CreateBoxCommandSetCollisionShapeType(b3SharedMemoryCommandHandle commandHandle, int collisionShapeType);
B3_SHARED_API int b3CreateBoxCommandSetColorRGBA(b3SharedMemoryCommandHandle commandHandle, double red, double green, double blue, double alpha);
///b3CreatePoseCommandInit will initialize (teleport) the pose of a body/robot. You can individually set the base position,
///base orientation and joint angles. This will set all velocities of base and joints to zero.
///This is not a robot control command using actuators/joint motors, but manual repositioning the robot.
B3_SHARED_API b3SharedMemoryCommandHandle b3CreatePoseCommandInit(b3PhysicsClientHandle physClient, int bodyUniqueId);
B3_SHARED_API b3SharedMemoryCommandHandle b3CreatePoseCommandInit2(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId);
B3_SHARED_API int b3CreatePoseCommandSetBasePosition(b3SharedMemoryCommandHandle commandHandle, double startPosX, double startPosY, double startPosZ);
B3_SHARED_API int b3CreatePoseCommandSetBaseOrientation(b3SharedMemoryCommandHandle commandHandle, double startOrnX, double startOrnY, double startOrnZ, double startOrnW);
B3_SHARED_API int b3CreatePoseCommandSetBaseLinearVelocity(b3SharedMemoryCommandHandle commandHandle, const double linVel[/*3*/]);
B3_SHARED_API int b3CreatePoseCommandSetBaseAngularVelocity(b3SharedMemoryCommandHandle commandHandle, const double angVel[/*3*/]);
B3_SHARED_API int b3CreatePoseCommandSetBaseScaling(b3SharedMemoryCommandHandle commandHandle, double scaling[/* 3*/]);
B3_SHARED_API int b3CreatePoseCommandSetJointPositions(b3SharedMemoryCommandHandle commandHandle, int numJointPositions, const double* jointPositions);
B3_SHARED_API int b3CreatePoseCommandSetJointPosition(b3PhysicsClientHandle physClient, b3SharedMemoryCommandHandle commandHandle, int jointIndex, double jointPosition);
B3_SHARED_API int b3CreatePoseCommandSetJointPositionMultiDof(b3PhysicsClientHandle physClient, b3SharedMemoryCommandHandle commandHandle, int jointIndex, const double* jointPosition, int posSize);
B3_SHARED_API int b3CreatePoseCommandSetQ(b3SharedMemoryCommandHandle commandHandle, int numJointPositions, const double* q, const int* hasQ);
B3_SHARED_API int b3CreatePoseCommandSetQdots(b3SharedMemoryCommandHandle commandHandle, int numJointVelocities, const double* qDots, const int* hasQdots);
B3_SHARED_API int b3CreatePoseCommandSetJointVelocities(b3PhysicsClientHandle physClient, b3SharedMemoryCommandHandle commandHandle, int numJointVelocities, const double* jointVelocities);
B3_SHARED_API int b3CreatePoseCommandSetJointVelocity(b3PhysicsClientHandle physClient, b3SharedMemoryCommandHandle commandHandle, int jointIndex, double jointVelocity);
B3_SHARED_API int b3CreatePoseCommandSetJointVelocityMultiDof(b3PhysicsClientHandle physClient, b3SharedMemoryCommandHandle commandHandle, int jointIndex, const double* jointVelocity, int velSize);
///We are currently not reading the sensor information from the URDF file, and programmatically assign sensors.
///This is rather inconsistent, to mix programmatical creation with loading from file.
B3_SHARED_API b3SharedMemoryCommandHandle b3CreateSensorCommandInit(b3PhysicsClientHandle physClient, int bodyUniqueId);
B3_SHARED_API int b3CreateSensorEnable6DofJointForceTorqueSensor(b3SharedMemoryCommandHandle commandHandle, int jointIndex, int enable);
///b3CreateSensorEnableIMUForLink is not implemented yet.
///For now, if the IMU is located in the root link, use the root world transform to mimic an IMU.
B3_SHARED_API int b3CreateSensorEnableIMUForLink(b3SharedMemoryCommandHandle commandHandle, int linkIndex, int enable);
B3_SHARED_API b3SharedMemoryCommandHandle b3RequestActualStateCommandInit(b3PhysicsClientHandle physClient, int bodyUniqueId);
B3_SHARED_API b3SharedMemoryCommandHandle b3RequestActualStateCommandInit2(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId);
B3_SHARED_API int b3RequestActualStateCommandComputeLinkVelocity(b3SharedMemoryCommandHandle commandHandle, int computeLinkVelocity);
B3_SHARED_API int b3RequestActualStateCommandComputeForwardKinematics(b3SharedMemoryCommandHandle commandHandle, int computeForwardKinematics);
B3_SHARED_API int b3GetJointState(b3PhysicsClientHandle physClient, b3SharedMemoryStatusHandle statusHandle, int jointIndex, struct b3JointSensorState* state);
B3_SHARED_API int b3GetJointStateMultiDof(b3PhysicsClientHandle physClient, b3SharedMemoryStatusHandle statusHandle, int jointIndex, struct b3JointSensorState2* state);
B3_SHARED_API int b3GetLinkState(b3PhysicsClientHandle physClient, b3SharedMemoryStatusHandle statusHandle, int linkIndex, struct b3LinkState* state);
B3_SHARED_API b3SharedMemoryCommandHandle b3PickBody(b3PhysicsClientHandle physClient, double rayFromWorldX,
double rayFromWorldY, double rayFromWorldZ,
double rayToWorldX, double rayToWorldY, double rayToWorldZ);
B3_SHARED_API b3SharedMemoryCommandHandle b3MovePickedBody(b3PhysicsClientHandle physClient, double rayFromWorldX,
double rayFromWorldY, double rayFromWorldZ,
double rayToWorldX, double rayToWorldY,
double rayToWorldZ);
B3_SHARED_API b3SharedMemoryCommandHandle b3RemovePickingConstraint(b3PhysicsClientHandle physClient);
B3_SHARED_API b3SharedMemoryCommandHandle b3CreateRaycastCommandInit(b3PhysicsClientHandle physClient, double rayFromWorldX,
double rayFromWorldY, double rayFromWorldZ,
double rayToWorldX, double rayToWorldY, double rayToWorldZ);
B3_SHARED_API b3SharedMemoryCommandHandle b3CreateRaycastBatchCommandInit(b3PhysicsClientHandle physClient);
// Sets the number of threads to use to compute the ray intersections for the batch. Specify 0 to let Bullet decide, 1 (default) for single core execution, 2 or more to select the number of threads to use.
B3_SHARED_API void b3RaycastBatchSetNumThreads(b3SharedMemoryCommandHandle commandHandle, int numThreads);
//max num rays for b3RaycastBatchAddRay is MAX_RAY_INTERSECTION_BATCH_SIZE
B3_SHARED_API void b3RaycastBatchAddRay(b3SharedMemoryCommandHandle commandHandle, const double rayFromWorld[/*3*/], const double rayToWorld[/*3*/]);
//max num rays for b3RaycastBatchAddRays is MAX_RAY_INTERSECTION_BATCH_SIZE_STREAMING
B3_SHARED_API void b3RaycastBatchAddRays(b3PhysicsClientHandle physClient, b3SharedMemoryCommandHandle commandHandle, const double* rayFromWorld, const double* rayToWorld, int numRays);
B3_SHARED_API void b3RaycastBatchSetParentObject(b3SharedMemoryCommandHandle commandHandle, int parentObjectUniqueId, int parentLinkIndex);
B3_SHARED_API void b3RaycastBatchSetReportHitNumber(b3SharedMemoryCommandHandle commandHandle, int reportHitNumber);
B3_SHARED_API void b3RaycastBatchSetCollisionFilterMask(b3SharedMemoryCommandHandle commandHandle, int collisionFilterMask);
B3_SHARED_API void b3RaycastBatchSetFractionEpsilon(b3SharedMemoryCommandHandle commandHandle, double fractionEpsilon);
B3_SHARED_API void b3GetRaycastInformation(b3PhysicsClientHandle physClient, struct b3RaycastInformation* raycastInfo);
/// Apply external force at the body (or link) center of mass, in world space/Cartesian coordinates.
B3_SHARED_API b3SharedMemoryCommandHandle b3ApplyExternalForceCommandInit(b3PhysicsClientHandle physClient);
B3_SHARED_API void b3ApplyExternalForce(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkId, const double force[/*3*/], const double position[/*3*/], int flag);
B3_SHARED_API void b3ApplyExternalTorque(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkId, const double torque[/*3*/], int flag);
///experiments of robots interacting with non-rigid objects (such as btSoftBody)
B3_SHARED_API b3SharedMemoryCommandHandle b3LoadSoftBodyCommandInit(b3PhysicsClientHandle physClient, const char* fileName);
B3_SHARED_API int b3LoadSoftBodySetScale(b3SharedMemoryCommandHandle commandHandle, double scale);
B3_SHARED_API int b3LoadSoftBodySetMass(b3SharedMemoryCommandHandle commandHandle, double mass);
B3_SHARED_API int b3LoadSoftBodySetCollisionMargin(b3SharedMemoryCommandHandle commandHandle, double collisionMargin);
B3_SHARED_API int b3LoadSoftBodySetStartPosition(b3SharedMemoryCommandHandle commandHandle, double startPosX, double startPosY, double startPosZ);
B3_SHARED_API int b3LoadSoftBodySetStartOrientation(b3SharedMemoryCommandHandle commandHandle, double startOrnX, double startOrnY, double startOrnZ, double startOrnW);
B3_SHARED_API int b3LoadSoftBodyUpdateSimMesh(b3SharedMemoryCommandHandle commandHandle, const char* filename);
B3_SHARED_API int b3LoadSoftBodyAddCorotatedForce(b3SharedMemoryCommandHandle commandHandle, double corotatedMu, double corotatedLambda);
B3_SHARED_API int b3LoadSoftBodyAddCorotatedForce(b3SharedMemoryCommandHandle commandHandle, double corotatedMu, double corotatedLambda);
B3_SHARED_API int b3LoadSoftBodyAddNeoHookeanForce(b3SharedMemoryCommandHandle commandHandle, double NeoHookeanMu, double NeoHookeanLambda, double NeoHookeanDamping);
B3_SHARED_API int b3LoadSoftBodyAddMassSpringForce(b3SharedMemoryCommandHandle commandHandle, double springElasticStiffness , double springDampingStiffness);
B3_SHARED_API int b3LoadSoftBodyAddGravityForce(b3SharedMemoryCommandHandle commandHandle, double gravityX, double gravityY, double gravityZ);
B3_SHARED_API int b3LoadSoftBodySetCollisionHardness(b3SharedMemoryCommandHandle commandHandle, double collisionHardness);
B3_SHARED_API int b3LoadSoftBodySetSelfCollision(b3SharedMemoryCommandHandle commandHandle, int useSelfCollision);
B3_SHARED_API int b3LoadSoftBodySetRepulsionStiffness(b3SharedMemoryCommandHandle commandHandle, double stiffness);
B3_SHARED_API int b3LoadSoftBodyUseFaceContact(b3SharedMemoryCommandHandle commandHandle, int useFaceContact);
B3_SHARED_API int b3LoadSoftBodySetFrictionCoefficient(b3SharedMemoryCommandHandle commandHandle, double frictionCoefficient);
B3_SHARED_API int b3LoadSoftBodyUseBendingSprings(b3SharedMemoryCommandHandle commandHandle, int useBendingSprings, double bendingStiffness);
B3_SHARED_API int b3LoadSoftBodyUseAllDirectionDampingSprings(b3SharedMemoryCommandHandle commandHandle, int useAllDirectionDamping);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitCreateSoftBodyAnchorConstraintCommand(b3PhysicsClientHandle physClient, int softBodyUniqueId, int nodeIndex, int bodyUniqueId, int linkIndex, const double bodyFramePosition[3]);
B3_SHARED_API b3SharedMemoryCommandHandle b3RequestVREventsCommandInit(b3PhysicsClientHandle physClient);
B3_SHARED_API void b3VREventsSetDeviceTypeFilter(b3SharedMemoryCommandHandle commandHandle, int deviceTypeFilter);
B3_SHARED_API void b3GetVREventsData(b3PhysicsClientHandle physClient, struct b3VREventsData* vrEventsData);
B3_SHARED_API b3SharedMemoryCommandHandle b3SetVRCameraStateCommandInit(b3PhysicsClientHandle physClient);
B3_SHARED_API int b3SetVRCameraRootPosition(b3SharedMemoryCommandHandle commandHandle, const double rootPos[/*3*/]);
B3_SHARED_API int b3SetVRCameraRootOrientation(b3SharedMemoryCommandHandle commandHandle, const double rootOrn[/*4*/]);
B3_SHARED_API int b3SetVRCameraTrackingObject(b3SharedMemoryCommandHandle commandHandle, int objectUniqueId);
B3_SHARED_API int b3SetVRCameraTrackingObjectFlag(b3SharedMemoryCommandHandle commandHandle, int flag);
B3_SHARED_API b3SharedMemoryCommandHandle b3RequestKeyboardEventsCommandInit(b3PhysicsClientHandle physClient);
B3_SHARED_API b3SharedMemoryCommandHandle b3RequestKeyboardEventsCommandInit2(b3SharedMemoryCommandHandle commandHandle);
B3_SHARED_API void b3GetKeyboardEventsData(b3PhysicsClientHandle physClient, struct b3KeyboardEventsData* keyboardEventsData);
B3_SHARED_API b3SharedMemoryCommandHandle b3RequestMouseEventsCommandInit(b3PhysicsClientHandle physClient);
B3_SHARED_API void b3GetMouseEventsData(b3PhysicsClientHandle physClient, struct b3MouseEventsData* mouseEventsData);
B3_SHARED_API b3SharedMemoryCommandHandle b3StateLoggingCommandInit(b3PhysicsClientHandle physClient);
B3_SHARED_API int b3StateLoggingStart(b3SharedMemoryCommandHandle commandHandle, int loggingType, const char* fileName);
B3_SHARED_API int b3StateLoggingAddLoggingObjectUniqueId(b3SharedMemoryCommandHandle commandHandle, int objectUniqueId);
B3_SHARED_API int b3StateLoggingSetMaxLogDof(b3SharedMemoryCommandHandle commandHandle, int maxLogDof);
B3_SHARED_API int b3StateLoggingSetLinkIndexA(b3SharedMemoryCommandHandle commandHandle, int linkIndexA);
B3_SHARED_API int b3StateLoggingSetLinkIndexB(b3SharedMemoryCommandHandle commandHandle, int linkIndexB);
B3_SHARED_API int b3StateLoggingSetBodyAUniqueId(b3SharedMemoryCommandHandle commandHandle, int bodyAUniqueId);
B3_SHARED_API int b3StateLoggingSetBodyBUniqueId(b3SharedMemoryCommandHandle commandHandle, int bodyBUniqueId);
B3_SHARED_API int b3StateLoggingSetDeviceTypeFilter(b3SharedMemoryCommandHandle commandHandle, int deviceTypeFilter);
B3_SHARED_API int b3StateLoggingSetLogFlags(b3SharedMemoryCommandHandle commandHandle, int logFlags);
B3_SHARED_API int b3GetStatusLoggingUniqueId(b3SharedMemoryStatusHandle statusHandle);
B3_SHARED_API int b3StateLoggingStop(b3SharedMemoryCommandHandle commandHandle, int loggingUid);
B3_SHARED_API b3SharedMemoryCommandHandle b3ProfileTimingCommandInit(b3PhysicsClientHandle physClient, const char* name);
B3_SHARED_API void b3SetProfileTimingDuractionInMicroSeconds(b3SharedMemoryCommandHandle commandHandle, int duration);
B3_SHARED_API void b3SetProfileTimingType(b3SharedMemoryCommandHandle commandHandle, int type);
B3_SHARED_API void b3PushProfileTiming(b3PhysicsClientHandle physClient, const char* timingName);
B3_SHARED_API void b3PopProfileTiming(b3PhysicsClientHandle physClient);
B3_SHARED_API void b3SetTimeOut(b3PhysicsClientHandle physClient, double timeOutInSeconds);
B3_SHARED_API double b3GetTimeOut(b3PhysicsClientHandle physClient);
B3_SHARED_API b3SharedMemoryCommandHandle b3SetAdditionalSearchPath(b3PhysicsClientHandle physClient, const char* path);
B3_SHARED_API void b3MultiplyTransforms(const double posA[/*3*/], const double ornA[/*4*/], const double posB[/*3*/], const double ornB[/*4*/], double outPos[/*3*/], double outOrn[/*4*/]);
B3_SHARED_API void b3InvertTransform(const double pos[/*3*/], const double orn[/*4*/], double outPos[/*3*/], double outOrn[/*4*/]);
B3_SHARED_API void b3QuaternionSlerp(const double startQuat[/*4*/], const double endQuat[/*4*/], double interpolationFraction, double outOrn[/*4*/]);
B3_SHARED_API void b3GetQuaternionFromAxisAngle(const double axis[/*3*/], double angle, double outQuat[/*4*/]);
B3_SHARED_API void b3GetAxisAngleFromQuaternion(const double quat[/*4*/], double axis[/*3*/], double* angle);
B3_SHARED_API void b3GetQuaternionDifference(const double startQuat[/*4*/], const double endQuat[/*4*/], double outOrn[/*4*/]);
B3_SHARED_API void b3GetAxisDifferenceQuaternion(const double startQuat[/*4*/], const double endQuat[/*4*/], double axisOut[/*3*/]);
B3_SHARED_API void b3CalculateVelocityQuaternion(const double startQuat[/*4*/], const double endQuat[/*4*/], double deltaTime, double angVelOut[/*3*/]);
B3_SHARED_API void b3RotateVector(const double quat[/*4*/], const double vec[/*3*/], double vecOut[/*3*/]);
#ifdef BT_ENABLE_VHACD
B3_SHARED_API void b3VHACD(const char* fileNameInput, const char* fileNameOutput, const char* fileNameLogging,
double concavity, double alpha, double beta, double gamma, double minVolumePerCH, int resolution,
int maxNumVerticesPerCH, int depth, int planeDownsampling, int convexhullDownsampling,
int pca, int mode, int convexhullApproximation);
#endif
#ifdef __cplusplus
}
#endif
#endif //PHYSICS_CLIENT_C_API_H

View File

@ -1,17 +0,0 @@
#ifndef PHYSICS_CLIENT_SHARED_MEMORY2_H
#define PHYSICS_CLIENT_SHARED_MEMORY2_H
#include "PhysicsClientC_API.h"
#ifdef __cplusplus
extern "C"
{
#endif
b3PhysicsClientHandle b3ConnectSharedMemory2(int key);
#ifdef __cplusplus
}
#endif
#endif //PHYSICS_CLIENT_SHARED_MEMORY2_H

View File

@ -1,17 +0,0 @@
#ifndef PHYSICS_CLIENT_SHARED_MEMORY_H
#define PHYSICS_CLIENT_SHARED_MEMORY_H
#include "PhysicsClientC_API.h"
#ifdef __cplusplus
extern "C"
{
#endif
B3_SHARED_API b3PhysicsClientHandle b3ConnectSharedMemory(int key);
#ifdef __cplusplus
}
#endif
#endif //PHYSICS_CLIENT_SHARED_MEMORY_H

View File

@ -1,18 +0,0 @@
#ifndef PHYSICS_DIRECT_C_API_H
#define PHYSICS_DIRECT_C_API_H
#include "PhysicsClientC_API.h"
#ifdef __cplusplus
extern "C"
{
#endif
///think more about naming. Directly execute commands without transport (no shared memory, UDP, socket, grpc etc)
B3_SHARED_API b3PhysicsClientHandle b3ConnectPhysicsDirect();
#ifdef __cplusplus
}
#endif
#endif //PHYSICS_DIRECT_C_API_H

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,862 +0,0 @@
/*
* LZ4 - Fast LZ compression algorithm
* Header File
* Copyright (C) 2011-2020, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- LZ4 homepage : http://www.lz4.org
- LZ4 source repository : https://github.com/lz4/lz4
*/
#if defined (__cplusplus)
extern "C" {
#endif
#ifndef LZ4_H_2983827168210
#define LZ4_H_2983827168210
/* --- Dependency --- */
#include <stddef.h> /* size_t */
/**
Introduction
LZ4 is lossless compression algorithm, providing compression speed >500 MB/s per core,
scalable with multi-cores CPU. It features an extremely fast decoder, with speed in
multiple GB/s per core, typically reaching RAM speed limits on multi-core systems.
The LZ4 compression library provides in-memory compression and decompression functions.
It gives full buffer control to user.
Compression can be done in:
- a single step (described as Simple Functions)
- a single step, reusing a context (described in Advanced Functions)
- unbounded multiple steps (described as Streaming compression)
lz4.h generates and decodes LZ4-compressed blocks (doc/lz4_Block_format.md).
Decompressing such a compressed block requires additional metadata.
Exact metadata depends on exact decompression function.
For the typical case of LZ4_decompress_safe(),
metadata includes block's compressed size, and maximum bound of decompressed size.
Each application is free to encode and pass such metadata in whichever way it wants.
lz4.h only handle blocks, it can not generate Frames.
Blocks are different from Frames (doc/lz4_Frame_format.md).
Frames bundle both blocks and metadata in a specified manner.
Embedding metadata is required for compressed data to be self-contained and portable.
Frame format is delivered through a companion API, declared in lz4frame.h.
The `lz4` CLI can only manage frames.
*/
/*^***************************************************************
* Export parameters
*****************************************************************/
/*
* LZ4_DLL_EXPORT :
* Enable exporting of functions when building a Windows DLL
* LZ4LIB_VISIBILITY :
* Control library symbols visibility.
*/
#ifndef LZ4LIB_VISIBILITY
# if defined(__GNUC__) && (__GNUC__ >= 4)
# define LZ4LIB_VISIBILITY __attribute__ ((visibility ("default")))
# else
# define LZ4LIB_VISIBILITY
# endif
#endif
#if defined(LZ4_DLL_EXPORT) && (LZ4_DLL_EXPORT==1)
# define LZ4LIB_API __declspec(dllexport) LZ4LIB_VISIBILITY
#elif defined(LZ4_DLL_IMPORT) && (LZ4_DLL_IMPORT==1)
# define LZ4LIB_API __declspec(dllimport) LZ4LIB_VISIBILITY /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/
#else
# define LZ4LIB_API LZ4LIB_VISIBILITY
#endif
/*! LZ4_FREESTANDING :
* When this macro is set to 1, it enables "freestanding mode" that is
* suitable for typical freestanding environment which doesn't support
* standard C library.
*
* - LZ4_FREESTANDING is a compile-time switch.
* - It requires the following macros to be defined:
* LZ4_memcpy, LZ4_memmove, LZ4_memset.
* - It only enables LZ4/HC functions which don't use heap.
* All LZ4F_* functions are not supported.
* - See tests/freestanding.c to check its basic setup.
*/
#if defined(LZ4_FREESTANDING) && (LZ4_FREESTANDING == 1)
# define LZ4_HEAPMODE 0
# define LZ4HC_HEAPMODE 0
# define LZ4_STATIC_LINKING_ONLY_DISABLE_MEMORY_ALLOCATION 1
# if !defined(LZ4_memcpy)
# error "LZ4_FREESTANDING requires macro 'LZ4_memcpy'."
# endif
# if !defined(LZ4_memset)
# error "LZ4_FREESTANDING requires macro 'LZ4_memset'."
# endif
# if !defined(LZ4_memmove)
# error "LZ4_FREESTANDING requires macro 'LZ4_memmove'."
# endif
#elif ! defined(LZ4_FREESTANDING)
# define LZ4_FREESTANDING 0
#endif
/*------ Version ------*/
#define LZ4_VERSION_MAJOR 1 /* for breaking interface changes */
#define LZ4_VERSION_MINOR 9 /* for new (non-breaking) interface capabilities */
#define LZ4_VERSION_RELEASE 4 /* for tweaks, bug-fixes, or development */
#define LZ4_VERSION_NUMBER (LZ4_VERSION_MAJOR *100*100 + LZ4_VERSION_MINOR *100 + LZ4_VERSION_RELEASE)
#define LZ4_LIB_VERSION LZ4_VERSION_MAJOR.LZ4_VERSION_MINOR.LZ4_VERSION_RELEASE
#define LZ4_QUOTE(str) #str
#define LZ4_EXPAND_AND_QUOTE(str) LZ4_QUOTE(str)
#define LZ4_VERSION_STRING LZ4_EXPAND_AND_QUOTE(LZ4_LIB_VERSION) /* requires v1.7.3+ */
LZ4LIB_API int LZ4_versionNumber (void); /**< library version number; useful to check dll version; requires v1.3.0+ */
LZ4LIB_API const char* LZ4_versionString (void); /**< library version string; useful to check dll version; requires v1.7.5+ */
/*-************************************
* Tuning parameter
**************************************/
#define LZ4_MEMORY_USAGE_MIN 10
#define LZ4_MEMORY_USAGE_DEFAULT 14
#define LZ4_MEMORY_USAGE_MAX 20
/*!
* LZ4_MEMORY_USAGE :
* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; )
* Increasing memory usage improves compression ratio, at the cost of speed.
* Reduced memory usage may improve speed at the cost of ratio, thanks to better cache locality.
* Default value is 14, for 16KB, which nicely fits into Intel x86 L1 cache
*/
#ifndef LZ4_MEMORY_USAGE
# define LZ4_MEMORY_USAGE LZ4_MEMORY_USAGE_DEFAULT
#endif
#if (LZ4_MEMORY_USAGE < LZ4_MEMORY_USAGE_MIN)
# error "LZ4_MEMORY_USAGE is too small !"
#endif
#if (LZ4_MEMORY_USAGE > LZ4_MEMORY_USAGE_MAX)
# error "LZ4_MEMORY_USAGE is too large !"
#endif
/*-************************************
* Simple Functions
**************************************/
/*! LZ4_compress_default() :
* Compresses 'srcSize' bytes from buffer 'src'
* into already allocated 'dst' buffer of size 'dstCapacity'.
* Compression is guaranteed to succeed if 'dstCapacity' >= LZ4_compressBound(srcSize).
* It also runs faster, so it's a recommended setting.
* If the function cannot compress 'src' into a more limited 'dst' budget,
* compression stops *immediately*, and the function result is zero.
* In which case, 'dst' content is undefined (invalid).
* srcSize : max supported value is LZ4_MAX_INPUT_SIZE.
* dstCapacity : size of buffer 'dst' (which must be already allocated)
* @return : the number of bytes written into buffer 'dst' (necessarily <= dstCapacity)
* or 0 if compression fails
* Note : This function is protected against buffer overflow scenarios (never writes outside 'dst' buffer, nor read outside 'source' buffer).
*/
LZ4LIB_API int LZ4_compress_default(const char* src, char* dst, int srcSize, int dstCapacity);
/*! LZ4_decompress_safe() :
* @compressedSize : is the exact complete size of the compressed block.
* @dstCapacity : is the size of destination buffer (which must be already allocated),
* is an upper bound of decompressed size.
* @return : the number of bytes decompressed into destination buffer (necessarily <= dstCapacity)
* If destination buffer is not large enough, decoding will stop and output an error code (negative value).
* If the source stream is detected malformed, the function will stop decoding and return a negative result.
* Note 1 : This function is protected against malicious data packets :
* it will never writes outside 'dst' buffer, nor read outside 'source' buffer,
* even if the compressed block is maliciously modified to order the decoder to do these actions.
* In such case, the decoder stops immediately, and considers the compressed block malformed.
* Note 2 : compressedSize and dstCapacity must be provided to the function, the compressed block does not contain them.
* The implementation is free to send / store / derive this information in whichever way is most beneficial.
* If there is a need for a different format which bundles together both compressed data and its metadata, consider looking at lz4frame.h instead.
*/
LZ4LIB_API int LZ4_decompress_safe (const char* src, char* dst, int compressedSize, int dstCapacity);
/*-************************************
* Advanced Functions
**************************************/
#define LZ4_MAX_INPUT_SIZE 0x7E000000 /* 2 113 929 216 bytes */
#define LZ4_COMPRESSBOUND(isize) ((unsigned)(isize) > (unsigned)LZ4_MAX_INPUT_SIZE ? 0 : (isize) + ((isize)/255) + 16)
/*! LZ4_compressBound() :
Provides the maximum size that LZ4 compression may output in a "worst case" scenario (input data not compressible)
This function is primarily useful for memory allocation purposes (destination buffer size).
Macro LZ4_COMPRESSBOUND() is also provided for compilation-time evaluation (stack memory allocation for example).
Note that LZ4_compress_default() compresses faster when dstCapacity is >= LZ4_compressBound(srcSize)
inputSize : max supported value is LZ4_MAX_INPUT_SIZE
return : maximum output size in a "worst case" scenario
or 0, if input size is incorrect (too large or negative)
*/
LZ4LIB_API int LZ4_compressBound(int inputSize);
/*! LZ4_compress_fast() :
Same as LZ4_compress_default(), but allows selection of "acceleration" factor.
The larger the acceleration value, the faster the algorithm, but also the lesser the compression.
It's a trade-off. It can be fine tuned, with each successive value providing roughly +~3% to speed.
An acceleration value of "1" is the same as regular LZ4_compress_default()
Values <= 0 will be replaced by LZ4_ACCELERATION_DEFAULT (currently == 1, see lz4.c).
Values > LZ4_ACCELERATION_MAX will be replaced by LZ4_ACCELERATION_MAX (currently == 65537, see lz4.c).
*/
LZ4LIB_API int LZ4_compress_fast (const char* src, char* dst, int srcSize, int dstCapacity, int acceleration);
/*! LZ4_compress_fast_extState() :
* Same as LZ4_compress_fast(), using an externally allocated memory space for its state.
* Use LZ4_sizeofState() to know how much memory must be allocated,
* and allocate it on 8-bytes boundaries (using `malloc()` typically).
* Then, provide this buffer as `void* state` to compression function.
*/
LZ4LIB_API int LZ4_sizeofState(void);
LZ4LIB_API int LZ4_compress_fast_extState (void* state, const char* src, char* dst, int srcSize, int dstCapacity, int acceleration);
/*! LZ4_compress_destSize() :
* Reverse the logic : compresses as much data as possible from 'src' buffer
* into already allocated buffer 'dst', of size >= 'targetDestSize'.
* This function either compresses the entire 'src' content into 'dst' if it's large enough,
* or fill 'dst' buffer completely with as much data as possible from 'src'.
* note: acceleration parameter is fixed to "default".
*
* *srcSizePtr : will be modified to indicate how many bytes where read from 'src' to fill 'dst'.
* New value is necessarily <= input value.
* @return : Nb bytes written into 'dst' (necessarily <= targetDestSize)
* or 0 if compression fails.
*
* Note : from v1.8.2 to v1.9.1, this function had a bug (fixed un v1.9.2+):
* the produced compressed content could, in specific circumstances,
* require to be decompressed into a destination buffer larger
* by at least 1 byte than the content to decompress.
* If an application uses `LZ4_compress_destSize()`,
* it's highly recommended to update liblz4 to v1.9.2 or better.
* If this can't be done or ensured,
* the receiving decompression function should provide
* a dstCapacity which is > decompressedSize, by at least 1 byte.
* See https://github.com/lz4/lz4/issues/859 for details
*/
LZ4LIB_API int LZ4_compress_destSize (const char* src, char* dst, int* srcSizePtr, int targetDstSize);
/*! LZ4_decompress_safe_partial() :
* Decompress an LZ4 compressed block, of size 'srcSize' at position 'src',
* into destination buffer 'dst' of size 'dstCapacity'.
* Up to 'targetOutputSize' bytes will be decoded.
* The function stops decoding on reaching this objective.
* This can be useful to boost performance
* whenever only the beginning of a block is required.
*
* @return : the number of bytes decoded in `dst` (necessarily <= targetOutputSize)
* If source stream is detected malformed, function returns a negative result.
*
* Note 1 : @return can be < targetOutputSize, if compressed block contains less data.
*
* Note 2 : targetOutputSize must be <= dstCapacity
*
* Note 3 : this function effectively stops decoding on reaching targetOutputSize,
* so dstCapacity is kind of redundant.
* This is because in older versions of this function,
* decoding operation would still write complete sequences.
* Therefore, there was no guarantee that it would stop writing at exactly targetOutputSize,
* it could write more bytes, though only up to dstCapacity.
* Some "margin" used to be required for this operation to work properly.
* Thankfully, this is no longer necessary.
* The function nonetheless keeps the same signature, in an effort to preserve API compatibility.
*
* Note 4 : If srcSize is the exact size of the block,
* then targetOutputSize can be any value,
* including larger than the block's decompressed size.
* The function will, at most, generate block's decompressed size.
*
* Note 5 : If srcSize is _larger_ than block's compressed size,
* then targetOutputSize **MUST** be <= block's decompressed size.
* Otherwise, *silent corruption will occur*.
*/
LZ4LIB_API int LZ4_decompress_safe_partial (const char* src, char* dst, int srcSize, int targetOutputSize, int dstCapacity);
/*-*********************************************
* Streaming Compression Functions
***********************************************/
typedef union LZ4_stream_u LZ4_stream_t; /* incomplete type (defined later) */
/**
Note about RC_INVOKED
- RC_INVOKED is predefined symbol of rc.exe (the resource compiler which is part of MSVC/Visual Studio).
https://docs.microsoft.com/en-us/windows/win32/menurc/predefined-macros
- Since rc.exe is a legacy compiler, it truncates long symbol (> 30 chars)
and reports warning "RC4011: identifier truncated".
- To eliminate the warning, we surround long preprocessor symbol with
"#if !defined(RC_INVOKED) ... #endif" block that means
"skip this block when rc.exe is trying to read it".
*/
#if !defined(RC_INVOKED) /* https://docs.microsoft.com/en-us/windows/win32/menurc/predefined-macros */
#if !defined(LZ4_STATIC_LINKING_ONLY_DISABLE_MEMORY_ALLOCATION)
LZ4LIB_API LZ4_stream_t* LZ4_createStream(void);
LZ4LIB_API int LZ4_freeStream (LZ4_stream_t* streamPtr);
#endif /* !defined(LZ4_STATIC_LINKING_ONLY_DISABLE_MEMORY_ALLOCATION) */
#endif
/*! LZ4_resetStream_fast() : v1.9.0+
* Use this to prepare an LZ4_stream_t for a new chain of dependent blocks
* (e.g., LZ4_compress_fast_continue()).
*
* An LZ4_stream_t must be initialized once before usage.
* This is automatically done when created by LZ4_createStream().
* However, should the LZ4_stream_t be simply declared on stack (for example),
* it's necessary to initialize it first, using LZ4_initStream().
*
* After init, start any new stream with LZ4_resetStream_fast().
* A same LZ4_stream_t can be re-used multiple times consecutively
* and compress multiple streams,
* provided that it starts each new stream with LZ4_resetStream_fast().
*
* LZ4_resetStream_fast() is much faster than LZ4_initStream(),
* but is not compatible with memory regions containing garbage data.
*
* Note: it's only useful to call LZ4_resetStream_fast()
* in the context of streaming compression.
* The *extState* functions perform their own resets.
* Invoking LZ4_resetStream_fast() before is redundant, and even counterproductive.
*/
LZ4LIB_API void LZ4_resetStream_fast (LZ4_stream_t* streamPtr);
/*! LZ4_loadDict() :
* Use this function to reference a static dictionary into LZ4_stream_t.
* The dictionary must remain available during compression.
* LZ4_loadDict() triggers a reset, so any previous data will be forgotten.
* The same dictionary will have to be loaded on decompression side for successful decoding.
* Dictionary are useful for better compression of small data (KB range).
* While LZ4 accept any input as dictionary,
* results are generally better when using Zstandard's Dictionary Builder.
* Loading a size of 0 is allowed, and is the same as reset.
* @return : loaded dictionary size, in bytes (necessarily <= 64 KB)
*/
LZ4LIB_API int LZ4_loadDict (LZ4_stream_t* streamPtr, const char* dictionary, int dictSize);
/*! LZ4_compress_fast_continue() :
* Compress 'src' content using data from previously compressed blocks, for better compression ratio.
* 'dst' buffer must be already allocated.
* If dstCapacity >= LZ4_compressBound(srcSize), compression is guaranteed to succeed, and runs faster.
*
* @return : size of compressed block
* or 0 if there is an error (typically, cannot fit into 'dst').
*
* Note 1 : Each invocation to LZ4_compress_fast_continue() generates a new block.
* Each block has precise boundaries.
* Each block must be decompressed separately, calling LZ4_decompress_*() with relevant metadata.
* It's not possible to append blocks together and expect a single invocation of LZ4_decompress_*() to decompress them together.
*
* Note 2 : The previous 64KB of source data is __assumed__ to remain present, unmodified, at same address in memory !
*
* Note 3 : When input is structured as a double-buffer, each buffer can have any size, including < 64 KB.
* Make sure that buffers are separated, by at least one byte.
* This construction ensures that each block only depends on previous block.
*
* Note 4 : If input buffer is a ring-buffer, it can have any size, including < 64 KB.
*
* Note 5 : After an error, the stream status is undefined (invalid), it can only be reset or freed.
*/
LZ4LIB_API int LZ4_compress_fast_continue (LZ4_stream_t* streamPtr, const char* src, char* dst, int srcSize, int dstCapacity, int acceleration);
/*! LZ4_saveDict() :
* If last 64KB data cannot be guaranteed to remain available at its current memory location,
* save it into a safer place (char* safeBuffer).
* This is schematically equivalent to a memcpy() followed by LZ4_loadDict(),
* but is much faster, because LZ4_saveDict() doesn't need to rebuild tables.
* @return : saved dictionary size in bytes (necessarily <= maxDictSize), or 0 if error.
*/
LZ4LIB_API int LZ4_saveDict (LZ4_stream_t* streamPtr, char* safeBuffer, int maxDictSize);
/*-**********************************************
* Streaming Decompression Functions
* Bufferless synchronous API
************************************************/
typedef union LZ4_streamDecode_u LZ4_streamDecode_t; /* tracking context */
/*! LZ4_createStreamDecode() and LZ4_freeStreamDecode() :
* creation / destruction of streaming decompression tracking context.
* A tracking context can be re-used multiple times.
*/
#if !defined(RC_INVOKED) /* https://docs.microsoft.com/en-us/windows/win32/menurc/predefined-macros */
#if !defined(LZ4_STATIC_LINKING_ONLY_DISABLE_MEMORY_ALLOCATION)
LZ4LIB_API LZ4_streamDecode_t* LZ4_createStreamDecode(void);
LZ4LIB_API int LZ4_freeStreamDecode (LZ4_streamDecode_t* LZ4_stream);
#endif /* !defined(LZ4_STATIC_LINKING_ONLY_DISABLE_MEMORY_ALLOCATION) */
#endif
/*! LZ4_setStreamDecode() :
* An LZ4_streamDecode_t context can be allocated once and re-used multiple times.
* Use this function to start decompression of a new stream of blocks.
* A dictionary can optionally be set. Use NULL or size 0 for a reset order.
* Dictionary is presumed stable : it must remain accessible and unmodified during next decompression.
* @return : 1 if OK, 0 if error
*/
LZ4LIB_API int LZ4_setStreamDecode (LZ4_streamDecode_t* LZ4_streamDecode, const char* dictionary, int dictSize);
/*! LZ4_decoderRingBufferSize() : v1.8.2+
* Note : in a ring buffer scenario (optional),
* blocks are presumed decompressed next to each other
* up to the moment there is not enough remaining space for next block (remainingSize < maxBlockSize),
* at which stage it resumes from beginning of ring buffer.
* When setting such a ring buffer for streaming decompression,
* provides the minimum size of this ring buffer
* to be compatible with any source respecting maxBlockSize condition.
* @return : minimum ring buffer size,
* or 0 if there is an error (invalid maxBlockSize).
*/
LZ4LIB_API int LZ4_decoderRingBufferSize(int maxBlockSize);
#define LZ4_DECODER_RING_BUFFER_SIZE(maxBlockSize) (65536 + 14 + (maxBlockSize)) /* for static allocation; maxBlockSize presumed valid */
/*! LZ4_decompress_safe_continue() :
* This decoding function allows decompression of consecutive blocks in "streaming" mode.
* The difference with the usual independent blocks is that
* new blocks are allowed to find references into former blocks.
* A block is an unsplittable entity, and must be presented entirely to the decompression function.
* LZ4_decompress_safe_continue() only accepts one block at a time.
* It's modeled after `LZ4_decompress_safe()` and behaves similarly.
*
* @LZ4_streamDecode : decompression state, tracking the position in memory of past data
* @compressedSize : exact complete size of one compressed block.
* @dstCapacity : size of destination buffer (which must be already allocated),
* must be an upper bound of decompressed size.
* @return : number of bytes decompressed into destination buffer (necessarily <= dstCapacity)
* If destination buffer is not large enough, decoding will stop and output an error code (negative value).
* If the source stream is detected malformed, the function will stop decoding and return a negative result.
*
* The last 64KB of previously decoded data *must* remain available and unmodified
* at the memory position where they were previously decoded.
* If less than 64KB of data has been decoded, all the data must be present.
*
* Special : if decompression side sets a ring buffer, it must respect one of the following conditions :
* - Decompression buffer size is _at least_ LZ4_decoderRingBufferSize(maxBlockSize).
* maxBlockSize is the maximum size of any single block. It can have any value > 16 bytes.
* In which case, encoding and decoding buffers do not need to be synchronized.
* Actually, data can be produced by any source compliant with LZ4 format specification, and respecting maxBlockSize.
* - Synchronized mode :
* Decompression buffer size is _exactly_ the same as compression buffer size,
* and follows exactly same update rule (block boundaries at same positions),
* and decoding function is provided with exact decompressed size of each block (exception for last block of the stream),
* _then_ decoding & encoding ring buffer can have any size, including small ones ( < 64 KB).
* - Decompression buffer is larger than encoding buffer, by a minimum of maxBlockSize more bytes.
* In which case, encoding and decoding buffers do not need to be synchronized,
* and encoding ring buffer can have any size, including small ones ( < 64 KB).
*
* Whenever these conditions are not possible,
* save the last 64KB of decoded data into a safe buffer where it can't be modified during decompression,
* then indicate where this data is saved using LZ4_setStreamDecode(), before decompressing next block.
*/
LZ4LIB_API int
LZ4_decompress_safe_continue (LZ4_streamDecode_t* LZ4_streamDecode,
const char* src, char* dst,
int srcSize, int dstCapacity);
/*! LZ4_decompress_safe_usingDict() :
* Works the same as
* a combination of LZ4_setStreamDecode() followed by LZ4_decompress_safe_continue()
* However, it's stateless: it doesn't need any LZ4_streamDecode_t state.
* Dictionary is presumed stable : it must remain accessible and unmodified during decompression.
* Performance tip : Decompression speed can be substantially increased
* when dst == dictStart + dictSize.
*/
LZ4LIB_API int
LZ4_decompress_safe_usingDict(const char* src, char* dst,
int srcSize, int dstCapacity,
const char* dictStart, int dictSize);
/*! LZ4_decompress_safe_partial_usingDict() :
* Behaves the same as LZ4_decompress_safe_partial()
* with the added ability to specify a memory segment for past data.
* Performance tip : Decompression speed can be substantially increased
* when dst == dictStart + dictSize.
*/
LZ4LIB_API int
LZ4_decompress_safe_partial_usingDict(const char* src, char* dst,
int compressedSize,
int targetOutputSize, int maxOutputSize,
const char* dictStart, int dictSize);
#endif /* LZ4_H_2983827168210 */
/*^*************************************
* !!!!!! STATIC LINKING ONLY !!!!!!
***************************************/
/*-****************************************************************************
* Experimental section
*
* Symbols declared in this section must be considered unstable. Their
* signatures or semantics may change, or they may be removed altogether in the
* future. They are therefore only safe to depend on when the caller is
* statically linked against the library.
*
* To protect against unsafe usage, not only are the declarations guarded,
* the definitions are hidden by default
* when building LZ4 as a shared/dynamic library.
*
* In order to access these declarations,
* define LZ4_STATIC_LINKING_ONLY in your application
* before including LZ4's headers.
*
* In order to make their implementations accessible dynamically, you must
* define LZ4_PUBLISH_STATIC_FUNCTIONS when building the LZ4 library.
******************************************************************************/
#ifdef LZ4_STATIC_LINKING_ONLY
#ifndef LZ4_STATIC_3504398509
#define LZ4_STATIC_3504398509
#ifdef LZ4_PUBLISH_STATIC_FUNCTIONS
#define LZ4LIB_STATIC_API LZ4LIB_API
#else
#define LZ4LIB_STATIC_API
#endif
/*! LZ4_compress_fast_extState_fastReset() :
* A variant of LZ4_compress_fast_extState().
*
* Using this variant avoids an expensive initialization step.
* It is only safe to call if the state buffer is known to be correctly initialized already
* (see above comment on LZ4_resetStream_fast() for a definition of "correctly initialized").
* From a high level, the difference is that
* this function initializes the provided state with a call to something like LZ4_resetStream_fast()
* while LZ4_compress_fast_extState() starts with a call to LZ4_resetStream().
*/
LZ4LIB_STATIC_API int LZ4_compress_fast_extState_fastReset (void* state, const char* src, char* dst, int srcSize, int dstCapacity, int acceleration);
/*! LZ4_attach_dictionary() :
* This is an experimental API that allows
* efficient use of a static dictionary many times.
*
* Rather than re-loading the dictionary buffer into a working context before
* each compression, or copying a pre-loaded dictionary's LZ4_stream_t into a
* working LZ4_stream_t, this function introduces a no-copy setup mechanism,
* in which the working stream references the dictionary stream in-place.
*
* Several assumptions are made about the state of the dictionary stream.
* Currently, only streams which have been prepared by LZ4_loadDict() should
* be expected to work.
*
* Alternatively, the provided dictionaryStream may be NULL,
* in which case any existing dictionary stream is unset.
*
* If a dictionary is provided, it replaces any pre-existing stream history.
* The dictionary contents are the only history that can be referenced and
* logically immediately precede the data compressed in the first subsequent
* compression call.
*
* The dictionary will only remain attached to the working stream through the
* first compression call, at the end of which it is cleared. The dictionary
* stream (and source buffer) must remain in-place / accessible / unchanged
* through the completion of the first compression call on the stream.
*/
LZ4LIB_STATIC_API void
LZ4_attach_dictionary(LZ4_stream_t* workingStream,
const LZ4_stream_t* dictionaryStream);
/*! In-place compression and decompression
*
* It's possible to have input and output sharing the same buffer,
* for highly constrained memory environments.
* In both cases, it requires input to lay at the end of the buffer,
* and decompression to start at beginning of the buffer.
* Buffer size must feature some margin, hence be larger than final size.
*
* |<------------------------buffer--------------------------------->|
* |<-----------compressed data--------->|
* |<-----------decompressed size------------------>|
* |<----margin---->|
*
* This technique is more useful for decompression,
* since decompressed size is typically larger,
* and margin is short.
*
* In-place decompression will work inside any buffer
* which size is >= LZ4_DECOMPRESS_INPLACE_BUFFER_SIZE(decompressedSize).
* This presumes that decompressedSize > compressedSize.
* Otherwise, it means compression actually expanded data,
* and it would be more efficient to store such data with a flag indicating it's not compressed.
* This can happen when data is not compressible (already compressed, or encrypted).
*
* For in-place compression, margin is larger, as it must be able to cope with both
* history preservation, requiring input data to remain unmodified up to LZ4_DISTANCE_MAX,
* and data expansion, which can happen when input is not compressible.
* As a consequence, buffer size requirements are much higher,
* and memory savings offered by in-place compression are more limited.
*
* There are ways to limit this cost for compression :
* - Reduce history size, by modifying LZ4_DISTANCE_MAX.
* Note that it is a compile-time constant, so all compressions will apply this limit.
* Lower values will reduce compression ratio, except when input_size < LZ4_DISTANCE_MAX,
* so it's a reasonable trick when inputs are known to be small.
* - Require the compressor to deliver a "maximum compressed size".
* This is the `dstCapacity` parameter in `LZ4_compress*()`.
* When this size is < LZ4_COMPRESSBOUND(inputSize), then compression can fail,
* in which case, the return code will be 0 (zero).
* The caller must be ready for these cases to happen,
* and typically design a backup scheme to send data uncompressed.
* The combination of both techniques can significantly reduce
* the amount of margin required for in-place compression.
*
* In-place compression can work in any buffer
* which size is >= (maxCompressedSize)
* with maxCompressedSize == LZ4_COMPRESSBOUND(srcSize) for guaranteed compression success.
* LZ4_COMPRESS_INPLACE_BUFFER_SIZE() depends on both maxCompressedSize and LZ4_DISTANCE_MAX,
* so it's possible to reduce memory requirements by playing with them.
*/
#define LZ4_DECOMPRESS_INPLACE_MARGIN(compressedSize) (((compressedSize) >> 8) + 32)
#define LZ4_DECOMPRESS_INPLACE_BUFFER_SIZE(decompressedSize) ((decompressedSize) + LZ4_DECOMPRESS_INPLACE_MARGIN(decompressedSize)) /**< note: presumes that compressedSize < decompressedSize. note2: margin is overestimated a bit, since it could use compressedSize instead */
#ifndef LZ4_DISTANCE_MAX /* history window size; can be user-defined at compile time */
# define LZ4_DISTANCE_MAX 65535 /* set to maximum value by default */
#endif
#define LZ4_COMPRESS_INPLACE_MARGIN (LZ4_DISTANCE_MAX + 32) /* LZ4_DISTANCE_MAX can be safely replaced by srcSize when it's smaller */
#define LZ4_COMPRESS_INPLACE_BUFFER_SIZE(maxCompressedSize) ((maxCompressedSize) + LZ4_COMPRESS_INPLACE_MARGIN) /**< maxCompressedSize is generally LZ4_COMPRESSBOUND(inputSize), but can be set to any lower value, with the risk that compression can fail (return code 0(zero)) */
#endif /* LZ4_STATIC_3504398509 */
#endif /* LZ4_STATIC_LINKING_ONLY */
#ifndef LZ4_H_98237428734687
#define LZ4_H_98237428734687
/*-************************************************************
* Private Definitions
**************************************************************
* Do not use these definitions directly.
* They are only exposed to allow static allocation of `LZ4_stream_t` and `LZ4_streamDecode_t`.
* Accessing members will expose user code to API and/or ABI break in future versions of the library.
**************************************************************/
#define LZ4_HASHLOG (LZ4_MEMORY_USAGE-2)
#define LZ4_HASHTABLESIZE (1 << LZ4_MEMORY_USAGE)
#define LZ4_HASH_SIZE_U32 (1 << LZ4_HASHLOG) /* required as macro for static allocation */
#if defined(__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
# include <stdint.h>
typedef int8_t LZ4_i8;
typedef uint8_t LZ4_byte;
typedef uint16_t LZ4_u16;
typedef uint32_t LZ4_u32;
#else
typedef signed char LZ4_i8;
typedef unsigned char LZ4_byte;
typedef unsigned short LZ4_u16;
typedef unsigned int LZ4_u32;
#endif
/*! LZ4_stream_t :
* Never ever use below internal definitions directly !
* These definitions are not API/ABI safe, and may change in future versions.
* If you need static allocation, declare or allocate an LZ4_stream_t object.
**/
typedef struct LZ4_stream_t_internal LZ4_stream_t_internal;
struct LZ4_stream_t_internal {
LZ4_u32 hashTable[LZ4_HASH_SIZE_U32];
const LZ4_byte* dictionary;
const LZ4_stream_t_internal* dictCtx;
LZ4_u32 currentOffset;
LZ4_u32 tableType;
LZ4_u32 dictSize;
/* Implicit padding to ensure structure is aligned */
};
#define LZ4_STREAM_MINSIZE ((1UL << LZ4_MEMORY_USAGE) + 32) /* static size, for inter-version compatibility */
union LZ4_stream_u {
char minStateSize[LZ4_STREAM_MINSIZE];
LZ4_stream_t_internal internal_donotuse;
}; /* previously typedef'd to LZ4_stream_t */
/*! LZ4_initStream() : v1.9.0+
* An LZ4_stream_t structure must be initialized at least once.
* This is automatically done when invoking LZ4_createStream(),
* but it's not when the structure is simply declared on stack (for example).
*
* Use LZ4_initStream() to properly initialize a newly declared LZ4_stream_t.
* It can also initialize any arbitrary buffer of sufficient size,
* and will @return a pointer of proper type upon initialization.
*
* Note : initialization fails if size and alignment conditions are not respected.
* In which case, the function will @return NULL.
* Note2: An LZ4_stream_t structure guarantees correct alignment and size.
* Note3: Before v1.9.0, use LZ4_resetStream() instead
**/
LZ4LIB_API LZ4_stream_t* LZ4_initStream (void* buffer, size_t size);
/*! LZ4_streamDecode_t :
* Never ever use below internal definitions directly !
* These definitions are not API/ABI safe, and may change in future versions.
* If you need static allocation, declare or allocate an LZ4_streamDecode_t object.
**/
typedef struct {
const LZ4_byte* externalDict;
const LZ4_byte* prefixEnd;
size_t extDictSize;
size_t prefixSize;
} LZ4_streamDecode_t_internal;
#define LZ4_STREAMDECODE_MINSIZE 32
union LZ4_streamDecode_u {
char minStateSize[LZ4_STREAMDECODE_MINSIZE];
LZ4_streamDecode_t_internal internal_donotuse;
} ; /* previously typedef'd to LZ4_streamDecode_t */
/*-************************************
* Obsolete Functions
**************************************/
/*! Deprecation warnings
*
* Deprecated functions make the compiler generate a warning when invoked.
* This is meant to invite users to update their source code.
* Should deprecation warnings be a problem, it is generally possible to disable them,
* typically with -Wno-deprecated-declarations for gcc
* or _CRT_SECURE_NO_WARNINGS in Visual.
*
* Another method is to define LZ4_DISABLE_DEPRECATE_WARNINGS
* before including the header file.
*/
#ifdef LZ4_DISABLE_DEPRECATE_WARNINGS
# define LZ4_DEPRECATED(message) /* disable deprecation warnings */
#else
# if defined (__cplusplus) && (__cplusplus >= 201402) /* C++14 or greater */
# define LZ4_DEPRECATED(message) [[deprecated(message)]]
# elif defined(_MSC_VER)
# define LZ4_DEPRECATED(message) __declspec(deprecated(message))
# elif defined(__clang__) || (defined(__GNUC__) && (__GNUC__ * 10 + __GNUC_MINOR__ >= 45))
# define LZ4_DEPRECATED(message) __attribute__((deprecated(message)))
# elif defined(__GNUC__) && (__GNUC__ * 10 + __GNUC_MINOR__ >= 31)
# define LZ4_DEPRECATED(message) __attribute__((deprecated))
# else
# pragma message("WARNING: LZ4_DEPRECATED needs custom implementation for this compiler")
# define LZ4_DEPRECATED(message) /* disabled */
# endif
#endif /* LZ4_DISABLE_DEPRECATE_WARNINGS */
/*! Obsolete compression functions (since v1.7.3) */
LZ4_DEPRECATED("use LZ4_compress_default() instead") LZ4LIB_API int LZ4_compress (const char* src, char* dest, int srcSize);
LZ4_DEPRECATED("use LZ4_compress_default() instead") LZ4LIB_API int LZ4_compress_limitedOutput (const char* src, char* dest, int srcSize, int maxOutputSize);
LZ4_DEPRECATED("use LZ4_compress_fast_extState() instead") LZ4LIB_API int LZ4_compress_withState (void* state, const char* source, char* dest, int inputSize);
LZ4_DEPRECATED("use LZ4_compress_fast_extState() instead") LZ4LIB_API int LZ4_compress_limitedOutput_withState (void* state, const char* source, char* dest, int inputSize, int maxOutputSize);
LZ4_DEPRECATED("use LZ4_compress_fast_continue() instead") LZ4LIB_API int LZ4_compress_continue (LZ4_stream_t* LZ4_streamPtr, const char* source, char* dest, int inputSize);
LZ4_DEPRECATED("use LZ4_compress_fast_continue() instead") LZ4LIB_API int LZ4_compress_limitedOutput_continue (LZ4_stream_t* LZ4_streamPtr, const char* source, char* dest, int inputSize, int maxOutputSize);
/*! Obsolete decompression functions (since v1.8.0) */
LZ4_DEPRECATED("use LZ4_decompress_fast() instead") LZ4LIB_API int LZ4_uncompress (const char* source, char* dest, int outputSize);
LZ4_DEPRECATED("use LZ4_decompress_safe() instead") LZ4LIB_API int LZ4_uncompress_unknownOutputSize (const char* source, char* dest, int isize, int maxOutputSize);
/* Obsolete streaming functions (since v1.7.0)
* degraded functionality; do not use!
*
* In order to perform streaming compression, these functions depended on data
* that is no longer tracked in the state. They have been preserved as well as
* possible: using them will still produce a correct output. However, they don't
* actually retain any history between compression calls. The compression ratio
* achieved will therefore be no better than compressing each chunk
* independently.
*/
LZ4_DEPRECATED("Use LZ4_createStream() instead") LZ4LIB_API void* LZ4_create (char* inputBuffer);
LZ4_DEPRECATED("Use LZ4_createStream() instead") LZ4LIB_API int LZ4_sizeofStreamState(void);
LZ4_DEPRECATED("Use LZ4_resetStream() instead") LZ4LIB_API int LZ4_resetStreamState(void* state, char* inputBuffer);
LZ4_DEPRECATED("Use LZ4_saveDict() instead") LZ4LIB_API char* LZ4_slideInputBuffer (void* state);
/*! Obsolete streaming decoding functions (since v1.7.0) */
LZ4_DEPRECATED("use LZ4_decompress_safe_usingDict() instead") LZ4LIB_API int LZ4_decompress_safe_withPrefix64k (const char* src, char* dst, int compressedSize, int maxDstSize);
LZ4_DEPRECATED("use LZ4_decompress_fast_usingDict() instead") LZ4LIB_API int LZ4_decompress_fast_withPrefix64k (const char* src, char* dst, int originalSize);
/*! Obsolete LZ4_decompress_fast variants (since v1.9.0) :
* These functions used to be faster than LZ4_decompress_safe(),
* but this is no longer the case. They are now slower.
* This is because LZ4_decompress_fast() doesn't know the input size,
* and therefore must progress more cautiously into the input buffer to not read beyond the end of block.
* On top of that `LZ4_decompress_fast()` is not protected vs malformed or malicious inputs, making it a security liability.
* As a consequence, LZ4_decompress_fast() is strongly discouraged, and deprecated.
*
* The last remaining LZ4_decompress_fast() specificity is that
* it can decompress a block without knowing its compressed size.
* Such functionality can be achieved in a more secure manner
* by employing LZ4_decompress_safe_partial().
*
* Parameters:
* originalSize : is the uncompressed size to regenerate.
* `dst` must be already allocated, its size must be >= 'originalSize' bytes.
* @return : number of bytes read from source buffer (== compressed size).
* The function expects to finish at block's end exactly.
* If the source stream is detected malformed, the function stops decoding and returns a negative result.
* note : LZ4_decompress_fast*() requires originalSize. Thanks to this information, it never writes past the output buffer.
* However, since it doesn't know its 'src' size, it may read an unknown amount of input, past input buffer bounds.
* Also, since match offsets are not validated, match reads from 'src' may underflow too.
* These issues never happen if input (compressed) data is correct.
* But they may happen if input data is invalid (error or intentional tampering).
* As a consequence, use these functions in trusted environments with trusted data **only**.
*/
LZ4_DEPRECATED("This function is deprecated and unsafe. Consider using LZ4_decompress_safe() instead")
LZ4LIB_API int LZ4_decompress_fast (const char* src, char* dst, int originalSize);
LZ4_DEPRECATED("This function is deprecated and unsafe. Consider using LZ4_decompress_safe_continue() instead")
LZ4LIB_API int LZ4_decompress_fast_continue (LZ4_streamDecode_t* LZ4_streamDecode, const char* src, char* dst, int originalSize);
LZ4_DEPRECATED("This function is deprecated and unsafe. Consider using LZ4_decompress_safe_usingDict() instead")
LZ4LIB_API int LZ4_decompress_fast_usingDict (const char* src, char* dst, int originalSize, const char* dictStart, int dictSize);
/*! LZ4_resetStream() :
* An LZ4_stream_t structure must be initialized at least once.
* This is done with LZ4_initStream(), or LZ4_resetStream().
* Consider switching to LZ4_initStream(),
* invoking LZ4_resetStream() will trigger deprecation warnings in the future.
*/
LZ4LIB_API void LZ4_resetStream (LZ4_stream_t* streamPtr);
#endif /* LZ4_H_98237428734687 */
#if defined (__cplusplus)
}
#endif

View File

@ -1,311 +0,0 @@
/*
* LZ4 file library
* Copyright (C) 2022, Xiaomi Inc.
*
* BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You can contact the author at :
* - LZ4 homepage : http://www.lz4.org
* - LZ4 source repository : https://github.com/lz4/lz4
*/
#include <stdlib.h>
#include <string.h>
#include "lz4.h"
#include "lz4file.h"
struct LZ4_readFile_s {
LZ4F_dctx* dctxPtr;
FILE* fp;
LZ4_byte* srcBuf;
size_t srcBufNext;
size_t srcBufSize;
size_t srcBufMaxSize;
};
struct LZ4_writeFile_s {
LZ4F_cctx* cctxPtr;
FILE* fp;
LZ4_byte* dstBuf;
size_t maxWriteSize;
size_t dstBufMaxSize;
LZ4F_errorCode_t errCode;
};
LZ4F_errorCode_t LZ4F_readOpen(LZ4_readFile_t** lz4fRead, FILE* fp)
{
char buf[LZ4F_HEADER_SIZE_MAX];
size_t consumedSize;
LZ4F_errorCode_t ret;
LZ4F_frameInfo_t info;
if (fp == NULL || lz4fRead == NULL) {
return -LZ4F_ERROR_GENERIC;
}
*lz4fRead = (LZ4_readFile_t*)calloc(1, sizeof(LZ4_readFile_t));
if (*lz4fRead == NULL) {
return -LZ4F_ERROR_allocation_failed;
}
ret = LZ4F_createDecompressionContext(&(*lz4fRead)->dctxPtr, LZ4F_getVersion());
if (LZ4F_isError(ret)) {
free(*lz4fRead);
return ret;
}
(*lz4fRead)->fp = fp;
consumedSize = fread(buf, 1, sizeof(buf), (*lz4fRead)->fp);
if (consumedSize != sizeof(buf)) {
free(*lz4fRead);
return -LZ4F_ERROR_GENERIC;
}
ret = LZ4F_getFrameInfo((*lz4fRead)->dctxPtr, &info, buf, &consumedSize);
if (LZ4F_isError(ret)) {
LZ4F_freeDecompressionContext((*lz4fRead)->dctxPtr);
free(*lz4fRead);
return ret;
}
switch (info.blockSizeID) {
case LZ4F_default :
case LZ4F_max64KB :
(*lz4fRead)->srcBufMaxSize = 64 * 1024;
break;
case LZ4F_max256KB:
(*lz4fRead)->srcBufMaxSize = 256 * 1024;
break;
case LZ4F_max1MB:
(*lz4fRead)->srcBufMaxSize = 1 * 1024 * 1024;
break;
case LZ4F_max4MB:
(*lz4fRead)->srcBufMaxSize = 4 * 1024 * 1024;
break;
default:
LZ4F_freeDecompressionContext((*lz4fRead)->dctxPtr);
free(*lz4fRead);
return -LZ4F_ERROR_maxBlockSize_invalid;
}
(*lz4fRead)->srcBuf = (LZ4_byte*)malloc((*lz4fRead)->srcBufMaxSize);
if ((*lz4fRead)->srcBuf == NULL) {
LZ4F_freeDecompressionContext((*lz4fRead)->dctxPtr);
free(lz4fRead);
return -LZ4F_ERROR_allocation_failed;
}
(*lz4fRead)->srcBufSize = sizeof(buf) - consumedSize;
memcpy((*lz4fRead)->srcBuf, buf + consumedSize, (*lz4fRead)->srcBufSize);
return ret;
}
size_t LZ4F_read(LZ4_readFile_t* lz4fRead, void* buf, size_t size)
{
LZ4_byte* p = (LZ4_byte*)buf;
size_t next = 0;
if (lz4fRead == NULL || buf == NULL)
return -LZ4F_ERROR_GENERIC;
while (next < size) {
size_t srcsize = lz4fRead->srcBufSize - lz4fRead->srcBufNext;
size_t dstsize = size - next;
size_t ret;
if (srcsize == 0) {
ret = fread(lz4fRead->srcBuf, 1, lz4fRead->srcBufMaxSize, lz4fRead->fp);
if (ret > 0) {
lz4fRead->srcBufSize = ret;
srcsize = lz4fRead->srcBufSize;
lz4fRead->srcBufNext = 0;
}
else if (ret == 0) {
break;
}
else {
return -LZ4F_ERROR_GENERIC;
}
}
ret = LZ4F_decompress(lz4fRead->dctxPtr,
p, &dstsize,
lz4fRead->srcBuf + lz4fRead->srcBufNext,
&srcsize,
NULL);
if (LZ4F_isError(ret)) {
return ret;
}
lz4fRead->srcBufNext += srcsize;
next += dstsize;
p += dstsize;
}
return next;
}
LZ4F_errorCode_t LZ4F_readClose(LZ4_readFile_t* lz4fRead)
{
if (lz4fRead == NULL)
return -LZ4F_ERROR_GENERIC;
LZ4F_freeDecompressionContext(lz4fRead->dctxPtr);
free(lz4fRead->srcBuf);
free(lz4fRead);
return LZ4F_OK_NoError;
}
LZ4F_errorCode_t LZ4F_writeOpen(LZ4_writeFile_t** lz4fWrite, FILE* fp, const LZ4F_preferences_t* prefsPtr)
{
LZ4_byte buf[LZ4F_HEADER_SIZE_MAX];
size_t ret;
if (fp == NULL || lz4fWrite == NULL)
return -LZ4F_ERROR_GENERIC;
*lz4fWrite = (LZ4_writeFile_t*)malloc(sizeof(LZ4_writeFile_t));
if (*lz4fWrite == NULL) {
return -LZ4F_ERROR_allocation_failed;
}
if (prefsPtr != NULL) {
switch (prefsPtr->frameInfo.blockSizeID) {
case LZ4F_default :
case LZ4F_max64KB :
(*lz4fWrite)->maxWriteSize = 64 * 1024;
break;
case LZ4F_max256KB:
(*lz4fWrite)->maxWriteSize = 256 * 1024;
break;
case LZ4F_max1MB:
(*lz4fWrite)->maxWriteSize = 1 * 1024 * 1024;
break;
case LZ4F_max4MB:
(*lz4fWrite)->maxWriteSize = 4 * 1024 * 1024;
break;
default:
free(lz4fWrite);
return -LZ4F_ERROR_maxBlockSize_invalid;
}
} else {
(*lz4fWrite)->maxWriteSize = 64 * 1024;
}
(*lz4fWrite)->dstBufMaxSize = LZ4F_compressBound((*lz4fWrite)->maxWriteSize, prefsPtr);
(*lz4fWrite)->dstBuf = (LZ4_byte*)malloc((*lz4fWrite)->dstBufMaxSize);
if ((*lz4fWrite)->dstBuf == NULL) {
free(*lz4fWrite);
return -LZ4F_ERROR_allocation_failed;
}
ret = LZ4F_createCompressionContext(&(*lz4fWrite)->cctxPtr, LZ4F_getVersion());
if (LZ4F_isError(ret)) {
free((*lz4fWrite)->dstBuf);
free(*lz4fWrite);
return ret;
}
ret = LZ4F_compressBegin((*lz4fWrite)->cctxPtr, buf, LZ4F_HEADER_SIZE_MAX, prefsPtr);
if (LZ4F_isError(ret)) {
LZ4F_freeCompressionContext((*lz4fWrite)->cctxPtr);
free((*lz4fWrite)->dstBuf);
free(*lz4fWrite);
return ret;
}
if (ret != fwrite(buf, 1, ret, fp)) {
LZ4F_freeCompressionContext((*lz4fWrite)->cctxPtr);
free((*lz4fWrite)->dstBuf);
free(*lz4fWrite);
return -LZ4F_ERROR_GENERIC;
}
(*lz4fWrite)->fp = fp;
(*lz4fWrite)->errCode = LZ4F_OK_NoError;
return LZ4F_OK_NoError;
}
size_t LZ4F_write(LZ4_writeFile_t* lz4fWrite, const void* buf, size_t size)
{
const LZ4_byte* p = (const LZ4_byte*)buf;
size_t remain = size;
size_t chunk;
size_t ret;
if (lz4fWrite == NULL || buf == NULL)
return -LZ4F_ERROR_GENERIC;
while (remain) {
if (remain > lz4fWrite->maxWriteSize)
chunk = lz4fWrite->maxWriteSize;
else
chunk = remain;
ret = LZ4F_compressUpdate(lz4fWrite->cctxPtr,
lz4fWrite->dstBuf, lz4fWrite->dstBufMaxSize,
p, chunk,
NULL);
if (LZ4F_isError(ret)) {
lz4fWrite->errCode = ret;
return ret;
}
if(ret != fwrite(lz4fWrite->dstBuf, 1, ret, lz4fWrite->fp)) {
lz4fWrite->errCode = -LZ4F_ERROR_GENERIC;
return -LZ4F_ERROR_GENERIC;
}
p += chunk;
remain -= chunk;
}
return size;
}
LZ4F_errorCode_t LZ4F_writeClose(LZ4_writeFile_t* lz4fWrite)
{
LZ4F_errorCode_t ret = LZ4F_OK_NoError;
if (lz4fWrite == NULL)
return -LZ4F_ERROR_GENERIC;
if (lz4fWrite->errCode == LZ4F_OK_NoError) {
ret = LZ4F_compressEnd(lz4fWrite->cctxPtr,
lz4fWrite->dstBuf, lz4fWrite->dstBufMaxSize,
NULL);
if (LZ4F_isError(ret)) {
goto out;
}
if (ret != fwrite(lz4fWrite->dstBuf, 1, ret, lz4fWrite->fp)) {
ret = -LZ4F_ERROR_GENERIC;
}
}
out:
LZ4F_freeCompressionContext(lz4fWrite->cctxPtr);
free(lz4fWrite->dstBuf);
free(lz4fWrite);
return ret;
}

View File

@ -1,93 +0,0 @@
/*
LZ4 file library
Header File
Copyright (C) 2022, Xiaomi Inc.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- LZ4 source repository : https://github.com/lz4/lz4
- LZ4 public forum : https://groups.google.com/forum/#!forum/lz4c
*/
#if defined (__cplusplus)
extern "C" {
#endif
#ifndef LZ4FILE_H
#define LZ4FILE_H
#include <stdio.h>
#include "lz4frame_static.h"
typedef struct LZ4_readFile_s LZ4_readFile_t;
typedef struct LZ4_writeFile_s LZ4_writeFile_t;
/*! LZ4F_readOpen() :
* Set read lz4file handle.
* `lz4f` will set a lz4file handle.
* `fp` must be the return value of the lz4 file opened by fopen.
*/
LZ4FLIB_STATIC_API LZ4F_errorCode_t LZ4F_readOpen(LZ4_readFile_t** lz4fRead, FILE* fp);
/*! LZ4F_read() :
* Read lz4file content to buffer.
* `lz4f` must use LZ4_readOpen to set first.
* `buf` read data buffer.
* `size` read data buffer size.
*/
LZ4FLIB_STATIC_API size_t LZ4F_read(LZ4_readFile_t* lz4fRead, void* buf, size_t size);
/*! LZ4F_readClose() :
* Close lz4file handle.
* `lz4f` must use LZ4_readOpen to set first.
*/
LZ4FLIB_STATIC_API LZ4F_errorCode_t LZ4F_readClose(LZ4_readFile_t* lz4fRead);
/*! LZ4F_writeOpen() :
* Set write lz4file handle.
* `lz4f` will set a lz4file handle.
* `fp` must be the return value of the lz4 file opened by fopen.
*/
LZ4FLIB_STATIC_API LZ4F_errorCode_t LZ4F_writeOpen(LZ4_writeFile_t** lz4fWrite, FILE* fp, const LZ4F_preferences_t* prefsPtr);
/*! LZ4F_write() :
* Write buffer to lz4file.
* `lz4f` must use LZ4F_writeOpen to set first.
* `buf` write data buffer.
* `size` write data buffer size.
*/
LZ4FLIB_STATIC_API size_t LZ4F_write(LZ4_writeFile_t* lz4fWrite, const void* buf, size_t size);
/*! LZ4F_writeClose() :
* Close lz4file handle.
* `lz4f` must use LZ4F_writeOpen to set first.
*/
LZ4FLIB_STATIC_API LZ4F_errorCode_t LZ4F_writeClose(LZ4_writeFile_t* lz4fWrite);
#endif /* LZ4FILE_H */
#if defined (__cplusplus)
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1,707 +0,0 @@
/*
LZ4F - LZ4-Frame library
Header File
Copyright (C) 2011-2020, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- LZ4 source repository : https://github.com/lz4/lz4
- LZ4 public forum : https://groups.google.com/forum/#!forum/lz4c
*/
/* LZ4F is a stand-alone API able to create and decode LZ4 frames
* conformant with specification v1.6.1 in doc/lz4_Frame_format.md .
* Generated frames are compatible with `lz4` CLI.
*
* LZ4F also offers streaming capabilities.
*
* lz4.h is not required when using lz4frame.h,
* except to extract common constants such as LZ4_VERSION_NUMBER.
* */
#ifndef LZ4F_H_09782039843
#define LZ4F_H_09782039843
#if defined (__cplusplus)
extern "C" {
#endif
/* --- Dependency --- */
#include <stddef.h> /* size_t */
/**
* Introduction
*
* lz4frame.h implements LZ4 frame specification: see doc/lz4_Frame_format.md .
* LZ4 Frames are compatible with `lz4` CLI,
* and designed to be interoperable with any system.
**/
/*-***************************************************************
* Compiler specifics
*****************************************************************/
/* LZ4_DLL_EXPORT :
* Enable exporting of functions when building a Windows DLL
* LZ4FLIB_VISIBILITY :
* Control library symbols visibility.
*/
#ifndef LZ4FLIB_VISIBILITY
# if defined(__GNUC__) && (__GNUC__ >= 4)
# define LZ4FLIB_VISIBILITY __attribute__ ((visibility ("default")))
# else
# define LZ4FLIB_VISIBILITY
# endif
#endif
#if defined(LZ4_DLL_EXPORT) && (LZ4_DLL_EXPORT==1)
# define LZ4FLIB_API __declspec(dllexport) LZ4FLIB_VISIBILITY
#elif defined(LZ4_DLL_IMPORT) && (LZ4_DLL_IMPORT==1)
# define LZ4FLIB_API __declspec(dllimport) LZ4FLIB_VISIBILITY
#else
# define LZ4FLIB_API LZ4FLIB_VISIBILITY
#endif
#ifdef LZ4F_DISABLE_DEPRECATE_WARNINGS
# define LZ4F_DEPRECATE(x) x
#else
# if defined(_MSC_VER)
# define LZ4F_DEPRECATE(x) x /* __declspec(deprecated) x - only works with C++ */
# elif defined(__clang__) || (defined(__GNUC__) && (__GNUC__ >= 6))
# define LZ4F_DEPRECATE(x) x __attribute__((deprecated))
# else
# define LZ4F_DEPRECATE(x) x /* no deprecation warning for this compiler */
# endif
#endif
/*-************************************
* Error management
**************************************/
typedef size_t LZ4F_errorCode_t;
LZ4FLIB_API unsigned LZ4F_isError(LZ4F_errorCode_t code); /**< tells when a function result is an error code */
LZ4FLIB_API const char* LZ4F_getErrorName(LZ4F_errorCode_t code); /**< return error code string; for debugging */
/*-************************************
* Frame compression types
************************************* */
/* #define LZ4F_ENABLE_OBSOLETE_ENUMS // uncomment to enable obsolete enums */
#ifdef LZ4F_ENABLE_OBSOLETE_ENUMS
# define LZ4F_OBSOLETE_ENUM(x) , LZ4F_DEPRECATE(x) = LZ4F_##x
#else
# define LZ4F_OBSOLETE_ENUM(x)
#endif
/* The larger the block size, the (slightly) better the compression ratio,
* though there are diminishing returns.
* Larger blocks also increase memory usage on both compression and decompression sides.
*/
typedef enum {
LZ4F_default=0,
LZ4F_max64KB=4,
LZ4F_max256KB=5,
LZ4F_max1MB=6,
LZ4F_max4MB=7
LZ4F_OBSOLETE_ENUM(max64KB)
LZ4F_OBSOLETE_ENUM(max256KB)
LZ4F_OBSOLETE_ENUM(max1MB)
LZ4F_OBSOLETE_ENUM(max4MB)
} LZ4F_blockSizeID_t;
/* Linked blocks sharply reduce inefficiencies when using small blocks,
* they compress better.
* However, some LZ4 decoders are only compatible with independent blocks */
typedef enum {
LZ4F_blockLinked=0,
LZ4F_blockIndependent
LZ4F_OBSOLETE_ENUM(blockLinked)
LZ4F_OBSOLETE_ENUM(blockIndependent)
} LZ4F_blockMode_t;
typedef enum {
LZ4F_noContentChecksum=0,
LZ4F_contentChecksumEnabled
LZ4F_OBSOLETE_ENUM(noContentChecksum)
LZ4F_OBSOLETE_ENUM(contentChecksumEnabled)
} LZ4F_contentChecksum_t;
typedef enum {
LZ4F_noBlockChecksum=0,
LZ4F_blockChecksumEnabled
} LZ4F_blockChecksum_t;
typedef enum {
LZ4F_frame=0,
LZ4F_skippableFrame
LZ4F_OBSOLETE_ENUM(skippableFrame)
} LZ4F_frameType_t;
#ifdef LZ4F_ENABLE_OBSOLETE_ENUMS
typedef LZ4F_blockSizeID_t blockSizeID_t;
typedef LZ4F_blockMode_t blockMode_t;
typedef LZ4F_frameType_t frameType_t;
typedef LZ4F_contentChecksum_t contentChecksum_t;
#endif
/*! LZ4F_frameInfo_t :
* makes it possible to set or read frame parameters.
* Structure must be first init to 0, using memset() or LZ4F_INIT_FRAMEINFO,
* setting all parameters to default.
* It's then possible to update selectively some parameters */
typedef struct {
LZ4F_blockSizeID_t blockSizeID; /* max64KB, max256KB, max1MB, max4MB; 0 == default */
LZ4F_blockMode_t blockMode; /* LZ4F_blockLinked, LZ4F_blockIndependent; 0 == default */
LZ4F_contentChecksum_t contentChecksumFlag; /* 1: frame terminated with 32-bit checksum of decompressed data; 0: disabled (default) */
LZ4F_frameType_t frameType; /* read-only field : LZ4F_frame or LZ4F_skippableFrame */
unsigned long long contentSize; /* Size of uncompressed content ; 0 == unknown */
unsigned dictID; /* Dictionary ID, sent by compressor to help decoder select correct dictionary; 0 == no dictID provided */
LZ4F_blockChecksum_t blockChecksumFlag; /* 1: each block followed by a checksum of block's compressed data; 0: disabled (default) */
} LZ4F_frameInfo_t;
#define LZ4F_INIT_FRAMEINFO { LZ4F_default, LZ4F_blockLinked, LZ4F_noContentChecksum, LZ4F_frame, 0ULL, 0U, LZ4F_noBlockChecksum } /* v1.8.3+ */
/*! LZ4F_preferences_t :
* makes it possible to supply advanced compression instructions to streaming interface.
* Structure must be first init to 0, using memset() or LZ4F_INIT_PREFERENCES,
* setting all parameters to default.
* All reserved fields must be set to zero. */
typedef struct {
LZ4F_frameInfo_t frameInfo;
int compressionLevel; /* 0: default (fast mode); values > LZ4HC_CLEVEL_MAX count as LZ4HC_CLEVEL_MAX; values < 0 trigger "fast acceleration" */
unsigned autoFlush; /* 1: always flush; reduces usage of internal buffers */
unsigned favorDecSpeed; /* 1: parser favors decompression speed vs compression ratio. Only works for high compression modes (>= LZ4HC_CLEVEL_OPT_MIN) */ /* v1.8.2+ */
unsigned reserved[3]; /* must be zero for forward compatibility */
} LZ4F_preferences_t;
#define LZ4F_INIT_PREFERENCES { LZ4F_INIT_FRAMEINFO, 0, 0u, 0u, { 0u, 0u, 0u } } /* v1.8.3+ */
/*-*********************************
* Simple compression function
***********************************/
LZ4FLIB_API int LZ4F_compressionLevel_max(void); /* v1.8.0+ */
/*! LZ4F_compressFrameBound() :
* Returns the maximum possible compressed size with LZ4F_compressFrame() given srcSize and preferences.
* `preferencesPtr` is optional. It can be replaced by NULL, in which case, the function will assume default preferences.
* Note : this result is only usable with LZ4F_compressFrame().
* It may also be relevant to LZ4F_compressUpdate() _only if_ no flush() operation is ever performed.
*/
LZ4FLIB_API size_t LZ4F_compressFrameBound(size_t srcSize, const LZ4F_preferences_t* preferencesPtr);
/*! LZ4F_compressFrame() :
* Compress srcBuffer content into an LZ4-compressed frame.
* It's a one shot operation, all input content is consumed, and all output is generated.
*
* Note : it's a stateless operation (no LZ4F_cctx state needed).
* In order to reduce load on the allocator, LZ4F_compressFrame(), by default,
* uses the stack to allocate space for the compression state and some table.
* If this usage of the stack is too much for your application,
* consider compiling `lz4frame.c` with compile-time macro LZ4F_HEAPMODE set to 1 instead.
* All state allocations will use the Heap.
* It also means each invocation of LZ4F_compressFrame() will trigger several internal alloc/free invocations.
*
* @dstCapacity MUST be >= LZ4F_compressFrameBound(srcSize, preferencesPtr).
* @preferencesPtr is optional : one can provide NULL, in which case all preferences are set to default.
* @return : number of bytes written into dstBuffer.
* or an error code if it fails (can be tested using LZ4F_isError())
*/
LZ4FLIB_API size_t LZ4F_compressFrame(void* dstBuffer, size_t dstCapacity,
const void* srcBuffer, size_t srcSize,
const LZ4F_preferences_t* preferencesPtr);
/*-***********************************
* Advanced compression functions
*************************************/
typedef struct LZ4F_cctx_s LZ4F_cctx; /* incomplete type */
typedef LZ4F_cctx* LZ4F_compressionContext_t; /* for compatibility with older APIs, prefer using LZ4F_cctx */
typedef struct {
unsigned stableSrc; /* 1 == src content will remain present on future calls to LZ4F_compress(); skip copying src content within tmp buffer */
unsigned reserved[3];
} LZ4F_compressOptions_t;
/*--- Resource Management ---*/
#define LZ4F_VERSION 100 /* This number can be used to check for an incompatible API breaking change */
LZ4FLIB_API unsigned LZ4F_getVersion(void);
/*! LZ4F_createCompressionContext() :
* The first thing to do is to create a compressionContext object,
* which will keep track of operation state during streaming compression.
* This is achieved using LZ4F_createCompressionContext(), which takes as argument a version,
* and a pointer to LZ4F_cctx*, to write the resulting pointer into.
* @version provided MUST be LZ4F_VERSION. It is intended to track potential version mismatch, notably when using DLL.
* The function provides a pointer to a fully allocated LZ4F_cctx object.
* @cctxPtr MUST be != NULL.
* If @return != zero, context creation failed.
* A created compression context can be employed multiple times for consecutive streaming operations.
* Once all streaming compression jobs are completed,
* the state object can be released using LZ4F_freeCompressionContext().
* Note1 : LZ4F_freeCompressionContext() is always successful. Its return value can be ignored.
* Note2 : LZ4F_freeCompressionContext() works fine with NULL input pointers (do nothing).
**/
LZ4FLIB_API LZ4F_errorCode_t LZ4F_createCompressionContext(LZ4F_cctx** cctxPtr, unsigned version);
LZ4FLIB_API LZ4F_errorCode_t LZ4F_freeCompressionContext(LZ4F_cctx* cctx);
/*---- Compression ----*/
#define LZ4F_HEADER_SIZE_MIN 7 /* LZ4 Frame header size can vary, depending on selected parameters */
#define LZ4F_HEADER_SIZE_MAX 19
/* Size in bytes of a block header in little-endian format. Highest bit indicates if block data is uncompressed */
#define LZ4F_BLOCK_HEADER_SIZE 4
/* Size in bytes of a block checksum footer in little-endian format. */
#define LZ4F_BLOCK_CHECKSUM_SIZE 4
/* Size in bytes of the content checksum. */
#define LZ4F_CONTENT_CHECKSUM_SIZE 4
/*! LZ4F_compressBegin() :
* will write the frame header into dstBuffer.
* dstCapacity must be >= LZ4F_HEADER_SIZE_MAX bytes.
* `prefsPtr` is optional : NULL can be provided to set all preferences to default.
* @return : number of bytes written into dstBuffer for the header
* or an error code (which can be tested using LZ4F_isError())
*/
LZ4FLIB_API size_t LZ4F_compressBegin(LZ4F_cctx* cctx,
void* dstBuffer, size_t dstCapacity,
const LZ4F_preferences_t* prefsPtr);
/*! LZ4F_compressBound() :
* Provides minimum dstCapacity required to guarantee success of
* LZ4F_compressUpdate(), given a srcSize and preferences, for a worst case scenario.
* When srcSize==0, LZ4F_compressBound() provides an upper bound for LZ4F_flush() and LZ4F_compressEnd() instead.
* Note that the result is only valid for a single invocation of LZ4F_compressUpdate().
* When invoking LZ4F_compressUpdate() multiple times,
* if the output buffer is gradually filled up instead of emptied and re-used from its start,
* one must check if there is enough remaining capacity before each invocation, using LZ4F_compressBound().
* @return is always the same for a srcSize and prefsPtr.
* prefsPtr is optional : when NULL is provided, preferences will be set to cover worst case scenario.
* tech details :
* @return if automatic flushing is not enabled, includes the possibility that internal buffer might already be filled by up to (blockSize-1) bytes.
* It also includes frame footer (ending + checksum), since it might be generated by LZ4F_compressEnd().
* @return doesn't include frame header, as it was already generated by LZ4F_compressBegin().
*/
LZ4FLIB_API size_t LZ4F_compressBound(size_t srcSize, const LZ4F_preferences_t* prefsPtr);
/*! LZ4F_compressUpdate() :
* LZ4F_compressUpdate() can be called repetitively to compress as much data as necessary.
* Important rule: dstCapacity MUST be large enough to ensure operation success even in worst case situations.
* This value is provided by LZ4F_compressBound().
* If this condition is not respected, LZ4F_compress() will fail (result is an errorCode).
* After an error, the state is left in a UB state, and must be re-initialized or freed.
* If previously an uncompressed block was written, buffered data is flushed
* before appending compressed data is continued.
* `cOptPtr` is optional : NULL can be provided, in which case all options are set to default.
* @return : number of bytes written into `dstBuffer` (it can be zero, meaning input data was just buffered).
* or an error code if it fails (which can be tested using LZ4F_isError())
*/
LZ4FLIB_API size_t LZ4F_compressUpdate(LZ4F_cctx* cctx,
void* dstBuffer, size_t dstCapacity,
const void* srcBuffer, size_t srcSize,
const LZ4F_compressOptions_t* cOptPtr);
/*! LZ4F_flush() :
* When data must be generated and sent immediately, without waiting for a block to be completely filled,
* it's possible to call LZ4_flush(). It will immediately compress any data buffered within cctx.
* `dstCapacity` must be large enough to ensure the operation will be successful.
* `cOptPtr` is optional : it's possible to provide NULL, all options will be set to default.
* @return : nb of bytes written into dstBuffer (can be zero, when there is no data stored within cctx)
* or an error code if it fails (which can be tested using LZ4F_isError())
* Note : LZ4F_flush() is guaranteed to be successful when dstCapacity >= LZ4F_compressBound(0, prefsPtr).
*/
LZ4FLIB_API size_t LZ4F_flush(LZ4F_cctx* cctx,
void* dstBuffer, size_t dstCapacity,
const LZ4F_compressOptions_t* cOptPtr);
/*! LZ4F_compressEnd() :
* To properly finish an LZ4 frame, invoke LZ4F_compressEnd().
* It will flush whatever data remained within `cctx` (like LZ4_flush())
* and properly finalize the frame, with an endMark and a checksum.
* `cOptPtr` is optional : NULL can be provided, in which case all options will be set to default.
* @return : nb of bytes written into dstBuffer, necessarily >= 4 (endMark),
* or an error code if it fails (which can be tested using LZ4F_isError())
* Note : LZ4F_compressEnd() is guaranteed to be successful when dstCapacity >= LZ4F_compressBound(0, prefsPtr).
* A successful call to LZ4F_compressEnd() makes `cctx` available again for another compression task.
*/
LZ4FLIB_API size_t LZ4F_compressEnd(LZ4F_cctx* cctx,
void* dstBuffer, size_t dstCapacity,
const LZ4F_compressOptions_t* cOptPtr);
/*-*********************************
* Decompression functions
***********************************/
typedef struct LZ4F_dctx_s LZ4F_dctx; /* incomplete type */
typedef LZ4F_dctx* LZ4F_decompressionContext_t; /* compatibility with previous API versions */
typedef struct {
unsigned stableDst; /* pledges that last 64KB decompressed data will remain available unmodified between invocations.
* This optimization skips storage operations in tmp buffers. */
unsigned skipChecksums; /* disable checksum calculation and verification, even when one is present in frame, to save CPU time.
* Setting this option to 1 once disables all checksums for the rest of the frame. */
unsigned reserved1; /* must be set to zero for forward compatibility */
unsigned reserved0; /* idem */
} LZ4F_decompressOptions_t;
/* Resource management */
/*! LZ4F_createDecompressionContext() :
* Create an LZ4F_dctx object, to track all decompression operations.
* @version provided MUST be LZ4F_VERSION.
* @dctxPtr MUST be valid.
* The function fills @dctxPtr with the value of a pointer to an allocated and initialized LZ4F_dctx object.
* The @return is an errorCode, which can be tested using LZ4F_isError().
* dctx memory can be released using LZ4F_freeDecompressionContext();
* Result of LZ4F_freeDecompressionContext() indicates current state of decompressionContext when being released.
* That is, it should be == 0 if decompression has been completed fully and correctly.
*/
LZ4FLIB_API LZ4F_errorCode_t LZ4F_createDecompressionContext(LZ4F_dctx** dctxPtr, unsigned version);
LZ4FLIB_API LZ4F_errorCode_t LZ4F_freeDecompressionContext(LZ4F_dctx* dctx);
/*-***********************************
* Streaming decompression functions
*************************************/
#define LZ4F_MAGICNUMBER 0x184D2204U
#define LZ4F_MAGIC_SKIPPABLE_START 0x184D2A50U
#define LZ4F_MIN_SIZE_TO_KNOW_HEADER_LENGTH 5
/*! LZ4F_headerSize() : v1.9.0+
* Provide the header size of a frame starting at `src`.
* `srcSize` must be >= LZ4F_MIN_SIZE_TO_KNOW_HEADER_LENGTH,
* which is enough to decode the header length.
* @return : size of frame header
* or an error code, which can be tested using LZ4F_isError()
* note : Frame header size is variable, but is guaranteed to be
* >= LZ4F_HEADER_SIZE_MIN bytes, and <= LZ4F_HEADER_SIZE_MAX bytes.
*/
LZ4FLIB_API size_t LZ4F_headerSize(const void* src, size_t srcSize);
/*! LZ4F_getFrameInfo() :
* This function extracts frame parameters (max blockSize, dictID, etc.).
* Its usage is optional: user can also invoke LZ4F_decompress() directly.
*
* Extracted information will fill an existing LZ4F_frameInfo_t structure.
* This can be useful for allocation and dictionary identification purposes.
*
* LZ4F_getFrameInfo() can work in the following situations :
*
* 1) At the beginning of a new frame, before any invocation of LZ4F_decompress().
* It will decode header from `srcBuffer`,
* consuming the header and starting the decoding process.
*
* Input size must be large enough to contain the full frame header.
* Frame header size can be known beforehand by LZ4F_headerSize().
* Frame header size is variable, but is guaranteed to be >= LZ4F_HEADER_SIZE_MIN bytes,
* and not more than <= LZ4F_HEADER_SIZE_MAX bytes.
* Hence, blindly providing LZ4F_HEADER_SIZE_MAX bytes or more will always work.
* It's allowed to provide more input data than the header size,
* LZ4F_getFrameInfo() will only consume the header.
*
* If input size is not large enough,
* aka if it's smaller than header size,
* function will fail and return an error code.
*
* 2) After decoding has been started,
* it's possible to invoke LZ4F_getFrameInfo() anytime
* to extract already decoded frame parameters stored within dctx.
*
* Note that, if decoding has barely started,
* and not yet read enough information to decode the header,
* LZ4F_getFrameInfo() will fail.
*
* The number of bytes consumed from srcBuffer will be updated in *srcSizePtr (necessarily <= original value).
* LZ4F_getFrameInfo() only consumes bytes when decoding has not yet started,
* and when decoding the header has been successful.
* Decompression must then resume from (srcBuffer + *srcSizePtr).
*
* @return : a hint about how many srcSize bytes LZ4F_decompress() expects for next call,
* or an error code which can be tested using LZ4F_isError().
* note 1 : in case of error, dctx is not modified. Decoding operation can resume from beginning safely.
* note 2 : frame parameters are *copied into* an already allocated LZ4F_frameInfo_t structure.
*/
LZ4FLIB_API size_t
LZ4F_getFrameInfo(LZ4F_dctx* dctx,
LZ4F_frameInfo_t* frameInfoPtr,
const void* srcBuffer, size_t* srcSizePtr);
/*! LZ4F_decompress() :
* Call this function repetitively to regenerate data compressed in `srcBuffer`.
*
* The function requires a valid dctx state.
* It will read up to *srcSizePtr bytes from srcBuffer,
* and decompress data into dstBuffer, of capacity *dstSizePtr.
*
* The nb of bytes consumed from srcBuffer will be written into *srcSizePtr (necessarily <= original value).
* The nb of bytes decompressed into dstBuffer will be written into *dstSizePtr (necessarily <= original value).
*
* The function does not necessarily read all input bytes, so always check value in *srcSizePtr.
* Unconsumed source data must be presented again in subsequent invocations.
*
* `dstBuffer` can freely change between each consecutive function invocation.
* `dstBuffer` content will be overwritten.
*
* Note: if `LZ4F_getFrameInfo()` is called before `LZ4F_decompress()`, srcBuffer must be updated to reflect
* the number of bytes consumed after reading the frame header. Failure to update srcBuffer before calling
* `LZ4F_decompress()` will cause decompression failure or, even worse, successful but incorrect decompression.
* See the `LZ4F_getFrameInfo()` docs for details.
*
* @return : an hint of how many `srcSize` bytes LZ4F_decompress() expects for next call.
* Schematically, it's the size of the current (or remaining) compressed block + header of next block.
* Respecting the hint provides some small speed benefit, because it skips intermediate buffers.
* This is just a hint though, it's always possible to provide any srcSize.
*
* When a frame is fully decoded, @return will be 0 (no more data expected).
* When provided with more bytes than necessary to decode a frame,
* LZ4F_decompress() will stop reading exactly at end of current frame, and @return 0.
*
* If decompression failed, @return is an error code, which can be tested using LZ4F_isError().
* After a decompression error, the `dctx` context is not resumable.
* Use LZ4F_resetDecompressionContext() to return to clean state.
*
* After a frame is fully decoded, dctx can be used again to decompress another frame.
*/
LZ4FLIB_API size_t
LZ4F_decompress(LZ4F_dctx* dctx,
void* dstBuffer, size_t* dstSizePtr,
const void* srcBuffer, size_t* srcSizePtr,
const LZ4F_decompressOptions_t* dOptPtr);
/*! LZ4F_resetDecompressionContext() : added in v1.8.0
* In case of an error, the context is left in "undefined" state.
* In which case, it's necessary to reset it, before re-using it.
* This method can also be used to abruptly stop any unfinished decompression,
* and start a new one using same context resources. */
LZ4FLIB_API void LZ4F_resetDecompressionContext(LZ4F_dctx* dctx); /* always successful */
#if defined (__cplusplus)
}
#endif
#endif /* LZ4F_H_09782039843 */
#if defined(LZ4F_STATIC_LINKING_ONLY) && !defined(LZ4F_H_STATIC_09782039843)
#define LZ4F_H_STATIC_09782039843
#if defined (__cplusplus)
extern "C" {
#endif
/* These declarations are not stable and may change in the future.
* They are therefore only safe to depend on
* when the caller is statically linked against the library.
* To access their declarations, define LZ4F_STATIC_LINKING_ONLY.
*
* By default, these symbols aren't published into shared/dynamic libraries.
* You can override this behavior and force them to be published
* by defining LZ4F_PUBLISH_STATIC_FUNCTIONS.
* Use at your own risk.
*/
#ifdef LZ4F_PUBLISH_STATIC_FUNCTIONS
# define LZ4FLIB_STATIC_API LZ4FLIB_API
#else
# define LZ4FLIB_STATIC_API
#endif
/* --- Error List --- */
#define LZ4F_LIST_ERRORS(ITEM) \
ITEM(OK_NoError) \
ITEM(ERROR_GENERIC) \
ITEM(ERROR_maxBlockSize_invalid) \
ITEM(ERROR_blockMode_invalid) \
ITEM(ERROR_contentChecksumFlag_invalid) \
ITEM(ERROR_compressionLevel_invalid) \
ITEM(ERROR_headerVersion_wrong) \
ITEM(ERROR_blockChecksum_invalid) \
ITEM(ERROR_reservedFlag_set) \
ITEM(ERROR_allocation_failed) \
ITEM(ERROR_srcSize_tooLarge) \
ITEM(ERROR_dstMaxSize_tooSmall) \
ITEM(ERROR_frameHeader_incomplete) \
ITEM(ERROR_frameType_unknown) \
ITEM(ERROR_frameSize_wrong) \
ITEM(ERROR_srcPtr_wrong) \
ITEM(ERROR_decompressionFailed) \
ITEM(ERROR_headerChecksum_invalid) \
ITEM(ERROR_contentChecksum_invalid) \
ITEM(ERROR_frameDecoding_alreadyStarted) \
ITEM(ERROR_compressionState_uninitialized) \
ITEM(ERROR_parameter_null) \
ITEM(ERROR_maxCode)
#define LZ4F_GENERATE_ENUM(ENUM) LZ4F_##ENUM,
/* enum list is exposed, to handle specific errors */
typedef enum { LZ4F_LIST_ERRORS(LZ4F_GENERATE_ENUM)
_LZ4F_dummy_error_enum_for_c89_never_used } LZ4F_errorCodes;
LZ4FLIB_STATIC_API LZ4F_errorCodes LZ4F_getErrorCode(size_t functionResult);
/*! LZ4F_getBlockSize() :
* Return, in scalar format (size_t),
* the maximum block size associated with blockSizeID.
**/
LZ4FLIB_STATIC_API size_t LZ4F_getBlockSize(LZ4F_blockSizeID_t blockSizeID);
/*! LZ4F_uncompressedUpdate() :
* LZ4F_uncompressedUpdate() can be called repetitively to add as much data uncompressed data as necessary.
* Important rule: dstCapacity MUST be large enough to store the entire source buffer as
* no compression is done for this operation
* If this condition is not respected, LZ4F_uncompressedUpdate() will fail (result is an errorCode).
* After an error, the state is left in a UB state, and must be re-initialized or freed.
* If previously a compressed block was written, buffered data is flushed
* before appending uncompressed data is continued.
* This is only supported when LZ4F_blockIndependent is used
* `cOptPtr` is optional : NULL can be provided, in which case all options are set to default.
* @return : number of bytes written into `dstBuffer` (it can be zero, meaning input data was just buffered).
* or an error code if it fails (which can be tested using LZ4F_isError())
*/
LZ4FLIB_STATIC_API size_t
LZ4F_uncompressedUpdate(LZ4F_cctx* cctx,
void* dstBuffer, size_t dstCapacity,
const void* srcBuffer, size_t srcSize,
const LZ4F_compressOptions_t* cOptPtr);
/**********************************
* Bulk processing dictionary API
*********************************/
/* A Dictionary is useful for the compression of small messages (KB range).
* It dramatically improves compression efficiency.
*
* LZ4 can ingest any input as dictionary, though only the last 64 KB are useful.
* Best results are generally achieved by using Zstandard's Dictionary Builder
* to generate a high-quality dictionary from a set of samples.
*
* Loading a dictionary has a cost, since it involves construction of tables.
* The Bulk processing dictionary API makes it possible to share this cost
* over an arbitrary number of compression jobs, even concurrently,
* markedly improving compression latency for these cases.
*
* The same dictionary will have to be used on the decompression side
* for decoding to be successful.
* To help identify the correct dictionary at decoding stage,
* the frame header allows optional embedding of a dictID field.
*/
typedef struct LZ4F_CDict_s LZ4F_CDict;
/*! LZ4_createCDict() :
* When compressing multiple messages / blocks using the same dictionary, it's recommended to load it just once.
* LZ4_createCDict() will create a digested dictionary, ready to start future compression operations without startup delay.
* LZ4_CDict can be created once and shared by multiple threads concurrently, since its usage is read-only.
* `dictBuffer` can be released after LZ4_CDict creation, since its content is copied within CDict */
LZ4FLIB_STATIC_API LZ4F_CDict* LZ4F_createCDict(const void* dictBuffer, size_t dictSize);
LZ4FLIB_STATIC_API void LZ4F_freeCDict(LZ4F_CDict* CDict);
/*! LZ4_compressFrame_usingCDict() :
* Compress an entire srcBuffer into a valid LZ4 frame using a digested Dictionary.
* cctx must point to a context created by LZ4F_createCompressionContext().
* If cdict==NULL, compress without a dictionary.
* dstBuffer MUST be >= LZ4F_compressFrameBound(srcSize, preferencesPtr).
* If this condition is not respected, function will fail (@return an errorCode).
* The LZ4F_preferences_t structure is optional : you may provide NULL as argument,
* but it's not recommended, as it's the only way to provide dictID in the frame header.
* @return : number of bytes written into dstBuffer.
* or an error code if it fails (can be tested using LZ4F_isError()) */
LZ4FLIB_STATIC_API size_t
LZ4F_compressFrame_usingCDict(LZ4F_cctx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const LZ4F_CDict* cdict,
const LZ4F_preferences_t* preferencesPtr);
/*! LZ4F_compressBegin_usingCDict() :
* Inits streaming dictionary compression, and writes the frame header into dstBuffer.
* dstCapacity must be >= LZ4F_HEADER_SIZE_MAX bytes.
* `prefsPtr` is optional : you may provide NULL as argument,
* however, it's the only way to provide dictID in the frame header.
* @return : number of bytes written into dstBuffer for the header,
* or an error code (which can be tested using LZ4F_isError()) */
LZ4FLIB_STATIC_API size_t
LZ4F_compressBegin_usingCDict(LZ4F_cctx* cctx,
void* dstBuffer, size_t dstCapacity,
const LZ4F_CDict* cdict,
const LZ4F_preferences_t* prefsPtr);
/*! LZ4F_decompress_usingDict() :
* Same as LZ4F_decompress(), using a predefined dictionary.
* Dictionary is used "in place", without any preprocessing.
** It must remain accessible throughout the entire frame decoding. */
LZ4FLIB_STATIC_API size_t
LZ4F_decompress_usingDict(LZ4F_dctx* dctxPtr,
void* dstBuffer, size_t* dstSizePtr,
const void* srcBuffer, size_t* srcSizePtr,
const void* dict, size_t dictSize,
const LZ4F_decompressOptions_t* decompressOptionsPtr);
/*! Custom memory allocation : v1.9.4+
* These prototypes make it possible to pass custom allocation/free functions.
* LZ4F_customMem is provided at state creation time, using LZ4F_create*_advanced() listed below.
* All allocation/free operations will be completed using these custom variants instead of regular <stdlib.h> ones.
*/
typedef void* (*LZ4F_AllocFunction) (void* opaqueState, size_t size);
typedef void* (*LZ4F_CallocFunction) (void* opaqueState, size_t size);
typedef void (*LZ4F_FreeFunction) (void* opaqueState, void* address);
typedef struct {
LZ4F_AllocFunction customAlloc;
LZ4F_CallocFunction customCalloc; /* optional; when not defined, uses customAlloc + memset */
LZ4F_FreeFunction customFree;
void* opaqueState;
} LZ4F_CustomMem;
static
#ifdef __GNUC__
__attribute__((__unused__))
#endif
LZ4F_CustomMem const LZ4F_defaultCMem = { NULL, NULL, NULL, NULL }; /**< this constant defers to stdlib's functions */
LZ4FLIB_STATIC_API LZ4F_cctx* LZ4F_createCompressionContext_advanced(LZ4F_CustomMem customMem, unsigned version);
LZ4FLIB_STATIC_API LZ4F_dctx* LZ4F_createDecompressionContext_advanced(LZ4F_CustomMem customMem, unsigned version);
LZ4FLIB_STATIC_API LZ4F_CDict* LZ4F_createCDict_advanced(LZ4F_CustomMem customMem, const void* dictBuffer, size_t dictSize);
#if defined (__cplusplus)
}
#endif
#endif /* defined(LZ4F_STATIC_LINKING_ONLY) && !defined(LZ4F_H_STATIC_09782039843) */

View File

@ -1,47 +0,0 @@
/*
LZ4 auto-framing library
Header File for static linking only
Copyright (C) 2011-2020, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- LZ4 source repository : https://github.com/lz4/lz4
- LZ4 public forum : https://groups.google.com/forum/#!forum/lz4c
*/
#ifndef LZ4FRAME_STATIC_H_0398209384
#define LZ4FRAME_STATIC_H_0398209384
/* The declarations that formerly were made here have been merged into
* lz4frame.h, protected by the LZ4F_STATIC_LINKING_ONLY macro. Going forward,
* it is recommended to simply include that header directly.
*/
#define LZ4F_STATIC_LINKING_ONLY
#include "lz4frame.h"
#endif /* LZ4FRAME_STATIC_H_0398209384 */

File diff suppressed because it is too large Load Diff

View File

@ -1,413 +0,0 @@
/*
LZ4 HC - High Compression Mode of LZ4
Header File
Copyright (C) 2011-2020, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- LZ4 source repository : https://github.com/lz4/lz4
- LZ4 public forum : https://groups.google.com/forum/#!forum/lz4c
*/
#ifndef LZ4_HC_H_19834876238432
#define LZ4_HC_H_19834876238432
#if defined (__cplusplus)
extern "C" {
#endif
/* --- Dependency --- */
/* note : lz4hc requires lz4.h/lz4.c for compilation */
#include "lz4.h" /* stddef, LZ4LIB_API, LZ4_DEPRECATED */
/* --- Useful constants --- */
#define LZ4HC_CLEVEL_MIN 3
#define LZ4HC_CLEVEL_DEFAULT 9
#define LZ4HC_CLEVEL_OPT_MIN 10
#define LZ4HC_CLEVEL_MAX 12
/*-************************************
* Block Compression
**************************************/
/*! LZ4_compress_HC() :
* Compress data from `src` into `dst`, using the powerful but slower "HC" algorithm.
* `dst` must be already allocated.
* Compression is guaranteed to succeed if `dstCapacity >= LZ4_compressBound(srcSize)` (see "lz4.h")
* Max supported `srcSize` value is LZ4_MAX_INPUT_SIZE (see "lz4.h")
* `compressionLevel` : any value between 1 and LZ4HC_CLEVEL_MAX will work.
* Values > LZ4HC_CLEVEL_MAX behave the same as LZ4HC_CLEVEL_MAX.
* @return : the number of bytes written into 'dst'
* or 0 if compression fails.
*/
LZ4LIB_API int LZ4_compress_HC (const char* src, char* dst, int srcSize, int dstCapacity, int compressionLevel);
/* Note :
* Decompression functions are provided within "lz4.h" (BSD license)
*/
/*! LZ4_compress_HC_extStateHC() :
* Same as LZ4_compress_HC(), but using an externally allocated memory segment for `state`.
* `state` size is provided by LZ4_sizeofStateHC().
* Memory segment must be aligned on 8-bytes boundaries (which a normal malloc() should do properly).
*/
LZ4LIB_API int LZ4_sizeofStateHC(void);
LZ4LIB_API int LZ4_compress_HC_extStateHC(void* stateHC, const char* src, char* dst, int srcSize, int maxDstSize, int compressionLevel);
/*! LZ4_compress_HC_destSize() : v1.9.0+
* Will compress as much data as possible from `src`
* to fit into `targetDstSize` budget.
* Result is provided in 2 parts :
* @return : the number of bytes written into 'dst' (necessarily <= targetDstSize)
* or 0 if compression fails.
* `srcSizePtr` : on success, *srcSizePtr is updated to indicate how much bytes were read from `src`
*/
LZ4LIB_API int LZ4_compress_HC_destSize(void* stateHC,
const char* src, char* dst,
int* srcSizePtr, int targetDstSize,
int compressionLevel);
/*-************************************
* Streaming Compression
* Bufferless synchronous API
**************************************/
typedef union LZ4_streamHC_u LZ4_streamHC_t; /* incomplete type (defined later) */
/*! LZ4_createStreamHC() and LZ4_freeStreamHC() :
* These functions create and release memory for LZ4 HC streaming state.
* Newly created states are automatically initialized.
* A same state can be used multiple times consecutively,
* starting with LZ4_resetStreamHC_fast() to start a new stream of blocks.
*/
LZ4LIB_API LZ4_streamHC_t* LZ4_createStreamHC(void);
LZ4LIB_API int LZ4_freeStreamHC (LZ4_streamHC_t* streamHCPtr);
/*
These functions compress data in successive blocks of any size,
using previous blocks as dictionary, to improve compression ratio.
One key assumption is that previous blocks (up to 64 KB) remain read-accessible while compressing next blocks.
There is an exception for ring buffers, which can be smaller than 64 KB.
Ring-buffer scenario is automatically detected and handled within LZ4_compress_HC_continue().
Before starting compression, state must be allocated and properly initialized.
LZ4_createStreamHC() does both, though compression level is set to LZ4HC_CLEVEL_DEFAULT.
Selecting the compression level can be done with LZ4_resetStreamHC_fast() (starts a new stream)
or LZ4_setCompressionLevel() (anytime, between blocks in the same stream) (experimental).
LZ4_resetStreamHC_fast() only works on states which have been properly initialized at least once,
which is automatically the case when state is created using LZ4_createStreamHC().
After reset, a first "fictional block" can be designated as initial dictionary,
using LZ4_loadDictHC() (Optional).
Invoke LZ4_compress_HC_continue() to compress each successive block.
The number of blocks is unlimited.
Previous input blocks, including initial dictionary when present,
must remain accessible and unmodified during compression.
It's allowed to update compression level anytime between blocks,
using LZ4_setCompressionLevel() (experimental).
'dst' buffer should be sized to handle worst case scenarios
(see LZ4_compressBound(), it ensures compression success).
In case of failure, the API does not guarantee recovery,
so the state _must_ be reset.
To ensure compression success
whenever `dst` buffer size cannot be made >= LZ4_compressBound(),
consider using LZ4_compress_HC_continue_destSize().
Whenever previous input blocks can't be preserved unmodified in-place during compression of next blocks,
it's possible to copy the last blocks into a more stable memory space, using LZ4_saveDictHC().
Return value of LZ4_saveDictHC() is the size of dictionary effectively saved into 'safeBuffer' (<= 64 KB)
After completing a streaming compression,
it's possible to start a new stream of blocks, using the same LZ4_streamHC_t state,
just by resetting it, using LZ4_resetStreamHC_fast().
*/
LZ4LIB_API void LZ4_resetStreamHC_fast(LZ4_streamHC_t* streamHCPtr, int compressionLevel); /* v1.9.0+ */
LZ4LIB_API int LZ4_loadDictHC (LZ4_streamHC_t* streamHCPtr, const char* dictionary, int dictSize);
LZ4LIB_API int LZ4_compress_HC_continue (LZ4_streamHC_t* streamHCPtr,
const char* src, char* dst,
int srcSize, int maxDstSize);
/*! LZ4_compress_HC_continue_destSize() : v1.9.0+
* Similar to LZ4_compress_HC_continue(),
* but will read as much data as possible from `src`
* to fit into `targetDstSize` budget.
* Result is provided into 2 parts :
* @return : the number of bytes written into 'dst' (necessarily <= targetDstSize)
* or 0 if compression fails.
* `srcSizePtr` : on success, *srcSizePtr will be updated to indicate how much bytes were read from `src`.
* Note that this function may not consume the entire input.
*/
LZ4LIB_API int LZ4_compress_HC_continue_destSize(LZ4_streamHC_t* LZ4_streamHCPtr,
const char* src, char* dst,
int* srcSizePtr, int targetDstSize);
LZ4LIB_API int LZ4_saveDictHC (LZ4_streamHC_t* streamHCPtr, char* safeBuffer, int maxDictSize);
/*^**********************************************
* !!!!!! STATIC LINKING ONLY !!!!!!
***********************************************/
/*-******************************************************************
* PRIVATE DEFINITIONS :
* Do not use these definitions directly.
* They are merely exposed to allow static allocation of `LZ4_streamHC_t`.
* Declare an `LZ4_streamHC_t` directly, rather than any type below.
* Even then, only do so in the context of static linking, as definitions may change between versions.
********************************************************************/
#define LZ4HC_DICTIONARY_LOGSIZE 16
#define LZ4HC_MAXD (1<<LZ4HC_DICTIONARY_LOGSIZE)
#define LZ4HC_MAXD_MASK (LZ4HC_MAXD - 1)
#define LZ4HC_HASH_LOG 15
#define LZ4HC_HASHTABLESIZE (1 << LZ4HC_HASH_LOG)
#define LZ4HC_HASH_MASK (LZ4HC_HASHTABLESIZE - 1)
/* Never ever use these definitions directly !
* Declare or allocate an LZ4_streamHC_t instead.
**/
typedef struct LZ4HC_CCtx_internal LZ4HC_CCtx_internal;
struct LZ4HC_CCtx_internal
{
LZ4_u32 hashTable[LZ4HC_HASHTABLESIZE];
LZ4_u16 chainTable[LZ4HC_MAXD];
const LZ4_byte* end; /* next block here to continue on current prefix */
const LZ4_byte* prefixStart; /* Indexes relative to this position */
const LZ4_byte* dictStart; /* alternate reference for extDict */
LZ4_u32 dictLimit; /* below that point, need extDict */
LZ4_u32 lowLimit; /* below that point, no more dict */
LZ4_u32 nextToUpdate; /* index from which to continue dictionary update */
short compressionLevel;
LZ4_i8 favorDecSpeed; /* favor decompression speed if this flag set,
otherwise, favor compression ratio */
LZ4_i8 dirty; /* stream has to be fully reset if this flag is set */
const LZ4HC_CCtx_internal* dictCtx;
};
#define LZ4_STREAMHC_MINSIZE 262200 /* static size, for inter-version compatibility */
union LZ4_streamHC_u {
char minStateSize[LZ4_STREAMHC_MINSIZE];
LZ4HC_CCtx_internal internal_donotuse;
}; /* previously typedef'd to LZ4_streamHC_t */
/* LZ4_streamHC_t :
* This structure allows static allocation of LZ4 HC streaming state.
* This can be used to allocate statically on stack, or as part of a larger structure.
*
* Such state **must** be initialized using LZ4_initStreamHC() before first use.
*
* Note that invoking LZ4_initStreamHC() is not required when
* the state was created using LZ4_createStreamHC() (which is recommended).
* Using the normal builder, a newly created state is automatically initialized.
*
* Static allocation shall only be used in combination with static linking.
*/
/* LZ4_initStreamHC() : v1.9.0+
* Required before first use of a statically allocated LZ4_streamHC_t.
* Before v1.9.0 : use LZ4_resetStreamHC() instead
*/
LZ4LIB_API LZ4_streamHC_t* LZ4_initStreamHC(void* buffer, size_t size);
/*-************************************
* Deprecated Functions
**************************************/
/* see lz4.h LZ4_DISABLE_DEPRECATE_WARNINGS to turn off deprecation warnings */
/* deprecated compression functions */
LZ4_DEPRECATED("use LZ4_compress_HC() instead") LZ4LIB_API int LZ4_compressHC (const char* source, char* dest, int inputSize);
LZ4_DEPRECATED("use LZ4_compress_HC() instead") LZ4LIB_API int LZ4_compressHC_limitedOutput (const char* source, char* dest, int inputSize, int maxOutputSize);
LZ4_DEPRECATED("use LZ4_compress_HC() instead") LZ4LIB_API int LZ4_compressHC2 (const char* source, char* dest, int inputSize, int compressionLevel);
LZ4_DEPRECATED("use LZ4_compress_HC() instead") LZ4LIB_API int LZ4_compressHC2_limitedOutput(const char* source, char* dest, int inputSize, int maxOutputSize, int compressionLevel);
LZ4_DEPRECATED("use LZ4_compress_HC_extStateHC() instead") LZ4LIB_API int LZ4_compressHC_withStateHC (void* state, const char* source, char* dest, int inputSize);
LZ4_DEPRECATED("use LZ4_compress_HC_extStateHC() instead") LZ4LIB_API int LZ4_compressHC_limitedOutput_withStateHC (void* state, const char* source, char* dest, int inputSize, int maxOutputSize);
LZ4_DEPRECATED("use LZ4_compress_HC_extStateHC() instead") LZ4LIB_API int LZ4_compressHC2_withStateHC (void* state, const char* source, char* dest, int inputSize, int compressionLevel);
LZ4_DEPRECATED("use LZ4_compress_HC_extStateHC() instead") LZ4LIB_API int LZ4_compressHC2_limitedOutput_withStateHC(void* state, const char* source, char* dest, int inputSize, int maxOutputSize, int compressionLevel);
LZ4_DEPRECATED("use LZ4_compress_HC_continue() instead") LZ4LIB_API int LZ4_compressHC_continue (LZ4_streamHC_t* LZ4_streamHCPtr, const char* source, char* dest, int inputSize);
LZ4_DEPRECATED("use LZ4_compress_HC_continue() instead") LZ4LIB_API int LZ4_compressHC_limitedOutput_continue (LZ4_streamHC_t* LZ4_streamHCPtr, const char* source, char* dest, int inputSize, int maxOutputSize);
/* Obsolete streaming functions; degraded functionality; do not use!
*
* In order to perform streaming compression, these functions depended on data
* that is no longer tracked in the state. They have been preserved as well as
* possible: using them will still produce a correct output. However, use of
* LZ4_slideInputBufferHC() will truncate the history of the stream, rather
* than preserve a window-sized chunk of history.
*/
#if !defined(LZ4_STATIC_LINKING_ONLY_DISABLE_MEMORY_ALLOCATION)
LZ4_DEPRECATED("use LZ4_createStreamHC() instead") LZ4LIB_API void* LZ4_createHC (const char* inputBuffer);
LZ4_DEPRECATED("use LZ4_freeStreamHC() instead") LZ4LIB_API int LZ4_freeHC (void* LZ4HC_Data);
#endif
LZ4_DEPRECATED("use LZ4_saveDictHC() instead") LZ4LIB_API char* LZ4_slideInputBufferHC (void* LZ4HC_Data);
LZ4_DEPRECATED("use LZ4_compress_HC_continue() instead") LZ4LIB_API int LZ4_compressHC2_continue (void* LZ4HC_Data, const char* source, char* dest, int inputSize, int compressionLevel);
LZ4_DEPRECATED("use LZ4_compress_HC_continue() instead") LZ4LIB_API int LZ4_compressHC2_limitedOutput_continue (void* LZ4HC_Data, const char* source, char* dest, int inputSize, int maxOutputSize, int compressionLevel);
LZ4_DEPRECATED("use LZ4_createStreamHC() instead") LZ4LIB_API int LZ4_sizeofStreamStateHC(void);
LZ4_DEPRECATED("use LZ4_initStreamHC() instead") LZ4LIB_API int LZ4_resetStreamStateHC(void* state, char* inputBuffer);
/* LZ4_resetStreamHC() is now replaced by LZ4_initStreamHC().
* The intention is to emphasize the difference with LZ4_resetStreamHC_fast(),
* which is now the recommended function to start a new stream of blocks,
* but cannot be used to initialize a memory segment containing arbitrary garbage data.
*
* It is recommended to switch to LZ4_initStreamHC().
* LZ4_resetStreamHC() will generate deprecation warnings in a future version.
*/
LZ4LIB_API void LZ4_resetStreamHC (LZ4_streamHC_t* streamHCPtr, int compressionLevel);
#if defined (__cplusplus)
}
#endif
#endif /* LZ4_HC_H_19834876238432 */
/*-**************************************************
* !!!!! STATIC LINKING ONLY !!!!!
* Following definitions are considered experimental.
* They should not be linked from DLL,
* as there is no guarantee of API stability yet.
* Prototypes will be promoted to "stable" status
* after successful usage in real-life scenarios.
***************************************************/
#ifdef LZ4_HC_STATIC_LINKING_ONLY /* protection macro */
#ifndef LZ4_HC_SLO_098092834
#define LZ4_HC_SLO_098092834
#define LZ4_STATIC_LINKING_ONLY /* LZ4LIB_STATIC_API */
#include "lz4.h"
#if defined (__cplusplus)
extern "C" {
#endif
/*! LZ4_setCompressionLevel() : v1.8.0+ (experimental)
* It's possible to change compression level
* between successive invocations of LZ4_compress_HC_continue*()
* for dynamic adaptation.
*/
LZ4LIB_STATIC_API void LZ4_setCompressionLevel(
LZ4_streamHC_t* LZ4_streamHCPtr, int compressionLevel);
/*! LZ4_favorDecompressionSpeed() : v1.8.2+ (experimental)
* Opt. Parser will favor decompression speed over compression ratio.
* Only applicable to levels >= LZ4HC_CLEVEL_OPT_MIN.
*/
LZ4LIB_STATIC_API void LZ4_favorDecompressionSpeed(
LZ4_streamHC_t* LZ4_streamHCPtr, int favor);
/*! LZ4_resetStreamHC_fast() : v1.9.0+
* When an LZ4_streamHC_t is known to be in a internally coherent state,
* it can often be prepared for a new compression with almost no work, only
* sometimes falling back to the full, expensive reset that is always required
* when the stream is in an indeterminate state (i.e., the reset performed by
* LZ4_resetStreamHC()).
*
* LZ4_streamHCs are guaranteed to be in a valid state when:
* - returned from LZ4_createStreamHC()
* - reset by LZ4_resetStreamHC()
* - memset(stream, 0, sizeof(LZ4_streamHC_t))
* - the stream was in a valid state and was reset by LZ4_resetStreamHC_fast()
* - the stream was in a valid state and was then used in any compression call
* that returned success
* - the stream was in an indeterminate state and was used in a compression
* call that fully reset the state (LZ4_compress_HC_extStateHC()) and that
* returned success
*
* Note:
* A stream that was last used in a compression call that returned an error
* may be passed to this function. However, it will be fully reset, which will
* clear any existing history and settings from the context.
*/
LZ4LIB_STATIC_API void LZ4_resetStreamHC_fast(
LZ4_streamHC_t* LZ4_streamHCPtr, int compressionLevel);
/*! LZ4_compress_HC_extStateHC_fastReset() :
* A variant of LZ4_compress_HC_extStateHC().
*
* Using this variant avoids an expensive initialization step. It is only safe
* to call if the state buffer is known to be correctly initialized already
* (see above comment on LZ4_resetStreamHC_fast() for a definition of
* "correctly initialized"). From a high level, the difference is that this
* function initializes the provided state with a call to
* LZ4_resetStreamHC_fast() while LZ4_compress_HC_extStateHC() starts with a
* call to LZ4_resetStreamHC().
*/
LZ4LIB_STATIC_API int LZ4_compress_HC_extStateHC_fastReset (
void* state,
const char* src, char* dst,
int srcSize, int dstCapacity,
int compressionLevel);
/*! LZ4_attach_HC_dictionary() :
* This is an experimental API that allows for the efficient use of a
* static dictionary many times.
*
* Rather than re-loading the dictionary buffer into a working context before
* each compression, or copying a pre-loaded dictionary's LZ4_streamHC_t into a
* working LZ4_streamHC_t, this function introduces a no-copy setup mechanism,
* in which the working stream references the dictionary stream in-place.
*
* Several assumptions are made about the state of the dictionary stream.
* Currently, only streams which have been prepared by LZ4_loadDictHC() should
* be expected to work.
*
* Alternatively, the provided dictionary stream pointer may be NULL, in which
* case any existing dictionary stream is unset.
*
* A dictionary should only be attached to a stream without any history (i.e.,
* a stream that has just been reset).
*
* The dictionary will remain attached to the working stream only for the
* current stream session. Calls to LZ4_resetStreamHC(_fast) will remove the
* dictionary context association from the working stream. The dictionary
* stream (and source buffer) must remain in-place / accessible / unchanged
* through the lifetime of the stream session.
*/
LZ4LIB_STATIC_API void LZ4_attach_HC_dictionary(
LZ4_streamHC_t *working_stream,
const LZ4_streamHC_t *dictionary_stream);
#if defined (__cplusplus)
}
#endif
#endif /* LZ4_HC_SLO_098092834 */
#endif /* LZ4_HC_STATIC_LINKING_ONLY */

File diff suppressed because it is too large Load Diff

View File

@ -1,328 +0,0 @@
/*
xxHash - Extremely Fast Hash algorithm
Header File
Copyright (C) 2012-2016, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- xxHash source repository : https://github.com/Cyan4973/xxHash
*/
/* Notice extracted from xxHash homepage :
xxHash is an extremely fast Hash algorithm, running at RAM speed limits.
It also successfully passes all tests from the SMHasher suite.
Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 Duo @3GHz)
Name Speed Q.Score Author
xxHash 5.4 GB/s 10
CrapWow 3.2 GB/s 2 Andrew
MumurHash 3a 2.7 GB/s 10 Austin Appleby
SpookyHash 2.0 GB/s 10 Bob Jenkins
SBox 1.4 GB/s 9 Bret Mulvey
Lookup3 1.2 GB/s 9 Bob Jenkins
SuperFastHash 1.2 GB/s 1 Paul Hsieh
CityHash64 1.05 GB/s 10 Pike & Alakuijala
FNV 0.55 GB/s 5 Fowler, Noll, Vo
CRC32 0.43 GB/s 9
MD5-32 0.33 GB/s 10 Ronald L. Rivest
SHA1-32 0.28 GB/s 10
Q.Score is a measure of quality of the hash function.
It depends on successfully passing SMHasher test set.
10 is a perfect score.
A 64-bit version, named XXH64, is available since r35.
It offers much better speed, but for 64-bit applications only.
Name Speed on 64 bits Speed on 32 bits
XXH64 13.8 GB/s 1.9 GB/s
XXH32 6.8 GB/s 6.0 GB/s
*/
#ifndef XXHASH_H_5627135585666179
#define XXHASH_H_5627135585666179 1
#if defined (__cplusplus)
extern "C" {
#endif
/* ****************************
* Definitions
******************************/
#include <stddef.h> /* size_t */
typedef enum { XXH_OK=0, XXH_ERROR } XXH_errorcode;
/* ****************************
* API modifier
******************************/
/** XXH_INLINE_ALL (and XXH_PRIVATE_API)
* This is useful to include xxhash functions in `static` mode
* in order to inline them, and remove their symbol from the public list.
* Inlining can offer dramatic performance improvement on small keys.
* Methodology :
* #define XXH_INLINE_ALL
* #include "xxhash.h"
* `xxhash.c` is automatically included.
* It's not useful to compile and link it as a separate module.
*/
#if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)
# ifndef XXH_STATIC_LINKING_ONLY
# define XXH_STATIC_LINKING_ONLY
# endif
# if defined(__GNUC__)
# define XXH_PUBLIC_API static __inline __attribute__((unused))
# elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
# define XXH_PUBLIC_API static inline
# elif defined(_MSC_VER)
# define XXH_PUBLIC_API static __inline
# else
/* this version may generate warnings for unused static functions */
# define XXH_PUBLIC_API static
# endif
#else
# define XXH_PUBLIC_API /* do nothing */
#endif /* XXH_INLINE_ALL || XXH_PRIVATE_API */
/*! XXH_NAMESPACE, aka Namespace Emulation :
*
* If you want to include _and expose_ xxHash functions from within your own library,
* but also want to avoid symbol collisions with other libraries which may also include xxHash,
*
* you can use XXH_NAMESPACE, to automatically prefix any public symbol from xxhash library
* with the value of XXH_NAMESPACE (therefore, avoid NULL and numeric values).
*
* Note that no change is required within the calling program as long as it includes `xxhash.h` :
* regular symbol name will be automatically translated by this header.
*/
#ifdef XXH_NAMESPACE
# define XXH_CAT(A,B) A##B
# define XXH_NAME2(A,B) XXH_CAT(A,B)
# define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber)
# define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32)
# define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState)
# define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState)
# define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset)
# define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update)
# define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest)
# define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState)
# define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash)
# define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical)
# define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64)
# define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState)
# define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState)
# define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset)
# define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update)
# define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest)
# define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState)
# define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash)
# define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical)
#endif
/* *************************************
* Version
***************************************/
#define XXH_VERSION_MAJOR 0
#define XXH_VERSION_MINOR 6
#define XXH_VERSION_RELEASE 5
#define XXH_VERSION_NUMBER (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE)
XXH_PUBLIC_API unsigned XXH_versionNumber (void);
/*-**********************************************************************
* 32-bit hash
************************************************************************/
typedef unsigned int XXH32_hash_t;
/*! XXH32() :
Calculate the 32-bit hash of sequence "length" bytes stored at memory address "input".
The memory between input & input+length must be valid (allocated and read-accessible).
"seed" can be used to alter the result predictably.
Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark) : 5.4 GB/s */
XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t length, unsigned int seed);
/*====== Streaming ======*/
typedef struct XXH32_state_s XXH32_state_t; /* incomplete type */
XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void);
XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr);
XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dst_state, const XXH32_state_t* src_state);
XXH_PUBLIC_API XXH_errorcode XXH32_reset (XXH32_state_t* statePtr, unsigned int seed);
XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length);
XXH_PUBLIC_API XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr);
/*
* Streaming functions generate the xxHash of an input provided in multiple segments.
* Note that, for small input, they are slower than single-call functions, due to state management.
* For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized.
*
* XXH state must first be allocated, using XXH*_createState() .
*
* Start a new hash by initializing state with a seed, using XXH*_reset().
*
* Then, feed the hash state by calling XXH*_update() as many times as necessary.
* The function returns an error code, with 0 meaning OK, and any other value meaning there is an error.
*
* Finally, a hash value can be produced anytime, by using XXH*_digest().
* This function returns the nn-bits hash as an int or long long.
*
* It's still possible to continue inserting input into the hash state after a digest,
* and generate some new hashes later on, by calling again XXH*_digest().
*
* When done, free XXH state space if it was allocated dynamically.
*/
/*====== Canonical representation ======*/
typedef struct { unsigned char digest[4]; } XXH32_canonical_t;
XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash);
XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src);
/* Default result type for XXH functions are primitive unsigned 32 and 64 bits.
* The canonical representation uses human-readable write convention, aka big-endian (large digits first).
* These functions allow transformation of hash result into and from its canonical format.
* This way, hash values can be written into a file / memory, and remain comparable on different systems and programs.
*/
#ifndef XXH_NO_LONG_LONG
/*-**********************************************************************
* 64-bit hash
************************************************************************/
typedef unsigned long long XXH64_hash_t;
/*! XXH64() :
Calculate the 64-bit hash of sequence of length "len" stored at memory address "input".
"seed" can be used to alter the result predictably.
This function runs faster on 64-bit systems, but slower on 32-bit systems (see benchmark).
*/
XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t length, unsigned long long seed);
/*====== Streaming ======*/
typedef struct XXH64_state_s XXH64_state_t; /* incomplete type */
XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void);
XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr);
XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dst_state, const XXH64_state_t* src_state);
XXH_PUBLIC_API XXH_errorcode XXH64_reset (XXH64_state_t* statePtr, unsigned long long seed);
XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* statePtr, const void* input, size_t length);
XXH_PUBLIC_API XXH64_hash_t XXH64_digest (const XXH64_state_t* statePtr);
/*====== Canonical representation ======*/
typedef struct { unsigned char digest[8]; } XXH64_canonical_t;
XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash);
XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src);
#endif /* XXH_NO_LONG_LONG */
#ifdef XXH_STATIC_LINKING_ONLY
/* ================================================================================================
This section contains declarations which are not guaranteed to remain stable.
They may change in future versions, becoming incompatible with a different version of the library.
These declarations should only be used with static linking.
Never use them in association with dynamic linking !
=================================================================================================== */
/* These definitions are only present to allow
* static allocation of XXH state, on stack or in a struct for example.
* Never **ever** use members directly. */
#if !defined (__VMS) \
&& (defined (__cplusplus) \
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
# include <stdint.h>
struct XXH32_state_s {
uint32_t total_len_32;
uint32_t large_len;
uint32_t v1;
uint32_t v2;
uint32_t v3;
uint32_t v4;
uint32_t mem32[4];
uint32_t memsize;
uint32_t reserved; /* never read nor write, might be removed in a future version */
}; /* typedef'd to XXH32_state_t */
struct XXH64_state_s {
uint64_t total_len;
uint64_t v1;
uint64_t v2;
uint64_t v3;
uint64_t v4;
uint64_t mem64[4];
uint32_t memsize;
uint32_t reserved[2]; /* never read nor write, might be removed in a future version */
}; /* typedef'd to XXH64_state_t */
# else
struct XXH32_state_s {
unsigned total_len_32;
unsigned large_len;
unsigned v1;
unsigned v2;
unsigned v3;
unsigned v4;
unsigned mem32[4];
unsigned memsize;
unsigned reserved; /* never read nor write, might be removed in a future version */
}; /* typedef'd to XXH32_state_t */
# ifndef XXH_NO_LONG_LONG /* remove 64-bit support */
struct XXH64_state_s {
unsigned long long total_len;
unsigned long long v1;
unsigned long long v2;
unsigned long long v3;
unsigned long long v4;
unsigned long long mem64[4];
unsigned memsize;
unsigned reserved[2]; /* never read nor write, might be removed in a future version */
}; /* typedef'd to XXH64_state_t */
# endif
# endif
#if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)
# include "xxhash.c" /* include xxhash function bodies as `static`, for inlining */
#endif
#endif /* XXH_STATIC_LINKING_ONLY */
#if defined (__cplusplus)
}
#endif
#endif /* XXHASH_H_5627135585666179 */

View File

@ -1,949 +0,0 @@
// Copyright (C) 2018-2019, Cloudflare, Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef QUICHE_H
#define QUICHE_H
#if defined(__cplusplus)
extern "C" {
#endif
#include <stdint.h>
#include <stdbool.h>
#include <stddef.h>
#if defined(WIN32) || defined(_WIN32) || defined(__WIN32__) || defined(__NT__)
#include <winsock2.h>
#include <ws2tcpip.h>
#include <time.h>
#else
#include <sys/socket.h>
#include <sys/time.h>
#endif
#ifdef __unix__
#include <sys/types.h>
#endif
#ifdef _MSC_VER
#include <BaseTsd.h>
#define ssize_t SSIZE_T
#endif
// QUIC transport API.
//
// The current QUIC wire version.
#define QUICHE_PROTOCOL_VERSION 0x00000001
// The maximum length of a connection ID.
#define QUICHE_MAX_CONN_ID_LEN 20
// The minimum length of Initial packets sent by a client.
#define QUICHE_MIN_CLIENT_INITIAL_LEN 1200
enum quiche_error {
// There is no more work to do.
QUICHE_ERR_DONE = -1,
// The provided buffer is too short.
QUICHE_ERR_BUFFER_TOO_SHORT = -2,
// The provided packet cannot be parsed because its version is unknown.
QUICHE_ERR_UNKNOWN_VERSION = -3,
// The provided packet cannot be parsed because it contains an invalid
// frame.
QUICHE_ERR_INVALID_FRAME = -4,
// The provided packet cannot be parsed.
QUICHE_ERR_INVALID_PACKET = -5,
// The operation cannot be completed because the connection is in an
// invalid state.
QUICHE_ERR_INVALID_STATE = -6,
// The operation cannot be completed because the stream is in an
// invalid state.
QUICHE_ERR_INVALID_STREAM_STATE = -7,
// The peer's transport params cannot be parsed.
QUICHE_ERR_INVALID_TRANSPORT_PARAM = -8,
// A cryptographic operation failed.
QUICHE_ERR_CRYPTO_FAIL = -9,
// The TLS handshake failed.
QUICHE_ERR_TLS_FAIL = -10,
// The peer violated the local flow control limits.
QUICHE_ERR_FLOW_CONTROL = -11,
// The peer violated the local stream limits.
QUICHE_ERR_STREAM_LIMIT = -12,
// The specified stream was stopped by the peer.
QUICHE_ERR_STREAM_STOPPED = -15,
// The specified stream was reset by the peer.
QUICHE_ERR_STREAM_RESET = -16,
// The received data exceeds the stream's final size.
QUICHE_ERR_FINAL_SIZE = -13,
// Error in congestion control.
QUICHE_ERR_CONGESTION_CONTROL = -14,
};
// Returns a human readable string with the quiche version number.
const char *quiche_version(void);
// Enables logging. |cb| will be called with log messages
int quiche_enable_debug_logging(void (*cb)(const char *line, void *argp),
void *argp);
// Stores configuration shared between multiple connections.
typedef struct quiche_config quiche_config;
// Creates a config object with the given version.
quiche_config *quiche_config_new(uint32_t version);
// Configures the given certificate chain.
int quiche_config_load_cert_chain_from_pem_file(quiche_config *config,
const char *path);
// Configures the given private key.
int quiche_config_load_priv_key_from_pem_file(quiche_config *config,
const char *path);
// Specifies a file where trusted CA certificates are stored for the purposes of certificate verification.
int quiche_config_load_verify_locations_from_file(quiche_config *config,
const char *path);
// Specifies a directory where trusted CA certificates are stored for the purposes of certificate verification.
int quiche_config_load_verify_locations_from_directory(quiche_config *config,
const char *path);
// Configures whether to verify the peer's certificate.
void quiche_config_verify_peer(quiche_config *config, bool v);
// Configures whether to send GREASE.
void quiche_config_grease(quiche_config *config, bool v);
// Enables logging of secrets.
void quiche_config_log_keys(quiche_config *config);
// Enables sending or receiving early data.
void quiche_config_enable_early_data(quiche_config *config);
// Configures the list of supported application protocols.
int quiche_config_set_application_protos(quiche_config *config,
const uint8_t *protos,
size_t protos_len);
// Sets the `max_idle_timeout` transport parameter, in milliseconds, default is
// no timeout.
void quiche_config_set_max_idle_timeout(quiche_config *config, uint64_t v);
// Sets the `max_udp_payload_size transport` parameter.
void quiche_config_set_max_recv_udp_payload_size(quiche_config *config, size_t v);
// Sets the maximum outgoing UDP payload size.
void quiche_config_set_max_send_udp_payload_size(quiche_config *config, size_t v);
// Sets the `initial_max_data` transport parameter.
void quiche_config_set_initial_max_data(quiche_config *config, uint64_t v);
// Sets the `initial_max_stream_data_bidi_local` transport parameter.
void quiche_config_set_initial_max_stream_data_bidi_local(quiche_config *config, uint64_t v);
// Sets the `initial_max_stream_data_bidi_remote` transport parameter.
void quiche_config_set_initial_max_stream_data_bidi_remote(quiche_config *config, uint64_t v);
// Sets the `initial_max_stream_data_uni` transport parameter.
void quiche_config_set_initial_max_stream_data_uni(quiche_config *config, uint64_t v);
// Sets the `initial_max_streams_bidi` transport parameter.
void quiche_config_set_initial_max_streams_bidi(quiche_config *config, uint64_t v);
// Sets the `initial_max_streams_uni` transport parameter.
void quiche_config_set_initial_max_streams_uni(quiche_config *config, uint64_t v);
// Sets the `ack_delay_exponent` transport parameter.
void quiche_config_set_ack_delay_exponent(quiche_config *config, uint64_t v);
// Sets the `max_ack_delay` transport parameter.
void quiche_config_set_max_ack_delay(quiche_config *config, uint64_t v);
// Sets the `disable_active_migration` transport parameter.
void quiche_config_set_disable_active_migration(quiche_config *config, bool v);
enum quiche_cc_algorithm {
QUICHE_CC_RENO = 0,
QUICHE_CC_CUBIC = 1,
QUICHE_CC_BBR = 2,
};
// Sets the congestion control algorithm used.
void quiche_config_set_cc_algorithm(quiche_config *config, enum quiche_cc_algorithm algo);
// Configures whether to use HyStart++.
void quiche_config_enable_hystart(quiche_config *config, bool v);
// Configures whether to enable pacing (enabled by default).
void quiche_config_enable_pacing(quiche_config *config, bool v);
// Configures whether to enable receiving DATAGRAM frames.
void quiche_config_enable_dgram(quiche_config *config, bool enabled,
size_t recv_queue_len,
size_t send_queue_len);
// Sets the maximum connection window.
void quiche_config_set_max_connection_window(quiche_config *config, uint64_t v);
// Sets the maximum stream window.
void quiche_config_set_max_stream_window(quiche_config *config, uint64_t v);
// Sets the limit of active connection IDs.
void quiche_config_set_active_connection_id_limit(quiche_config *config, uint64_t v);
// Sets the initial stateless reset token. |v| must contain 16 bytes, otherwise the behaviour is undefined.
void quiche_config_set_stateless_reset_token(quiche_config *config, const uint8_t *v);
// Frees the config object.
void quiche_config_free(quiche_config *config);
// Extracts version, type, source / destination connection ID and address
// verification token from the packet in |buf|.
int quiche_header_info(const uint8_t *buf, size_t buf_len, size_t dcil,
uint32_t *version, uint8_t *type,
uint8_t *scid, size_t *scid_len,
uint8_t *dcid, size_t *dcid_len,
uint8_t *token, size_t *token_len);
// A QUIC connection.
typedef struct quiche_conn quiche_conn;
// Creates a new server-side connection.
quiche_conn *quiche_accept(const uint8_t *scid, size_t scid_len,
const uint8_t *odcid, size_t odcid_len,
const struct sockaddr *local, size_t local_len,
const struct sockaddr *peer, size_t peer_len,
quiche_config *config);
// Creates a new client-side connection.
quiche_conn *quiche_connect(const char *server_name,
const uint8_t *scid, size_t scid_len,
const struct sockaddr *local, size_t local_len,
const struct sockaddr *peer, size_t peer_len,
quiche_config *config);
// Writes a version negotiation packet.
ssize_t quiche_negotiate_version(const uint8_t *scid, size_t scid_len,
const uint8_t *dcid, size_t dcid_len,
uint8_t *out, size_t out_len);
// Writes a retry packet.
ssize_t quiche_retry(const uint8_t *scid, size_t scid_len,
const uint8_t *dcid, size_t dcid_len,
const uint8_t *new_scid, size_t new_scid_len,
const uint8_t *token, size_t token_len,
uint32_t version, uint8_t *out, size_t out_len);
// Returns true if the given protocol version is supported.
bool quiche_version_is_supported(uint32_t version);
quiche_conn *quiche_conn_new_with_tls(const uint8_t *scid, size_t scid_len,
const uint8_t *odcid, size_t odcid_len,
const struct sockaddr *local, size_t local_len,
const struct sockaddr *peer, size_t peer_len,
quiche_config *config, void *ssl,
bool is_server);
// Enables keylog to the specified file path. Returns true on success.
bool quiche_conn_set_keylog_path(quiche_conn *conn, const char *path);
// Enables keylog to the specified file descriptor. Unix only.
void quiche_conn_set_keylog_fd(quiche_conn *conn, int fd);
// Enables qlog to the specified file path. Returns true on success.
bool quiche_conn_set_qlog_path(quiche_conn *conn, const char *path,
const char *log_title, const char *log_desc);
// Enables qlog to the specified file descriptor. Unix only.
void quiche_conn_set_qlog_fd(quiche_conn *conn, int fd, const char *log_title,
const char *log_desc);
// Configures the given session for resumption.
int quiche_conn_set_session(quiche_conn *conn, const uint8_t *buf, size_t buf_len);
typedef struct {
// The remote address the packet was received from.
struct sockaddr *from;
socklen_t from_len;
// The local address the packet was received on.
struct sockaddr *to;
socklen_t to_len;
} quiche_recv_info;
// Processes QUIC packets received from the peer.
ssize_t quiche_conn_recv(quiche_conn *conn, uint8_t *buf, size_t buf_len,
const quiche_recv_info *info);
typedef struct {
// The local address the packet should be sent from.
struct sockaddr_storage from;
socklen_t from_len;
// The remote address the packet should be sent to.
struct sockaddr_storage to;
socklen_t to_len;
// The time to send the packet out.
struct timespec at;
} quiche_send_info;
// Writes a single QUIC packet to be sent to the peer.
ssize_t quiche_conn_send(quiche_conn *conn, uint8_t *out, size_t out_len,
quiche_send_info *out_info);
// Returns the size of the send quantum, in bytes.
size_t quiche_conn_send_quantum(const quiche_conn *conn);
// Reads contiguous data from a stream.
ssize_t quiche_conn_stream_recv(quiche_conn *conn, uint64_t stream_id,
uint8_t *out, size_t buf_len, bool *fin);
// Writes data to a stream.
ssize_t quiche_conn_stream_send(quiche_conn *conn, uint64_t stream_id,
const uint8_t *buf, size_t buf_len, bool fin);
// The side of the stream to be shut down.
enum quiche_shutdown {
QUICHE_SHUTDOWN_READ = 0,
QUICHE_SHUTDOWN_WRITE = 1,
};
// Sets the priority for a stream.
int quiche_conn_stream_priority(quiche_conn *conn, uint64_t stream_id,
uint8_t urgency, bool incremental);
// Shuts down reading or writing from/to the specified stream.
int quiche_conn_stream_shutdown(quiche_conn *conn, uint64_t stream_id,
enum quiche_shutdown direction, uint64_t err);
// Returns the stream's send capacity in bytes.
ssize_t quiche_conn_stream_capacity(const quiche_conn *conn, uint64_t stream_id);
// Returns true if the stream has data that can be read.
bool quiche_conn_stream_readable(const quiche_conn *conn, uint64_t stream_id);
// Returns the next stream that has data to read, or -1 if no such stream is
// available.
int64_t quiche_conn_stream_readable_next(quiche_conn *conn);
// Returns true if the stream has enough send capacity.
//
// On error a value lower than 0 is returned.
int quiche_conn_stream_writable(quiche_conn *conn, uint64_t stream_id, size_t len);
// Returns the next stream that can be written to, or -1 if no such stream is
// available.
int64_t quiche_conn_stream_writable_next(quiche_conn *conn);
// Returns true if all the data has been read from the specified stream.
bool quiche_conn_stream_finished(const quiche_conn *conn, uint64_t stream_id);
typedef struct quiche_stream_iter quiche_stream_iter;
// Returns an iterator over streams that have outstanding data to read.
quiche_stream_iter *quiche_conn_readable(const quiche_conn *conn);
// Returns an iterator over streams that can be written to.
quiche_stream_iter *quiche_conn_writable(const quiche_conn *conn);
// Returns the maximum possible size of egress UDP payloads.
size_t quiche_conn_max_send_udp_payload_size(const quiche_conn *conn);
// Returns the amount of time until the next timeout event, in nanoseconds.
uint64_t quiche_conn_timeout_as_nanos(const quiche_conn *conn);
// Returns the amount of time until the next timeout event, in milliseconds.
uint64_t quiche_conn_timeout_as_millis(const quiche_conn *conn);
// Processes a timeout event.
void quiche_conn_on_timeout(quiche_conn *conn);
// Closes the connection with the given error and reason.
int quiche_conn_close(quiche_conn *conn, bool app, uint64_t err,
const uint8_t *reason, size_t reason_len);
// Returns a string uniquely representing the connection.
void quiche_conn_trace_id(const quiche_conn *conn, const uint8_t **out, size_t *out_len);
// Returns the source connection ID.
void quiche_conn_source_id(const quiche_conn *conn, const uint8_t **out, size_t *out_len);
// Returns the destination connection ID.
void quiche_conn_destination_id(const quiche_conn *conn, const uint8_t **out, size_t *out_len);
// Returns the negotiated ALPN protocol.
void quiche_conn_application_proto(const quiche_conn *conn, const uint8_t **out,
size_t *out_len);
// Returns the peer's leaf certificate (if any) as a DER-encoded buffer.
void quiche_conn_peer_cert(const quiche_conn *conn, const uint8_t **out, size_t *out_len);
// Returns the serialized cryptographic session for the connection.
void quiche_conn_session(const quiche_conn *conn, const uint8_t **out, size_t *out_len);
// Returns true if the connection handshake is complete.
bool quiche_conn_is_established(const quiche_conn *conn);
// Returns true if the connection has a pending handshake that has progressed
// enough to send or receive early data.
bool quiche_conn_is_in_early_data(const quiche_conn *conn);
// Returns whether there is stream or DATAGRAM data available to read.
bool quiche_conn_is_readable(const quiche_conn *conn);
// Returns true if the connection is draining.
bool quiche_conn_is_draining(const quiche_conn *conn);
// Returns the number of bidirectional streams that can be created
// before the peer's stream count limit is reached.
uint64_t quiche_conn_peer_streams_left_bidi(const quiche_conn *conn);
// Returns the number of unidirectional streams that can be created
// before the peer's stream count limit is reached.
uint64_t quiche_conn_peer_streams_left_uni(const quiche_conn *conn);
// Returns true if the connection is closed.
bool quiche_conn_is_closed(const quiche_conn *conn);
// Returns true if the connection was closed due to the idle timeout.
bool quiche_conn_is_timed_out(const quiche_conn *conn);
// Returns true if a connection error was received, and updates the provided
// parameters accordingly.
bool quiche_conn_peer_error(const quiche_conn *conn,
bool *is_app,
uint64_t *error_code,
const uint8_t **reason,
size_t *reason_len);
// Returns true if a connection error was queued or sent, and updates the provided
// parameters accordingly.
bool quiche_conn_local_error(const quiche_conn *conn,
bool *is_app,
uint64_t *error_code,
const uint8_t **reason,
size_t *reason_len);
// Initializes the stream's application data.
//
// Stream data can only be initialized once. Additional calls to this method
// will fail.
//
// Note that the application is responsible for freeing the data.
int quiche_conn_stream_init_application_data(quiche_conn *conn,
uint64_t stream_id,
void *data);
// Returns the stream's application data, if any was initialized.
void *quiche_conn_stream_application_data(quiche_conn *conn, uint64_t stream_id);
// Fetches the next stream from the given iterator. Returns false if there are
// no more elements in the iterator.
bool quiche_stream_iter_next(quiche_stream_iter *iter, uint64_t *stream_id);
// Frees the given stream iterator object.
void quiche_stream_iter_free(quiche_stream_iter *iter);
typedef struct {
// The number of QUIC packets received on this connection.
size_t recv;
// The number of QUIC packets sent on this connection.
size_t sent;
// The number of QUIC packets that were lost.
size_t lost;
// The number of sent QUIC packets with retransmitted data.
size_t retrans;
// The number of sent bytes.
uint64_t sent_bytes;
// The number of received bytes.
uint64_t recv_bytes;
// The number of bytes lost.
uint64_t lost_bytes;
// The number of stream bytes retransmitted.
uint64_t stream_retrans_bytes;
// The number of known paths for the connection.
size_t paths_count;
// The maximum idle timeout.
uint64_t peer_max_idle_timeout;
// The maximum UDP payload size.
uint64_t peer_max_udp_payload_size;
// The initial flow control maximum data for the connection.
uint64_t peer_initial_max_data;
// The initial flow control maximum data for local bidirectional streams.
uint64_t peer_initial_max_stream_data_bidi_local;
// The initial flow control maximum data for remote bidirectional streams.
uint64_t peer_initial_max_stream_data_bidi_remote;
// The initial flow control maximum data for unidirectional streams.
uint64_t peer_initial_max_stream_data_uni;
// The initial maximum bidirectional streams.
uint64_t peer_initial_max_streams_bidi;
// The initial maximum unidirectional streams.
uint64_t peer_initial_max_streams_uni;
// The ACK delay exponent.
uint64_t peer_ack_delay_exponent;
// The max ACK delay.
uint64_t peer_max_ack_delay;
// Whether active migration is disabled.
bool peer_disable_active_migration;
// The active connection ID limit.
uint64_t peer_active_conn_id_limit;
// DATAGRAM frame extension parameter, if any.
ssize_t peer_max_datagram_frame_size;
} quiche_stats;
// Collects and returns statistics about the connection.
void quiche_conn_stats(const quiche_conn *conn, quiche_stats *out);
typedef struct {
// The local address used by this path.
struct sockaddr_storage local_addr;
socklen_t local_addr_len;
// The peer address seen by this path.
struct sockaddr_storage peer_addr;
socklen_t peer_addr_len;
// The validation state of the path.
ssize_t validation_state;
// Whether this path is active.
bool active;
// The number of QUIC packets received on this path.
size_t recv;
// The number of QUIC packets sent on this path.
size_t sent;
// The number of QUIC packets that were lost on this path.
size_t lost;
// The number of sent QUIC packets with retransmitted data on this path.
size_t retrans;
// The estimated round-trip time of the path (in nanoseconds).
uint64_t rtt;
// The size of the path's congestion window in bytes.
size_t cwnd;
// The number of sent bytes on this path.
uint64_t sent_bytes;
// The number of received bytes on this path.
uint64_t recv_bytes;
// The number of bytes lost on this path.
uint64_t lost_bytes;
// The number of stream bytes retransmitted on this path.
uint64_t stream_retrans_bytes;
// The current PMTU for the path.
size_t pmtu;
// The most recent data delivery rate estimate in bytes/s.
uint64_t delivery_rate;
} quiche_path_stats;
// Collects and returns statistics about the specified path for the connection.
//
// The `idx` argument represent the path's index (also see the `paths_count`
// field of `quiche_stats`).
int quiche_conn_path_stats(const quiche_conn *conn, size_t idx, quiche_path_stats *out);
// Returns the maximum DATAGRAM payload that can be sent.
ssize_t quiche_conn_dgram_max_writable_len(const quiche_conn *conn);
// Returns the length of the first stored DATAGRAM.
ssize_t quiche_conn_dgram_recv_front_len(const quiche_conn *conn);
// Returns the number of items in the DATAGRAM receive queue.
ssize_t quiche_conn_dgram_recv_queue_len(const quiche_conn *conn);
// Returns the total size of all items in the DATAGRAM receive queue.
ssize_t quiche_conn_dgram_recv_queue_byte_size(const quiche_conn *conn);
// Returns the number of items in the DATAGRAM send queue.
ssize_t quiche_conn_dgram_send_queue_len(const quiche_conn *conn);
// Returns the total size of all items in the DATAGRAM send queue.
ssize_t quiche_conn_dgram_send_queue_byte_size(const quiche_conn *conn);
// Reads the first received DATAGRAM.
ssize_t quiche_conn_dgram_recv(quiche_conn *conn, uint8_t *buf,
size_t buf_len);
// Sends data in a DATAGRAM frame.
ssize_t quiche_conn_dgram_send(quiche_conn *conn, const uint8_t *buf,
size_t buf_len);
// Purges queued outgoing DATAGRAMs matching the predicate.
void quiche_conn_dgram_purge_outgoing(quiche_conn *conn,
bool (*f)(uint8_t *, size_t));
// Schedule an ack-eliciting packet on the active path.
ssize_t quiche_conn_send_ack_eliciting(quiche_conn *conn);
// Schedule an ack-eliciting packet on the specified path.
ssize_t quiche_conn_send_ack_eliciting_on_path(quiche_conn *conn,
const struct sockaddr *local, size_t local_len,
const struct sockaddr *peer, size_t peer_len);
// Frees the connection object.
void quiche_conn_free(quiche_conn *conn);
// HTTP/3 API
//
// List of ALPN tokens of supported HTTP/3 versions.
#define QUICHE_H3_APPLICATION_PROTOCOL "\x02h3\x05h3-29\x05h3-28\x05h3-27"
enum quiche_h3_error {
// There is no error or no work to do
QUICHE_H3_ERR_DONE = -1,
// The provided buffer is too short.
QUICHE_H3_ERR_BUFFER_TOO_SHORT = -2,
// Internal error in the HTTP/3 stack.
QUICHE_H3_ERR_INTERNAL_ERROR = -3,
// Endpoint detected that the peer is exhibiting behavior that causes.
// excessive load.
QUICHE_H3_ERR_EXCESSIVE_LOAD = -4,
// Stream ID or Push ID greater that current maximum was
// used incorrectly, such as exceeding a limit, reducing a limit,
// or being reused.
QUICHE_H3_ERR_ID_ERROR= -5,
// The endpoint detected that its peer created a stream that it will not
// accept.
QUICHE_H3_ERR_STREAM_CREATION_ERROR = -6,
// A required critical stream was closed.
QUICHE_H3_ERR_CLOSED_CRITICAL_STREAM = -7,
// No SETTINGS frame at beginning of control stream.
QUICHE_H3_ERR_MISSING_SETTINGS = -8,
// A frame was received which is not permitted in the current state.
QUICHE_H3_ERR_FRAME_UNEXPECTED = -9,
// Frame violated layout or size rules.
QUICHE_H3_ERR_FRAME_ERROR = -10,
// QPACK Header block decompression failure.
QUICHE_H3_ERR_QPACK_DECOMPRESSION_FAILED = -11,
// -12 was previously used for TransportError, skip it
// The underlying QUIC stream (or connection) doesn't have enough capacity
// for the operation to complete. The application should retry later on.
QUICHE_H3_ERR_STREAM_BLOCKED = -13,
// Error in the payload of a SETTINGS frame.
QUICHE_H3_ERR_SETTINGS_ERROR = -14,
// Server rejected request.
QUICHE_H3_ERR_REQUEST_REJECTED = -15,
// Request or its response cancelled.
QUICHE_H3_ERR_REQUEST_CANCELLED = -16,
// Client's request stream terminated without containing a full-formed
// request.
QUICHE_H3_ERR_REQUEST_INCOMPLETE = -17,
// An HTTP message was malformed and cannot be processed.
QUICHE_H3_ERR_MESSAGE_ERROR = -18,
// The TCP connection established in response to a CONNECT request was
// reset or abnormally closed.
QUICHE_H3_ERR_CONNECT_ERROR = -19,
// The requested operation cannot be served over HTTP/3. Peer should retry
// over HTTP/1.1.
QUICHE_H3_ERR_VERSION_FALLBACK = -20,
// The following QUICHE_H3_TRANSPORT_ERR_* errors are propagated
// from the QUIC transport layer.
// See QUICHE_ERR_DONE.
QUICHE_H3_TRANSPORT_ERR_DONE = QUICHE_ERR_DONE - 1000,
// See QUICHE_ERR_BUFFER_TOO_SHORT.
QUICHE_H3_TRANSPORT_ERR_BUFFER_TOO_SHORT = QUICHE_ERR_BUFFER_TOO_SHORT - 1000,
// See QUICHE_ERR_UNKNOWN_VERSION.
QUICHE_H3_TRANSPORT_ERR_UNKNOWN_VERSION = QUICHE_ERR_UNKNOWN_VERSION - 1000,
// See QUICHE_ERR_INVALID_FRAME.
QUICHE_H3_TRANSPORT_ERR_INVALID_FRAME = QUICHE_ERR_INVALID_FRAME - 1000,
// See QUICHE_ERR_INVALID_PACKET.
QUICHE_H3_TRANSPORT_ERR_INVALID_PACKET = QUICHE_ERR_INVALID_PACKET - 1000,
// See QUICHE_ERR_INVALID_STATE.
QUICHE_H3_TRANSPORT_ERR_INVALID_STATE = QUICHE_ERR_INVALID_STATE - 1000,
// See QUICHE_ERR_INVALID_STREAM_STATE.
QUICHE_H3_TRANSPORT_ERR_INVALID_STREAM_STATE = QUICHE_ERR_INVALID_STREAM_STATE - 1000,
// See QUICHE_ERR_INVALID_TRANSPORT_PARAM.
QUICHE_H3_TRANSPORT_ERR_INVALID_TRANSPORT_PARAM = QUICHE_ERR_INVALID_TRANSPORT_PARAM - 1000,
// See QUICHE_ERR_CRYPTO_FAIL.
QUICHE_H3_TRANSPORT_ERR_CRYPTO_FAIL = QUICHE_ERR_CRYPTO_FAIL - 1000,
// See QUICHE_ERR_TLS_FAIL.
QUICHE_H3_TRANSPORT_ERR_TLS_FAIL = QUICHE_ERR_TLS_FAIL - 1000,
// See QUICHE_ERR_FLOW_CONTROL.
QUICHE_H3_TRANSPORT_ERR_FLOW_CONTROL = QUICHE_ERR_FLOW_CONTROL - 1000,
// See QUICHE_ERR_STREAM_LIMIT.
QUICHE_H3_TRANSPORT_ERR_STREAM_LIMIT = QUICHE_ERR_STREAM_LIMIT - 1000,
// See QUICHE_ERR_STREAM_STOPPED.
QUICHE_H3_TRANSPORT_ERR_STREAM_STOPPED = QUICHE_ERR_STREAM_STOPPED - 1000,
// See QUICHE_ERR_STREAM_RESET.
QUICHE_H3_TRANSPORT_ERR_STREAM_RESET = QUICHE_ERR_STREAM_RESET - 1000,
// See QUICHE_ERR_FINAL_SIZE.
QUICHE_H3_TRANSPORT_ERR_FINAL_SIZE = QUICHE_ERR_FINAL_SIZE - 1000,
// See QUICHE_ERR_CONGESTION_CONTROL.
QUICHE_H3_TRANSPORT_ERR_CONGESTION_CONTROL = QUICHE_ERR_CONGESTION_CONTROL - 1000,
};
// Stores configuration shared between multiple connections.
typedef struct quiche_h3_config quiche_h3_config;
// Creates an HTTP/3 config object with default settings values.
quiche_h3_config *quiche_h3_config_new(void);
// Sets the `SETTINGS_MAX_FIELD_SECTION_SIZE` setting.
void quiche_h3_config_set_max_field_section_size(quiche_h3_config *config, uint64_t v);
// Sets the `SETTINGS_QPACK_MAX_TABLE_CAPACITY` setting.
void quiche_h3_config_set_qpack_max_table_capacity(quiche_h3_config *config, uint64_t v);
// Sets the `SETTINGS_QPACK_BLOCKED_STREAMS` setting.
void quiche_h3_config_set_qpack_blocked_streams(quiche_h3_config *config, uint64_t v);
// Sets the `SETTINGS_ENABLE_CONNECT_PROTOCOL` setting.
void quiche_h3_config_enable_extended_connect(quiche_h3_config *config, bool enabled);
// Frees the HTTP/3 config object.
void quiche_h3_config_free(quiche_h3_config *config);
// An HTTP/3 connection.
typedef struct quiche_h3_conn quiche_h3_conn;
// Creates a new server-side connection.
quiche_h3_conn *quiche_h3_accept(quiche_conn *quiche_conn,
quiche_h3_config *config);
// Creates a new HTTP/3 connection using the provided QUIC connection.
quiche_h3_conn *quiche_h3_conn_new_with_transport(quiche_conn *quiche_conn,
quiche_h3_config *config);
enum quiche_h3_event_type {
QUICHE_H3_EVENT_HEADERS,
QUICHE_H3_EVENT_DATA,
QUICHE_H3_EVENT_FINISHED,
QUICHE_H3_EVENT_DATAGRAM,
QUICHE_H3_EVENT_GOAWAY,
QUICHE_H3_EVENT_RESET,
QUICHE_H3_EVENT_PRIORITY_UPDATE,
};
typedef struct quiche_h3_event quiche_h3_event;
// Processes HTTP/3 data received from the peer.
int64_t quiche_h3_conn_poll(quiche_h3_conn *conn, quiche_conn *quic_conn,
quiche_h3_event **ev);
// Returns the type of the event.
enum quiche_h3_event_type quiche_h3_event_type(quiche_h3_event *ev);
// Iterates over the headers in the event.
//
// The `cb` callback will be called for each header in `ev`. `cb` should check
// the validity of pseudo-headers and headers. If `cb` returns any value other
// than `0`, processing will be interrupted and the value is returned to the
// caller.
int quiche_h3_event_for_each_header(quiche_h3_event *ev,
int (*cb)(uint8_t *name, size_t name_len,
uint8_t *value, size_t value_len,
void *argp),
void *argp);
// Iterates over the peer's HTTP/3 settings.
//
// The `cb` callback will be called for each setting in `conn`.
// If `cb` returns any value other than `0`, processing will be interrupted and
// the value is returned to the caller.
int quiche_h3_for_each_setting(quiche_h3_conn *conn,
int (*cb)(uint64_t identifier,
uint64_t value, void *argp),
void *argp);
// Check whether data will follow the headers on the stream.
bool quiche_h3_event_headers_has_body(quiche_h3_event *ev);
// Check whether or not extended connection is enabled by the peer
bool quiche_h3_extended_connect_enabled_by_peer(quiche_h3_conn *conn);
// Frees the HTTP/3 event object.
void quiche_h3_event_free(quiche_h3_event *ev);
typedef struct {
const uint8_t *name;
size_t name_len;
const uint8_t *value;
size_t value_len;
} quiche_h3_header;
// Extensible Priorities parameters.
typedef struct {
uint8_t urgency;
bool incremental;
} quiche_h3_priority;
// Sends an HTTP/3 request.
int64_t quiche_h3_send_request(quiche_h3_conn *conn, quiche_conn *quic_conn,
quiche_h3_header *headers, size_t headers_len,
bool fin);
// Sends an HTTP/3 response on the specified stream with default priority.
int quiche_h3_send_response(quiche_h3_conn *conn, quiche_conn *quic_conn,
uint64_t stream_id, quiche_h3_header *headers,
size_t headers_len, bool fin);
// Sends an HTTP/3 response on the specified stream with specified priority.
int quiche_h3_send_response_with_priority(quiche_h3_conn *conn,
quiche_conn *quic_conn, uint64_t stream_id,
quiche_h3_header *headers, size_t headers_len,
quiche_h3_priority *priority, bool fin);
// Sends an HTTP/3 body chunk on the given stream.
ssize_t quiche_h3_send_body(quiche_h3_conn *conn, quiche_conn *quic_conn,
uint64_t stream_id, uint8_t *body, size_t body_len,
bool fin);
// Reads request or response body data into the provided buffer.
ssize_t quiche_h3_recv_body(quiche_h3_conn *conn, quiche_conn *quic_conn,
uint64_t stream_id, uint8_t *out, size_t out_len);
// Try to parse an Extensible Priority field value.
int quiche_h3_parse_extensible_priority(uint8_t *priority,
size_t priority_len,
quiche_h3_priority *parsed);
/// Sends a PRIORITY_UPDATE frame on the control stream with specified
/// request stream ID and priority.
int quiche_h3_send_priority_update_for_request(quiche_h3_conn *conn,
quiche_conn *quic_conn,
uint64_t stream_id,
quiche_h3_priority *priority);
// Take the last received PRIORITY_UPDATE frame for a stream.
//
// The `cb` callback will be called once. `cb` should check the validity of
// priority field value contents. If `cb` returns any value other than `0`,
// processing will be interrupted and the value is returned to the caller.
int quiche_h3_take_last_priority_update(quiche_h3_conn *conn,
uint64_t prioritized_element_id,
int (*cb)(uint8_t *priority_field_value,
uint64_t priority_field_value_len,
void *argp),
void *argp);
// Returns whether the peer enabled HTTP/3 DATAGRAM frame support.
bool quiche_h3_dgram_enabled_by_peer(quiche_h3_conn *conn,
quiche_conn *quic_conn);
// Writes data to the DATAGRAM send queue.
ssize_t quiche_h3_send_dgram(quiche_h3_conn *conn, quiche_conn *quic_conn,
uint64_t flow_id, uint8_t *data, size_t data_len);
// Reads data from the DATAGRAM receive queue.
ssize_t quiche_h3_recv_dgram(quiche_h3_conn *conn, quiche_conn *quic_conn,
uint64_t *flow_id, size_t *flow_id_len,
uint8_t *out, size_t out_len);
// Frees the HTTP/3 connection object.
void quiche_h3_conn_free(quiche_h3_conn *conn);
#if defined(__cplusplus)
} // extern C
#endif
#endif // QUICHE_H

View File

@ -1,357 +0,0 @@
# ################################################################
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under both the BSD-style license (found in the
# LICENSE file in the root directory of this source tree) and the GPLv2 (found
# in the COPYING file in the root directory of this source tree).
# You may select, at your option, one of the above-listed licenses.
# ################################################################
# Modules
ZSTD_LIB_COMPRESSION ?= 1
ZSTD_LIB_DECOMPRESSION ?= 1
ZSTD_LIB_DICTBUILDER ?= 1
ZSTD_LIB_DEPRECATED ?= 0
# Input variables for libzstd.mk
ifeq ($(ZSTD_LIB_COMPRESSION), 0)
ZSTD_LIB_DICTBUILDER = 0
ZSTD_LIB_DEPRECATED = 0
endif
ifeq ($(ZSTD_LIB_DECOMPRESSION), 0)
ZSTD_LEGACY_SUPPORT = 0
ZSTD_LIB_DEPRECATED = 0
endif
include libzstd.mk
ZSTD_FILES := $(ZSTD_COMMON_FILES) $(ZSTD_LEGACY_FILES)
ifneq ($(ZSTD_LIB_COMPRESSION), 0)
ZSTD_FILES += $(ZSTD_COMPRESS_FILES)
endif
ifneq ($(ZSTD_LIB_DECOMPRESSION), 0)
ZSTD_FILES += $(ZSTD_DECOMPRESS_FILES)
endif
ifneq ($(ZSTD_LIB_DEPRECATED), 0)
ZSTD_FILES += $(ZSTD_DEPRECATED_FILES)
endif
ifneq ($(ZSTD_LIB_DICTBUILDER), 0)
ZSTD_FILES += $(ZSTD_DICTBUILDER_FILES)
endif
ZSTD_LOCAL_SRC := $(notdir $(ZSTD_FILES))
ZSTD_LOCAL_OBJ0 := $(ZSTD_LOCAL_SRC:.c=.o)
ZSTD_LOCAL_OBJ := $(ZSTD_LOCAL_OBJ0:.S=.o)
VERSION := $(ZSTD_VERSION)
# Note: by default, the static library is built single-threaded and dynamic library is built
# multi-threaded. It is possible to force multi or single threaded builds by appending
# -mt or -nomt to the build target (like lib-mt for multi-threaded, lib-nomt for single-threaded).
.PHONY: default
default: lib-release
CPPFLAGS_DYNLIB += -DZSTD_MULTITHREAD # dynamic library build defaults to multi-threaded
LDFLAGS_DYNLIB += -pthread
CPPFLAGS_STATLIB += # static library build defaults to single-threaded
ifeq ($(findstring GCC,$(CCVER)),GCC)
decompress/zstd_decompress_block.o : CFLAGS+=-fno-tree-vectorize
endif
# macOS linker doesn't support -soname, and use different extension
# see : https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/DynamicLibraries/100-Articles/DynamicLibraryDesignGuidelines.html
ifeq ($(UNAME), Darwin)
SHARED_EXT = dylib
SHARED_EXT_MAJOR = $(LIBVER_MAJOR).$(SHARED_EXT)
SHARED_EXT_VER = $(LIBVER).$(SHARED_EXT)
SONAME_FLAGS = -install_name $(LIBDIR)/libzstd.$(SHARED_EXT_MAJOR) -compatibility_version $(LIBVER_MAJOR) -current_version $(LIBVER)
else
ifeq ($(UNAME), AIX)
SONAME_FLAGS =
else
SONAME_FLAGS = -Wl,-soname=libzstd.$(SHARED_EXT).$(LIBVER_MAJOR)
endif
SHARED_EXT = so
SHARED_EXT_MAJOR = $(SHARED_EXT).$(LIBVER_MAJOR)
SHARED_EXT_VER = $(SHARED_EXT).$(LIBVER)
endif
.PHONY: all
all: lib
.PHONY: libzstd.a # must be run every time
libzstd.a: CPPFLAGS += $(CPPFLAGS_STATLIB)
SET_CACHE_DIRECTORY = \
+$(MAKE) --no-print-directory $@ \
BUILD_DIR=obj/$(HASH_DIR) \
CPPFLAGS="$(CPPFLAGS)" \
CFLAGS="$(CFLAGS)" \
LDFLAGS="$(LDFLAGS)"
ifndef BUILD_DIR
# determine BUILD_DIR from compilation flags
libzstd.a:
$(SET_CACHE_DIRECTORY)
else
# BUILD_DIR is defined
ZSTD_STATLIB_DIR := $(BUILD_DIR)/static
ZSTD_STATLIB := $(ZSTD_STATLIB_DIR)/libzstd.a
ZSTD_STATLIB_OBJ := $(addprefix $(ZSTD_STATLIB_DIR)/,$(ZSTD_LOCAL_OBJ))
$(ZSTD_STATLIB): ARFLAGS = rcs
$(ZSTD_STATLIB): | $(ZSTD_STATLIB_DIR)
$(ZSTD_STATLIB): $(ZSTD_STATLIB_OBJ)
# Check for multithread flag at target execution time
$(if $(filter -DZSTD_MULTITHREAD,$(CPPFLAGS)),\
@echo compiling multi-threaded static library $(LIBVER),\
@echo compiling single-threaded static library $(LIBVER))
$(AR) $(ARFLAGS) $@ $^
libzstd.a: $(ZSTD_STATLIB)
cp -f $< $@
endif
ifneq (,$(filter Windows%,$(TARGET_SYSTEM)))
LIBZSTD = dll/libzstd.dll
$(LIBZSTD): $(ZSTD_FILES)
@echo compiling dynamic library $(LIBVER)
$(CC) $(FLAGS) -DZSTD_DLL_EXPORT=1 -Wl,--out-implib,dll/libzstd.dll.a -shared $^ -o $@
else # not Windows
LIBZSTD = libzstd.$(SHARED_EXT_VER)
.PHONY: $(LIBZSTD) # must be run every time
$(LIBZSTD): CPPFLAGS += $(CPPFLAGS_DYNLIB)
$(LIBZSTD): CFLAGS += -fPIC -fvisibility=hidden
$(LIBZSTD): LDFLAGS += -shared $(LDFLAGS_DYNLIB)
ifndef BUILD_DIR
# determine BUILD_DIR from compilation flags
$(LIBZSTD):
$(SET_CACHE_DIRECTORY)
else
# BUILD_DIR is defined
ZSTD_DYNLIB_DIR := $(BUILD_DIR)/dynamic
ZSTD_DYNLIB := $(ZSTD_DYNLIB_DIR)/$(LIBZSTD)
ZSTD_DYNLIB_OBJ := $(addprefix $(ZSTD_DYNLIB_DIR)/,$(ZSTD_LOCAL_OBJ))
$(ZSTD_DYNLIB): | $(ZSTD_DYNLIB_DIR)
$(ZSTD_DYNLIB): $(ZSTD_DYNLIB_OBJ)
# Check for multithread flag at target execution time
$(if $(filter -DZSTD_MULTITHREAD,$(CPPFLAGS)),\
@echo compiling multi-threaded dynamic library $(LIBVER),\
@echo compiling single-threaded dynamic library $(LIBVER))
$(CC) $(FLAGS) $^ $(LDFLAGS) $(SONAME_FLAGS) -o $@
@echo creating versioned links
ln -sf $@ libzstd.$(SHARED_EXT_MAJOR)
ln -sf $@ libzstd.$(SHARED_EXT)
$(LIBZSTD): $(ZSTD_DYNLIB)
cp -f $< $@
endif # ifndef BUILD_DIR
endif # if windows
.PHONY: libzstd
libzstd : $(LIBZSTD)
.PHONY: lib
lib : libzstd.a libzstd
# note : do not define lib-mt or lib-release as .PHONY
# make does not consider implicit pattern rule for .PHONY target
%-mt : CPPFLAGS_DYNLIB := -DZSTD_MULTITHREAD
%-mt : CPPFLAGS_STATLIB := -DZSTD_MULTITHREAD
%-mt : LDFLAGS_DYNLIB := -pthread
%-mt : %
@echo multi-threaded build completed
%-nomt : CPPFLAGS_DYNLIB :=
%-nomt : LDFLAGS_DYNLIB :=
%-nomt : CPPFLAGS_STATLIB :=
%-nomt : %
@echo single-threaded build completed
%-release : DEBUGFLAGS :=
%-release : %
@echo release build completed
# Generate .h dependencies automatically
DEPFLAGS = -MT $@ -MMD -MP -MF
$(ZSTD_DYNLIB_DIR)/%.o : %.c $(ZSTD_DYNLIB_DIR)/%.d | $(ZSTD_DYNLIB_DIR)
@echo CC $@
$(COMPILE.c) $(DEPFLAGS) $(ZSTD_DYNLIB_DIR)/$*.d $(OUTPUT_OPTION) $<
$(ZSTD_STATLIB_DIR)/%.o : %.c $(ZSTD_STATLIB_DIR)/%.d | $(ZSTD_STATLIB_DIR)
@echo CC $@
$(COMPILE.c) $(DEPFLAGS) $(ZSTD_STATLIB_DIR)/$*.d $(OUTPUT_OPTION) $<
$(ZSTD_DYNLIB_DIR)/%.o : %.S | $(ZSTD_DYNLIB_DIR)
@echo AS $@
$(COMPILE.S) $(OUTPUT_OPTION) $<
$(ZSTD_STATLIB_DIR)/%.o : %.S | $(ZSTD_STATLIB_DIR)
@echo AS $@
$(COMPILE.S) $(OUTPUT_OPTION) $<
MKDIR ?= mkdir
$(BUILD_DIR) $(ZSTD_DYNLIB_DIR) $(ZSTD_STATLIB_DIR):
$(MKDIR) -p $@
DEPFILES := $(ZSTD_DYNLIB_OBJ:.o=.d) $(ZSTD_STATLIB_OBJ:.o=.d)
$(DEPFILES):
include $(wildcard $(DEPFILES))
# Special case : building library in single-thread mode _and_ without zstdmt_compress.c
ZSTDMT_FILES = compress/zstdmt_compress.c
ZSTD_NOMT_FILES = $(filter-out $(ZSTDMT_FILES),$(ZSTD_FILES))
libzstd-nomt: CFLAGS += -fPIC -fvisibility=hidden
libzstd-nomt: LDFLAGS += -shared
libzstd-nomt: $(ZSTD_NOMT_FILES)
@echo compiling single-thread dynamic library $(LIBVER)
@echo files : $(ZSTD_NOMT_FILES)
$(CC) $(FLAGS) $^ $(LDFLAGS) $(SONAME_FLAGS) -o $@
.PHONY: clean
clean:
$(RM) -r *.dSYM # macOS-specific
$(RM) core *.o *.a *.gcda *.$(SHARED_EXT) *.$(SHARED_EXT).* libzstd.pc
$(RM) dll/libzstd.dll dll/libzstd.lib libzstd-nomt*
$(RM) -r obj/*
@echo Cleaning library completed
#-----------------------------------------------------------------------------
# make install is validated only for below listed environments
#-----------------------------------------------------------------------------
ifneq (,$(filter $(UNAME),Linux Darwin GNU/kFreeBSD GNU OpenBSD FreeBSD NetBSD DragonFly SunOS Haiku AIX))
lib: libzstd.pc
HAS_EXPLICIT_EXEC_PREFIX := $(if $(or $(EXEC_PREFIX),$(exec_prefix)),1,)
DESTDIR ?=
# directory variables : GNU conventions prefer lowercase
# see https://www.gnu.org/prep/standards/html_node/Makefile-Conventions.html
# support both lower and uppercase (BSD), use uppercase in script
prefix ?= /usr/local
PREFIX ?= $(prefix)
exec_prefix ?= $(PREFIX)
EXEC_PREFIX ?= $(exec_prefix)
libdir ?= $(EXEC_PREFIX)/lib
LIBDIR ?= $(libdir)
includedir ?= $(PREFIX)/include
INCLUDEDIR ?= $(includedir)
PCINCDIR := $(patsubst $(PREFIX)%,%,$(INCLUDEDIR))
PCLIBDIR := $(patsubst $(EXEC_PREFIX)%,%,$(LIBDIR))
# If we successfully stripped off a prefix, we'll add a reference to the
# relevant pc variable.
PCINCPREFIX := $(if $(findstring $(INCLUDEDIR),$(PCINCDIR)),,$${prefix})
PCLIBPREFIX := $(if $(findstring $(LIBDIR),$(PCLIBDIR)),,$${exec_prefix})
# If no explicit EXEC_PREFIX was set by the caller, write it out as a reference
# to PREFIX, rather than as a resolved value.
PCEXEC_PREFIX := $(if $(HAS_EXPLICIT_EXEC_PREFIX),$(EXEC_PREFIX),$${prefix})
ifneq (,$(filter $(UNAME),FreeBSD NetBSD DragonFly))
PKGCONFIGDIR ?= $(PREFIX)/libdata/pkgconfig
else
PKGCONFIGDIR ?= $(LIBDIR)/pkgconfig
endif
ifneq (,$(filter $(UNAME),SunOS))
INSTALL ?= ginstall
else
INSTALL ?= install
endif
INSTALL_PROGRAM ?= $(INSTALL)
INSTALL_DATA ?= $(INSTALL) -m 644
libzstd.pc: libzstd.pc.in
@echo creating pkgconfig
@sed \
-e 's|@PREFIX@|$(PREFIX)|' \
-e 's|@EXEC_PREFIX@|$(PCEXEC_PREFIX)|' \
-e 's|@INCLUDEDIR@|$(PCINCPREFIX)$(PCINCDIR)|' \
-e 's|@LIBDIR@|$(PCLIBPREFIX)$(PCLIBDIR)|' \
-e 's|@VERSION@|$(VERSION)|' \
-e 's|@LIBS_PRIVATE@|$(LDFLAGS_DYNLIB)|' \
$< >$@
.PHONY: install
install: install-pc install-static install-shared install-includes
@echo zstd static and shared library installed
.PHONY: install-pc
install-pc: libzstd.pc
[ -e $(DESTDIR)$(PKGCONFIGDIR) ] || $(INSTALL) -d -m 755 $(DESTDIR)$(PKGCONFIGDIR)/
$(INSTALL_DATA) libzstd.pc $(DESTDIR)$(PKGCONFIGDIR)/
.PHONY: install-static
install-static:
# only generate libzstd.a if it's not already present
[ -e libzstd.a ] || $(MAKE) libzstd.a-release
[ -e $(DESTDIR)$(LIBDIR) ] || $(INSTALL) -d -m 755 $(DESTDIR)$(LIBDIR)/
@echo Installing static library
$(INSTALL_DATA) libzstd.a $(DESTDIR)$(LIBDIR)
.PHONY: install-shared
install-shared:
# only generate libzstd.so if it's not already present
[ -e $(LIBZSTD) ] || $(MAKE) libzstd-release
[ -e $(DESTDIR)$(LIBDIR) ] || $(INSTALL) -d -m 755 $(DESTDIR)$(LIBDIR)/
@echo Installing shared library
$(INSTALL_PROGRAM) $(LIBZSTD) $(DESTDIR)$(LIBDIR)
ln -sf $(LIBZSTD) $(DESTDIR)$(LIBDIR)/libzstd.$(SHARED_EXT_MAJOR)
ln -sf $(LIBZSTD) $(DESTDIR)$(LIBDIR)/libzstd.$(SHARED_EXT)
.PHONY: install-includes
install-includes:
[ -e $(DESTDIR)$(INCLUDEDIR) ] || $(INSTALL) -d -m 755 $(DESTDIR)$(INCLUDEDIR)/
@echo Installing includes
$(INSTALL_DATA) zstd.h $(DESTDIR)$(INCLUDEDIR)
$(INSTALL_DATA) zstd_errors.h $(DESTDIR)$(INCLUDEDIR)
$(INSTALL_DATA) zdict.h $(DESTDIR)$(INCLUDEDIR)
.PHONY: uninstall
uninstall:
$(RM) $(DESTDIR)$(LIBDIR)/libzstd.a
$(RM) $(DESTDIR)$(LIBDIR)/libzstd.$(SHARED_EXT)
$(RM) $(DESTDIR)$(LIBDIR)/libzstd.$(SHARED_EXT_MAJOR)
$(RM) $(DESTDIR)$(LIBDIR)/$(LIBZSTD)
$(RM) $(DESTDIR)$(PKGCONFIGDIR)/libzstd.pc
$(RM) $(DESTDIR)$(INCLUDEDIR)/zstd.h
$(RM) $(DESTDIR)$(INCLUDEDIR)/zstd_errors.h
$(RM) $(DESTDIR)$(INCLUDEDIR)/zdict.h
@echo zstd libraries successfully uninstalled
endif

View File

@ -1,55 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* This file provides custom allocation primitives
*/
#define ZSTD_DEPS_NEED_MALLOC
#include "zstd_deps.h" /* ZSTD_malloc, ZSTD_calloc, ZSTD_free, ZSTD_memset */
#include "mem.h" /* MEM_STATIC */
#define ZSTD_STATIC_LINKING_ONLY
#include "../zstd.h" /* ZSTD_customMem */
#ifndef ZSTD_ALLOCATIONS_H
#define ZSTD_ALLOCATIONS_H
/* custom memory allocation functions */
MEM_STATIC void* ZSTD_customMalloc(size_t size, ZSTD_customMem customMem)
{
if (customMem.customAlloc)
return customMem.customAlloc(customMem.opaque, size);
return ZSTD_malloc(size);
}
MEM_STATIC void* ZSTD_customCalloc(size_t size, ZSTD_customMem customMem)
{
if (customMem.customAlloc) {
/* calloc implemented as malloc+memset;
* not as efficient as calloc, but next best guess for custom malloc */
void* const ptr = customMem.customAlloc(customMem.opaque, size);
ZSTD_memset(ptr, 0, size);
return ptr;
}
return ZSTD_calloc(1, size);
}
MEM_STATIC void ZSTD_customFree(void* ptr, ZSTD_customMem customMem)
{
if (ptr!=NULL) {
if (customMem.customFree)
customMem.customFree(customMem.opaque, ptr);
else
ZSTD_free(ptr);
}
}
#endif /* ZSTD_ALLOCATIONS_H */

View File

@ -1,175 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_BITS_H
#define ZSTD_BITS_H
#include "mem.h"
MEM_STATIC unsigned ZSTD_countTrailingZeros32_fallback(U32 val)
{
assert(val != 0);
{
static const U32 DeBruijnBytePos[32] = {0, 1, 28, 2, 29, 14, 24, 3,
30, 22, 20, 15, 25, 17, 4, 8,
31, 27, 13, 23, 21, 19, 16, 7,
26, 12, 18, 6, 11, 5, 10, 9};
return DeBruijnBytePos[((U32) ((val & -(S32) val) * 0x077CB531U)) >> 27];
}
}
MEM_STATIC unsigned ZSTD_countTrailingZeros32(U32 val)
{
assert(val != 0);
# if defined(_MSC_VER)
# if STATIC_BMI2 == 1
return (unsigned)_tzcnt_u32(val);
# else
if (val != 0) {
unsigned long r;
_BitScanForward(&r, val);
return (unsigned)r;
} else {
/* Should not reach this code path */
__assume(0);
}
# endif
# elif defined(__GNUC__) && (__GNUC__ >= 4)
return (unsigned)__builtin_ctz(val);
# else
return ZSTD_countTrailingZeros32_fallback(val);
# endif
}
MEM_STATIC unsigned ZSTD_countLeadingZeros32_fallback(U32 val) {
assert(val != 0);
{
static const U32 DeBruijnClz[32] = {0, 9, 1, 10, 13, 21, 2, 29,
11, 14, 16, 18, 22, 25, 3, 30,
8, 12, 20, 28, 15, 17, 24, 7,
19, 27, 23, 6, 26, 5, 4, 31};
val |= val >> 1;
val |= val >> 2;
val |= val >> 4;
val |= val >> 8;
val |= val >> 16;
return 31 - DeBruijnClz[(val * 0x07C4ACDDU) >> 27];
}
}
MEM_STATIC unsigned ZSTD_countLeadingZeros32(U32 val)
{
assert(val != 0);
# if defined(_MSC_VER)
# if STATIC_BMI2 == 1
return (unsigned)_lzcnt_u32(val);
# else
if (val != 0) {
unsigned long r;
_BitScanReverse(&r, val);
return (unsigned)(31 - r);
} else {
/* Should not reach this code path */
__assume(0);
}
# endif
# elif defined(__GNUC__) && (__GNUC__ >= 4)
return (unsigned)__builtin_clz(val);
# else
return ZSTD_countLeadingZeros32_fallback(val);
# endif
}
MEM_STATIC unsigned ZSTD_countTrailingZeros64(U64 val)
{
assert(val != 0);
# if defined(_MSC_VER) && defined(_WIN64)
# if STATIC_BMI2 == 1
return (unsigned)_tzcnt_u64(val);
# else
if (val != 0) {
unsigned long r;
_BitScanForward64(&r, val);
return (unsigned)r;
} else {
/* Should not reach this code path */
__assume(0);
}
# endif
# elif defined(__GNUC__) && (__GNUC__ >= 4) && defined(__LP64__)
return (unsigned)__builtin_ctzll(val);
# else
{
U32 mostSignificantWord = (U32)(val >> 32);
U32 leastSignificantWord = (U32)val;
if (leastSignificantWord == 0) {
return 32 + ZSTD_countTrailingZeros32(mostSignificantWord);
} else {
return ZSTD_countTrailingZeros32(leastSignificantWord);
}
}
# endif
}
MEM_STATIC unsigned ZSTD_countLeadingZeros64(U64 val)
{
assert(val != 0);
# if defined(_MSC_VER) && defined(_WIN64)
# if STATIC_BMI2 == 1
return (unsigned)_lzcnt_u64(val);
# else
if (val != 0) {
unsigned long r;
_BitScanReverse64(&r, val);
return (unsigned)(63 - r);
} else {
/* Should not reach this code path */
__assume(0);
}
# endif
# elif defined(__GNUC__) && (__GNUC__ >= 4)
return (unsigned)(__builtin_clzll(val));
# else
{
U32 mostSignificantWord = (U32)(val >> 32);
U32 leastSignificantWord = (U32)val;
if (mostSignificantWord == 0) {
return 32 + ZSTD_countLeadingZeros32(leastSignificantWord);
} else {
return ZSTD_countLeadingZeros32(mostSignificantWord);
}
}
# endif
}
MEM_STATIC unsigned ZSTD_NbCommonBytes(size_t val)
{
if (MEM_isLittleEndian()) {
if (MEM_64bits()) {
return ZSTD_countTrailingZeros64((U64)val) >> 3;
} else {
return ZSTD_countTrailingZeros32((U32)val) >> 3;
}
} else { /* Big Endian CPU */
if (MEM_64bits()) {
return ZSTD_countLeadingZeros64((U64)val) >> 3;
} else {
return ZSTD_countLeadingZeros32((U32)val) >> 3;
}
}
}
MEM_STATIC unsigned ZSTD_highbit32(U32 val) /* compress, dictBuilder, decodeCorpus */
{
assert(val != 0);
return 31 - ZSTD_countLeadingZeros32(val);
}
#endif /* ZSTD_BITS_H */

View File

@ -1,437 +0,0 @@
/* ******************************************************************
* bitstream
* Part of FSE library
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* You can contact the author at :
* - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
#ifndef BITSTREAM_H_MODULE
#define BITSTREAM_H_MODULE
#if defined (__cplusplus)
extern "C" {
#endif
/*
* This API consists of small unitary functions, which must be inlined for best performance.
* Since link-time-optimization is not available for all compilers,
* these functions are defined into a .h to be included.
*/
/*-****************************************
* Dependencies
******************************************/
#include "mem.h" /* unaligned access routines */
#include "compiler.h" /* UNLIKELY() */
#include "debug.h" /* assert(), DEBUGLOG(), RAWLOG() */
#include "error_private.h" /* error codes and messages */
#include "bits.h" /* ZSTD_highbit32 */
/*=========================================
* Target specific
=========================================*/
#ifndef ZSTD_NO_INTRINSICS
# if (defined(__BMI__) || defined(__BMI2__)) && defined(__GNUC__)
# include <immintrin.h> /* support for bextr (experimental)/bzhi */
# elif defined(__ICCARM__)
# include <intrinsics.h>
# endif
#endif
#define STREAM_ACCUMULATOR_MIN_32 25
#define STREAM_ACCUMULATOR_MIN_64 57
#define STREAM_ACCUMULATOR_MIN ((U32)(MEM_32bits() ? STREAM_ACCUMULATOR_MIN_32 : STREAM_ACCUMULATOR_MIN_64))
/*-******************************************
* bitStream encoding API (write forward)
********************************************/
/* bitStream can mix input from multiple sources.
* A critical property of these streams is that they encode and decode in **reverse** direction.
* So the first bit sequence you add will be the last to be read, like a LIFO stack.
*/
typedef struct {
size_t bitContainer;
unsigned bitPos;
char* startPtr;
char* ptr;
char* endPtr;
} BIT_CStream_t;
MEM_STATIC size_t BIT_initCStream(BIT_CStream_t* bitC, void* dstBuffer, size_t dstCapacity);
MEM_STATIC void BIT_addBits(BIT_CStream_t* bitC, size_t value, unsigned nbBits);
MEM_STATIC void BIT_flushBits(BIT_CStream_t* bitC);
MEM_STATIC size_t BIT_closeCStream(BIT_CStream_t* bitC);
/* Start with initCStream, providing the size of buffer to write into.
* bitStream will never write outside of this buffer.
* `dstCapacity` must be >= sizeof(bitD->bitContainer), otherwise @return will be an error code.
*
* bits are first added to a local register.
* Local register is size_t, hence 64-bits on 64-bits systems, or 32-bits on 32-bits systems.
* Writing data into memory is an explicit operation, performed by the flushBits function.
* Hence keep track how many bits are potentially stored into local register to avoid register overflow.
* After a flushBits, a maximum of 7 bits might still be stored into local register.
*
* Avoid storing elements of more than 24 bits if you want compatibility with 32-bits bitstream readers.
*
* Last operation is to close the bitStream.
* The function returns the final size of CStream in bytes.
* If data couldn't fit into `dstBuffer`, it will return a 0 ( == not storable)
*/
/*-********************************************
* bitStream decoding API (read backward)
**********************************************/
typedef struct {
size_t bitContainer;
unsigned bitsConsumed;
const char* ptr;
const char* start;
const char* limitPtr;
} BIT_DStream_t;
typedef enum { BIT_DStream_unfinished = 0,
BIT_DStream_endOfBuffer = 1,
BIT_DStream_completed = 2,
BIT_DStream_overflow = 3 } BIT_DStream_status; /* result of BIT_reloadDStream() */
/* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... :( */
MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize);
MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits);
MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD);
MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* bitD);
/* Start by invoking BIT_initDStream().
* A chunk of the bitStream is then stored into a local register.
* Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
* You can then retrieve bitFields stored into the local register, **in reverse order**.
* Local register is explicitly reloaded from memory by the BIT_reloadDStream() method.
* A reload guarantee a minimum of ((8*sizeof(bitD->bitContainer))-7) bits when its result is BIT_DStream_unfinished.
* Otherwise, it can be less than that, so proceed accordingly.
* Checking if DStream has reached its end can be performed with BIT_endOfDStream().
*/
/*-****************************************
* unsafe API
******************************************/
MEM_STATIC void BIT_addBitsFast(BIT_CStream_t* bitC, size_t value, unsigned nbBits);
/* faster, but works only if value is "clean", meaning all high bits above nbBits are 0 */
MEM_STATIC void BIT_flushBitsFast(BIT_CStream_t* bitC);
/* unsafe version; does not check buffer overflow */
MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits);
/* faster, but works only if nbBits >= 1 */
/*===== Local Constants =====*/
static const unsigned BIT_mask[] = {
0, 1, 3, 7, 0xF, 0x1F,
0x3F, 0x7F, 0xFF, 0x1FF, 0x3FF, 0x7FF,
0xFFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF, 0x1FFFF,
0x3FFFF, 0x7FFFF, 0xFFFFF, 0x1FFFFF, 0x3FFFFF, 0x7FFFFF,
0xFFFFFF, 0x1FFFFFF, 0x3FFFFFF, 0x7FFFFFF, 0xFFFFFFF, 0x1FFFFFFF,
0x3FFFFFFF, 0x7FFFFFFF}; /* up to 31 bits */
#define BIT_MASK_SIZE (sizeof(BIT_mask) / sizeof(BIT_mask[0]))
/*-**************************************************************
* bitStream encoding
****************************************************************/
/*! BIT_initCStream() :
* `dstCapacity` must be > sizeof(size_t)
* @return : 0 if success,
* otherwise an error code (can be tested using ERR_isError()) */
MEM_STATIC size_t BIT_initCStream(BIT_CStream_t* bitC,
void* startPtr, size_t dstCapacity)
{
bitC->bitContainer = 0;
bitC->bitPos = 0;
bitC->startPtr = (char*)startPtr;
bitC->ptr = bitC->startPtr;
bitC->endPtr = bitC->startPtr + dstCapacity - sizeof(bitC->bitContainer);
if (dstCapacity <= sizeof(bitC->bitContainer)) return ERROR(dstSize_tooSmall);
return 0;
}
MEM_STATIC FORCE_INLINE_ATTR size_t BIT_getLowerBits(size_t bitContainer, U32 const nbBits)
{
#if defined(STATIC_BMI2) && STATIC_BMI2 == 1 && !defined(ZSTD_NO_INTRINSICS)
return _bzhi_u64(bitContainer, nbBits);
#else
assert(nbBits < BIT_MASK_SIZE);
return bitContainer & BIT_mask[nbBits];
#endif
}
/*! BIT_addBits() :
* can add up to 31 bits into `bitC`.
* Note : does not check for register overflow ! */
MEM_STATIC void BIT_addBits(BIT_CStream_t* bitC,
size_t value, unsigned nbBits)
{
DEBUG_STATIC_ASSERT(BIT_MASK_SIZE == 32);
assert(nbBits < BIT_MASK_SIZE);
assert(nbBits + bitC->bitPos < sizeof(bitC->bitContainer) * 8);
bitC->bitContainer |= BIT_getLowerBits(value, nbBits) << bitC->bitPos;
bitC->bitPos += nbBits;
}
/*! BIT_addBitsFast() :
* works only if `value` is _clean_,
* meaning all high bits above nbBits are 0 */
MEM_STATIC void BIT_addBitsFast(BIT_CStream_t* bitC,
size_t value, unsigned nbBits)
{
assert((value>>nbBits) == 0);
assert(nbBits + bitC->bitPos < sizeof(bitC->bitContainer) * 8);
bitC->bitContainer |= value << bitC->bitPos;
bitC->bitPos += nbBits;
}
/*! BIT_flushBitsFast() :
* assumption : bitContainer has not overflowed
* unsafe version; does not check buffer overflow */
MEM_STATIC void BIT_flushBitsFast(BIT_CStream_t* bitC)
{
size_t const nbBytes = bitC->bitPos >> 3;
assert(bitC->bitPos < sizeof(bitC->bitContainer) * 8);
assert(bitC->ptr <= bitC->endPtr);
MEM_writeLEST(bitC->ptr, bitC->bitContainer);
bitC->ptr += nbBytes;
bitC->bitPos &= 7;
bitC->bitContainer >>= nbBytes*8;
}
/*! BIT_flushBits() :
* assumption : bitContainer has not overflowed
* safe version; check for buffer overflow, and prevents it.
* note : does not signal buffer overflow.
* overflow will be revealed later on using BIT_closeCStream() */
MEM_STATIC void BIT_flushBits(BIT_CStream_t* bitC)
{
size_t const nbBytes = bitC->bitPos >> 3;
assert(bitC->bitPos < sizeof(bitC->bitContainer) * 8);
assert(bitC->ptr <= bitC->endPtr);
MEM_writeLEST(bitC->ptr, bitC->bitContainer);
bitC->ptr += nbBytes;
if (bitC->ptr > bitC->endPtr) bitC->ptr = bitC->endPtr;
bitC->bitPos &= 7;
bitC->bitContainer >>= nbBytes*8;
}
/*! BIT_closeCStream() :
* @return : size of CStream, in bytes,
* or 0 if it could not fit into dstBuffer */
MEM_STATIC size_t BIT_closeCStream(BIT_CStream_t* bitC)
{
BIT_addBitsFast(bitC, 1, 1); /* endMark */
BIT_flushBits(bitC);
if (bitC->ptr >= bitC->endPtr) return 0; /* overflow detected */
return (bitC->ptr - bitC->startPtr) + (bitC->bitPos > 0);
}
/*-********************************************************
* bitStream decoding
**********************************************************/
/*! BIT_initDStream() :
* Initialize a BIT_DStream_t.
* `bitD` : a pointer to an already allocated BIT_DStream_t structure.
* `srcSize` must be the *exact* size of the bitStream, in bytes.
* @return : size of stream (== srcSize), or an errorCode if a problem is detected
*/
MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize)
{
if (srcSize < 1) { ZSTD_memset(bitD, 0, sizeof(*bitD)); return ERROR(srcSize_wrong); }
bitD->start = (const char*)srcBuffer;
bitD->limitPtr = bitD->start + sizeof(bitD->bitContainer);
if (srcSize >= sizeof(bitD->bitContainer)) { /* normal case */
bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(bitD->bitContainer);
bitD->bitContainer = MEM_readLEST(bitD->ptr);
{ BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1];
bitD->bitsConsumed = lastByte ? 8 - ZSTD_highbit32(lastByte) : 0; /* ensures bitsConsumed is always set */
if (lastByte == 0) return ERROR(GENERIC); /* endMark not present */ }
} else {
bitD->ptr = bitD->start;
bitD->bitContainer = *(const BYTE*)(bitD->start);
switch(srcSize)
{
case 7: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[6]) << (sizeof(bitD->bitContainer)*8 - 16);
ZSTD_FALLTHROUGH;
case 6: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[5]) << (sizeof(bitD->bitContainer)*8 - 24);
ZSTD_FALLTHROUGH;
case 5: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[4]) << (sizeof(bitD->bitContainer)*8 - 32);
ZSTD_FALLTHROUGH;
case 4: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[3]) << 24;
ZSTD_FALLTHROUGH;
case 3: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[2]) << 16;
ZSTD_FALLTHROUGH;
case 2: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[1]) << 8;
ZSTD_FALLTHROUGH;
default: break;
}
{ BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1];
bitD->bitsConsumed = lastByte ? 8 - ZSTD_highbit32(lastByte) : 0;
if (lastByte == 0) return ERROR(corruption_detected); /* endMark not present */
}
bitD->bitsConsumed += (U32)(sizeof(bitD->bitContainer) - srcSize)*8;
}
return srcSize;
}
MEM_STATIC FORCE_INLINE_ATTR size_t BIT_getUpperBits(size_t bitContainer, U32 const start)
{
return bitContainer >> start;
}
MEM_STATIC FORCE_INLINE_ATTR size_t BIT_getMiddleBits(size_t bitContainer, U32 const start, U32 const nbBits)
{
U32 const regMask = sizeof(bitContainer)*8 - 1;
/* if start > regMask, bitstream is corrupted, and result is undefined */
assert(nbBits < BIT_MASK_SIZE);
/* x86 transform & ((1 << nbBits) - 1) to bzhi instruction, it is better
* than accessing memory. When bmi2 instruction is not present, we consider
* such cpus old (pre-Haswell, 2013) and their performance is not of that
* importance.
*/
#if defined(__x86_64__) || defined(_M_X86)
return (bitContainer >> (start & regMask)) & ((((U64)1) << nbBits) - 1);
#else
return (bitContainer >> (start & regMask)) & BIT_mask[nbBits];
#endif
}
/*! BIT_lookBits() :
* Provides next n bits from local register.
* local register is not modified.
* On 32-bits, maxNbBits==24.
* On 64-bits, maxNbBits==56.
* @return : value extracted */
MEM_STATIC FORCE_INLINE_ATTR size_t BIT_lookBits(const BIT_DStream_t* bitD, U32 nbBits)
{
/* arbitrate between double-shift and shift+mask */
#if 1
/* if bitD->bitsConsumed + nbBits > sizeof(bitD->bitContainer)*8,
* bitstream is likely corrupted, and result is undefined */
return BIT_getMiddleBits(bitD->bitContainer, (sizeof(bitD->bitContainer)*8) - bitD->bitsConsumed - nbBits, nbBits);
#else
/* this code path is slower on my os-x laptop */
U32 const regMask = sizeof(bitD->bitContainer)*8 - 1;
return ((bitD->bitContainer << (bitD->bitsConsumed & regMask)) >> 1) >> ((regMask-nbBits) & regMask);
#endif
}
/*! BIT_lookBitsFast() :
* unsafe version; only works if nbBits >= 1 */
MEM_STATIC size_t BIT_lookBitsFast(const BIT_DStream_t* bitD, U32 nbBits)
{
U32 const regMask = sizeof(bitD->bitContainer)*8 - 1;
assert(nbBits >= 1);
return (bitD->bitContainer << (bitD->bitsConsumed & regMask)) >> (((regMask+1)-nbBits) & regMask);
}
MEM_STATIC FORCE_INLINE_ATTR void BIT_skipBits(BIT_DStream_t* bitD, U32 nbBits)
{
bitD->bitsConsumed += nbBits;
}
/*! BIT_readBits() :
* Read (consume) next n bits from local register and update.
* Pay attention to not read more than nbBits contained into local register.
* @return : extracted value. */
MEM_STATIC FORCE_INLINE_ATTR size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits)
{
size_t const value = BIT_lookBits(bitD, nbBits);
BIT_skipBits(bitD, nbBits);
return value;
}
/*! BIT_readBitsFast() :
* unsafe version; only works if nbBits >= 1 */
MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits)
{
size_t const value = BIT_lookBitsFast(bitD, nbBits);
assert(nbBits >= 1);
BIT_skipBits(bitD, nbBits);
return value;
}
/*! BIT_reloadDStreamFast() :
* Similar to BIT_reloadDStream(), but with two differences:
* 1. bitsConsumed <= sizeof(bitD->bitContainer)*8 must hold!
* 2. Returns BIT_DStream_overflow when bitD->ptr < bitD->limitPtr, at this
* point you must use BIT_reloadDStream() to reload.
*/
MEM_STATIC BIT_DStream_status BIT_reloadDStreamFast(BIT_DStream_t* bitD)
{
if (UNLIKELY(bitD->ptr < bitD->limitPtr))
return BIT_DStream_overflow;
assert(bitD->bitsConsumed <= sizeof(bitD->bitContainer)*8);
bitD->ptr -= bitD->bitsConsumed >> 3;
bitD->bitsConsumed &= 7;
bitD->bitContainer = MEM_readLEST(bitD->ptr);
return BIT_DStream_unfinished;
}
/*! BIT_reloadDStream() :
* Refill `bitD` from buffer previously set in BIT_initDStream() .
* This function is safe, it guarantees it will not read beyond src buffer.
* @return : status of `BIT_DStream_t` internal register.
* when status == BIT_DStream_unfinished, internal register is filled with at least 25 or 57 bits */
MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD)
{
if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* overflow detected, like end of stream */
return BIT_DStream_overflow;
if (bitD->ptr >= bitD->limitPtr) {
return BIT_reloadDStreamFast(bitD);
}
if (bitD->ptr == bitD->start) {
if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BIT_DStream_endOfBuffer;
return BIT_DStream_completed;
}
/* start < ptr < limitPtr */
{ U32 nbBytes = bitD->bitsConsumed >> 3;
BIT_DStream_status result = BIT_DStream_unfinished;
if (bitD->ptr - nbBytes < bitD->start) {
nbBytes = (U32)(bitD->ptr - bitD->start); /* ptr > start */
result = BIT_DStream_endOfBuffer;
}
bitD->ptr -= nbBytes;
bitD->bitsConsumed -= nbBytes*8;
bitD->bitContainer = MEM_readLEST(bitD->ptr); /* reminder : srcSize > sizeof(bitD->bitContainer), otherwise bitD->ptr == bitD->start */
return result;
}
}
/*! BIT_endOfDStream() :
* @return : 1 if DStream has _exactly_ reached its end (all bits consumed).
*/
MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* DStream)
{
return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer)*8));
}
#if defined (__cplusplus)
}
#endif
#endif /* BITSTREAM_H_MODULE */

View File

@ -1,354 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_COMPILER_H
#define ZSTD_COMPILER_H
#include "portability_macros.h"
/*-*******************************************************
* Compiler specifics
*********************************************************/
/* force inlining */
#if !defined(ZSTD_NO_INLINE)
#if (defined(__GNUC__) && !defined(__STRICT_ANSI__)) || defined(__cplusplus) || defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
# define INLINE_KEYWORD inline
#else
# define INLINE_KEYWORD
#endif
#if defined(__GNUC__) || defined(__ICCARM__)
# define FORCE_INLINE_ATTR __attribute__((always_inline))
#elif defined(_MSC_VER)
# define FORCE_INLINE_ATTR __forceinline
#else
# define FORCE_INLINE_ATTR
#endif
#else
#define INLINE_KEYWORD
#define FORCE_INLINE_ATTR
#endif
/**
On MSVC qsort requires that functions passed into it use the __cdecl calling conversion(CC).
This explicitly marks such functions as __cdecl so that the code will still compile
if a CC other than __cdecl has been made the default.
*/
#if defined(_MSC_VER)
# define WIN_CDECL __cdecl
#else
# define WIN_CDECL
#endif
/**
* FORCE_INLINE_TEMPLATE is used to define C "templates", which take constant
* parameters. They must be inlined for the compiler to eliminate the constant
* branches.
*/
#define FORCE_INLINE_TEMPLATE static INLINE_KEYWORD FORCE_INLINE_ATTR
/**
* HINT_INLINE is used to help the compiler generate better code. It is *not*
* used for "templates", so it can be tweaked based on the compilers
* performance.
*
* gcc-4.8 and gcc-4.9 have been shown to benefit from leaving off the
* always_inline attribute.
*
* clang up to 5.0.0 (trunk) benefit tremendously from the always_inline
* attribute.
*/
#if !defined(__clang__) && defined(__GNUC__) && __GNUC__ >= 4 && __GNUC_MINOR__ >= 8 && __GNUC__ < 5
# define HINT_INLINE static INLINE_KEYWORD
#else
# define HINT_INLINE static INLINE_KEYWORD FORCE_INLINE_ATTR
#endif
/* UNUSED_ATTR tells the compiler it is okay if the function is unused. */
#if defined(__GNUC__)
# define UNUSED_ATTR __attribute__((unused))
#else
# define UNUSED_ATTR
#endif
/* force no inlining */
#ifdef _MSC_VER
# define FORCE_NOINLINE static __declspec(noinline)
#else
# if defined(__GNUC__) || defined(__ICCARM__)
# define FORCE_NOINLINE static __attribute__((__noinline__))
# else
# define FORCE_NOINLINE static
# endif
#endif
/* target attribute */
#if defined(__GNUC__) || defined(__ICCARM__)
# define TARGET_ATTRIBUTE(target) __attribute__((__target__(target)))
#else
# define TARGET_ATTRIBUTE(target)
#endif
/* Target attribute for BMI2 dynamic dispatch.
* Enable lzcnt, bmi, and bmi2.
* We test for bmi1 & bmi2. lzcnt is included in bmi1.
*/
#define BMI2_TARGET_ATTRIBUTE TARGET_ATTRIBUTE("lzcnt,bmi,bmi2")
/* prefetch
* can be disabled, by declaring NO_PREFETCH build macro */
#if defined(NO_PREFETCH)
# define PREFETCH_L1(ptr) (void)(ptr) /* disabled */
# define PREFETCH_L2(ptr) (void)(ptr) /* disabled */
#else
# if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_I86)) /* _mm_prefetch() is not defined outside of x86/x64 */
# include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
# define PREFETCH_L1(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0)
# define PREFETCH_L2(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T1)
# elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) )
# define PREFETCH_L1(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */)
# define PREFETCH_L2(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 2 /* locality */)
# elif defined(__aarch64__)
# define PREFETCH_L1(ptr) __asm__ __volatile__("prfm pldl1keep, %0" ::"Q"(*(ptr)))
# define PREFETCH_L2(ptr) __asm__ __volatile__("prfm pldl2keep, %0" ::"Q"(*(ptr)))
# else
# define PREFETCH_L1(ptr) (void)(ptr) /* disabled */
# define PREFETCH_L2(ptr) (void)(ptr) /* disabled */
# endif
#endif /* NO_PREFETCH */
#define CACHELINE_SIZE 64
#define PREFETCH_AREA(p, s) { \
const char* const _ptr = (const char*)(p); \
size_t const _size = (size_t)(s); \
size_t _pos; \
for (_pos=0; _pos<_size; _pos+=CACHELINE_SIZE) { \
PREFETCH_L2(_ptr + _pos); \
} \
}
/* vectorization
* older GCC (pre gcc-4.3 picked as the cutoff) uses a different syntax,
* and some compilers, like Intel ICC and MCST LCC, do not support it at all. */
#if !defined(__INTEL_COMPILER) && !defined(__clang__) && defined(__GNUC__) && !defined(__LCC__)
# if (__GNUC__ == 4 && __GNUC_MINOR__ > 3) || (__GNUC__ >= 5)
# define DONT_VECTORIZE __attribute__((optimize("no-tree-vectorize")))
# else
# define DONT_VECTORIZE _Pragma("GCC optimize(\"no-tree-vectorize\")")
# endif
#else
# define DONT_VECTORIZE
#endif
/* Tell the compiler that a branch is likely or unlikely.
* Only use these macros if it causes the compiler to generate better code.
* If you can remove a LIKELY/UNLIKELY annotation without speed changes in gcc
* and clang, please do.
*/
#if defined(__GNUC__)
#define LIKELY(x) (__builtin_expect((x), 1))
#define UNLIKELY(x) (__builtin_expect((x), 0))
#else
#define LIKELY(x) (x)
#define UNLIKELY(x) (x)
#endif
#if __has_builtin(__builtin_unreachable) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5)))
# define ZSTD_UNREACHABLE { assert(0), __builtin_unreachable(); }
#else
# define ZSTD_UNREACHABLE { assert(0); }
#endif
/* disable warnings */
#ifdef _MSC_VER /* Visual Studio */
# include <intrin.h> /* For Visual 2005 */
# pragma warning(disable : 4100) /* disable: C4100: unreferenced formal parameter */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
# pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */
# pragma warning(disable : 4214) /* disable: C4214: non-int bitfields */
# pragma warning(disable : 4324) /* disable: C4324: padded structure */
#endif
/*Like DYNAMIC_BMI2 but for compile time determination of BMI2 support*/
#ifndef STATIC_BMI2
# if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_I86))
# ifdef __AVX2__ //MSVC does not have a BMI2 specific flag, but every CPU that supports AVX2 also supports BMI2
# define STATIC_BMI2 1
# endif
# elif defined(__BMI2__) && defined(__x86_64__) && defined(__GNUC__)
# define STATIC_BMI2 1
# endif
#endif
#ifndef STATIC_BMI2
#define STATIC_BMI2 0
#endif
/* compile time determination of SIMD support */
#if !defined(ZSTD_NO_INTRINSICS)
# if defined(__SSE2__) || defined(_M_AMD64) || (defined (_M_IX86) && defined(_M_IX86_FP) && (_M_IX86_FP >= 2))
# define ZSTD_ARCH_X86_SSE2
# endif
# if defined(__ARM_NEON) || defined(_M_ARM64)
# define ZSTD_ARCH_ARM_NEON
# endif
#
# if defined(ZSTD_ARCH_X86_SSE2)
# include <emmintrin.h>
# elif defined(ZSTD_ARCH_ARM_NEON)
# include <arm_neon.h>
# endif
#endif
/* C-language Attributes are added in C23. */
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ > 201710L) && defined(__has_c_attribute)
# define ZSTD_HAS_C_ATTRIBUTE(x) __has_c_attribute(x)
#else
# define ZSTD_HAS_C_ATTRIBUTE(x) 0
#endif
/* Only use C++ attributes in C++. Some compilers report support for C++
* attributes when compiling with C.
*/
#if defined(__cplusplus) && defined(__has_cpp_attribute)
# define ZSTD_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x)
#else
# define ZSTD_HAS_CPP_ATTRIBUTE(x) 0
#endif
/* Define ZSTD_FALLTHROUGH macro for annotating switch case with the 'fallthrough' attribute.
* - C23: https://en.cppreference.com/w/c/language/attributes/fallthrough
* - CPP17: https://en.cppreference.com/w/cpp/language/attributes/fallthrough
* - Else: __attribute__((__fallthrough__))
*/
#ifndef ZSTD_FALLTHROUGH
# if ZSTD_HAS_C_ATTRIBUTE(fallthrough)
# define ZSTD_FALLTHROUGH [[fallthrough]]
# elif ZSTD_HAS_CPP_ATTRIBUTE(fallthrough)
# define ZSTD_FALLTHROUGH [[fallthrough]]
# elif __has_attribute(__fallthrough__)
/* Leading semicolon is to satisfy gcc-11 with -pedantic. Without the semicolon
* gcc complains about: a label can only be part of a statement and a declaration is not a statement.
*/
# define ZSTD_FALLTHROUGH ; __attribute__((__fallthrough__))
# else
# define ZSTD_FALLTHROUGH
# endif
#endif
/*-**************************************************************
* Alignment check
*****************************************************************/
/* this test was initially positioned in mem.h,
* but this file is removed (or replaced) for linux kernel
* so it's now hosted in compiler.h,
* which remains valid for both user & kernel spaces.
*/
#ifndef ZSTD_ALIGNOF
# if defined(__GNUC__) || defined(_MSC_VER)
/* covers gcc, clang & MSVC */
/* note : this section must come first, before C11,
* due to a limitation in the kernel source generator */
# define ZSTD_ALIGNOF(T) __alignof(T)
# elif defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)
/* C11 support */
# include <stdalign.h>
# define ZSTD_ALIGNOF(T) alignof(T)
# else
/* No known support for alignof() - imperfect backup */
# define ZSTD_ALIGNOF(T) (sizeof(void*) < sizeof(T) ? sizeof(void*) : sizeof(T))
# endif
#endif /* ZSTD_ALIGNOF */
/*-**************************************************************
* Sanitizer
*****************************************************************/
/* Issue #3240 reports an ASAN failure on an llvm-mingw build. Out of an
* abundance of caution, disable our custom poisoning on mingw. */
#ifdef __MINGW32__
#ifndef ZSTD_ASAN_DONT_POISON_WORKSPACE
#define ZSTD_ASAN_DONT_POISON_WORKSPACE 1
#endif
#ifndef ZSTD_MSAN_DONT_POISON_WORKSPACE
#define ZSTD_MSAN_DONT_POISON_WORKSPACE 1
#endif
#endif
#if ZSTD_MEMORY_SANITIZER && !defined(ZSTD_MSAN_DONT_POISON_WORKSPACE)
/* Not all platforms that support msan provide sanitizers/msan_interface.h.
* We therefore declare the functions we need ourselves, rather than trying to
* include the header file... */
#include <stddef.h> /* size_t */
#define ZSTD_DEPS_NEED_STDINT
#include "zstd_deps.h" /* intptr_t */
/* Make memory region fully initialized (without changing its contents). */
void __msan_unpoison(const volatile void *a, size_t size);
/* Make memory region fully uninitialized (without changing its contents).
This is a legacy interface that does not update origin information. Use
__msan_allocated_memory() instead. */
void __msan_poison(const volatile void *a, size_t size);
/* Returns the offset of the first (at least partially) poisoned byte in the
memory range, or -1 if the whole range is good. */
intptr_t __msan_test_shadow(const volatile void *x, size_t size);
#endif
#if ZSTD_ADDRESS_SANITIZER && !defined(ZSTD_ASAN_DONT_POISON_WORKSPACE)
/* Not all platforms that support asan provide sanitizers/asan_interface.h.
* We therefore declare the functions we need ourselves, rather than trying to
* include the header file... */
#include <stddef.h> /* size_t */
/**
* Marks a memory region (<c>[addr, addr+size)</c>) as unaddressable.
*
* This memory must be previously allocated by your program. Instrumented
* code is forbidden from accessing addresses in this region until it is
* unpoisoned. This function is not guaranteed to poison the entire region -
* it could poison only a subregion of <c>[addr, addr+size)</c> due to ASan
* alignment restrictions.
*
* \note This function is not thread-safe because no two threads can poison or
* unpoison memory in the same memory region simultaneously.
*
* \param addr Start of memory region.
* \param size Size of memory region. */
void __asan_poison_memory_region(void const volatile *addr, size_t size);
/**
* Marks a memory region (<c>[addr, addr+size)</c>) as addressable.
*
* This memory must be previously allocated by your program. Accessing
* addresses in this region is allowed until this region is poisoned again.
* This function could unpoison a super-region of <c>[addr, addr+size)</c> due
* to ASan alignment restrictions.
*
* \note This function is not thread-safe because no two threads can
* poison or unpoison memory in the same memory region simultaneously.
*
* \param addr Start of memory region.
* \param size Size of memory region. */
void __asan_unpoison_memory_region(void const volatile *addr, size_t size);
#endif
#endif /* ZSTD_COMPILER_H */

View File

@ -1,213 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_COMMON_CPU_H
#define ZSTD_COMMON_CPU_H
/**
* Implementation taken from folly/CpuId.h
* https://github.com/facebook/folly/blob/master/folly/CpuId.h
*/
#include "mem.h"
#ifdef _MSC_VER
#include <intrin.h>
#endif
typedef struct {
U32 f1c;
U32 f1d;
U32 f7b;
U32 f7c;
} ZSTD_cpuid_t;
MEM_STATIC ZSTD_cpuid_t ZSTD_cpuid(void) {
U32 f1c = 0;
U32 f1d = 0;
U32 f7b = 0;
U32 f7c = 0;
#if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86))
int reg[4];
__cpuid((int*)reg, 0);
{
int const n = reg[0];
if (n >= 1) {
__cpuid((int*)reg, 1);
f1c = (U32)reg[2];
f1d = (U32)reg[3];
}
if (n >= 7) {
__cpuidex((int*)reg, 7, 0);
f7b = (U32)reg[1];
f7c = (U32)reg[2];
}
}
#elif defined(__i386__) && defined(__PIC__) && !defined(__clang__) && defined(__GNUC__)
/* The following block like the normal cpuid branch below, but gcc
* reserves ebx for use of its pic register so we must specially
* handle the save and restore to avoid clobbering the register
*/
U32 n;
__asm__(
"pushl %%ebx\n\t"
"cpuid\n\t"
"popl %%ebx\n\t"
: "=a"(n)
: "a"(0)
: "ecx", "edx");
if (n >= 1) {
U32 f1a;
__asm__(
"pushl %%ebx\n\t"
"cpuid\n\t"
"popl %%ebx\n\t"
: "=a"(f1a), "=c"(f1c), "=d"(f1d)
: "a"(1));
}
if (n >= 7) {
__asm__(
"pushl %%ebx\n\t"
"cpuid\n\t"
"movl %%ebx, %%eax\n\t"
"popl %%ebx"
: "=a"(f7b), "=c"(f7c)
: "a"(7), "c"(0)
: "edx");
}
#elif defined(__x86_64__) || defined(_M_X64) || defined(__i386__)
U32 n;
__asm__("cpuid" : "=a"(n) : "a"(0) : "ebx", "ecx", "edx");
if (n >= 1) {
U32 f1a;
__asm__("cpuid" : "=a"(f1a), "=c"(f1c), "=d"(f1d) : "a"(1) : "ebx");
}
if (n >= 7) {
U32 f7a;
__asm__("cpuid"
: "=a"(f7a), "=b"(f7b), "=c"(f7c)
: "a"(7), "c"(0)
: "edx");
}
#endif
{
ZSTD_cpuid_t cpuid;
cpuid.f1c = f1c;
cpuid.f1d = f1d;
cpuid.f7b = f7b;
cpuid.f7c = f7c;
return cpuid;
}
}
#define X(name, r, bit) \
MEM_STATIC int ZSTD_cpuid_##name(ZSTD_cpuid_t const cpuid) { \
return ((cpuid.r) & (1U << bit)) != 0; \
}
/* cpuid(1): Processor Info and Feature Bits. */
#define C(name, bit) X(name, f1c, bit)
C(sse3, 0)
C(pclmuldq, 1)
C(dtes64, 2)
C(monitor, 3)
C(dscpl, 4)
C(vmx, 5)
C(smx, 6)
C(eist, 7)
C(tm2, 8)
C(ssse3, 9)
C(cnxtid, 10)
C(fma, 12)
C(cx16, 13)
C(xtpr, 14)
C(pdcm, 15)
C(pcid, 17)
C(dca, 18)
C(sse41, 19)
C(sse42, 20)
C(x2apic, 21)
C(movbe, 22)
C(popcnt, 23)
C(tscdeadline, 24)
C(aes, 25)
C(xsave, 26)
C(osxsave, 27)
C(avx, 28)
C(f16c, 29)
C(rdrand, 30)
#undef C
#define D(name, bit) X(name, f1d, bit)
D(fpu, 0)
D(vme, 1)
D(de, 2)
D(pse, 3)
D(tsc, 4)
D(msr, 5)
D(pae, 6)
D(mce, 7)
D(cx8, 8)
D(apic, 9)
D(sep, 11)
D(mtrr, 12)
D(pge, 13)
D(mca, 14)
D(cmov, 15)
D(pat, 16)
D(pse36, 17)
D(psn, 18)
D(clfsh, 19)
D(ds, 21)
D(acpi, 22)
D(mmx, 23)
D(fxsr, 24)
D(sse, 25)
D(sse2, 26)
D(ss, 27)
D(htt, 28)
D(tm, 29)
D(pbe, 31)
#undef D
/* cpuid(7): Extended Features. */
#define B(name, bit) X(name, f7b, bit)
B(bmi1, 3)
B(hle, 4)
B(avx2, 5)
B(smep, 7)
B(bmi2, 8)
B(erms, 9)
B(invpcid, 10)
B(rtm, 11)
B(mpx, 14)
B(avx512f, 16)
B(avx512dq, 17)
B(rdseed, 18)
B(adx, 19)
B(smap, 20)
B(avx512ifma, 21)
B(pcommit, 22)
B(clflushopt, 23)
B(clwb, 24)
B(avx512pf, 26)
B(avx512er, 27)
B(avx512cd, 28)
B(sha, 29)
B(avx512bw, 30)
B(avx512vl, 31)
#undef B
#define C(name, bit) X(name, f7c, bit)
C(prefetchwt1, 0)
C(avx512vbmi, 1)
#undef C
#undef X
#endif /* ZSTD_COMMON_CPU_H */

View File

@ -1,24 +0,0 @@
/* ******************************************************************
* debug
* Part of FSE library
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* You can contact the author at :
* - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
/*
* This module only hosts one global variable
* which can be used to dynamically influence the verbosity of traces,
* such as DEBUGLOG and RAWLOG
*/
#include "debug.h"
int g_debuglevel = DEBUGLEVEL;

View File

@ -1,107 +0,0 @@
/* ******************************************************************
* debug
* Part of FSE library
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* You can contact the author at :
* - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
/*
* The purpose of this header is to enable debug functions.
* They regroup assert(), DEBUGLOG() and RAWLOG() for run-time,
* and DEBUG_STATIC_ASSERT() for compile-time.
*
* By default, DEBUGLEVEL==0, which means run-time debug is disabled.
*
* Level 1 enables assert() only.
* Starting level 2, traces can be generated and pushed to stderr.
* The higher the level, the more verbose the traces.
*
* It's possible to dynamically adjust level using variable g_debug_level,
* which is only declared if DEBUGLEVEL>=2,
* and is a global variable, not multi-thread protected (use with care)
*/
#ifndef DEBUG_H_12987983217
#define DEBUG_H_12987983217
#if defined (__cplusplus)
extern "C" {
#endif
/* static assert is triggered at compile time, leaving no runtime artefact.
* static assert only works with compile-time constants.
* Also, this variant can only be used inside a function. */
#define DEBUG_STATIC_ASSERT(c) (void)sizeof(char[(c) ? 1 : -1])
/* DEBUGLEVEL is expected to be defined externally,
* typically through compiler command line.
* Value must be a number. */
#ifndef DEBUGLEVEL
# define DEBUGLEVEL 0
#endif
/* recommended values for DEBUGLEVEL :
* 0 : release mode, no debug, all run-time checks disabled
* 1 : enables assert() only, no display
* 2 : reserved, for currently active debug path
* 3 : events once per object lifetime (CCtx, CDict, etc.)
* 4 : events once per frame
* 5 : events once per block
* 6 : events once per sequence (verbose)
* 7+: events at every position (*very* verbose)
*
* It's generally inconvenient to output traces > 5.
* In which case, it's possible to selectively trigger high verbosity levels
* by modifying g_debug_level.
*/
#if (DEBUGLEVEL>=1)
# define ZSTD_DEPS_NEED_ASSERT
# include "zstd_deps.h"
#else
# ifndef assert /* assert may be already defined, due to prior #include <assert.h> */
# define assert(condition) ((void)0) /* disable assert (default) */
# endif
#endif
#if (DEBUGLEVEL>=2)
# define ZSTD_DEPS_NEED_IO
# include "zstd_deps.h"
extern int g_debuglevel; /* the variable is only declared,
it actually lives in debug.c,
and is shared by the whole process.
It's not thread-safe.
It's useful when enabling very verbose levels
on selective conditions (such as position in src) */
# define RAWLOG(l, ...) { \
if (l<=g_debuglevel) { \
ZSTD_DEBUG_PRINT(__VA_ARGS__); \
} }
# define DEBUGLOG(l, ...) { \
if (l<=g_debuglevel) { \
ZSTD_DEBUG_PRINT(__FILE__ ": " __VA_ARGS__); \
ZSTD_DEBUG_PRINT(" \n"); \
} }
#else
# define RAWLOG(l, ...) {} /* disabled */
# define DEBUGLOG(l, ...) {} /* disabled */
#endif
#if defined (__cplusplus)
}
#endif
#endif /* DEBUG_H_12987983217 */

View File

@ -1,340 +0,0 @@
/* ******************************************************************
* Common functions of New Generation Entropy library
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* You can contact the author at :
* - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
* - Public forum : https://groups.google.com/forum/#!forum/lz4c
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
/* *************************************
* Dependencies
***************************************/
#include "mem.h"
#include "error_private.h" /* ERR_*, ERROR */
#define FSE_STATIC_LINKING_ONLY /* FSE_MIN_TABLELOG */
#include "fse.h"
#include "huf.h"
#include "bits.h" /* ZSDT_highbit32, ZSTD_countTrailingZeros32 */
/*=== Version ===*/
unsigned FSE_versionNumber(void) { return FSE_VERSION_NUMBER; }
/*=== Error Management ===*/
unsigned FSE_isError(size_t code) { return ERR_isError(code); }
const char* FSE_getErrorName(size_t code) { return ERR_getErrorName(code); }
unsigned HUF_isError(size_t code) { return ERR_isError(code); }
const char* HUF_getErrorName(size_t code) { return ERR_getErrorName(code); }
/*-**************************************************************
* FSE NCount encoding-decoding
****************************************************************/
FORCE_INLINE_TEMPLATE
size_t FSE_readNCount_body(short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
const void* headerBuffer, size_t hbSize)
{
const BYTE* const istart = (const BYTE*) headerBuffer;
const BYTE* const iend = istart + hbSize;
const BYTE* ip = istart;
int nbBits;
int remaining;
int threshold;
U32 bitStream;
int bitCount;
unsigned charnum = 0;
unsigned const maxSV1 = *maxSVPtr + 1;
int previous0 = 0;
if (hbSize < 8) {
/* This function only works when hbSize >= 8 */
char buffer[8] = {0};
ZSTD_memcpy(buffer, headerBuffer, hbSize);
{ size_t const countSize = FSE_readNCount(normalizedCounter, maxSVPtr, tableLogPtr,
buffer, sizeof(buffer));
if (FSE_isError(countSize)) return countSize;
if (countSize > hbSize) return ERROR(corruption_detected);
return countSize;
} }
assert(hbSize >= 8);
/* init */
ZSTD_memset(normalizedCounter, 0, (*maxSVPtr+1) * sizeof(normalizedCounter[0])); /* all symbols not present in NCount have a frequency of 0 */
bitStream = MEM_readLE32(ip);
nbBits = (bitStream & 0xF) + FSE_MIN_TABLELOG; /* extract tableLog */
if (nbBits > FSE_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge);
bitStream >>= 4;
bitCount = 4;
*tableLogPtr = nbBits;
remaining = (1<<nbBits)+1;
threshold = 1<<nbBits;
nbBits++;
for (;;) {
if (previous0) {
/* Count the number of repeats. Each time the
* 2-bit repeat code is 0b11 there is another
* repeat.
* Avoid UB by setting the high bit to 1.
*/
int repeats = ZSTD_countTrailingZeros32(~bitStream | 0x80000000) >> 1;
while (repeats >= 12) {
charnum += 3 * 12;
if (LIKELY(ip <= iend-7)) {
ip += 3;
} else {
bitCount -= (int)(8 * (iend - 7 - ip));
bitCount &= 31;
ip = iend - 4;
}
bitStream = MEM_readLE32(ip) >> bitCount;
repeats = ZSTD_countTrailingZeros32(~bitStream | 0x80000000) >> 1;
}
charnum += 3 * repeats;
bitStream >>= 2 * repeats;
bitCount += 2 * repeats;
/* Add the final repeat which isn't 0b11. */
assert((bitStream & 3) < 3);
charnum += bitStream & 3;
bitCount += 2;
/* This is an error, but break and return an error
* at the end, because returning out of a loop makes
* it harder for the compiler to optimize.
*/
if (charnum >= maxSV1) break;
/* We don't need to set the normalized count to 0
* because we already memset the whole buffer to 0.
*/
if (LIKELY(ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
assert((bitCount >> 3) <= 3); /* For first condition to work */
ip += bitCount>>3;
bitCount &= 7;
} else {
bitCount -= (int)(8 * (iend - 4 - ip));
bitCount &= 31;
ip = iend - 4;
}
bitStream = MEM_readLE32(ip) >> bitCount;
}
{
int const max = (2*threshold-1) - remaining;
int count;
if ((bitStream & (threshold-1)) < (U32)max) {
count = bitStream & (threshold-1);
bitCount += nbBits-1;
} else {
count = bitStream & (2*threshold-1);
if (count >= threshold) count -= max;
bitCount += nbBits;
}
count--; /* extra accuracy */
/* When it matters (small blocks), this is a
* predictable branch, because we don't use -1.
*/
if (count >= 0) {
remaining -= count;
} else {
assert(count == -1);
remaining += count;
}
normalizedCounter[charnum++] = (short)count;
previous0 = !count;
assert(threshold > 1);
if (remaining < threshold) {
/* This branch can be folded into the
* threshold update condition because we
* know that threshold > 1.
*/
if (remaining <= 1) break;
nbBits = ZSTD_highbit32(remaining) + 1;
threshold = 1 << (nbBits - 1);
}
if (charnum >= maxSV1) break;
if (LIKELY(ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
ip += bitCount>>3;
bitCount &= 7;
} else {
bitCount -= (int)(8 * (iend - 4 - ip));
bitCount &= 31;
ip = iend - 4;
}
bitStream = MEM_readLE32(ip) >> bitCount;
} }
if (remaining != 1) return ERROR(corruption_detected);
/* Only possible when there are too many zeros. */
if (charnum > maxSV1) return ERROR(maxSymbolValue_tooSmall);
if (bitCount > 32) return ERROR(corruption_detected);
*maxSVPtr = charnum-1;
ip += (bitCount+7)>>3;
return ip-istart;
}
/* Avoids the FORCE_INLINE of the _body() function. */
static size_t FSE_readNCount_body_default(
short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
const void* headerBuffer, size_t hbSize)
{
return FSE_readNCount_body(normalizedCounter, maxSVPtr, tableLogPtr, headerBuffer, hbSize);
}
#if DYNAMIC_BMI2
BMI2_TARGET_ATTRIBUTE static size_t FSE_readNCount_body_bmi2(
short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
const void* headerBuffer, size_t hbSize)
{
return FSE_readNCount_body(normalizedCounter, maxSVPtr, tableLogPtr, headerBuffer, hbSize);
}
#endif
size_t FSE_readNCount_bmi2(
short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
const void* headerBuffer, size_t hbSize, int bmi2)
{
#if DYNAMIC_BMI2
if (bmi2) {
return FSE_readNCount_body_bmi2(normalizedCounter, maxSVPtr, tableLogPtr, headerBuffer, hbSize);
}
#endif
(void)bmi2;
return FSE_readNCount_body_default(normalizedCounter, maxSVPtr, tableLogPtr, headerBuffer, hbSize);
}
size_t FSE_readNCount(
short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
const void* headerBuffer, size_t hbSize)
{
return FSE_readNCount_bmi2(normalizedCounter, maxSVPtr, tableLogPtr, headerBuffer, hbSize, /* bmi2 */ 0);
}
/*! HUF_readStats() :
Read compact Huffman tree, saved by HUF_writeCTable().
`huffWeight` is destination buffer.
`rankStats` is assumed to be a table of at least HUF_TABLELOG_MAX U32.
@return : size read from `src` , or an error Code .
Note : Needed by HUF_readCTable() and HUF_readDTableX?() .
*/
size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
U32* nbSymbolsPtr, U32* tableLogPtr,
const void* src, size_t srcSize)
{
U32 wksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
return HUF_readStats_wksp(huffWeight, hwSize, rankStats, nbSymbolsPtr, tableLogPtr, src, srcSize, wksp, sizeof(wksp), /* flags */ 0);
}
FORCE_INLINE_TEMPLATE size_t
HUF_readStats_body(BYTE* huffWeight, size_t hwSize, U32* rankStats,
U32* nbSymbolsPtr, U32* tableLogPtr,
const void* src, size_t srcSize,
void* workSpace, size_t wkspSize,
int bmi2)
{
U32 weightTotal;
const BYTE* ip = (const BYTE*) src;
size_t iSize;
size_t oSize;
if (!srcSize) return ERROR(srcSize_wrong);
iSize = ip[0];
/* ZSTD_memset(huffWeight, 0, hwSize); *//* is not necessary, even though some analyzer complain ... */
if (iSize >= 128) { /* special header */
oSize = iSize - 127;
iSize = ((oSize+1)/2);
if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
if (oSize >= hwSize) return ERROR(corruption_detected);
ip += 1;
{ U32 n;
for (n=0; n<oSize; n+=2) {
huffWeight[n] = ip[n/2] >> 4;
huffWeight[n+1] = ip[n/2] & 15;
} } }
else { /* header compressed with FSE (normal case) */
if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
/* max (hwSize-1) values decoded, as last one is implied */
oSize = FSE_decompress_wksp_bmi2(huffWeight, hwSize-1, ip+1, iSize, 6, workSpace, wkspSize, bmi2);
if (FSE_isError(oSize)) return oSize;
}
/* collect weight stats */
ZSTD_memset(rankStats, 0, (HUF_TABLELOG_MAX + 1) * sizeof(U32));
weightTotal = 0;
{ U32 n; for (n=0; n<oSize; n++) {
if (huffWeight[n] > HUF_TABLELOG_MAX) return ERROR(corruption_detected);
rankStats[huffWeight[n]]++;
weightTotal += (1 << huffWeight[n]) >> 1;
} }
if (weightTotal == 0) return ERROR(corruption_detected);
/* get last non-null symbol weight (implied, total must be 2^n) */
{ U32 const tableLog = ZSTD_highbit32(weightTotal) + 1;
if (tableLog > HUF_TABLELOG_MAX) return ERROR(corruption_detected);
*tableLogPtr = tableLog;
/* determine last weight */
{ U32 const total = 1 << tableLog;
U32 const rest = total - weightTotal;
U32 const verif = 1 << ZSTD_highbit32(rest);
U32 const lastWeight = ZSTD_highbit32(rest) + 1;
if (verif != rest) return ERROR(corruption_detected); /* last value must be a clean power of 2 */
huffWeight[oSize] = (BYTE)lastWeight;
rankStats[lastWeight]++;
} }
/* check tree construction validity */
if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected); /* by construction : at least 2 elts of rank 1, must be even */
/* results */
*nbSymbolsPtr = (U32)(oSize+1);
return iSize+1;
}
/* Avoids the FORCE_INLINE of the _body() function. */
static size_t HUF_readStats_body_default(BYTE* huffWeight, size_t hwSize, U32* rankStats,
U32* nbSymbolsPtr, U32* tableLogPtr,
const void* src, size_t srcSize,
void* workSpace, size_t wkspSize)
{
return HUF_readStats_body(huffWeight, hwSize, rankStats, nbSymbolsPtr, tableLogPtr, src, srcSize, workSpace, wkspSize, 0);
}
#if DYNAMIC_BMI2
static BMI2_TARGET_ATTRIBUTE size_t HUF_readStats_body_bmi2(BYTE* huffWeight, size_t hwSize, U32* rankStats,
U32* nbSymbolsPtr, U32* tableLogPtr,
const void* src, size_t srcSize,
void* workSpace, size_t wkspSize)
{
return HUF_readStats_body(huffWeight, hwSize, rankStats, nbSymbolsPtr, tableLogPtr, src, srcSize, workSpace, wkspSize, 1);
}
#endif
size_t HUF_readStats_wksp(BYTE* huffWeight, size_t hwSize, U32* rankStats,
U32* nbSymbolsPtr, U32* tableLogPtr,
const void* src, size_t srcSize,
void* workSpace, size_t wkspSize,
int flags)
{
#if DYNAMIC_BMI2
if (flags & HUF_flags_bmi2) {
return HUF_readStats_body_bmi2(huffWeight, hwSize, rankStats, nbSymbolsPtr, tableLogPtr, src, srcSize, workSpace, wkspSize);
}
#endif
(void)flags;
return HUF_readStats_body_default(huffWeight, hwSize, rankStats, nbSymbolsPtr, tableLogPtr, src, srcSize, workSpace, wkspSize);
}

View File

@ -1,63 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* The purpose of this file is to have a single list of error strings embedded in binary */
#include "error_private.h"
const char* ERR_getErrorString(ERR_enum code)
{
#ifdef ZSTD_STRIP_ERROR_STRINGS
(void)code;
return "Error strings stripped";
#else
static const char* const notErrorCode = "Unspecified error code";
switch( code )
{
case PREFIX(no_error): return "No error detected";
case PREFIX(GENERIC): return "Error (generic)";
case PREFIX(prefix_unknown): return "Unknown frame descriptor";
case PREFIX(version_unsupported): return "Version not supported";
case PREFIX(frameParameter_unsupported): return "Unsupported frame parameter";
case PREFIX(frameParameter_windowTooLarge): return "Frame requires too much memory for decoding";
case PREFIX(corruption_detected): return "Data corruption detected";
case PREFIX(checksum_wrong): return "Restored data doesn't match checksum";
case PREFIX(literals_headerWrong): return "Header of Literals' block doesn't respect format specification";
case PREFIX(parameter_unsupported): return "Unsupported parameter";
case PREFIX(parameter_combination_unsupported): return "Unsupported combination of parameters";
case PREFIX(parameter_outOfBound): return "Parameter is out of bound";
case PREFIX(init_missing): return "Context should be init first";
case PREFIX(memory_allocation): return "Allocation error : not enough memory";
case PREFIX(workSpace_tooSmall): return "workSpace buffer is not large enough";
case PREFIX(stage_wrong): return "Operation not authorized at current processing stage";
case PREFIX(tableLog_tooLarge): return "tableLog requires too much memory : unsupported";
case PREFIX(maxSymbolValue_tooLarge): return "Unsupported max Symbol Value : too large";
case PREFIX(maxSymbolValue_tooSmall): return "Specified maxSymbolValue is too small";
case PREFIX(stabilityCondition_notRespected): return "pledged buffer stability condition is not respected";
case PREFIX(dictionary_corrupted): return "Dictionary is corrupted";
case PREFIX(dictionary_wrong): return "Dictionary mismatch";
case PREFIX(dictionaryCreation_failed): return "Cannot create Dictionary from provided samples";
case PREFIX(dstSize_tooSmall): return "Destination buffer is too small";
case PREFIX(srcSize_wrong): return "Src size is incorrect";
case PREFIX(dstBuffer_null): return "Operation on NULL destination buffer";
case PREFIX(noForwardProgress_destFull): return "Operation made no progress over multiple calls, due to output buffer being full";
case PREFIX(noForwardProgress_inputEmpty): return "Operation made no progress over multiple calls, due to input being empty";
/* following error codes are not stable and may be removed or changed in a future version */
case PREFIX(frameIndex_tooLarge): return "Frame index is too large";
case PREFIX(seekableIO): return "An I/O error occurred when reading/seeking";
case PREFIX(dstBuffer_wrong): return "Destination buffer is wrong";
case PREFIX(srcBuffer_wrong): return "Source buffer is wrong";
case PREFIX(sequenceProducer_failed): return "Block-level external sequence producer returned an error code";
case PREFIX(externalSequences_invalid): return "External sequences are not valid";
case PREFIX(maxCode):
default: return notErrorCode;
}
#endif
}

View File

@ -1,159 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* Note : this module is expected to remain private, do not expose it */
#ifndef ERROR_H_MODULE
#define ERROR_H_MODULE
#if defined (__cplusplus)
extern "C" {
#endif
/* ****************************************
* Dependencies
******************************************/
#include "../zstd_errors.h" /* enum list */
#include "compiler.h"
#include "debug.h"
#include "zstd_deps.h" /* size_t */
/* ****************************************
* Compiler-specific
******************************************/
#if defined(__GNUC__)
# define ERR_STATIC static __attribute__((unused))
#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
# define ERR_STATIC static inline
#elif defined(_MSC_VER)
# define ERR_STATIC static __inline
#else
# define ERR_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
#endif
/*-****************************************
* Customization (error_public.h)
******************************************/
typedef ZSTD_ErrorCode ERR_enum;
#define PREFIX(name) ZSTD_error_##name
/*-****************************************
* Error codes handling
******************************************/
#undef ERROR /* already defined on Visual Studio */
#define ERROR(name) ZSTD_ERROR(name)
#define ZSTD_ERROR(name) ((size_t)-PREFIX(name))
ERR_STATIC unsigned ERR_isError(size_t code) { return (code > ERROR(maxCode)); }
ERR_STATIC ERR_enum ERR_getErrorCode(size_t code) { if (!ERR_isError(code)) return (ERR_enum)0; return (ERR_enum) (0-code); }
/* check and forward error code */
#define CHECK_V_F(e, f) size_t const e = f; if (ERR_isError(e)) return e
#define CHECK_F(f) { CHECK_V_F(_var_err__, f); }
/*-****************************************
* Error Strings
******************************************/
const char* ERR_getErrorString(ERR_enum code); /* error_private.c */
ERR_STATIC const char* ERR_getErrorName(size_t code)
{
return ERR_getErrorString(ERR_getErrorCode(code));
}
/**
* Ignore: this is an internal helper.
*
* This is a helper function to help force C99-correctness during compilation.
* Under strict compilation modes, variadic macro arguments can't be empty.
* However, variadic function arguments can be. Using a function therefore lets
* us statically check that at least one (string) argument was passed,
* independent of the compilation flags.
*/
static INLINE_KEYWORD UNUSED_ATTR
void _force_has_format_string(const char *format, ...) {
(void)format;
}
/**
* Ignore: this is an internal helper.
*
* We want to force this function invocation to be syntactically correct, but
* we don't want to force runtime evaluation of its arguments.
*/
#define _FORCE_HAS_FORMAT_STRING(...) \
if (0) { \
_force_has_format_string(__VA_ARGS__); \
}
#define ERR_QUOTE(str) #str
/**
* Return the specified error if the condition evaluates to true.
*
* In debug modes, prints additional information.
* In order to do that (particularly, printing the conditional that failed),
* this can't just wrap RETURN_ERROR().
*/
#define RETURN_ERROR_IF(cond, err, ...) \
if (cond) { \
RAWLOG(3, "%s:%d: ERROR!: check %s failed, returning %s", \
__FILE__, __LINE__, ERR_QUOTE(cond), ERR_QUOTE(ERROR(err))); \
_FORCE_HAS_FORMAT_STRING(__VA_ARGS__); \
RAWLOG(3, ": " __VA_ARGS__); \
RAWLOG(3, "\n"); \
return ERROR(err); \
}
/**
* Unconditionally return the specified error.
*
* In debug modes, prints additional information.
*/
#define RETURN_ERROR(err, ...) \
do { \
RAWLOG(3, "%s:%d: ERROR!: unconditional check failed, returning %s", \
__FILE__, __LINE__, ERR_QUOTE(ERROR(err))); \
_FORCE_HAS_FORMAT_STRING(__VA_ARGS__); \
RAWLOG(3, ": " __VA_ARGS__); \
RAWLOG(3, "\n"); \
return ERROR(err); \
} while(0);
/**
* If the provided expression evaluates to an error code, returns that error code.
*
* In debug modes, prints additional information.
*/
#define FORWARD_IF_ERROR(err, ...) \
do { \
size_t const err_code = (err); \
if (ERR_isError(err_code)) { \
RAWLOG(3, "%s:%d: ERROR!: forwarding error in %s: %s", \
__FILE__, __LINE__, ERR_QUOTE(err), ERR_getErrorName(err_code)); \
_FORCE_HAS_FORMAT_STRING(__VA_ARGS__); \
RAWLOG(3, ": " __VA_ARGS__); \
RAWLOG(3, "\n"); \
return err_code; \
} \
} while(0);
#if defined (__cplusplus)
}
#endif
#endif /* ERROR_H_MODULE */

View File

@ -1,639 +0,0 @@
/* ******************************************************************
* FSE : Finite State Entropy codec
* Public Prototypes declaration
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* You can contact the author at :
* - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
#if defined (__cplusplus)
extern "C" {
#endif
#ifndef FSE_H
#define FSE_H
/*-*****************************************
* Dependencies
******************************************/
#include "zstd_deps.h" /* size_t, ptrdiff_t */
/*-*****************************************
* FSE_PUBLIC_API : control library symbols visibility
******************************************/
#if defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) && defined(__GNUC__) && (__GNUC__ >= 4)
# define FSE_PUBLIC_API __attribute__ ((visibility ("default")))
#elif defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) /* Visual expected */
# define FSE_PUBLIC_API __declspec(dllexport)
#elif defined(FSE_DLL_IMPORT) && (FSE_DLL_IMPORT==1)
# define FSE_PUBLIC_API __declspec(dllimport) /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/
#else
# define FSE_PUBLIC_API
#endif
/*------ Version ------*/
#define FSE_VERSION_MAJOR 0
#define FSE_VERSION_MINOR 9
#define FSE_VERSION_RELEASE 0
#define FSE_LIB_VERSION FSE_VERSION_MAJOR.FSE_VERSION_MINOR.FSE_VERSION_RELEASE
#define FSE_QUOTE(str) #str
#define FSE_EXPAND_AND_QUOTE(str) FSE_QUOTE(str)
#define FSE_VERSION_STRING FSE_EXPAND_AND_QUOTE(FSE_LIB_VERSION)
#define FSE_VERSION_NUMBER (FSE_VERSION_MAJOR *100*100 + FSE_VERSION_MINOR *100 + FSE_VERSION_RELEASE)
FSE_PUBLIC_API unsigned FSE_versionNumber(void); /**< library version number; to be used when checking dll version */
/*-*****************************************
* Tool functions
******************************************/
FSE_PUBLIC_API size_t FSE_compressBound(size_t size); /* maximum compressed size */
/* Error Management */
FSE_PUBLIC_API unsigned FSE_isError(size_t code); /* tells if a return value is an error code */
FSE_PUBLIC_API const char* FSE_getErrorName(size_t code); /* provides error code string (useful for debugging) */
/*-*****************************************
* FSE detailed API
******************************************/
/*!
FSE_compress() does the following:
1. count symbol occurrence from source[] into table count[] (see hist.h)
2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog)
3. save normalized counters to memory buffer using writeNCount()
4. build encoding table 'CTable' from normalized counters
5. encode the data stream using encoding table 'CTable'
FSE_decompress() does the following:
1. read normalized counters with readNCount()
2. build decoding table 'DTable' from normalized counters
3. decode the data stream using decoding table 'DTable'
The following API allows targeting specific sub-functions for advanced tasks.
For example, it's possible to compress several blocks using the same 'CTable',
or to save and provide normalized distribution using external method.
*/
/* *** COMPRESSION *** */
/*! FSE_optimalTableLog():
dynamically downsize 'tableLog' when conditions are met.
It saves CPU time, by using smaller tables, while preserving or even improving compression ratio.
@return : recommended tableLog (necessarily <= 'maxTableLog') */
FSE_PUBLIC_API unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue);
/*! FSE_normalizeCount():
normalize counts so that sum(count[]) == Power_of_2 (2^tableLog)
'normalizedCounter' is a table of short, of minimum size (maxSymbolValue+1).
useLowProbCount is a boolean parameter which trades off compressed size for
faster header decoding. When it is set to 1, the compressed data will be slightly
smaller. And when it is set to 0, FSE_readNCount() and FSE_buildDTable() will be
faster. If you are compressing a small amount of data (< 2 KB) then useLowProbCount=0
is a good default, since header deserialization makes a big speed difference.
Otherwise, useLowProbCount=1 is a good default, since the speed difference is small.
@return : tableLog,
or an errorCode, which can be tested using FSE_isError() */
FSE_PUBLIC_API size_t FSE_normalizeCount(short* normalizedCounter, unsigned tableLog,
const unsigned* count, size_t srcSize, unsigned maxSymbolValue, unsigned useLowProbCount);
/*! FSE_NCountWriteBound():
Provides the maximum possible size of an FSE normalized table, given 'maxSymbolValue' and 'tableLog'.
Typically useful for allocation purpose. */
FSE_PUBLIC_API size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog);
/*! FSE_writeNCount():
Compactly save 'normalizedCounter' into 'buffer'.
@return : size of the compressed table,
or an errorCode, which can be tested using FSE_isError(). */
FSE_PUBLIC_API size_t FSE_writeNCount (void* buffer, size_t bufferSize,
const short* normalizedCounter,
unsigned maxSymbolValue, unsigned tableLog);
/*! Constructor and Destructor of FSE_CTable.
Note that FSE_CTable size depends on 'tableLog' and 'maxSymbolValue' */
typedef unsigned FSE_CTable; /* don't allocate that. It's only meant to be more restrictive than void* */
/*! FSE_buildCTable():
Builds `ct`, which must be already allocated, using FSE_createCTable().
@return : 0, or an errorCode, which can be tested using FSE_isError() */
FSE_PUBLIC_API size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
/*! FSE_compress_usingCTable():
Compress `src` using `ct` into `dst` which must be already allocated.
@return : size of compressed data (<= `dstCapacity`),
or 0 if compressed data could not fit into `dst`,
or an errorCode, which can be tested using FSE_isError() */
FSE_PUBLIC_API size_t FSE_compress_usingCTable (void* dst, size_t dstCapacity, const void* src, size_t srcSize, const FSE_CTable* ct);
/*!
Tutorial :
----------
The first step is to count all symbols. FSE_count() does this job very fast.
Result will be saved into 'count', a table of unsigned int, which must be already allocated, and have 'maxSymbolValuePtr[0]+1' cells.
'src' is a table of bytes of size 'srcSize'. All values within 'src' MUST be <= maxSymbolValuePtr[0]
maxSymbolValuePtr[0] will be updated, with its real value (necessarily <= original value)
FSE_count() will return the number of occurrence of the most frequent symbol.
This can be used to know if there is a single symbol within 'src', and to quickly evaluate its compressibility.
If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
The next step is to normalize the frequencies.
FSE_normalizeCount() will ensure that sum of frequencies is == 2 ^'tableLog'.
It also guarantees a minimum of 1 to any Symbol with frequency >= 1.
You can use 'tableLog'==0 to mean "use default tableLog value".
If you are unsure of which tableLog value to use, you can ask FSE_optimalTableLog(),
which will provide the optimal valid tableLog given sourceSize, maxSymbolValue, and a user-defined maximum (0 means "default").
The result of FSE_normalizeCount() will be saved into a table,
called 'normalizedCounter', which is a table of signed short.
'normalizedCounter' must be already allocated, and have at least 'maxSymbolValue+1' cells.
The return value is tableLog if everything proceeded as expected.
It is 0 if there is a single symbol within distribution.
If there is an error (ex: invalid tableLog value), the function will return an ErrorCode (which can be tested using FSE_isError()).
'normalizedCounter' can be saved in a compact manner to a memory area using FSE_writeNCount().
'buffer' must be already allocated.
For guaranteed success, buffer size must be at least FSE_headerBound().
The result of the function is the number of bytes written into 'buffer'.
If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError(); ex : buffer size too small).
'normalizedCounter' can then be used to create the compression table 'CTable'.
The space required by 'CTable' must be already allocated, using FSE_createCTable().
You can then use FSE_buildCTable() to fill 'CTable'.
If there is an error, both functions will return an ErrorCode (which can be tested using FSE_isError()).
'CTable' can then be used to compress 'src', with FSE_compress_usingCTable().
Similar to FSE_count(), the convention is that 'src' is assumed to be a table of char of size 'srcSize'
The function returns the size of compressed data (without header), necessarily <= `dstCapacity`.
If it returns '0', compressed data could not fit into 'dst'.
If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
*/
/* *** DECOMPRESSION *** */
/*! FSE_readNCount():
Read compactly saved 'normalizedCounter' from 'rBuffer'.
@return : size read from 'rBuffer',
or an errorCode, which can be tested using FSE_isError().
maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */
FSE_PUBLIC_API size_t FSE_readNCount (short* normalizedCounter,
unsigned* maxSymbolValuePtr, unsigned* tableLogPtr,
const void* rBuffer, size_t rBuffSize);
/*! FSE_readNCount_bmi2():
* Same as FSE_readNCount() but pass bmi2=1 when your CPU supports BMI2 and 0 otherwise.
*/
FSE_PUBLIC_API size_t FSE_readNCount_bmi2(short* normalizedCounter,
unsigned* maxSymbolValuePtr, unsigned* tableLogPtr,
const void* rBuffer, size_t rBuffSize, int bmi2);
typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */
/*!
Tutorial :
----------
(Note : these functions only decompress FSE-compressed blocks.
If block is uncompressed, use memcpy() instead
If block is a single repeated byte, use memset() instead )
The first step is to obtain the normalized frequencies of symbols.
This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount().
'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short.
In practice, that means it's necessary to know 'maxSymbolValue' beforehand,
or size the table to handle worst case situations (typically 256).
FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'.
The result of FSE_readNCount() is the number of bytes read from 'rBuffer'.
Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that.
If there is an error, the function will return an error code, which can be tested using FSE_isError().
The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'.
This is performed by the function FSE_buildDTable().
The space required by 'FSE_DTable' must be already allocated using FSE_createDTable().
If there is an error, the function will return an error code, which can be tested using FSE_isError().
`FSE_DTable` can then be used to decompress `cSrc`, with FSE_decompress_usingDTable().
`cSrcSize` must be strictly correct, otherwise decompression will fail.
FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`).
If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small)
*/
#endif /* FSE_H */
#if defined(FSE_STATIC_LINKING_ONLY) && !defined(FSE_H_FSE_STATIC_LINKING_ONLY)
#define FSE_H_FSE_STATIC_LINKING_ONLY
/* *** Dependency *** */
#include "bitstream.h"
/* *****************************************
* Static allocation
*******************************************/
/* FSE buffer bounds */
#define FSE_NCOUNTBOUND 512
#define FSE_BLOCKBOUND(size) ((size) + ((size)>>7) + 4 /* fse states */ + sizeof(size_t) /* bitContainer */)
#define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
/* It is possible to statically allocate FSE CTable/DTable as a table of FSE_CTable/FSE_DTable using below macros */
#define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1<<((maxTableLog)-1)) + (((maxSymbolValue)+1)*2))
#define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1<<(maxTableLog)))
/* or use the size to malloc() space directly. Pay attention to alignment restrictions though */
#define FSE_CTABLE_SIZE(maxTableLog, maxSymbolValue) (FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(FSE_CTable))
#define FSE_DTABLE_SIZE(maxTableLog) (FSE_DTABLE_SIZE_U32(maxTableLog) * sizeof(FSE_DTable))
/* *****************************************
* FSE advanced API
***************************************** */
unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus);
/**< same as FSE_optimalTableLog(), which used `minus==2` */
size_t FSE_buildCTable_rle (FSE_CTable* ct, unsigned char symbolValue);
/**< build a fake FSE_CTable, designed to compress always the same symbolValue */
/* FSE_buildCTable_wksp() :
* Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`).
* `wkspSize` must be >= `FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog)` of `unsigned`.
* See FSE_buildCTable_wksp() for breakdown of workspace usage.
*/
#define FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog) (((maxSymbolValue + 2) + (1ull << (tableLog)))/2 + sizeof(U64)/sizeof(U32) /* additional 8 bytes for potential table overwrite */)
#define FSE_BUILD_CTABLE_WORKSPACE_SIZE(maxSymbolValue, tableLog) (sizeof(unsigned) * FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog))
size_t FSE_buildCTable_wksp(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
#define FSE_BUILD_DTABLE_WKSP_SIZE(maxTableLog, maxSymbolValue) (sizeof(short) * (maxSymbolValue + 1) + (1ULL << maxTableLog) + 8)
#define FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) ((FSE_BUILD_DTABLE_WKSP_SIZE(maxTableLog, maxSymbolValue) + sizeof(unsigned) - 1) / sizeof(unsigned))
FSE_PUBLIC_API size_t FSE_buildDTable_wksp(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
/**< Same as FSE_buildDTable(), using an externally allocated `workspace` produced with `FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxSymbolValue)` */
#define FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) (FSE_DTABLE_SIZE_U32(maxTableLog) + 1 + FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) + (FSE_MAX_SYMBOL_VALUE + 1) / 2 + 1)
#define FSE_DECOMPRESS_WKSP_SIZE(maxTableLog, maxSymbolValue) (FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(unsigned))
size_t FSE_decompress_wksp_bmi2(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize, int bmi2);
/**< same as FSE_decompress(), using an externally allocated `workSpace` produced with `FSE_DECOMPRESS_WKSP_SIZE_U32(maxLog, maxSymbolValue)`.
* Set bmi2 to 1 if your CPU supports BMI2 or 0 if it doesn't */
typedef enum {
FSE_repeat_none, /**< Cannot use the previous table */
FSE_repeat_check, /**< Can use the previous table but it must be checked */
FSE_repeat_valid /**< Can use the previous table and it is assumed to be valid */
} FSE_repeat;
/* *****************************************
* FSE symbol compression API
*******************************************/
/*!
This API consists of small unitary functions, which highly benefit from being inlined.
Hence their body are included in next section.
*/
typedef struct {
ptrdiff_t value;
const void* stateTable;
const void* symbolTT;
unsigned stateLog;
} FSE_CState_t;
static void FSE_initCState(FSE_CState_t* CStatePtr, const FSE_CTable* ct);
static void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* CStatePtr, unsigned symbol);
static void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* CStatePtr);
/**<
These functions are inner components of FSE_compress_usingCTable().
They allow the creation of custom streams, mixing multiple tables and bit sources.
A key property to keep in mind is that encoding and decoding are done **in reverse direction**.
So the first symbol you will encode is the last you will decode, like a LIFO stack.
You will need a few variables to track your CStream. They are :
FSE_CTable ct; // Provided by FSE_buildCTable()
BIT_CStream_t bitStream; // bitStream tracking structure
FSE_CState_t state; // State tracking structure (can have several)
The first thing to do is to init bitStream and state.
size_t errorCode = BIT_initCStream(&bitStream, dstBuffer, maxDstSize);
FSE_initCState(&state, ct);
Note that BIT_initCStream() can produce an error code, so its result should be tested, using FSE_isError();
You can then encode your input data, byte after byte.
FSE_encodeSymbol() outputs a maximum of 'tableLog' bits at a time.
Remember decoding will be done in reverse direction.
FSE_encodeByte(&bitStream, &state, symbol);
At any time, you can also add any bit sequence.
Note : maximum allowed nbBits is 25, for compatibility with 32-bits decoders
BIT_addBits(&bitStream, bitField, nbBits);
The above methods don't commit data to memory, they just store it into local register, for speed.
Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
Writing data to memory is a manual operation, performed by the flushBits function.
BIT_flushBits(&bitStream);
Your last FSE encoding operation shall be to flush your last state value(s).
FSE_flushState(&bitStream, &state);
Finally, you must close the bitStream.
The function returns the size of CStream in bytes.
If data couldn't fit into dstBuffer, it will return a 0 ( == not compressible)
If there is an error, it returns an errorCode (which can be tested using FSE_isError()).
size_t size = BIT_closeCStream(&bitStream);
*/
/* *****************************************
* FSE symbol decompression API
*******************************************/
typedef struct {
size_t state;
const void* table; /* precise table may vary, depending on U16 */
} FSE_DState_t;
static void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt);
static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr);
/**<
Let's now decompose FSE_decompress_usingDTable() into its unitary components.
You will decode FSE-encoded symbols from the bitStream,
and also any other bitFields you put in, **in reverse order**.
You will need a few variables to track your bitStream. They are :
BIT_DStream_t DStream; // Stream context
FSE_DState_t DState; // State context. Multiple ones are possible
FSE_DTable* DTablePtr; // Decoding table, provided by FSE_buildDTable()
The first thing to do is to init the bitStream.
errorCode = BIT_initDStream(&DStream, srcBuffer, srcSize);
You should then retrieve your initial state(s)
(in reverse flushing order if you have several ones) :
errorCode = FSE_initDState(&DState, &DStream, DTablePtr);
You can then decode your data, symbol after symbol.
For information the maximum number of bits read by FSE_decodeSymbol() is 'tableLog'.
Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out).
unsigned char symbol = FSE_decodeSymbol(&DState, &DStream);
You can retrieve any bitfield you eventually stored into the bitStream (in reverse order)
Note : maximum allowed nbBits is 25, for 32-bits compatibility
size_t bitField = BIT_readBits(&DStream, nbBits);
All above operations only read from local register (which size depends on size_t).
Refueling the register from memory is manually performed by the reload method.
endSignal = FSE_reloadDStream(&DStream);
BIT_reloadDStream() result tells if there is still some more data to read from DStream.
BIT_DStream_unfinished : there is still some data left into the DStream.
BIT_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled.
BIT_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed.
BIT_DStream_tooFar : Dstream went too far. Decompression result is corrupted.
When reaching end of buffer (BIT_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop,
to properly detect the exact end of stream.
After each decoded symbol, check if DStream is fully consumed using this simple test :
BIT_reloadDStream(&DStream) >= BIT_DStream_completed
When it's done, verify decompression is fully completed, by checking both DStream and the relevant states.
Checking if DStream has reached its end is performed by :
BIT_endOfDStream(&DStream);
Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible.
FSE_endOfDState(&DState);
*/
/* *****************************************
* FSE unsafe API
*******************************************/
static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
/* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
/* *****************************************
* Implementation of inlined functions
*******************************************/
typedef struct {
int deltaFindState;
U32 deltaNbBits;
} FSE_symbolCompressionTransform; /* total 8 bytes */
MEM_STATIC void FSE_initCState(FSE_CState_t* statePtr, const FSE_CTable* ct)
{
const void* ptr = ct;
const U16* u16ptr = (const U16*) ptr;
const U32 tableLog = MEM_read16(ptr);
statePtr->value = (ptrdiff_t)1<<tableLog;
statePtr->stateTable = u16ptr+2;
statePtr->symbolTT = ct + 1 + (tableLog ? (1<<(tableLog-1)) : 1);
statePtr->stateLog = tableLog;
}
/*! FSE_initCState2() :
* Same as FSE_initCState(), but the first symbol to include (which will be the last to be read)
* uses the smallest state value possible, saving the cost of this symbol */
MEM_STATIC void FSE_initCState2(FSE_CState_t* statePtr, const FSE_CTable* ct, U32 symbol)
{
FSE_initCState(statePtr, ct);
{ const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
const U16* stateTable = (const U16*)(statePtr->stateTable);
U32 nbBitsOut = (U32)((symbolTT.deltaNbBits + (1<<15)) >> 16);
statePtr->value = (nbBitsOut << 16) - symbolTT.deltaNbBits;
statePtr->value = stateTable[(statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
}
}
MEM_STATIC void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* statePtr, unsigned symbol)
{
FSE_symbolCompressionTransform const symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
const U16* const stateTable = (const U16*)(statePtr->stateTable);
U32 const nbBitsOut = (U32)((statePtr->value + symbolTT.deltaNbBits) >> 16);
BIT_addBits(bitC, statePtr->value, nbBitsOut);
statePtr->value = stateTable[ (statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
}
MEM_STATIC void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* statePtr)
{
BIT_addBits(bitC, statePtr->value, statePtr->stateLog);
BIT_flushBits(bitC);
}
/* FSE_getMaxNbBits() :
* Approximate maximum cost of a symbol, in bits.
* Fractional get rounded up (i.e. a symbol with a normalized frequency of 3 gives the same result as a frequency of 2)
* note 1 : assume symbolValue is valid (<= maxSymbolValue)
* note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */
MEM_STATIC U32 FSE_getMaxNbBits(const void* symbolTTPtr, U32 symbolValue)
{
const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr;
return (symbolTT[symbolValue].deltaNbBits + ((1<<16)-1)) >> 16;
}
/* FSE_bitCost() :
* Approximate symbol cost, as fractional value, using fixed-point format (accuracyLog fractional bits)
* note 1 : assume symbolValue is valid (<= maxSymbolValue)
* note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */
MEM_STATIC U32 FSE_bitCost(const void* symbolTTPtr, U32 tableLog, U32 symbolValue, U32 accuracyLog)
{
const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr;
U32 const minNbBits = symbolTT[symbolValue].deltaNbBits >> 16;
U32 const threshold = (minNbBits+1) << 16;
assert(tableLog < 16);
assert(accuracyLog < 31-tableLog); /* ensure enough room for renormalization double shift */
{ U32 const tableSize = 1 << tableLog;
U32 const deltaFromThreshold = threshold - (symbolTT[symbolValue].deltaNbBits + tableSize);
U32 const normalizedDeltaFromThreshold = (deltaFromThreshold << accuracyLog) >> tableLog; /* linear interpolation (very approximate) */
U32 const bitMultiplier = 1 << accuracyLog;
assert(symbolTT[symbolValue].deltaNbBits + tableSize <= threshold);
assert(normalizedDeltaFromThreshold <= bitMultiplier);
return (minNbBits+1)*bitMultiplier - normalizedDeltaFromThreshold;
}
}
/* ====== Decompression ====== */
typedef struct {
U16 tableLog;
U16 fastMode;
} FSE_DTableHeader; /* sizeof U32 */
typedef struct
{
unsigned short newState;
unsigned char symbol;
unsigned char nbBits;
} FSE_decode_t; /* size == U32 */
MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt)
{
const void* ptr = dt;
const FSE_DTableHeader* const DTableH = (const FSE_DTableHeader*)ptr;
DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
BIT_reloadDStream(bitD);
DStatePtr->table = dt + 1;
}
MEM_STATIC BYTE FSE_peekSymbol(const FSE_DState_t* DStatePtr)
{
FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
return DInfo.symbol;
}
MEM_STATIC void FSE_updateState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
{
FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
U32 const nbBits = DInfo.nbBits;
size_t const lowBits = BIT_readBits(bitD, nbBits);
DStatePtr->state = DInfo.newState + lowBits;
}
MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
{
FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
U32 const nbBits = DInfo.nbBits;
BYTE const symbol = DInfo.symbol;
size_t const lowBits = BIT_readBits(bitD, nbBits);
DStatePtr->state = DInfo.newState + lowBits;
return symbol;
}
/*! FSE_decodeSymbolFast() :
unsafe, only works if no symbol has a probability > 50% */
MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
{
FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
U32 const nbBits = DInfo.nbBits;
BYTE const symbol = DInfo.symbol;
size_t const lowBits = BIT_readBitsFast(bitD, nbBits);
DStatePtr->state = DInfo.newState + lowBits;
return symbol;
}
MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr)
{
return DStatePtr->state == 0;
}
#ifndef FSE_COMMONDEFS_ONLY
/* **************************************************************
* Tuning parameters
****************************************************************/
/*!MEMORY_USAGE :
* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
* Increasing memory usage improves compression ratio
* Reduced memory usage can improve speed, due to cache effect
* Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
#ifndef FSE_MAX_MEMORY_USAGE
# define FSE_MAX_MEMORY_USAGE 14
#endif
#ifndef FSE_DEFAULT_MEMORY_USAGE
# define FSE_DEFAULT_MEMORY_USAGE 13
#endif
#if (FSE_DEFAULT_MEMORY_USAGE > FSE_MAX_MEMORY_USAGE)
# error "FSE_DEFAULT_MEMORY_USAGE must be <= FSE_MAX_MEMORY_USAGE"
#endif
/*!FSE_MAX_SYMBOL_VALUE :
* Maximum symbol value authorized.
* Required for proper stack allocation */
#ifndef FSE_MAX_SYMBOL_VALUE
# define FSE_MAX_SYMBOL_VALUE 255
#endif
/* **************************************************************
* template functions type & suffix
****************************************************************/
#define FSE_FUNCTION_TYPE BYTE
#define FSE_FUNCTION_EXTENSION
#define FSE_DECODE_TYPE FSE_decode_t
#endif /* !FSE_COMMONDEFS_ONLY */
/* ***************************************************************
* Constants
*****************************************************************/
#define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2)
#define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG)
#define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1)
#define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2)
#define FSE_MIN_TABLELOG 5
#define FSE_TABLELOG_ABSOLUTE_MAX 15
#if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX
# error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported"
#endif
#define FSE_TABLESTEP(tableSize) (((tableSize)>>1) + ((tableSize)>>3) + 3)
#endif /* FSE_STATIC_LINKING_ONLY */
#if defined (__cplusplus)
}
#endif

View File

@ -1,311 +0,0 @@
/* ******************************************************************
* FSE : Finite State Entropy decoder
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* You can contact the author at :
* - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
* - Public forum : https://groups.google.com/forum/#!forum/lz4c
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
/* **************************************************************
* Includes
****************************************************************/
#include "debug.h" /* assert */
#include "bitstream.h"
#include "compiler.h"
#define FSE_STATIC_LINKING_ONLY
#include "fse.h"
#include "error_private.h"
#define ZSTD_DEPS_NEED_MALLOC
#include "zstd_deps.h"
#include "bits.h" /* ZSTD_highbit32 */
/* **************************************************************
* Error Management
****************************************************************/
#define FSE_isError ERR_isError
#define FSE_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c) /* use only *after* variable declarations */
/* **************************************************************
* Templates
****************************************************************/
/*
designed to be included
for type-specific functions (template emulation in C)
Objective is to write these functions only once, for improved maintenance
*/
/* safety checks */
#ifndef FSE_FUNCTION_EXTENSION
# error "FSE_FUNCTION_EXTENSION must be defined"
#endif
#ifndef FSE_FUNCTION_TYPE
# error "FSE_FUNCTION_TYPE must be defined"
#endif
/* Function names */
#define FSE_CAT(X,Y) X##Y
#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y)
#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y)
static size_t FSE_buildDTable_internal(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize)
{
void* const tdPtr = dt+1; /* because *dt is unsigned, 32-bits aligned on 32-bits */
FSE_DECODE_TYPE* const tableDecode = (FSE_DECODE_TYPE*) (tdPtr);
U16* symbolNext = (U16*)workSpace;
BYTE* spread = (BYTE*)(symbolNext + maxSymbolValue + 1);
U32 const maxSV1 = maxSymbolValue + 1;
U32 const tableSize = 1 << tableLog;
U32 highThreshold = tableSize-1;
/* Sanity Checks */
if (FSE_BUILD_DTABLE_WKSP_SIZE(tableLog, maxSymbolValue) > wkspSize) return ERROR(maxSymbolValue_tooLarge);
if (maxSymbolValue > FSE_MAX_SYMBOL_VALUE) return ERROR(maxSymbolValue_tooLarge);
if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
/* Init, lay down lowprob symbols */
{ FSE_DTableHeader DTableH;
DTableH.tableLog = (U16)tableLog;
DTableH.fastMode = 1;
{ S16 const largeLimit= (S16)(1 << (tableLog-1));
U32 s;
for (s=0; s<maxSV1; s++) {
if (normalizedCounter[s]==-1) {
tableDecode[highThreshold--].symbol = (FSE_FUNCTION_TYPE)s;
symbolNext[s] = 1;
} else {
if (normalizedCounter[s] >= largeLimit) DTableH.fastMode=0;
symbolNext[s] = normalizedCounter[s];
} } }
ZSTD_memcpy(dt, &DTableH, sizeof(DTableH));
}
/* Spread symbols */
if (highThreshold == tableSize - 1) {
size_t const tableMask = tableSize-1;
size_t const step = FSE_TABLESTEP(tableSize);
/* First lay down the symbols in order.
* We use a uint64_t to lay down 8 bytes at a time. This reduces branch
* misses since small blocks generally have small table logs, so nearly
* all symbols have counts <= 8. We ensure we have 8 bytes at the end of
* our buffer to handle the over-write.
*/
{
U64 const add = 0x0101010101010101ull;
size_t pos = 0;
U64 sv = 0;
U32 s;
for (s=0; s<maxSV1; ++s, sv += add) {
int i;
int const n = normalizedCounter[s];
MEM_write64(spread + pos, sv);
for (i = 8; i < n; i += 8) {
MEM_write64(spread + pos + i, sv);
}
pos += n;
}
}
/* Now we spread those positions across the table.
* The benefit of doing it in two stages is that we avoid the
* variable size inner loop, which caused lots of branch misses.
* Now we can run through all the positions without any branch misses.
* We unroll the loop twice, since that is what empirically worked best.
*/
{
size_t position = 0;
size_t s;
size_t const unroll = 2;
assert(tableSize % unroll == 0); /* FSE_MIN_TABLELOG is 5 */
for (s = 0; s < (size_t)tableSize; s += unroll) {
size_t u;
for (u = 0; u < unroll; ++u) {
size_t const uPosition = (position + (u * step)) & tableMask;
tableDecode[uPosition].symbol = spread[s + u];
}
position = (position + (unroll * step)) & tableMask;
}
assert(position == 0);
}
} else {
U32 const tableMask = tableSize-1;
U32 const step = FSE_TABLESTEP(tableSize);
U32 s, position = 0;
for (s=0; s<maxSV1; s++) {
int i;
for (i=0; i<normalizedCounter[s]; i++) {
tableDecode[position].symbol = (FSE_FUNCTION_TYPE)s;
position = (position + step) & tableMask;
while (position > highThreshold) position = (position + step) & tableMask; /* lowprob area */
} }
if (position!=0) return ERROR(GENERIC); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
}
/* Build Decoding table */
{ U32 u;
for (u=0; u<tableSize; u++) {
FSE_FUNCTION_TYPE const symbol = (FSE_FUNCTION_TYPE)(tableDecode[u].symbol);
U32 const nextState = symbolNext[symbol]++;
tableDecode[u].nbBits = (BYTE) (tableLog - ZSTD_highbit32(nextState) );
tableDecode[u].newState = (U16) ( (nextState << tableDecode[u].nbBits) - tableSize);
} }
return 0;
}
size_t FSE_buildDTable_wksp(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize)
{
return FSE_buildDTable_internal(dt, normalizedCounter, maxSymbolValue, tableLog, workSpace, wkspSize);
}
#ifndef FSE_COMMONDEFS_ONLY
/*-*******************************************************
* Decompression (Byte symbols)
*********************************************************/
FORCE_INLINE_TEMPLATE size_t FSE_decompress_usingDTable_generic(
void* dst, size_t maxDstSize,
const void* cSrc, size_t cSrcSize,
const FSE_DTable* dt, const unsigned fast)
{
BYTE* const ostart = (BYTE*) dst;
BYTE* op = ostart;
BYTE* const omax = op + maxDstSize;
BYTE* const olimit = omax-3;
BIT_DStream_t bitD;
FSE_DState_t state1;
FSE_DState_t state2;
/* Init */
CHECK_F(BIT_initDStream(&bitD, cSrc, cSrcSize));
FSE_initDState(&state1, &bitD, dt);
FSE_initDState(&state2, &bitD, dt);
#define FSE_GETSYMBOL(statePtr) fast ? FSE_decodeSymbolFast(statePtr, &bitD) : FSE_decodeSymbol(statePtr, &bitD)
/* 4 symbols per loop */
for ( ; (BIT_reloadDStream(&bitD)==BIT_DStream_unfinished) & (op<olimit) ; op+=4) {
op[0] = FSE_GETSYMBOL(&state1);
if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
BIT_reloadDStream(&bitD);
op[1] = FSE_GETSYMBOL(&state2);
if (FSE_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
{ if (BIT_reloadDStream(&bitD) > BIT_DStream_unfinished) { op+=2; break; } }
op[2] = FSE_GETSYMBOL(&state1);
if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
BIT_reloadDStream(&bitD);
op[3] = FSE_GETSYMBOL(&state2);
}
/* tail */
/* note : BIT_reloadDStream(&bitD) >= FSE_DStream_partiallyFilled; Ends at exactly BIT_DStream_completed */
while (1) {
if (op>(omax-2)) return ERROR(dstSize_tooSmall);
*op++ = FSE_GETSYMBOL(&state1);
if (BIT_reloadDStream(&bitD)==BIT_DStream_overflow) {
*op++ = FSE_GETSYMBOL(&state2);
break;
}
if (op>(omax-2)) return ERROR(dstSize_tooSmall);
*op++ = FSE_GETSYMBOL(&state2);
if (BIT_reloadDStream(&bitD)==BIT_DStream_overflow) {
*op++ = FSE_GETSYMBOL(&state1);
break;
} }
return op-ostart;
}
typedef struct {
short ncount[FSE_MAX_SYMBOL_VALUE + 1];
FSE_DTable dtable[1]; /* Dynamically sized */
} FSE_DecompressWksp;
FORCE_INLINE_TEMPLATE size_t FSE_decompress_wksp_body(
void* dst, size_t dstCapacity,
const void* cSrc, size_t cSrcSize,
unsigned maxLog, void* workSpace, size_t wkspSize,
int bmi2)
{
const BYTE* const istart = (const BYTE*)cSrc;
const BYTE* ip = istart;
unsigned tableLog;
unsigned maxSymbolValue = FSE_MAX_SYMBOL_VALUE;
FSE_DecompressWksp* const wksp = (FSE_DecompressWksp*)workSpace;
DEBUG_STATIC_ASSERT((FSE_MAX_SYMBOL_VALUE + 1) % 2 == 0);
if (wkspSize < sizeof(*wksp)) return ERROR(GENERIC);
/* normal FSE decoding mode */
{
size_t const NCountLength = FSE_readNCount_bmi2(wksp->ncount, &maxSymbolValue, &tableLog, istart, cSrcSize, bmi2);
if (FSE_isError(NCountLength)) return NCountLength;
if (tableLog > maxLog) return ERROR(tableLog_tooLarge);
assert(NCountLength <= cSrcSize);
ip += NCountLength;
cSrcSize -= NCountLength;
}
if (FSE_DECOMPRESS_WKSP_SIZE(tableLog, maxSymbolValue) > wkspSize) return ERROR(tableLog_tooLarge);
assert(sizeof(*wksp) + FSE_DTABLE_SIZE(tableLog) <= wkspSize);
workSpace = (BYTE*)workSpace + sizeof(*wksp) + FSE_DTABLE_SIZE(tableLog);
wkspSize -= sizeof(*wksp) + FSE_DTABLE_SIZE(tableLog);
CHECK_F( FSE_buildDTable_internal(wksp->dtable, wksp->ncount, maxSymbolValue, tableLog, workSpace, wkspSize) );
{
const void* ptr = wksp->dtable;
const FSE_DTableHeader* DTableH = (const FSE_DTableHeader*)ptr;
const U32 fastMode = DTableH->fastMode;
/* select fast mode (static) */
if (fastMode) return FSE_decompress_usingDTable_generic(dst, dstCapacity, ip, cSrcSize, wksp->dtable, 1);
return FSE_decompress_usingDTable_generic(dst, dstCapacity, ip, cSrcSize, wksp->dtable, 0);
}
}
/* Avoids the FORCE_INLINE of the _body() function. */
static size_t FSE_decompress_wksp_body_default(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize)
{
return FSE_decompress_wksp_body(dst, dstCapacity, cSrc, cSrcSize, maxLog, workSpace, wkspSize, 0);
}
#if DYNAMIC_BMI2
BMI2_TARGET_ATTRIBUTE static size_t FSE_decompress_wksp_body_bmi2(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize)
{
return FSE_decompress_wksp_body(dst, dstCapacity, cSrc, cSrcSize, maxLog, workSpace, wkspSize, 1);
}
#endif
size_t FSE_decompress_wksp_bmi2(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize, int bmi2)
{
#if DYNAMIC_BMI2
if (bmi2) {
return FSE_decompress_wksp_body_bmi2(dst, dstCapacity, cSrc, cSrcSize, maxLog, workSpace, wkspSize);
}
#endif
(void)bmi2;
return FSE_decompress_wksp_body_default(dst, dstCapacity, cSrc, cSrcSize, maxLog, workSpace, wkspSize);
}
#endif /* FSE_COMMONDEFS_ONLY */

View File

@ -1,273 +0,0 @@
/* ******************************************************************
* huff0 huffman codec,
* part of Finite State Entropy library
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* You can contact the author at :
* - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
#if defined (__cplusplus)
extern "C" {
#endif
#ifndef HUF_H_298734234
#define HUF_H_298734234
/* *** Dependencies *** */
#include "zstd_deps.h" /* size_t */
#include "mem.h" /* U32 */
#define FSE_STATIC_LINKING_ONLY
#include "fse.h"
/* *** Tool functions *** */
#define HUF_BLOCKSIZE_MAX (128 * 1024) /**< maximum input size for a single block compressed with HUF_compress */
size_t HUF_compressBound(size_t size); /**< maximum compressed size (worst case) */
/* Error Management */
unsigned HUF_isError(size_t code); /**< tells if a return value is an error code */
const char* HUF_getErrorName(size_t code); /**< provides error code string (useful for debugging) */
#define HUF_WORKSPACE_SIZE ((8 << 10) + 512 /* sorting scratch space */)
#define HUF_WORKSPACE_SIZE_U64 (HUF_WORKSPACE_SIZE / sizeof(U64))
/* *** Constants *** */
#define HUF_TABLELOG_MAX 12 /* max runtime value of tableLog (due to static allocation); can be modified up to HUF_TABLELOG_ABSOLUTEMAX */
#define HUF_TABLELOG_DEFAULT 11 /* default tableLog value when none specified */
#define HUF_SYMBOLVALUE_MAX 255
#define HUF_TABLELOG_ABSOLUTEMAX 12 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */
#if (HUF_TABLELOG_MAX > HUF_TABLELOG_ABSOLUTEMAX)
# error "HUF_TABLELOG_MAX is too large !"
#endif
/* ****************************************
* Static allocation
******************************************/
/* HUF buffer bounds */
#define HUF_CTABLEBOUND 129
#define HUF_BLOCKBOUND(size) (size + (size>>8) + 8) /* only true when incompressible is pre-filtered with fast heuristic */
#define HUF_COMPRESSBOUND(size) (HUF_CTABLEBOUND + HUF_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
/* static allocation of HUF's Compression Table */
/* this is a private definition, just exposed for allocation and strict aliasing purpose. never EVER access its members directly */
typedef size_t HUF_CElt; /* consider it an incomplete type */
#define HUF_CTABLE_SIZE_ST(maxSymbolValue) ((maxSymbolValue)+2) /* Use tables of size_t, for proper alignment */
#define HUF_CTABLE_SIZE(maxSymbolValue) (HUF_CTABLE_SIZE_ST(maxSymbolValue) * sizeof(size_t))
#define HUF_CREATE_STATIC_CTABLE(name, maxSymbolValue) \
HUF_CElt name[HUF_CTABLE_SIZE_ST(maxSymbolValue)] /* no final ; */
/* static allocation of HUF's DTable */
typedef U32 HUF_DTable;
#define HUF_DTABLE_SIZE(maxTableLog) (1 + (1<<(maxTableLog)))
#define HUF_CREATE_STATIC_DTABLEX1(DTable, maxTableLog) \
HUF_DTable DTable[HUF_DTABLE_SIZE((maxTableLog)-1)] = { ((U32)((maxTableLog)-1) * 0x01000001) }
#define HUF_CREATE_STATIC_DTABLEX2(DTable, maxTableLog) \
HUF_DTable DTable[HUF_DTABLE_SIZE(maxTableLog)] = { ((U32)(maxTableLog) * 0x01000001) }
/* ****************************************
* Advanced decompression functions
******************************************/
/**
* Huffman flags bitset.
* For all flags, 0 is the default value.
*/
typedef enum {
/**
* If compiled with DYNAMIC_BMI2: Set flag only if the CPU supports BMI2 at runtime.
* Otherwise: Ignored.
*/
HUF_flags_bmi2 = (1 << 0),
/**
* If set: Test possible table depths to find the one that produces the smallest header + encoded size.
* If unset: Use heuristic to find the table depth.
*/
HUF_flags_optimalDepth = (1 << 1),
/**
* If set: If the previous table can encode the input, always reuse the previous table.
* If unset: If the previous table can encode the input, reuse the previous table if it results in a smaller output.
*/
HUF_flags_preferRepeat = (1 << 2),
/**
* If set: Sample the input and check if the sample is uncompressible, if it is then don't attempt to compress.
* If unset: Always histogram the entire input.
*/
HUF_flags_suspectUncompressible = (1 << 3),
/**
* If set: Don't use assembly implementations
* If unset: Allow using assembly implementations
*/
HUF_flags_disableAsm = (1 << 4),
/**
* If set: Don't use the fast decoding loop, always use the fallback decoding loop.
* If unset: Use the fast decoding loop when possible.
*/
HUF_flags_disableFast = (1 << 5)
} HUF_flags_e;
/* ****************************************
* HUF detailed API
* ****************************************/
#define HUF_OPTIMAL_DEPTH_THRESHOLD ZSTD_btultra
/*! HUF_compress() does the following:
* 1. count symbol occurrence from source[] into table count[] using FSE_count() (exposed within "fse.h")
* 2. (optional) refine tableLog using HUF_optimalTableLog()
* 3. build Huffman table from count using HUF_buildCTable()
* 4. save Huffman table to memory buffer using HUF_writeCTable()
* 5. encode the data stream using HUF_compress4X_usingCTable()
*
* The following API allows targeting specific sub-functions for advanced tasks.
* For example, it's possible to compress several blocks using the same 'CTable',
* or to save and regenerate 'CTable' using external methods.
*/
unsigned HUF_minTableLog(unsigned symbolCardinality);
unsigned HUF_cardinality(const unsigned* count, unsigned maxSymbolValue);
unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, void* workSpace,
size_t wkspSize, HUF_CElt* table, const unsigned* count, int flags); /* table is used as scratch space for building and testing tables, not a return value */
size_t HUF_writeCTable_wksp(void* dst, size_t maxDstSize, const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog, void* workspace, size_t workspaceSize);
size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int flags);
size_t HUF_estimateCompressedSize(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue);
int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue);
typedef enum {
HUF_repeat_none, /**< Cannot use the previous table */
HUF_repeat_check, /**< Can use the previous table but it must be checked. Note : The previous table must have been constructed by HUF_compress{1, 4}X_repeat */
HUF_repeat_valid /**< Can use the previous table and it is assumed to be valid */
} HUF_repeat;
/** HUF_compress4X_repeat() :
* Same as HUF_compress4X_wksp(), but considers using hufTable if *repeat != HUF_repeat_none.
* If it uses hufTable it does not modify hufTable or repeat.
* If it doesn't, it sets *repeat = HUF_repeat_none, and it sets hufTable to the table used.
* If preferRepeat then the old table will always be used if valid.
* If suspectUncompressible then some sampling checks will be run to potentially skip huffman coding */
size_t HUF_compress4X_repeat(void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned tableLog,
void* workSpace, size_t wkspSize, /**< `workSpace` must be aligned on 4-bytes boundaries, `wkspSize` must be >= HUF_WORKSPACE_SIZE */
HUF_CElt* hufTable, HUF_repeat* repeat, int flags);
/** HUF_buildCTable_wksp() :
* Same as HUF_buildCTable(), but using externally allocated scratch buffer.
* `workSpace` must be aligned on 4-bytes boundaries, and its size must be >= HUF_CTABLE_WORKSPACE_SIZE.
*/
#define HUF_CTABLE_WORKSPACE_SIZE_U32 ((4 * (HUF_SYMBOLVALUE_MAX + 1)) + 192)
#define HUF_CTABLE_WORKSPACE_SIZE (HUF_CTABLE_WORKSPACE_SIZE_U32 * sizeof(unsigned))
size_t HUF_buildCTable_wksp (HUF_CElt* tree,
const unsigned* count, U32 maxSymbolValue, U32 maxNbBits,
void* workSpace, size_t wkspSize);
/*! HUF_readStats() :
* Read compact Huffman tree, saved by HUF_writeCTable().
* `huffWeight` is destination buffer.
* @return : size read from `src` , or an error Code .
* Note : Needed by HUF_readCTable() and HUF_readDTableXn() . */
size_t HUF_readStats(BYTE* huffWeight, size_t hwSize,
U32* rankStats, U32* nbSymbolsPtr, U32* tableLogPtr,
const void* src, size_t srcSize);
/*! HUF_readStats_wksp() :
* Same as HUF_readStats() but takes an external workspace which must be
* 4-byte aligned and its size must be >= HUF_READ_STATS_WORKSPACE_SIZE.
* If the CPU has BMI2 support, pass bmi2=1, otherwise pass bmi2=0.
*/
#define HUF_READ_STATS_WORKSPACE_SIZE_U32 FSE_DECOMPRESS_WKSP_SIZE_U32(6, HUF_TABLELOG_MAX-1)
#define HUF_READ_STATS_WORKSPACE_SIZE (HUF_READ_STATS_WORKSPACE_SIZE_U32 * sizeof(unsigned))
size_t HUF_readStats_wksp(BYTE* huffWeight, size_t hwSize,
U32* rankStats, U32* nbSymbolsPtr, U32* tableLogPtr,
const void* src, size_t srcSize,
void* workspace, size_t wkspSize,
int flags);
/** HUF_readCTable() :
* Loading a CTable saved with HUF_writeCTable() */
size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize, unsigned *hasZeroWeights);
/** HUF_getNbBitsFromCTable() :
* Read nbBits from CTable symbolTable, for symbol `symbolValue` presumed <= HUF_SYMBOLVALUE_MAX
* Note 1 : is not inlined, as HUF_CElt definition is private */
U32 HUF_getNbBitsFromCTable(const HUF_CElt* symbolTable, U32 symbolValue);
/*
* HUF_decompress() does the following:
* 1. select the decompression algorithm (X1, X2) based on pre-computed heuristics
* 2. build Huffman table from save, using HUF_readDTableX?()
* 3. decode 1 or 4 segments in parallel using HUF_decompress?X?_usingDTable()
*/
/** HUF_selectDecoder() :
* Tells which decoder is likely to decode faster,
* based on a set of pre-computed metrics.
* @return : 0==HUF_decompress4X1, 1==HUF_decompress4X2 .
* Assumption : 0 < dstSize <= 128 KB */
U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize);
/**
* The minimum workspace size for the `workSpace` used in
* HUF_readDTableX1_wksp() and HUF_readDTableX2_wksp().
*
* The space used depends on HUF_TABLELOG_MAX, ranging from ~1500 bytes when
* HUF_TABLE_LOG_MAX=12 to ~1850 bytes when HUF_TABLE_LOG_MAX=15.
* Buffer overflow errors may potentially occur if code modifications result in
* a required workspace size greater than that specified in the following
* macro.
*/
#define HUF_DECOMPRESS_WORKSPACE_SIZE ((2 << 10) + (1 << 9))
#define HUF_DECOMPRESS_WORKSPACE_SIZE_U32 (HUF_DECOMPRESS_WORKSPACE_SIZE / sizeof(U32))
/* ====================== */
/* single stream variants */
/* ====================== */
size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int flags);
/** HUF_compress1X_repeat() :
* Same as HUF_compress1X_wksp(), but considers using hufTable if *repeat != HUF_repeat_none.
* If it uses hufTable it does not modify hufTable or repeat.
* If it doesn't, it sets *repeat = HUF_repeat_none, and it sets hufTable to the table used.
* If preferRepeat then the old table will always be used if valid.
* If suspectUncompressible then some sampling checks will be run to potentially skip huffman coding */
size_t HUF_compress1X_repeat(void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned tableLog,
void* workSpace, size_t wkspSize, /**< `workSpace` must be aligned on 4-bytes boundaries, `wkspSize` must be >= HUF_WORKSPACE_SIZE */
HUF_CElt* hufTable, HUF_repeat* repeat, int flags);
size_t HUF_decompress1X_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags);
#ifndef HUF_FORCE_DECOMPRESS_X1
size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags); /**< double-symbols decoder */
#endif
/* BMI2 variants.
* If the CPU has BMI2 support, pass bmi2=1, otherwise pass bmi2=0.
*/
size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int flags);
#ifndef HUF_FORCE_DECOMPRESS_X2
size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags);
#endif
size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int flags);
size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags);
#ifndef HUF_FORCE_DECOMPRESS_X2
size_t HUF_readDTableX1_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int flags);
#endif
#ifndef HUF_FORCE_DECOMPRESS_X1
size_t HUF_readDTableX2_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int flags);
#endif
#endif /* HUF_H_298734234 */
#if defined (__cplusplus)
}
#endif

View File

@ -1,435 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef MEM_H_MODULE
#define MEM_H_MODULE
#if defined (__cplusplus)
extern "C" {
#endif
/*-****************************************
* Dependencies
******************************************/
#include <stddef.h> /* size_t, ptrdiff_t */
#include "compiler.h" /* __has_builtin */
#include "debug.h" /* DEBUG_STATIC_ASSERT */
#include "zstd_deps.h" /* ZSTD_memcpy */
/*-****************************************
* Compiler specifics
******************************************/
#if defined(_MSC_VER) /* Visual Studio */
# include <stdlib.h> /* _byteswap_ulong */
# include <intrin.h> /* _byteswap_* */
#endif
#if defined(__GNUC__)
# define MEM_STATIC static __inline __attribute__((unused))
#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
# define MEM_STATIC static inline
#elif defined(_MSC_VER)
# define MEM_STATIC static __inline
#else
# define MEM_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
#endif
/*-**************************************************************
* Basic Types
*****************************************************************/
#if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
# if defined(_AIX)
# include <inttypes.h>
# else
# include <stdint.h> /* intptr_t */
# endif
typedef uint8_t BYTE;
typedef uint8_t U8;
typedef int8_t S8;
typedef uint16_t U16;
typedef int16_t S16;
typedef uint32_t U32;
typedef int32_t S32;
typedef uint64_t U64;
typedef int64_t S64;
#else
# include <limits.h>
#if CHAR_BIT != 8
# error "this implementation requires char to be exactly 8-bit type"
#endif
typedef unsigned char BYTE;
typedef unsigned char U8;
typedef signed char S8;
#if USHRT_MAX != 65535
# error "this implementation requires short to be exactly 16-bit type"
#endif
typedef unsigned short U16;
typedef signed short S16;
#if UINT_MAX != 4294967295
# error "this implementation requires int to be exactly 32-bit type"
#endif
typedef unsigned int U32;
typedef signed int S32;
/* note : there are no limits defined for long long type in C90.
* limits exist in C99, however, in such case, <stdint.h> is preferred */
typedef unsigned long long U64;
typedef signed long long S64;
#endif
/*-**************************************************************
* Memory I/O API
*****************************************************************/
/*=== Static platform detection ===*/
MEM_STATIC unsigned MEM_32bits(void);
MEM_STATIC unsigned MEM_64bits(void);
MEM_STATIC unsigned MEM_isLittleEndian(void);
/*=== Native unaligned read/write ===*/
MEM_STATIC U16 MEM_read16(const void* memPtr);
MEM_STATIC U32 MEM_read32(const void* memPtr);
MEM_STATIC U64 MEM_read64(const void* memPtr);
MEM_STATIC size_t MEM_readST(const void* memPtr);
MEM_STATIC void MEM_write16(void* memPtr, U16 value);
MEM_STATIC void MEM_write32(void* memPtr, U32 value);
MEM_STATIC void MEM_write64(void* memPtr, U64 value);
/*=== Little endian unaligned read/write ===*/
MEM_STATIC U16 MEM_readLE16(const void* memPtr);
MEM_STATIC U32 MEM_readLE24(const void* memPtr);
MEM_STATIC U32 MEM_readLE32(const void* memPtr);
MEM_STATIC U64 MEM_readLE64(const void* memPtr);
MEM_STATIC size_t MEM_readLEST(const void* memPtr);
MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val);
MEM_STATIC void MEM_writeLE24(void* memPtr, U32 val);
MEM_STATIC void MEM_writeLE32(void* memPtr, U32 val32);
MEM_STATIC void MEM_writeLE64(void* memPtr, U64 val64);
MEM_STATIC void MEM_writeLEST(void* memPtr, size_t val);
/*=== Big endian unaligned read/write ===*/
MEM_STATIC U32 MEM_readBE32(const void* memPtr);
MEM_STATIC U64 MEM_readBE64(const void* memPtr);
MEM_STATIC size_t MEM_readBEST(const void* memPtr);
MEM_STATIC void MEM_writeBE32(void* memPtr, U32 val32);
MEM_STATIC void MEM_writeBE64(void* memPtr, U64 val64);
MEM_STATIC void MEM_writeBEST(void* memPtr, size_t val);
/*=== Byteswap ===*/
MEM_STATIC U32 MEM_swap32(U32 in);
MEM_STATIC U64 MEM_swap64(U64 in);
MEM_STATIC size_t MEM_swapST(size_t in);
/*-**************************************************************
* Memory I/O Implementation
*****************************************************************/
/* MEM_FORCE_MEMORY_ACCESS : For accessing unaligned memory:
* Method 0 : always use `memcpy()`. Safe and portable.
* Method 1 : Use compiler extension to set unaligned access.
* Method 2 : direct access. This method is portable but violate C standard.
* It can generate buggy code on targets depending on alignment.
* Default : method 1 if supported, else method 0
*/
#ifndef MEM_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
# ifdef __GNUC__
# define MEM_FORCE_MEMORY_ACCESS 1
# endif
#endif
MEM_STATIC unsigned MEM_32bits(void) { return sizeof(size_t)==4; }
MEM_STATIC unsigned MEM_64bits(void) { return sizeof(size_t)==8; }
MEM_STATIC unsigned MEM_isLittleEndian(void)
{
#if defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
return 1;
#elif defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
return 0;
#elif defined(__clang__) && __LITTLE_ENDIAN__
return 1;
#elif defined(__clang__) && __BIG_ENDIAN__
return 0;
#elif defined(_MSC_VER) && (_M_AMD64 || _M_IX86)
return 1;
#elif defined(__DMC__) && defined(_M_IX86)
return 1;
#else
const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */
return one.c[0];
#endif
}
#if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2)
/* violates C standard, by lying on structure alignment.
Only use if no other choice to achieve best performance on target platform */
MEM_STATIC U16 MEM_read16(const void* memPtr) { return *(const U16*) memPtr; }
MEM_STATIC U32 MEM_read32(const void* memPtr) { return *(const U32*) memPtr; }
MEM_STATIC U64 MEM_read64(const void* memPtr) { return *(const U64*) memPtr; }
MEM_STATIC size_t MEM_readST(const void* memPtr) { return *(const size_t*) memPtr; }
MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(U16*)memPtr = value; }
MEM_STATIC void MEM_write32(void* memPtr, U32 value) { *(U32*)memPtr = value; }
MEM_STATIC void MEM_write64(void* memPtr, U64 value) { *(U64*)memPtr = value; }
#elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1)
typedef __attribute__((aligned(1))) U16 unalign16;
typedef __attribute__((aligned(1))) U32 unalign32;
typedef __attribute__((aligned(1))) U64 unalign64;
typedef __attribute__((aligned(1))) size_t unalignArch;
MEM_STATIC U16 MEM_read16(const void* ptr) { return *(const unalign16*)ptr; }
MEM_STATIC U32 MEM_read32(const void* ptr) { return *(const unalign32*)ptr; }
MEM_STATIC U64 MEM_read64(const void* ptr) { return *(const unalign64*)ptr; }
MEM_STATIC size_t MEM_readST(const void* ptr) { return *(const unalignArch*)ptr; }
MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(unalign16*)memPtr = value; }
MEM_STATIC void MEM_write32(void* memPtr, U32 value) { *(unalign32*)memPtr = value; }
MEM_STATIC void MEM_write64(void* memPtr, U64 value) { *(unalign64*)memPtr = value; }
#else
/* default method, safe and standard.
can sometimes prove slower */
MEM_STATIC U16 MEM_read16(const void* memPtr)
{
U16 val; ZSTD_memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC U32 MEM_read32(const void* memPtr)
{
U32 val; ZSTD_memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC U64 MEM_read64(const void* memPtr)
{
U64 val; ZSTD_memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC size_t MEM_readST(const void* memPtr)
{
size_t val; ZSTD_memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC void MEM_write16(void* memPtr, U16 value)
{
ZSTD_memcpy(memPtr, &value, sizeof(value));
}
MEM_STATIC void MEM_write32(void* memPtr, U32 value)
{
ZSTD_memcpy(memPtr, &value, sizeof(value));
}
MEM_STATIC void MEM_write64(void* memPtr, U64 value)
{
ZSTD_memcpy(memPtr, &value, sizeof(value));
}
#endif /* MEM_FORCE_MEMORY_ACCESS */
MEM_STATIC U32 MEM_swap32_fallback(U32 in)
{
return ((in << 24) & 0xff000000 ) |
((in << 8) & 0x00ff0000 ) |
((in >> 8) & 0x0000ff00 ) |
((in >> 24) & 0x000000ff );
}
MEM_STATIC U32 MEM_swap32(U32 in)
{
#if defined(_MSC_VER) /* Visual Studio */
return _byteswap_ulong(in);
#elif (defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)) \
|| (defined(__clang__) && __has_builtin(__builtin_bswap32))
return __builtin_bswap32(in);
#else
return MEM_swap32_fallback(in);
#endif
}
MEM_STATIC U64 MEM_swap64_fallback(U64 in)
{
return ((in << 56) & 0xff00000000000000ULL) |
((in << 40) & 0x00ff000000000000ULL) |
((in << 24) & 0x0000ff0000000000ULL) |
((in << 8) & 0x000000ff00000000ULL) |
((in >> 8) & 0x00000000ff000000ULL) |
((in >> 24) & 0x0000000000ff0000ULL) |
((in >> 40) & 0x000000000000ff00ULL) |
((in >> 56) & 0x00000000000000ffULL);
}
MEM_STATIC U64 MEM_swap64(U64 in)
{
#if defined(_MSC_VER) /* Visual Studio */
return _byteswap_uint64(in);
#elif (defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)) \
|| (defined(__clang__) && __has_builtin(__builtin_bswap64))
return __builtin_bswap64(in);
#else
return MEM_swap64_fallback(in);
#endif
}
MEM_STATIC size_t MEM_swapST(size_t in)
{
if (MEM_32bits())
return (size_t)MEM_swap32((U32)in);
else
return (size_t)MEM_swap64((U64)in);
}
/*=== Little endian r/w ===*/
MEM_STATIC U16 MEM_readLE16(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read16(memPtr);
else {
const BYTE* p = (const BYTE*)memPtr;
return (U16)(p[0] + (p[1]<<8));
}
}
MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val)
{
if (MEM_isLittleEndian()) {
MEM_write16(memPtr, val);
} else {
BYTE* p = (BYTE*)memPtr;
p[0] = (BYTE)val;
p[1] = (BYTE)(val>>8);
}
}
MEM_STATIC U32 MEM_readLE24(const void* memPtr)
{
return (U32)MEM_readLE16(memPtr) + ((U32)(((const BYTE*)memPtr)[2]) << 16);
}
MEM_STATIC void MEM_writeLE24(void* memPtr, U32 val)
{
MEM_writeLE16(memPtr, (U16)val);
((BYTE*)memPtr)[2] = (BYTE)(val>>16);
}
MEM_STATIC U32 MEM_readLE32(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read32(memPtr);
else
return MEM_swap32(MEM_read32(memPtr));
}
MEM_STATIC void MEM_writeLE32(void* memPtr, U32 val32)
{
if (MEM_isLittleEndian())
MEM_write32(memPtr, val32);
else
MEM_write32(memPtr, MEM_swap32(val32));
}
MEM_STATIC U64 MEM_readLE64(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read64(memPtr);
else
return MEM_swap64(MEM_read64(memPtr));
}
MEM_STATIC void MEM_writeLE64(void* memPtr, U64 val64)
{
if (MEM_isLittleEndian())
MEM_write64(memPtr, val64);
else
MEM_write64(memPtr, MEM_swap64(val64));
}
MEM_STATIC size_t MEM_readLEST(const void* memPtr)
{
if (MEM_32bits())
return (size_t)MEM_readLE32(memPtr);
else
return (size_t)MEM_readLE64(memPtr);
}
MEM_STATIC void MEM_writeLEST(void* memPtr, size_t val)
{
if (MEM_32bits())
MEM_writeLE32(memPtr, (U32)val);
else
MEM_writeLE64(memPtr, (U64)val);
}
/*=== Big endian r/w ===*/
MEM_STATIC U32 MEM_readBE32(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_swap32(MEM_read32(memPtr));
else
return MEM_read32(memPtr);
}
MEM_STATIC void MEM_writeBE32(void* memPtr, U32 val32)
{
if (MEM_isLittleEndian())
MEM_write32(memPtr, MEM_swap32(val32));
else
MEM_write32(memPtr, val32);
}
MEM_STATIC U64 MEM_readBE64(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_swap64(MEM_read64(memPtr));
else
return MEM_read64(memPtr);
}
MEM_STATIC void MEM_writeBE64(void* memPtr, U64 val64)
{
if (MEM_isLittleEndian())
MEM_write64(memPtr, MEM_swap64(val64));
else
MEM_write64(memPtr, val64);
}
MEM_STATIC size_t MEM_readBEST(const void* memPtr)
{
if (MEM_32bits())
return (size_t)MEM_readBE32(memPtr);
else
return (size_t)MEM_readBE64(memPtr);
}
MEM_STATIC void MEM_writeBEST(void* memPtr, size_t val)
{
if (MEM_32bits())
MEM_writeBE32(memPtr, (U32)val);
else
MEM_writeBE64(memPtr, (U64)val);
}
/* code only tested on 32 and 64 bits systems */
MEM_STATIC void MEM_check(void) { DEBUG_STATIC_ASSERT((sizeof(size_t)==4) || (sizeof(size_t)==8)); }
#if defined (__cplusplus)
}
#endif
#endif /* MEM_H_MODULE */

View File

@ -1,371 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* ====== Dependencies ======= */
#include "../common/allocations.h" /* ZSTD_customCalloc, ZSTD_customFree */
#include "zstd_deps.h" /* size_t */
#include "debug.h" /* assert */
#include "pool.h"
/* ====== Compiler specifics ====== */
#if defined(_MSC_VER)
# pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */
#endif
#ifdef ZSTD_MULTITHREAD
#include "threading.h" /* pthread adaptation */
/* A job is a function and an opaque argument */
typedef struct POOL_job_s {
POOL_function function;
void *opaque;
} POOL_job;
struct POOL_ctx_s {
ZSTD_customMem customMem;
/* Keep track of the threads */
ZSTD_pthread_t* threads;
size_t threadCapacity;
size_t threadLimit;
/* The queue is a circular buffer */
POOL_job *queue;
size_t queueHead;
size_t queueTail;
size_t queueSize;
/* The number of threads working on jobs */
size_t numThreadsBusy;
/* Indicates if the queue is empty */
int queueEmpty;
/* The mutex protects the queue */
ZSTD_pthread_mutex_t queueMutex;
/* Condition variable for pushers to wait on when the queue is full */
ZSTD_pthread_cond_t queuePushCond;
/* Condition variables for poppers to wait on when the queue is empty */
ZSTD_pthread_cond_t queuePopCond;
/* Indicates if the queue is shutting down */
int shutdown;
};
/* POOL_thread() :
* Work thread for the thread pool.
* Waits for jobs and executes them.
* @returns : NULL on failure else non-null.
*/
static void* POOL_thread(void* opaque) {
POOL_ctx* const ctx = (POOL_ctx*)opaque;
if (!ctx) { return NULL; }
for (;;) {
/* Lock the mutex and wait for a non-empty queue or until shutdown */
ZSTD_pthread_mutex_lock(&ctx->queueMutex);
while ( ctx->queueEmpty
|| (ctx->numThreadsBusy >= ctx->threadLimit) ) {
if (ctx->shutdown) {
/* even if !queueEmpty, (possible if numThreadsBusy >= threadLimit),
* a few threads will be shutdown while !queueEmpty,
* but enough threads will remain active to finish the queue */
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
return opaque;
}
ZSTD_pthread_cond_wait(&ctx->queuePopCond, &ctx->queueMutex);
}
/* Pop a job off the queue */
{ POOL_job const job = ctx->queue[ctx->queueHead];
ctx->queueHead = (ctx->queueHead + 1) % ctx->queueSize;
ctx->numThreadsBusy++;
ctx->queueEmpty = (ctx->queueHead == ctx->queueTail);
/* Unlock the mutex, signal a pusher, and run the job */
ZSTD_pthread_cond_signal(&ctx->queuePushCond);
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
job.function(job.opaque);
/* If the intended queue size was 0, signal after finishing job */
ZSTD_pthread_mutex_lock(&ctx->queueMutex);
ctx->numThreadsBusy--;
ZSTD_pthread_cond_signal(&ctx->queuePushCond);
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
}
} /* for (;;) */
assert(0); /* Unreachable */
}
/* ZSTD_createThreadPool() : public access point */
POOL_ctx* ZSTD_createThreadPool(size_t numThreads) {
return POOL_create (numThreads, 0);
}
POOL_ctx* POOL_create(size_t numThreads, size_t queueSize) {
return POOL_create_advanced(numThreads, queueSize, ZSTD_defaultCMem);
}
POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize,
ZSTD_customMem customMem)
{
POOL_ctx* ctx;
/* Check parameters */
if (!numThreads) { return NULL; }
/* Allocate the context and zero initialize */
ctx = (POOL_ctx*)ZSTD_customCalloc(sizeof(POOL_ctx), customMem);
if (!ctx) { return NULL; }
/* Initialize the job queue.
* It needs one extra space since one space is wasted to differentiate
* empty and full queues.
*/
ctx->queueSize = queueSize + 1;
ctx->queue = (POOL_job*)ZSTD_customCalloc(ctx->queueSize * sizeof(POOL_job), customMem);
ctx->queueHead = 0;
ctx->queueTail = 0;
ctx->numThreadsBusy = 0;
ctx->queueEmpty = 1;
{
int error = 0;
error |= ZSTD_pthread_mutex_init(&ctx->queueMutex, NULL);
error |= ZSTD_pthread_cond_init(&ctx->queuePushCond, NULL);
error |= ZSTD_pthread_cond_init(&ctx->queuePopCond, NULL);
if (error) { POOL_free(ctx); return NULL; }
}
ctx->shutdown = 0;
/* Allocate space for the thread handles */
ctx->threads = (ZSTD_pthread_t*)ZSTD_customCalloc(numThreads * sizeof(ZSTD_pthread_t), customMem);
ctx->threadCapacity = 0;
ctx->customMem = customMem;
/* Check for errors */
if (!ctx->threads || !ctx->queue) { POOL_free(ctx); return NULL; }
/* Initialize the threads */
{ size_t i;
for (i = 0; i < numThreads; ++i) {
if (ZSTD_pthread_create(&ctx->threads[i], NULL, &POOL_thread, ctx)) {
ctx->threadCapacity = i;
POOL_free(ctx);
return NULL;
} }
ctx->threadCapacity = numThreads;
ctx->threadLimit = numThreads;
}
return ctx;
}
/*! POOL_join() :
Shutdown the queue, wake any sleeping threads, and join all of the threads.
*/
static void POOL_join(POOL_ctx* ctx) {
/* Shut down the queue */
ZSTD_pthread_mutex_lock(&ctx->queueMutex);
ctx->shutdown = 1;
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
/* Wake up sleeping threads */
ZSTD_pthread_cond_broadcast(&ctx->queuePushCond);
ZSTD_pthread_cond_broadcast(&ctx->queuePopCond);
/* Join all of the threads */
{ size_t i;
for (i = 0; i < ctx->threadCapacity; ++i) {
ZSTD_pthread_join(ctx->threads[i]); /* note : could fail */
} }
}
void POOL_free(POOL_ctx *ctx) {
if (!ctx) { return; }
POOL_join(ctx);
ZSTD_pthread_mutex_destroy(&ctx->queueMutex);
ZSTD_pthread_cond_destroy(&ctx->queuePushCond);
ZSTD_pthread_cond_destroy(&ctx->queuePopCond);
ZSTD_customFree(ctx->queue, ctx->customMem);
ZSTD_customFree(ctx->threads, ctx->customMem);
ZSTD_customFree(ctx, ctx->customMem);
}
/*! POOL_joinJobs() :
* Waits for all queued jobs to finish executing.
*/
void POOL_joinJobs(POOL_ctx* ctx) {
ZSTD_pthread_mutex_lock(&ctx->queueMutex);
while(!ctx->queueEmpty || ctx->numThreadsBusy > 0) {
ZSTD_pthread_cond_wait(&ctx->queuePushCond, &ctx->queueMutex);
}
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
}
void ZSTD_freeThreadPool (ZSTD_threadPool* pool) {
POOL_free (pool);
}
size_t POOL_sizeof(const POOL_ctx* ctx) {
if (ctx==NULL) return 0; /* supports sizeof NULL */
return sizeof(*ctx)
+ ctx->queueSize * sizeof(POOL_job)
+ ctx->threadCapacity * sizeof(ZSTD_pthread_t);
}
/* @return : 0 on success, 1 on error */
static int POOL_resize_internal(POOL_ctx* ctx, size_t numThreads)
{
if (numThreads <= ctx->threadCapacity) {
if (!numThreads) return 1;
ctx->threadLimit = numThreads;
return 0;
}
/* numThreads > threadCapacity */
{ ZSTD_pthread_t* const threadPool = (ZSTD_pthread_t*)ZSTD_customCalloc(numThreads * sizeof(ZSTD_pthread_t), ctx->customMem);
if (!threadPool) return 1;
/* replace existing thread pool */
ZSTD_memcpy(threadPool, ctx->threads, ctx->threadCapacity * sizeof(*threadPool));
ZSTD_customFree(ctx->threads, ctx->customMem);
ctx->threads = threadPool;
/* Initialize additional threads */
{ size_t threadId;
for (threadId = ctx->threadCapacity; threadId < numThreads; ++threadId) {
if (ZSTD_pthread_create(&threadPool[threadId], NULL, &POOL_thread, ctx)) {
ctx->threadCapacity = threadId;
return 1;
} }
} }
/* successfully expanded */
ctx->threadCapacity = numThreads;
ctx->threadLimit = numThreads;
return 0;
}
/* @return : 0 on success, 1 on error */
int POOL_resize(POOL_ctx* ctx, size_t numThreads)
{
int result;
if (ctx==NULL) return 1;
ZSTD_pthread_mutex_lock(&ctx->queueMutex);
result = POOL_resize_internal(ctx, numThreads);
ZSTD_pthread_cond_broadcast(&ctx->queuePopCond);
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
return result;
}
/**
* Returns 1 if the queue is full and 0 otherwise.
*
* When queueSize is 1 (pool was created with an intended queueSize of 0),
* then a queue is empty if there is a thread free _and_ no job is waiting.
*/
static int isQueueFull(POOL_ctx const* ctx) {
if (ctx->queueSize > 1) {
return ctx->queueHead == ((ctx->queueTail + 1) % ctx->queueSize);
} else {
return (ctx->numThreadsBusy == ctx->threadLimit) ||
!ctx->queueEmpty;
}
}
static void
POOL_add_internal(POOL_ctx* ctx, POOL_function function, void *opaque)
{
POOL_job job;
job.function = function;
job.opaque = opaque;
assert(ctx != NULL);
if (ctx->shutdown) return;
ctx->queueEmpty = 0;
ctx->queue[ctx->queueTail] = job;
ctx->queueTail = (ctx->queueTail + 1) % ctx->queueSize;
ZSTD_pthread_cond_signal(&ctx->queuePopCond);
}
void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque)
{
assert(ctx != NULL);
ZSTD_pthread_mutex_lock(&ctx->queueMutex);
/* Wait until there is space in the queue for the new job */
while (isQueueFull(ctx) && (!ctx->shutdown)) {
ZSTD_pthread_cond_wait(&ctx->queuePushCond, &ctx->queueMutex);
}
POOL_add_internal(ctx, function, opaque);
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
}
int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque)
{
assert(ctx != NULL);
ZSTD_pthread_mutex_lock(&ctx->queueMutex);
if (isQueueFull(ctx)) {
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
return 0;
}
POOL_add_internal(ctx, function, opaque);
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
return 1;
}
#else /* ZSTD_MULTITHREAD not defined */
/* ========================== */
/* No multi-threading support */
/* ========================== */
/* We don't need any data, but if it is empty, malloc() might return NULL. */
struct POOL_ctx_s {
int dummy;
};
static POOL_ctx g_poolCtx;
POOL_ctx* POOL_create(size_t numThreads, size_t queueSize) {
return POOL_create_advanced(numThreads, queueSize, ZSTD_defaultCMem);
}
POOL_ctx*
POOL_create_advanced(size_t numThreads, size_t queueSize, ZSTD_customMem customMem)
{
(void)numThreads;
(void)queueSize;
(void)customMem;
return &g_poolCtx;
}
void POOL_free(POOL_ctx* ctx) {
assert(!ctx || ctx == &g_poolCtx);
(void)ctx;
}
void POOL_joinJobs(POOL_ctx* ctx){
assert(!ctx || ctx == &g_poolCtx);
(void)ctx;
}
int POOL_resize(POOL_ctx* ctx, size_t numThreads) {
(void)ctx; (void)numThreads;
return 0;
}
void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque) {
(void)ctx;
function(opaque);
}
int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque) {
(void)ctx;
function(opaque);
return 1;
}
size_t POOL_sizeof(const POOL_ctx* ctx) {
if (ctx==NULL) return 0; /* supports sizeof NULL */
assert(ctx == &g_poolCtx);
return sizeof(*ctx);
}
#endif /* ZSTD_MULTITHREAD */

View File

@ -1,90 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef POOL_H
#define POOL_H
#if defined (__cplusplus)
extern "C" {
#endif
#include "zstd_deps.h"
#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_customMem */
#include "../zstd.h"
typedef struct POOL_ctx_s POOL_ctx;
/*! POOL_create() :
* Create a thread pool with at most `numThreads` threads.
* `numThreads` must be at least 1.
* The maximum number of queued jobs before blocking is `queueSize`.
* @return : POOL_ctx pointer on success, else NULL.
*/
POOL_ctx* POOL_create(size_t numThreads, size_t queueSize);
POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize,
ZSTD_customMem customMem);
/*! POOL_free() :
* Free a thread pool returned by POOL_create().
*/
void POOL_free(POOL_ctx* ctx);
/*! POOL_joinJobs() :
* Waits for all queued jobs to finish executing.
*/
void POOL_joinJobs(POOL_ctx* ctx);
/*! POOL_resize() :
* Expands or shrinks pool's number of threads.
* This is more efficient than releasing + creating a new context,
* since it tries to preserve and re-use existing threads.
* `numThreads` must be at least 1.
* @return : 0 when resize was successful,
* !0 (typically 1) if there is an error.
* note : only numThreads can be resized, queueSize remains unchanged.
*/
int POOL_resize(POOL_ctx* ctx, size_t numThreads);
/*! POOL_sizeof() :
* @return threadpool memory usage
* note : compatible with NULL (returns 0 in this case)
*/
size_t POOL_sizeof(const POOL_ctx* ctx);
/*! POOL_function :
* The function type that can be added to a thread pool.
*/
typedef void (*POOL_function)(void*);
/*! POOL_add() :
* Add the job `function(opaque)` to the thread pool. `ctx` must be valid.
* Possibly blocks until there is room in the queue.
* Note : The function may be executed asynchronously,
* therefore, `opaque` must live until function has been completed.
*/
void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque);
/*! POOL_tryAdd() :
* Add the job `function(opaque)` to thread pool _if_ a queue slot is available.
* Returns immediately even if not (does not block).
* @return : 1 if successful, 0 if not.
*/
int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque);
#if defined (__cplusplus)
}
#endif
#endif

View File

@ -1,156 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_PORTABILITY_MACROS_H
#define ZSTD_PORTABILITY_MACROS_H
/**
* This header file contains macro definitions to support portability.
* This header is shared between C and ASM code, so it MUST only
* contain macro definitions. It MUST not contain any C code.
*
* This header ONLY defines macros to detect platforms/feature support.
*
*/
/* compat. with non-clang compilers */
#ifndef __has_attribute
#define __has_attribute(x) 0
#endif
/* compat. with non-clang compilers */
#ifndef __has_builtin
# define __has_builtin(x) 0
#endif
/* compat. with non-clang compilers */
#ifndef __has_feature
# define __has_feature(x) 0
#endif
/* detects whether we are being compiled under msan */
#ifndef ZSTD_MEMORY_SANITIZER
# if __has_feature(memory_sanitizer)
# define ZSTD_MEMORY_SANITIZER 1
# else
# define ZSTD_MEMORY_SANITIZER 0
# endif
#endif
/* detects whether we are being compiled under asan */
#ifndef ZSTD_ADDRESS_SANITIZER
# if __has_feature(address_sanitizer)
# define ZSTD_ADDRESS_SANITIZER 1
# elif defined(__SANITIZE_ADDRESS__)
# define ZSTD_ADDRESS_SANITIZER 1
# else
# define ZSTD_ADDRESS_SANITIZER 0
# endif
#endif
/* detects whether we are being compiled under dfsan */
#ifndef ZSTD_DATAFLOW_SANITIZER
# if __has_feature(dataflow_sanitizer)
# define ZSTD_DATAFLOW_SANITIZER 1
# else
# define ZSTD_DATAFLOW_SANITIZER 0
# endif
#endif
/* Mark the internal assembly functions as hidden */
#ifdef __ELF__
# define ZSTD_HIDE_ASM_FUNCTION(func) .hidden func
#else
# define ZSTD_HIDE_ASM_FUNCTION(func)
#endif
/* Enable runtime BMI2 dispatch based on the CPU.
* Enabled for clang & gcc >=4.8 on x86 when BMI2 isn't enabled by default.
*/
#ifndef DYNAMIC_BMI2
#if ((defined(__clang__) && __has_attribute(__target__)) \
|| (defined(__GNUC__) \
&& (__GNUC__ >= 5 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)))) \
&& (defined(__x86_64__) || defined(_M_X64)) \
&& !defined(__BMI2__)
# define DYNAMIC_BMI2 1
#else
# define DYNAMIC_BMI2 0
#endif
#endif
/**
* Only enable assembly for GNUC compatible compilers,
* because other platforms may not support GAS assembly syntax.
*
* Only enable assembly for Linux / MacOS, other platforms may
* work, but they haven't been tested. This could likely be
* extended to BSD systems.
*
* Disable assembly when MSAN is enabled, because MSAN requires
* 100% of code to be instrumented to work.
*/
#if defined(__GNUC__)
# if defined(__linux__) || defined(__linux) || defined(__APPLE__)
# if ZSTD_MEMORY_SANITIZER
# define ZSTD_ASM_SUPPORTED 0
# elif ZSTD_DATAFLOW_SANITIZER
# define ZSTD_ASM_SUPPORTED 0
# else
# define ZSTD_ASM_SUPPORTED 1
# endif
# else
# define ZSTD_ASM_SUPPORTED 0
# endif
#else
# define ZSTD_ASM_SUPPORTED 0
#endif
/**
* Determines whether we should enable assembly for x86-64
* with BMI2.
*
* Enable if all of the following conditions hold:
* - ASM hasn't been explicitly disabled by defining ZSTD_DISABLE_ASM
* - Assembly is supported
* - We are compiling for x86-64 and either:
* - DYNAMIC_BMI2 is enabled
* - BMI2 is supported at compile time
*/
#if !defined(ZSTD_DISABLE_ASM) && \
ZSTD_ASM_SUPPORTED && \
defined(__x86_64__) && \
(DYNAMIC_BMI2 || defined(__BMI2__))
# define ZSTD_ENABLE_ASM_X86_64_BMI2 1
#else
# define ZSTD_ENABLE_ASM_X86_64_BMI2 0
#endif
/*
* For x86 ELF targets, add .note.gnu.property section for Intel CET in
* assembly sources when CET is enabled.
*
* Additionally, any function that may be called indirectly must begin
* with ZSTD_CET_ENDBRANCH.
*/
#if defined(__ELF__) && (defined(__x86_64__) || defined(__i386__)) \
&& defined(__has_include)
# if __has_include(<cet.h>)
# include <cet.h>
# define ZSTD_CET_ENDBRANCH _CET_ENDBR
# endif
#endif
#ifndef ZSTD_CET_ENDBRANCH
# define ZSTD_CET_ENDBRANCH
#endif
#endif /* ZSTD_PORTABILITY_MACROS_H */

View File

@ -1,176 +0,0 @@
/**
* Copyright (c) 2016 Tino Reichardt
* All rights reserved.
*
* You can contact the author at:
* - zstdmt source repository: https://github.com/mcmilk/zstdmt
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/**
* This file will hold wrapper for systems, which do not support pthreads
*/
#include "threading.h"
/* create fake symbol to avoid empty translation unit warning */
int g_ZSTD_threading_useless_symbol;
#if defined(ZSTD_MULTITHREAD) && defined(_WIN32)
/**
* Windows minimalist Pthread Wrapper
*/
/* === Dependencies === */
#include <process.h>
#include <errno.h>
/* === Implementation === */
typedef struct {
void* (*start_routine)(void*);
void* arg;
int initialized;
ZSTD_pthread_cond_t initialized_cond;
ZSTD_pthread_mutex_t initialized_mutex;
} ZSTD_thread_params_t;
static unsigned __stdcall worker(void *arg)
{
void* (*start_routine)(void*);
void* thread_arg;
/* Inialized thread_arg and start_routine and signal main thread that we don't need it
* to wait any longer.
*/
{
ZSTD_thread_params_t* thread_param = (ZSTD_thread_params_t*)arg;
thread_arg = thread_param->arg;
start_routine = thread_param->start_routine;
/* Signal main thread that we are running and do not depend on its memory anymore */
ZSTD_pthread_mutex_lock(&thread_param->initialized_mutex);
thread_param->initialized = 1;
ZSTD_pthread_cond_signal(&thread_param->initialized_cond);
ZSTD_pthread_mutex_unlock(&thread_param->initialized_mutex);
}
start_routine(thread_arg);
return 0;
}
int ZSTD_pthread_create(ZSTD_pthread_t* thread, const void* unused,
void* (*start_routine) (void*), void* arg)
{
ZSTD_thread_params_t thread_param;
(void)unused;
thread_param.start_routine = start_routine;
thread_param.arg = arg;
thread_param.initialized = 0;
*thread = NULL;
/* Setup thread initialization synchronization */
if(ZSTD_pthread_cond_init(&thread_param.initialized_cond, NULL)) {
/* Should never happen on Windows */
return -1;
}
if(ZSTD_pthread_mutex_init(&thread_param.initialized_mutex, NULL)) {
/* Should never happen on Windows */
ZSTD_pthread_cond_destroy(&thread_param.initialized_cond);
return -1;
}
/* Spawn thread */
*thread = (HANDLE)_beginthreadex(NULL, 0, worker, &thread_param, 0, NULL);
if (!thread) {
ZSTD_pthread_mutex_destroy(&thread_param.initialized_mutex);
ZSTD_pthread_cond_destroy(&thread_param.initialized_cond);
return errno;
}
/* Wait for thread to be initialized */
ZSTD_pthread_mutex_lock(&thread_param.initialized_mutex);
while(!thread_param.initialized) {
ZSTD_pthread_cond_wait(&thread_param.initialized_cond, &thread_param.initialized_mutex);
}
ZSTD_pthread_mutex_unlock(&thread_param.initialized_mutex);
ZSTD_pthread_mutex_destroy(&thread_param.initialized_mutex);
ZSTD_pthread_cond_destroy(&thread_param.initialized_cond);
return 0;
}
int ZSTD_pthread_join(ZSTD_pthread_t thread)
{
DWORD result;
if (!thread) return 0;
result = WaitForSingleObject(thread, INFINITE);
CloseHandle(thread);
switch (result) {
case WAIT_OBJECT_0:
return 0;
case WAIT_ABANDONED:
return EINVAL;
default:
return GetLastError();
}
}
#endif /* ZSTD_MULTITHREAD */
#if defined(ZSTD_MULTITHREAD) && DEBUGLEVEL >= 1 && !defined(_WIN32)
#define ZSTD_DEPS_NEED_MALLOC
#include "zstd_deps.h"
int ZSTD_pthread_mutex_init(ZSTD_pthread_mutex_t* mutex, pthread_mutexattr_t const* attr)
{
*mutex = (pthread_mutex_t*)ZSTD_malloc(sizeof(pthread_mutex_t));
if (!*mutex)
return 1;
return pthread_mutex_init(*mutex, attr);
}
int ZSTD_pthread_mutex_destroy(ZSTD_pthread_mutex_t* mutex)
{
if (!*mutex)
return 0;
{
int const ret = pthread_mutex_destroy(*mutex);
ZSTD_free(*mutex);
return ret;
}
}
int ZSTD_pthread_cond_init(ZSTD_pthread_cond_t* cond, pthread_condattr_t const* attr)
{
*cond = (pthread_cond_t*)ZSTD_malloc(sizeof(pthread_cond_t));
if (!*cond)
return 1;
return pthread_cond_init(*cond, attr);
}
int ZSTD_pthread_cond_destroy(ZSTD_pthread_cond_t* cond)
{
if (!*cond)
return 0;
{
int const ret = pthread_cond_destroy(*cond);
ZSTD_free(*cond);
return ret;
}
}
#endif

View File

@ -1,150 +0,0 @@
/**
* Copyright (c) 2016 Tino Reichardt
* All rights reserved.
*
* You can contact the author at:
* - zstdmt source repository: https://github.com/mcmilk/zstdmt
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef THREADING_H_938743
#define THREADING_H_938743
#include "debug.h"
#if defined (__cplusplus)
extern "C" {
#endif
#if defined(ZSTD_MULTITHREAD) && defined(_WIN32)
/**
* Windows minimalist Pthread Wrapper
*/
#ifdef WINVER
# undef WINVER
#endif
#define WINVER 0x0600
#ifdef _WIN32_WINNT
# undef _WIN32_WINNT
#endif
#define _WIN32_WINNT 0x0600
#ifndef WIN32_LEAN_AND_MEAN
# define WIN32_LEAN_AND_MEAN
#endif
#undef ERROR /* reported already defined on VS 2015 (Rich Geldreich) */
#include <windows.h>
#undef ERROR
#define ERROR(name) ZSTD_ERROR(name)
/* mutex */
#define ZSTD_pthread_mutex_t CRITICAL_SECTION
#define ZSTD_pthread_mutex_init(a, b) ((void)(b), InitializeCriticalSection((a)), 0)
#define ZSTD_pthread_mutex_destroy(a) DeleteCriticalSection((a))
#define ZSTD_pthread_mutex_lock(a) EnterCriticalSection((a))
#define ZSTD_pthread_mutex_unlock(a) LeaveCriticalSection((a))
/* condition variable */
#define ZSTD_pthread_cond_t CONDITION_VARIABLE
#define ZSTD_pthread_cond_init(a, b) ((void)(b), InitializeConditionVariable((a)), 0)
#define ZSTD_pthread_cond_destroy(a) ((void)(a))
#define ZSTD_pthread_cond_wait(a, b) SleepConditionVariableCS((a), (b), INFINITE)
#define ZSTD_pthread_cond_signal(a) WakeConditionVariable((a))
#define ZSTD_pthread_cond_broadcast(a) WakeAllConditionVariable((a))
/* ZSTD_pthread_create() and ZSTD_pthread_join() */
typedef HANDLE ZSTD_pthread_t;
int ZSTD_pthread_create(ZSTD_pthread_t* thread, const void* unused,
void* (*start_routine) (void*), void* arg);
int ZSTD_pthread_join(ZSTD_pthread_t thread);
/**
* add here more wrappers as required
*/
#elif defined(ZSTD_MULTITHREAD) /* posix assumed ; need a better detection method */
/* === POSIX Systems === */
# include <pthread.h>
#if DEBUGLEVEL < 1
#define ZSTD_pthread_mutex_t pthread_mutex_t
#define ZSTD_pthread_mutex_init(a, b) pthread_mutex_init((a), (b))
#define ZSTD_pthread_mutex_destroy(a) pthread_mutex_destroy((a))
#define ZSTD_pthread_mutex_lock(a) pthread_mutex_lock((a))
#define ZSTD_pthread_mutex_unlock(a) pthread_mutex_unlock((a))
#define ZSTD_pthread_cond_t pthread_cond_t
#define ZSTD_pthread_cond_init(a, b) pthread_cond_init((a), (b))
#define ZSTD_pthread_cond_destroy(a) pthread_cond_destroy((a))
#define ZSTD_pthread_cond_wait(a, b) pthread_cond_wait((a), (b))
#define ZSTD_pthread_cond_signal(a) pthread_cond_signal((a))
#define ZSTD_pthread_cond_broadcast(a) pthread_cond_broadcast((a))
#define ZSTD_pthread_t pthread_t
#define ZSTD_pthread_create(a, b, c, d) pthread_create((a), (b), (c), (d))
#define ZSTD_pthread_join(a) pthread_join((a),NULL)
#else /* DEBUGLEVEL >= 1 */
/* Debug implementation of threading.
* In this implementation we use pointers for mutexes and condition variables.
* This way, if we forget to init/destroy them the program will crash or ASAN
* will report leaks.
*/
#define ZSTD_pthread_mutex_t pthread_mutex_t*
int ZSTD_pthread_mutex_init(ZSTD_pthread_mutex_t* mutex, pthread_mutexattr_t const* attr);
int ZSTD_pthread_mutex_destroy(ZSTD_pthread_mutex_t* mutex);
#define ZSTD_pthread_mutex_lock(a) pthread_mutex_lock(*(a))
#define ZSTD_pthread_mutex_unlock(a) pthread_mutex_unlock(*(a))
#define ZSTD_pthread_cond_t pthread_cond_t*
int ZSTD_pthread_cond_init(ZSTD_pthread_cond_t* cond, pthread_condattr_t const* attr);
int ZSTD_pthread_cond_destroy(ZSTD_pthread_cond_t* cond);
#define ZSTD_pthread_cond_wait(a, b) pthread_cond_wait(*(a), *(b))
#define ZSTD_pthread_cond_signal(a) pthread_cond_signal(*(a))
#define ZSTD_pthread_cond_broadcast(a) pthread_cond_broadcast(*(a))
#define ZSTD_pthread_t pthread_t
#define ZSTD_pthread_create(a, b, c, d) pthread_create((a), (b), (c), (d))
#define ZSTD_pthread_join(a) pthread_join((a),NULL)
#endif
#else /* ZSTD_MULTITHREAD not defined */
/* No multithreading support */
typedef int ZSTD_pthread_mutex_t;
#define ZSTD_pthread_mutex_init(a, b) ((void)(a), (void)(b), 0)
#define ZSTD_pthread_mutex_destroy(a) ((void)(a))
#define ZSTD_pthread_mutex_lock(a) ((void)(a))
#define ZSTD_pthread_mutex_unlock(a) ((void)(a))
typedef int ZSTD_pthread_cond_t;
#define ZSTD_pthread_cond_init(a, b) ((void)(a), (void)(b), 0)
#define ZSTD_pthread_cond_destroy(a) ((void)(a))
#define ZSTD_pthread_cond_wait(a, b) ((void)(a), (void)(b))
#define ZSTD_pthread_cond_signal(a) ((void)(a))
#define ZSTD_pthread_cond_broadcast(a) ((void)(a))
/* do not use ZSTD_pthread_t */
#endif /* ZSTD_MULTITHREAD */
#if defined (__cplusplus)
}
#endif
#endif /* THREADING_H_938743 */

View File

@ -1,24 +0,0 @@
/*
* xxHash - Fast Hash algorithm
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* You can contact the author at :
* - xxHash homepage: https://cyan4973.github.io/xxHash/
* - xxHash source repository : https://github.com/Cyan4973/xxHash
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*
* xxhash.c instantiates functions defined in xxhash.h
*/
#define XXH_STATIC_LINKING_ONLY /* access advanced declarations */
#define XXH_IMPLEMENTATION /* access definitions */
#include "xxhash.h"

File diff suppressed because it is too large Load Diff

View File

@ -1,48 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*-*************************************
* Dependencies
***************************************/
#define ZSTD_DEPS_NEED_MALLOC
#include "error_private.h"
#include "zstd_internal.h"
/*-****************************************
* Version
******************************************/
unsigned ZSTD_versionNumber(void) { return ZSTD_VERSION_NUMBER; }
const char* ZSTD_versionString(void) { return ZSTD_VERSION_STRING; }
/*-****************************************
* ZSTD Error Management
******************************************/
#undef ZSTD_isError /* defined within zstd_internal.h */
/*! ZSTD_isError() :
* tells if a return value is an error code
* symbol is required for external callers */
unsigned ZSTD_isError(size_t code) { return ERR_isError(code); }
/*! ZSTD_getErrorName() :
* provides error code string from function result (useful for debugging) */
const char* ZSTD_getErrorName(size_t code) { return ERR_getErrorName(code); }
/*! ZSTD_getError() :
* convert a `size_t` function result into a proper ZSTD_errorCode enum */
ZSTD_ErrorCode ZSTD_getErrorCode(size_t code) { return ERR_getErrorCode(code); }
/*! ZSTD_getErrorString() :
* provides error code string from enum */
const char* ZSTD_getErrorString(ZSTD_ErrorCode code) { return ERR_getErrorString(code); }

View File

@ -1,111 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* This file provides common libc dependencies that zstd requires.
* The purpose is to allow replacing this file with a custom implementation
* to compile zstd without libc support.
*/
/* Need:
* NULL
* INT_MAX
* UINT_MAX
* ZSTD_memcpy()
* ZSTD_memset()
* ZSTD_memmove()
*/
#ifndef ZSTD_DEPS_COMMON
#define ZSTD_DEPS_COMMON
#include <limits.h>
#include <stddef.h>
#include <string.h>
#if defined(__GNUC__) && __GNUC__ >= 4
# define ZSTD_memcpy(d,s,l) __builtin_memcpy((d),(s),(l))
# define ZSTD_memmove(d,s,l) __builtin_memmove((d),(s),(l))
# define ZSTD_memset(p,v,l) __builtin_memset((p),(v),(l))
#else
# define ZSTD_memcpy(d,s,l) memcpy((d),(s),(l))
# define ZSTD_memmove(d,s,l) memmove((d),(s),(l))
# define ZSTD_memset(p,v,l) memset((p),(v),(l))
#endif
#endif /* ZSTD_DEPS_COMMON */
/* Need:
* ZSTD_malloc()
* ZSTD_free()
* ZSTD_calloc()
*/
#ifdef ZSTD_DEPS_NEED_MALLOC
#ifndef ZSTD_DEPS_MALLOC
#define ZSTD_DEPS_MALLOC
#include <stdlib.h>
#define ZSTD_malloc(s) malloc(s)
#define ZSTD_calloc(n,s) calloc((n), (s))
#define ZSTD_free(p) free((p))
#endif /* ZSTD_DEPS_MALLOC */
#endif /* ZSTD_DEPS_NEED_MALLOC */
/*
* Provides 64-bit math support.
* Need:
* U64 ZSTD_div64(U64 dividend, U32 divisor)
*/
#ifdef ZSTD_DEPS_NEED_MATH64
#ifndef ZSTD_DEPS_MATH64
#define ZSTD_DEPS_MATH64
#define ZSTD_div64(dividend, divisor) ((dividend) / (divisor))
#endif /* ZSTD_DEPS_MATH64 */
#endif /* ZSTD_DEPS_NEED_MATH64 */
/* Need:
* assert()
*/
#ifdef ZSTD_DEPS_NEED_ASSERT
#ifndef ZSTD_DEPS_ASSERT
#define ZSTD_DEPS_ASSERT
#include <assert.h>
#endif /* ZSTD_DEPS_ASSERT */
#endif /* ZSTD_DEPS_NEED_ASSERT */
/* Need:
* ZSTD_DEBUG_PRINT()
*/
#ifdef ZSTD_DEPS_NEED_IO
#ifndef ZSTD_DEPS_IO
#define ZSTD_DEPS_IO
#include <stdio.h>
#define ZSTD_DEBUG_PRINT(...) fprintf(stderr, __VA_ARGS__)
#endif /* ZSTD_DEPS_IO */
#endif /* ZSTD_DEPS_NEED_IO */
/* Only requested when <stdint.h> is known to be present.
* Need:
* intptr_t
*/
#ifdef ZSTD_DEPS_NEED_STDINT
#ifndef ZSTD_DEPS_STDINT
#define ZSTD_DEPS_STDINT
#include <stdint.h>
#endif /* ZSTD_DEPS_STDINT */
#endif /* ZSTD_DEPS_NEED_STDINT */

View File

@ -1,392 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_CCOMMON_H_MODULE
#define ZSTD_CCOMMON_H_MODULE
/* this module contains definitions which must be identical
* across compression, decompression and dictBuilder.
* It also contains a few functions useful to at least 2 of them
* and which benefit from being inlined */
/*-*************************************
* Dependencies
***************************************/
#include "compiler.h"
#include "cpu.h"
#include "mem.h"
#include "debug.h" /* assert, DEBUGLOG, RAWLOG, g_debuglevel */
#include "error_private.h"
#define ZSTD_STATIC_LINKING_ONLY
#include "../zstd.h"
#define FSE_STATIC_LINKING_ONLY
#include "fse.h"
#include "huf.h"
#ifndef XXH_STATIC_LINKING_ONLY
# define XXH_STATIC_LINKING_ONLY /* XXH64_state_t */
#endif
#include "xxhash.h" /* XXH_reset, update, digest */
#ifndef ZSTD_NO_TRACE
# include "zstd_trace.h"
#else
# define ZSTD_TRACE 0
#endif
#if defined (__cplusplus)
extern "C" {
#endif
/* ---- static assert (debug) --- */
#define ZSTD_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c)
#define ZSTD_isError ERR_isError /* for inlining */
#define FSE_isError ERR_isError
#define HUF_isError ERR_isError
/*-*************************************
* shared macros
***************************************/
#undef MIN
#undef MAX
#define MIN(a,b) ((a)<(b) ? (a) : (b))
#define MAX(a,b) ((a)>(b) ? (a) : (b))
#define BOUNDED(min,val,max) (MAX(min,MIN(val,max)))
/*-*************************************
* Common constants
***************************************/
#define ZSTD_OPT_NUM (1<<12)
#define ZSTD_REP_NUM 3 /* number of repcodes */
static UNUSED_ATTR const U32 repStartValue[ZSTD_REP_NUM] = { 1, 4, 8 };
#define KB *(1 <<10)
#define MB *(1 <<20)
#define GB *(1U<<30)
#define BIT7 128
#define BIT6 64
#define BIT5 32
#define BIT4 16
#define BIT1 2
#define BIT0 1
#define ZSTD_WINDOWLOG_ABSOLUTEMIN 10
static UNUSED_ATTR const size_t ZSTD_fcs_fieldSize[4] = { 0, 2, 4, 8 };
static UNUSED_ATTR const size_t ZSTD_did_fieldSize[4] = { 0, 1, 2, 4 };
#define ZSTD_FRAMEIDSIZE 4 /* magic number size */
#define ZSTD_BLOCKHEADERSIZE 3 /* C standard doesn't allow `static const` variable to be init using another `static const` variable */
static UNUSED_ATTR const size_t ZSTD_blockHeaderSize = ZSTD_BLOCKHEADERSIZE;
typedef enum { bt_raw, bt_rle, bt_compressed, bt_reserved } blockType_e;
#define ZSTD_FRAMECHECKSUMSIZE 4
#define MIN_SEQUENCES_SIZE 1 /* nbSeq==0 */
#define MIN_CBLOCK_SIZE (1 /*litCSize*/ + 1 /* RLE or RAW */) /* for a non-null block */
#define MIN_LITERALS_FOR_4_STREAMS 6
typedef enum { set_basic, set_rle, set_compressed, set_repeat } symbolEncodingType_e;
#define LONGNBSEQ 0x7F00
#define MINMATCH 3
#define Litbits 8
#define LitHufLog 11
#define MaxLit ((1<<Litbits) - 1)
#define MaxML 52
#define MaxLL 35
#define DefaultMaxOff 28
#define MaxOff 31
#define MaxSeq MAX(MaxLL, MaxML) /* Assumption : MaxOff < MaxLL,MaxML */
#define MLFSELog 9
#define LLFSELog 9
#define OffFSELog 8
#define MaxFSELog MAX(MAX(MLFSELog, LLFSELog), OffFSELog)
#define MaxMLBits 16
#define MaxLLBits 16
#define ZSTD_MAX_HUF_HEADER_SIZE 128 /* header + <= 127 byte tree description */
/* Each table cannot take more than #symbols * FSELog bits */
#define ZSTD_MAX_FSE_HEADERS_SIZE (((MaxML + 1) * MLFSELog + (MaxLL + 1) * LLFSELog + (MaxOff + 1) * OffFSELog + 7) / 8)
static UNUSED_ATTR const U8 LL_bits[MaxLL+1] = {
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 2, 2, 3, 3,
4, 6, 7, 8, 9,10,11,12,
13,14,15,16
};
static UNUSED_ATTR const S16 LL_defaultNorm[MaxLL+1] = {
4, 3, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 2,
2, 3, 2, 1, 1, 1, 1, 1,
-1,-1,-1,-1
};
#define LL_DEFAULTNORMLOG 6 /* for static allocation */
static UNUSED_ATTR const U32 LL_defaultNormLog = LL_DEFAULTNORMLOG;
static UNUSED_ATTR const U8 ML_bits[MaxML+1] = {
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 2, 2, 3, 3,
4, 4, 5, 7, 8, 9,10,11,
12,13,14,15,16
};
static UNUSED_ATTR const S16 ML_defaultNorm[MaxML+1] = {
1, 4, 3, 2, 2, 2, 2, 2,
2, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1,-1,-1,
-1,-1,-1,-1,-1
};
#define ML_DEFAULTNORMLOG 6 /* for static allocation */
static UNUSED_ATTR const U32 ML_defaultNormLog = ML_DEFAULTNORMLOG;
static UNUSED_ATTR const S16 OF_defaultNorm[DefaultMaxOff+1] = {
1, 1, 1, 1, 1, 1, 2, 2,
2, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
-1,-1,-1,-1,-1
};
#define OF_DEFAULTNORMLOG 5 /* for static allocation */
static UNUSED_ATTR const U32 OF_defaultNormLog = OF_DEFAULTNORMLOG;
/*-*******************************************
* Shared functions to include for inlining
*********************************************/
static void ZSTD_copy8(void* dst, const void* src) {
#if defined(ZSTD_ARCH_ARM_NEON)
vst1_u8((uint8_t*)dst, vld1_u8((const uint8_t*)src));
#else
ZSTD_memcpy(dst, src, 8);
#endif
}
#define COPY8(d,s) { ZSTD_copy8(d,s); d+=8; s+=8; }
/* Need to use memmove here since the literal buffer can now be located within
the dst buffer. In circumstances where the op "catches up" to where the
literal buffer is, there can be partial overlaps in this call on the final
copy if the literal is being shifted by less than 16 bytes. */
static void ZSTD_copy16(void* dst, const void* src) {
#if defined(ZSTD_ARCH_ARM_NEON)
vst1q_u8((uint8_t*)dst, vld1q_u8((const uint8_t*)src));
#elif defined(ZSTD_ARCH_X86_SSE2)
_mm_storeu_si128((__m128i*)dst, _mm_loadu_si128((const __m128i*)src));
#elif defined(__clang__)
ZSTD_memmove(dst, src, 16);
#else
/* ZSTD_memmove is not inlined properly by gcc */
BYTE copy16_buf[16];
ZSTD_memcpy(copy16_buf, src, 16);
ZSTD_memcpy(dst, copy16_buf, 16);
#endif
}
#define COPY16(d,s) { ZSTD_copy16(d,s); d+=16; s+=16; }
#define WILDCOPY_OVERLENGTH 32
#define WILDCOPY_VECLEN 16
typedef enum {
ZSTD_no_overlap,
ZSTD_overlap_src_before_dst
/* ZSTD_overlap_dst_before_src, */
} ZSTD_overlap_e;
/*! ZSTD_wildcopy() :
* Custom version of ZSTD_memcpy(), can over read/write up to WILDCOPY_OVERLENGTH bytes (if length==0)
* @param ovtype controls the overlap detection
* - ZSTD_no_overlap: The source and destination are guaranteed to be at least WILDCOPY_VECLEN bytes apart.
* - ZSTD_overlap_src_before_dst: The src and dst may overlap, but they MUST be at least 8 bytes apart.
* The src buffer must be before the dst buffer.
*/
MEM_STATIC FORCE_INLINE_ATTR
void ZSTD_wildcopy(void* dst, const void* src, ptrdiff_t length, ZSTD_overlap_e const ovtype)
{
ptrdiff_t diff = (BYTE*)dst - (const BYTE*)src;
const BYTE* ip = (const BYTE*)src;
BYTE* op = (BYTE*)dst;
BYTE* const oend = op + length;
if (ovtype == ZSTD_overlap_src_before_dst && diff < WILDCOPY_VECLEN) {
/* Handle short offset copies. */
do {
COPY8(op, ip)
} while (op < oend);
} else {
assert(diff >= WILDCOPY_VECLEN || diff <= -WILDCOPY_VECLEN);
/* Separate out the first COPY16() call because the copy length is
* almost certain to be short, so the branches have different
* probabilities. Since it is almost certain to be short, only do
* one COPY16() in the first call. Then, do two calls per loop since
* at that point it is more likely to have a high trip count.
*/
ZSTD_copy16(op, ip);
if (16 >= length) return;
op += 16;
ip += 16;
do {
COPY16(op, ip);
COPY16(op, ip);
}
while (op < oend);
}
}
MEM_STATIC size_t ZSTD_limitCopy(void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
size_t const length = MIN(dstCapacity, srcSize);
if (length > 0) {
ZSTD_memcpy(dst, src, length);
}
return length;
}
/* define "workspace is too large" as this number of times larger than needed */
#define ZSTD_WORKSPACETOOLARGE_FACTOR 3
/* when workspace is continuously too large
* during at least this number of times,
* context's memory usage is considered wasteful,
* because it's sized to handle a worst case scenario which rarely happens.
* In which case, resize it down to free some memory */
#define ZSTD_WORKSPACETOOLARGE_MAXDURATION 128
/* Controls whether the input/output buffer is buffered or stable. */
typedef enum {
ZSTD_bm_buffered = 0, /* Buffer the input/output */
ZSTD_bm_stable = 1 /* ZSTD_inBuffer/ZSTD_outBuffer is stable */
} ZSTD_bufferMode_e;
/*-*******************************************
* Private declarations
*********************************************/
typedef struct seqDef_s {
U32 offBase; /* offBase == Offset + ZSTD_REP_NUM, or repcode 1,2,3 */
U16 litLength;
U16 mlBase; /* mlBase == matchLength - MINMATCH */
} seqDef;
/* Controls whether seqStore has a single "long" litLength or matchLength. See seqStore_t. */
typedef enum {
ZSTD_llt_none = 0, /* no longLengthType */
ZSTD_llt_literalLength = 1, /* represents a long literal */
ZSTD_llt_matchLength = 2 /* represents a long match */
} ZSTD_longLengthType_e;
typedef struct {
seqDef* sequencesStart;
seqDef* sequences; /* ptr to end of sequences */
BYTE* litStart;
BYTE* lit; /* ptr to end of literals */
BYTE* llCode;
BYTE* mlCode;
BYTE* ofCode;
size_t maxNbSeq;
size_t maxNbLit;
/* longLengthPos and longLengthType to allow us to represent either a single litLength or matchLength
* in the seqStore that has a value larger than U16 (if it exists). To do so, we increment
* the existing value of the litLength or matchLength by 0x10000.
*/
ZSTD_longLengthType_e longLengthType;
U32 longLengthPos; /* Index of the sequence to apply long length modification to */
} seqStore_t;
typedef struct {
U32 litLength;
U32 matchLength;
} ZSTD_sequenceLength;
/**
* Returns the ZSTD_sequenceLength for the given sequences. It handles the decoding of long sequences
* indicated by longLengthPos and longLengthType, and adds MINMATCH back to matchLength.
*/
MEM_STATIC ZSTD_sequenceLength ZSTD_getSequenceLength(seqStore_t const* seqStore, seqDef const* seq)
{
ZSTD_sequenceLength seqLen;
seqLen.litLength = seq->litLength;
seqLen.matchLength = seq->mlBase + MINMATCH;
if (seqStore->longLengthPos == (U32)(seq - seqStore->sequencesStart)) {
if (seqStore->longLengthType == ZSTD_llt_literalLength) {
seqLen.litLength += 0x10000;
}
if (seqStore->longLengthType == ZSTD_llt_matchLength) {
seqLen.matchLength += 0x10000;
}
}
return seqLen;
}
/**
* Contains the compressed frame size and an upper-bound for the decompressed frame size.
* Note: before using `compressedSize`, check for errors using ZSTD_isError().
* similarly, before using `decompressedBound`, check for errors using:
* `decompressedBound != ZSTD_CONTENTSIZE_ERROR`
*/
typedef struct {
size_t nbBlocks;
size_t compressedSize;
unsigned long long decompressedBound;
} ZSTD_frameSizeInfo; /* decompress & legacy */
const seqStore_t* ZSTD_getSeqStore(const ZSTD_CCtx* ctx); /* compress & dictBuilder */
int ZSTD_seqToCodes(const seqStore_t* seqStorePtr); /* compress, dictBuilder, decodeCorpus (shouldn't get its definition from here) */
/* ZSTD_invalidateRepCodes() :
* ensures next compression will not use repcodes from previous block.
* Note : only works with regular variant;
* do not use with extDict variant ! */
void ZSTD_invalidateRepCodes(ZSTD_CCtx* cctx); /* zstdmt, adaptive_compression (shouldn't get this definition from here) */
typedef struct {
blockType_e blockType;
U32 lastBlock;
U32 origSize;
} blockProperties_t; /* declared here for decompress and fullbench */
/*! ZSTD_getcBlockSize() :
* Provides the size of compressed block from block header `src` */
/* Used by: decompress, fullbench (does not get its definition from here) */
size_t ZSTD_getcBlockSize(const void* src, size_t srcSize,
blockProperties_t* bpPtr);
/*! ZSTD_decodeSeqHeaders() :
* decode sequence header from src */
/* Used by: decompress, fullbench (does not get its definition from here) */
size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr,
const void* src, size_t srcSize);
/**
* @returns true iff the CPU supports dynamic BMI2 dispatch.
*/
MEM_STATIC int ZSTD_cpuSupportsBmi2(void)
{
ZSTD_cpuid_t cpuid = ZSTD_cpuid();
return ZSTD_cpuid_bmi1(cpuid) && ZSTD_cpuid_bmi2(cpuid);
}
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_CCOMMON_H_MODULE */

View File

@ -1,163 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_TRACE_H
#define ZSTD_TRACE_H
#if defined (__cplusplus)
extern "C" {
#endif
#include <stddef.h>
/* weak symbol support
* For now, enable conservatively:
* - Only GNUC
* - Only ELF
* - Only x86-64, i386 and aarch64
* Also, explicitly disable on platforms known not to work so they aren't
* forgotten in the future.
*/
#if !defined(ZSTD_HAVE_WEAK_SYMBOLS) && \
defined(__GNUC__) && defined(__ELF__) && \
(defined(__x86_64__) || defined(_M_X64) || defined(__i386__) || defined(_M_IX86) || defined(__aarch64__)) && \
!defined(__APPLE__) && !defined(_WIN32) && !defined(__MINGW32__) && \
!defined(__CYGWIN__) && !defined(_AIX)
# define ZSTD_HAVE_WEAK_SYMBOLS 1
#else
# define ZSTD_HAVE_WEAK_SYMBOLS 0
#endif
#if ZSTD_HAVE_WEAK_SYMBOLS
# define ZSTD_WEAK_ATTR __attribute__((__weak__))
#else
# define ZSTD_WEAK_ATTR
#endif
/* Only enable tracing when weak symbols are available. */
#ifndef ZSTD_TRACE
# define ZSTD_TRACE ZSTD_HAVE_WEAK_SYMBOLS
#endif
#if ZSTD_TRACE
struct ZSTD_CCtx_s;
struct ZSTD_DCtx_s;
struct ZSTD_CCtx_params_s;
typedef struct {
/**
* ZSTD_VERSION_NUMBER
*
* This is guaranteed to be the first member of ZSTD_trace.
* Otherwise, this struct is not stable between versions. If
* the version number does not match your expectation, you
* should not interpret the rest of the struct.
*/
unsigned version;
/**
* Non-zero if streaming (de)compression is used.
*/
unsigned streaming;
/**
* The dictionary ID.
*/
unsigned dictionaryID;
/**
* Is the dictionary cold?
* Only set on decompression.
*/
unsigned dictionaryIsCold;
/**
* The dictionary size or zero if no dictionary.
*/
size_t dictionarySize;
/**
* The uncompressed size of the data.
*/
size_t uncompressedSize;
/**
* The compressed size of the data.
*/
size_t compressedSize;
/**
* The fully resolved CCtx parameters (NULL on decompression).
*/
struct ZSTD_CCtx_params_s const* params;
/**
* The ZSTD_CCtx pointer (NULL on decompression).
*/
struct ZSTD_CCtx_s const* cctx;
/**
* The ZSTD_DCtx pointer (NULL on compression).
*/
struct ZSTD_DCtx_s const* dctx;
} ZSTD_Trace;
/**
* A tracing context. It must be 0 when tracing is disabled.
* Otherwise, any non-zero value returned by a tracing begin()
* function is presented to any subsequent calls to end().
*
* Any non-zero value is treated as tracing is enabled and not
* interpreted by the library.
*
* Two possible uses are:
* * A timestamp for when the begin() function was called.
* * A unique key identifying the (de)compression, like the
* address of the [dc]ctx pointer if you need to track
* more information than just a timestamp.
*/
typedef unsigned long long ZSTD_TraceCtx;
/**
* Trace the beginning of a compression call.
* @param cctx The dctx pointer for the compression.
* It can be used as a key to map begin() to end().
* @returns Non-zero if tracing is enabled. The return value is
* passed to ZSTD_trace_compress_end().
*/
ZSTD_WEAK_ATTR ZSTD_TraceCtx ZSTD_trace_compress_begin(
struct ZSTD_CCtx_s const* cctx);
/**
* Trace the end of a compression call.
* @param ctx The return value of ZSTD_trace_compress_begin().
* @param trace The zstd tracing info.
*/
ZSTD_WEAK_ATTR void ZSTD_trace_compress_end(
ZSTD_TraceCtx ctx,
ZSTD_Trace const* trace);
/**
* Trace the beginning of a decompression call.
* @param dctx The dctx pointer for the decompression.
* It can be used as a key to map begin() to end().
* @returns Non-zero if tracing is enabled. The return value is
* passed to ZSTD_trace_compress_end().
*/
ZSTD_WEAK_ATTR ZSTD_TraceCtx ZSTD_trace_decompress_begin(
struct ZSTD_DCtx_s const* dctx);
/**
* Trace the end of a decompression call.
* @param ctx The return value of ZSTD_trace_decompress_begin().
* @param trace The zstd tracing info.
*/
ZSTD_WEAK_ATTR void ZSTD_trace_decompress_end(
ZSTD_TraceCtx ctx,
ZSTD_Trace const* trace);
#endif /* ZSTD_TRACE */
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_TRACE_H */

View File

@ -1,134 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_CLEVELS_H
#define ZSTD_CLEVELS_H
#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_compressionParameters */
#include "../zstd.h"
/*-===== Pre-defined compression levels =====-*/
#define ZSTD_MAX_CLEVEL 22
#ifdef __GNUC__
__attribute__((__unused__))
#endif
static const ZSTD_compressionParameters ZSTD_defaultCParameters[4][ZSTD_MAX_CLEVEL+1] = {
{ /* "default" - for any srcSize > 256 KB */
/* W, C, H, S, L, TL, strat */
{ 19, 12, 13, 1, 6, 1, ZSTD_fast }, /* base for negative levels */
{ 19, 13, 14, 1, 7, 0, ZSTD_fast }, /* level 1 */
{ 20, 15, 16, 1, 6, 0, ZSTD_fast }, /* level 2 */
{ 21, 16, 17, 1, 5, 0, ZSTD_dfast }, /* level 3 */
{ 21, 18, 18, 1, 5, 0, ZSTD_dfast }, /* level 4 */
{ 21, 18, 19, 3, 5, 2, ZSTD_greedy }, /* level 5 */
{ 21, 18, 19, 3, 5, 4, ZSTD_lazy }, /* level 6 */
{ 21, 19, 20, 4, 5, 8, ZSTD_lazy }, /* level 7 */
{ 21, 19, 20, 4, 5, 16, ZSTD_lazy2 }, /* level 8 */
{ 22, 20, 21, 4, 5, 16, ZSTD_lazy2 }, /* level 9 */
{ 22, 21, 22, 5, 5, 16, ZSTD_lazy2 }, /* level 10 */
{ 22, 21, 22, 6, 5, 16, ZSTD_lazy2 }, /* level 11 */
{ 22, 22, 23, 6, 5, 32, ZSTD_lazy2 }, /* level 12 */
{ 22, 22, 22, 4, 5, 32, ZSTD_btlazy2 }, /* level 13 */
{ 22, 22, 23, 5, 5, 32, ZSTD_btlazy2 }, /* level 14 */
{ 22, 23, 23, 6, 5, 32, ZSTD_btlazy2 }, /* level 15 */
{ 22, 22, 22, 5, 5, 48, ZSTD_btopt }, /* level 16 */
{ 23, 23, 22, 5, 4, 64, ZSTD_btopt }, /* level 17 */
{ 23, 23, 22, 6, 3, 64, ZSTD_btultra }, /* level 18 */
{ 23, 24, 22, 7, 3,256, ZSTD_btultra2}, /* level 19 */
{ 25, 25, 23, 7, 3,256, ZSTD_btultra2}, /* level 20 */
{ 26, 26, 24, 7, 3,512, ZSTD_btultra2}, /* level 21 */
{ 27, 27, 25, 9, 3,999, ZSTD_btultra2}, /* level 22 */
},
{ /* for srcSize <= 256 KB */
/* W, C, H, S, L, T, strat */
{ 18, 12, 13, 1, 5, 1, ZSTD_fast }, /* base for negative levels */
{ 18, 13, 14, 1, 6, 0, ZSTD_fast }, /* level 1 */
{ 18, 14, 14, 1, 5, 0, ZSTD_dfast }, /* level 2 */
{ 18, 16, 16, 1, 4, 0, ZSTD_dfast }, /* level 3 */
{ 18, 16, 17, 3, 5, 2, ZSTD_greedy }, /* level 4.*/
{ 18, 17, 18, 5, 5, 2, ZSTD_greedy }, /* level 5.*/
{ 18, 18, 19, 3, 5, 4, ZSTD_lazy }, /* level 6.*/
{ 18, 18, 19, 4, 4, 4, ZSTD_lazy }, /* level 7 */
{ 18, 18, 19, 4, 4, 8, ZSTD_lazy2 }, /* level 8 */
{ 18, 18, 19, 5, 4, 8, ZSTD_lazy2 }, /* level 9 */
{ 18, 18, 19, 6, 4, 8, ZSTD_lazy2 }, /* level 10 */
{ 18, 18, 19, 5, 4, 12, ZSTD_btlazy2 }, /* level 11.*/
{ 18, 19, 19, 7, 4, 12, ZSTD_btlazy2 }, /* level 12.*/
{ 18, 18, 19, 4, 4, 16, ZSTD_btopt }, /* level 13 */
{ 18, 18, 19, 4, 3, 32, ZSTD_btopt }, /* level 14.*/
{ 18, 18, 19, 6, 3,128, ZSTD_btopt }, /* level 15.*/
{ 18, 19, 19, 6, 3,128, ZSTD_btultra }, /* level 16.*/
{ 18, 19, 19, 8, 3,256, ZSTD_btultra }, /* level 17.*/
{ 18, 19, 19, 6, 3,128, ZSTD_btultra2}, /* level 18.*/
{ 18, 19, 19, 8, 3,256, ZSTD_btultra2}, /* level 19.*/
{ 18, 19, 19, 10, 3,512, ZSTD_btultra2}, /* level 20.*/
{ 18, 19, 19, 12, 3,512, ZSTD_btultra2}, /* level 21.*/
{ 18, 19, 19, 13, 3,999, ZSTD_btultra2}, /* level 22.*/
},
{ /* for srcSize <= 128 KB */
/* W, C, H, S, L, T, strat */
{ 17, 12, 12, 1, 5, 1, ZSTD_fast }, /* base for negative levels */
{ 17, 12, 13, 1, 6, 0, ZSTD_fast }, /* level 1 */
{ 17, 13, 15, 1, 5, 0, ZSTD_fast }, /* level 2 */
{ 17, 15, 16, 2, 5, 0, ZSTD_dfast }, /* level 3 */
{ 17, 17, 17, 2, 4, 0, ZSTD_dfast }, /* level 4 */
{ 17, 16, 17, 3, 4, 2, ZSTD_greedy }, /* level 5 */
{ 17, 16, 17, 3, 4, 4, ZSTD_lazy }, /* level 6 */
{ 17, 16, 17, 3, 4, 8, ZSTD_lazy2 }, /* level 7 */
{ 17, 16, 17, 4, 4, 8, ZSTD_lazy2 }, /* level 8 */
{ 17, 16, 17, 5, 4, 8, ZSTD_lazy2 }, /* level 9 */
{ 17, 16, 17, 6, 4, 8, ZSTD_lazy2 }, /* level 10 */
{ 17, 17, 17, 5, 4, 8, ZSTD_btlazy2 }, /* level 11 */
{ 17, 18, 17, 7, 4, 12, ZSTD_btlazy2 }, /* level 12 */
{ 17, 18, 17, 3, 4, 12, ZSTD_btopt }, /* level 13.*/
{ 17, 18, 17, 4, 3, 32, ZSTD_btopt }, /* level 14.*/
{ 17, 18, 17, 6, 3,256, ZSTD_btopt }, /* level 15.*/
{ 17, 18, 17, 6, 3,128, ZSTD_btultra }, /* level 16.*/
{ 17, 18, 17, 8, 3,256, ZSTD_btultra }, /* level 17.*/
{ 17, 18, 17, 10, 3,512, ZSTD_btultra }, /* level 18.*/
{ 17, 18, 17, 5, 3,256, ZSTD_btultra2}, /* level 19.*/
{ 17, 18, 17, 7, 3,512, ZSTD_btultra2}, /* level 20.*/
{ 17, 18, 17, 9, 3,512, ZSTD_btultra2}, /* level 21.*/
{ 17, 18, 17, 11, 3,999, ZSTD_btultra2}, /* level 22.*/
},
{ /* for srcSize <= 16 KB */
/* W, C, H, S, L, T, strat */
{ 14, 12, 13, 1, 5, 1, ZSTD_fast }, /* base for negative levels */
{ 14, 14, 15, 1, 5, 0, ZSTD_fast }, /* level 1 */
{ 14, 14, 15, 1, 4, 0, ZSTD_fast }, /* level 2 */
{ 14, 14, 15, 2, 4, 0, ZSTD_dfast }, /* level 3 */
{ 14, 14, 14, 4, 4, 2, ZSTD_greedy }, /* level 4 */
{ 14, 14, 14, 3, 4, 4, ZSTD_lazy }, /* level 5.*/
{ 14, 14, 14, 4, 4, 8, ZSTD_lazy2 }, /* level 6 */
{ 14, 14, 14, 6, 4, 8, ZSTD_lazy2 }, /* level 7 */
{ 14, 14, 14, 8, 4, 8, ZSTD_lazy2 }, /* level 8.*/
{ 14, 15, 14, 5, 4, 8, ZSTD_btlazy2 }, /* level 9.*/
{ 14, 15, 14, 9, 4, 8, ZSTD_btlazy2 }, /* level 10.*/
{ 14, 15, 14, 3, 4, 12, ZSTD_btopt }, /* level 11.*/
{ 14, 15, 14, 4, 3, 24, ZSTD_btopt }, /* level 12.*/
{ 14, 15, 14, 5, 3, 32, ZSTD_btultra }, /* level 13.*/
{ 14, 15, 15, 6, 3, 64, ZSTD_btultra }, /* level 14.*/
{ 14, 15, 15, 7, 3,256, ZSTD_btultra }, /* level 15.*/
{ 14, 15, 15, 5, 3, 48, ZSTD_btultra2}, /* level 16.*/
{ 14, 15, 15, 6, 3,128, ZSTD_btultra2}, /* level 17.*/
{ 14, 15, 15, 7, 3,256, ZSTD_btultra2}, /* level 18.*/
{ 14, 15, 15, 8, 3,256, ZSTD_btultra2}, /* level 19.*/
{ 14, 15, 15, 8, 3,512, ZSTD_btultra2}, /* level 20.*/
{ 14, 15, 15, 9, 3,512, ZSTD_btultra2}, /* level 21.*/
{ 14, 15, 15, 10, 3,999, ZSTD_btultra2}, /* level 22.*/
},
};
#endif /* ZSTD_CLEVELS_H */

View File

@ -1,624 +0,0 @@
/* ******************************************************************
* FSE : Finite State Entropy encoder
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* You can contact the author at :
* - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
* - Public forum : https://groups.google.com/forum/#!forum/lz4c
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
/* **************************************************************
* Includes
****************************************************************/
#include "../common/compiler.h"
#include "../common/mem.h" /* U32, U16, etc. */
#include "../common/debug.h" /* assert, DEBUGLOG */
#include "hist.h" /* HIST_count_wksp */
#include "../common/bitstream.h"
#define FSE_STATIC_LINKING_ONLY
#include "../common/fse.h"
#include "../common/error_private.h"
#define ZSTD_DEPS_NEED_MALLOC
#define ZSTD_DEPS_NEED_MATH64
#include "../common/zstd_deps.h" /* ZSTD_malloc, ZSTD_free, ZSTD_memcpy, ZSTD_memset */
#include "../common/bits.h" /* ZSTD_highbit32 */
/* **************************************************************
* Error Management
****************************************************************/
#define FSE_isError ERR_isError
/* **************************************************************
* Templates
****************************************************************/
/*
designed to be included
for type-specific functions (template emulation in C)
Objective is to write these functions only once, for improved maintenance
*/
/* safety checks */
#ifndef FSE_FUNCTION_EXTENSION
# error "FSE_FUNCTION_EXTENSION must be defined"
#endif
#ifndef FSE_FUNCTION_TYPE
# error "FSE_FUNCTION_TYPE must be defined"
#endif
/* Function names */
#define FSE_CAT(X,Y) X##Y
#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y)
#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y)
/* Function templates */
/* FSE_buildCTable_wksp() :
* Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`).
* wkspSize should be sized to handle worst case situation, which is `1<<max_tableLog * sizeof(FSE_FUNCTION_TYPE)`
* workSpace must also be properly aligned with FSE_FUNCTION_TYPE requirements
*/
size_t FSE_buildCTable_wksp(FSE_CTable* ct,
const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog,
void* workSpace, size_t wkspSize)
{
U32 const tableSize = 1 << tableLog;
U32 const tableMask = tableSize - 1;
void* const ptr = ct;
U16* const tableU16 = ( (U16*) ptr) + 2;
void* const FSCT = ((U32*)ptr) + 1 /* header */ + (tableLog ? tableSize>>1 : 1) ;
FSE_symbolCompressionTransform* const symbolTT = (FSE_symbolCompressionTransform*) (FSCT);
U32 const step = FSE_TABLESTEP(tableSize);
U32 const maxSV1 = maxSymbolValue+1;
U16* cumul = (U16*)workSpace; /* size = maxSV1 */
FSE_FUNCTION_TYPE* const tableSymbol = (FSE_FUNCTION_TYPE*)(cumul + (maxSV1+1)); /* size = tableSize */
U32 highThreshold = tableSize-1;
assert(((size_t)workSpace & 1) == 0); /* Must be 2 bytes-aligned */
if (FSE_BUILD_CTABLE_WORKSPACE_SIZE(maxSymbolValue, tableLog) > wkspSize) return ERROR(tableLog_tooLarge);
/* CTable header */
tableU16[-2] = (U16) tableLog;
tableU16[-1] = (U16) maxSymbolValue;
assert(tableLog < 16); /* required for threshold strategy to work */
/* For explanations on how to distribute symbol values over the table :
* https://fastcompression.blogspot.fr/2014/02/fse-distributing-symbol-values.html */
#ifdef __clang_analyzer__
ZSTD_memset(tableSymbol, 0, sizeof(*tableSymbol) * tableSize); /* useless initialization, just to keep scan-build happy */
#endif
/* symbol start positions */
{ U32 u;
cumul[0] = 0;
for (u=1; u <= maxSV1; u++) {
if (normalizedCounter[u-1]==-1) { /* Low proba symbol */
cumul[u] = cumul[u-1] + 1;
tableSymbol[highThreshold--] = (FSE_FUNCTION_TYPE)(u-1);
} else {
assert(normalizedCounter[u-1] >= 0);
cumul[u] = cumul[u-1] + (U16)normalizedCounter[u-1];
assert(cumul[u] >= cumul[u-1]); /* no overflow */
} }
cumul[maxSV1] = (U16)(tableSize+1);
}
/* Spread symbols */
if (highThreshold == tableSize - 1) {
/* Case for no low prob count symbols. Lay down 8 bytes at a time
* to reduce branch misses since we are operating on a small block
*/
BYTE* const spread = tableSymbol + tableSize; /* size = tableSize + 8 (may write beyond tableSize) */
{ U64 const add = 0x0101010101010101ull;
size_t pos = 0;
U64 sv = 0;
U32 s;
for (s=0; s<maxSV1; ++s, sv += add) {
int i;
int const n = normalizedCounter[s];
MEM_write64(spread + pos, sv);
for (i = 8; i < n; i += 8) {
MEM_write64(spread + pos + i, sv);
}
assert(n>=0);
pos += (size_t)n;
}
}
/* Spread symbols across the table. Lack of lowprob symbols means that
* we don't need variable sized inner loop, so we can unroll the loop and
* reduce branch misses.
*/
{ size_t position = 0;
size_t s;
size_t const unroll = 2; /* Experimentally determined optimal unroll */
assert(tableSize % unroll == 0); /* FSE_MIN_TABLELOG is 5 */
for (s = 0; s < (size_t)tableSize; s += unroll) {
size_t u;
for (u = 0; u < unroll; ++u) {
size_t const uPosition = (position + (u * step)) & tableMask;
tableSymbol[uPosition] = spread[s + u];
}
position = (position + (unroll * step)) & tableMask;
}
assert(position == 0); /* Must have initialized all positions */
}
} else {
U32 position = 0;
U32 symbol;
for (symbol=0; symbol<maxSV1; symbol++) {
int nbOccurrences;
int const freq = normalizedCounter[symbol];
for (nbOccurrences=0; nbOccurrences<freq; nbOccurrences++) {
tableSymbol[position] = (FSE_FUNCTION_TYPE)symbol;
position = (position + step) & tableMask;
while (position > highThreshold)
position = (position + step) & tableMask; /* Low proba area */
} }
assert(position==0); /* Must have initialized all positions */
}
/* Build table */
{ U32 u; for (u=0; u<tableSize; u++) {
FSE_FUNCTION_TYPE s = tableSymbol[u]; /* note : static analyzer may not understand tableSymbol is properly initialized */
tableU16[cumul[s]++] = (U16) (tableSize+u); /* TableU16 : sorted by symbol order; gives next state value */
} }
/* Build Symbol Transformation Table */
{ unsigned total = 0;
unsigned s;
for (s=0; s<=maxSymbolValue; s++) {
switch (normalizedCounter[s])
{
case 0:
/* filling nonetheless, for compatibility with FSE_getMaxNbBits() */
symbolTT[s].deltaNbBits = ((tableLog+1) << 16) - (1<<tableLog);
break;
case -1:
case 1:
symbolTT[s].deltaNbBits = (tableLog << 16) - (1<<tableLog);
assert(total <= INT_MAX);
symbolTT[s].deltaFindState = (int)(total - 1);
total ++;
break;
default :
assert(normalizedCounter[s] > 1);
{ U32 const maxBitsOut = tableLog - ZSTD_highbit32 ((U32)normalizedCounter[s]-1);
U32 const minStatePlus = (U32)normalizedCounter[s] << maxBitsOut;
symbolTT[s].deltaNbBits = (maxBitsOut << 16) - minStatePlus;
symbolTT[s].deltaFindState = (int)(total - (unsigned)normalizedCounter[s]);
total += (unsigned)normalizedCounter[s];
} } } }
#if 0 /* debug : symbol costs */
DEBUGLOG(5, "\n --- table statistics : ");
{ U32 symbol;
for (symbol=0; symbol<=maxSymbolValue; symbol++) {
DEBUGLOG(5, "%3u: w=%3i, maxBits=%u, fracBits=%.2f",
symbol, normalizedCounter[symbol],
FSE_getMaxNbBits(symbolTT, symbol),
(double)FSE_bitCost(symbolTT, tableLog, symbol, 8) / 256);
} }
#endif
return 0;
}
#ifndef FSE_COMMONDEFS_ONLY
/*-**************************************************************
* FSE NCount encoding
****************************************************************/
size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog)
{
size_t const maxHeaderSize = (((maxSymbolValue+1) * tableLog
+ 4 /* bitCount initialized at 4 */
+ 2 /* first two symbols may use one additional bit each */) / 8)
+ 1 /* round up to whole nb bytes */
+ 2 /* additional two bytes for bitstream flush */;
return maxSymbolValue ? maxHeaderSize : FSE_NCOUNTBOUND; /* maxSymbolValue==0 ? use default */
}
static size_t
FSE_writeNCount_generic (void* header, size_t headerBufferSize,
const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog,
unsigned writeIsSafe)
{
BYTE* const ostart = (BYTE*) header;
BYTE* out = ostart;
BYTE* const oend = ostart + headerBufferSize;
int nbBits;
const int tableSize = 1 << tableLog;
int remaining;
int threshold;
U32 bitStream = 0;
int bitCount = 0;
unsigned symbol = 0;
unsigned const alphabetSize = maxSymbolValue + 1;
int previousIs0 = 0;
/* Table Size */
bitStream += (tableLog-FSE_MIN_TABLELOG) << bitCount;
bitCount += 4;
/* Init */
remaining = tableSize+1; /* +1 for extra accuracy */
threshold = tableSize;
nbBits = tableLog+1;
while ((symbol < alphabetSize) && (remaining>1)) { /* stops at 1 */
if (previousIs0) {
unsigned start = symbol;
while ((symbol < alphabetSize) && !normalizedCounter[symbol]) symbol++;
if (symbol == alphabetSize) break; /* incorrect distribution */
while (symbol >= start+24) {
start+=24;
bitStream += 0xFFFFU << bitCount;
if ((!writeIsSafe) && (out > oend-2))
return ERROR(dstSize_tooSmall); /* Buffer overflow */
out[0] = (BYTE) bitStream;
out[1] = (BYTE)(bitStream>>8);
out+=2;
bitStream>>=16;
}
while (symbol >= start+3) {
start+=3;
bitStream += 3 << bitCount;
bitCount += 2;
}
bitStream += (symbol-start) << bitCount;
bitCount += 2;
if (bitCount>16) {
if ((!writeIsSafe) && (out > oend - 2))
return ERROR(dstSize_tooSmall); /* Buffer overflow */
out[0] = (BYTE)bitStream;
out[1] = (BYTE)(bitStream>>8);
out += 2;
bitStream >>= 16;
bitCount -= 16;
} }
{ int count = normalizedCounter[symbol++];
int const max = (2*threshold-1) - remaining;
remaining -= count < 0 ? -count : count;
count++; /* +1 for extra accuracy */
if (count>=threshold)
count += max; /* [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[ */
bitStream += count << bitCount;
bitCount += nbBits;
bitCount -= (count<max);
previousIs0 = (count==1);
if (remaining<1) return ERROR(GENERIC);
while (remaining<threshold) { nbBits--; threshold>>=1; }
}
if (bitCount>16) {
if ((!writeIsSafe) && (out > oend - 2))
return ERROR(dstSize_tooSmall); /* Buffer overflow */
out[0] = (BYTE)bitStream;
out[1] = (BYTE)(bitStream>>8);
out += 2;
bitStream >>= 16;
bitCount -= 16;
} }
if (remaining != 1)
return ERROR(GENERIC); /* incorrect normalized distribution */
assert(symbol <= alphabetSize);
/* flush remaining bitStream */
if ((!writeIsSafe) && (out > oend - 2))
return ERROR(dstSize_tooSmall); /* Buffer overflow */
out[0] = (BYTE)bitStream;
out[1] = (BYTE)(bitStream>>8);
out+= (bitCount+7) /8;
return (out-ostart);
}
size_t FSE_writeNCount (void* buffer, size_t bufferSize,
const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
{
if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge); /* Unsupported */
if (tableLog < FSE_MIN_TABLELOG) return ERROR(GENERIC); /* Unsupported */
if (bufferSize < FSE_NCountWriteBound(maxSymbolValue, tableLog))
return FSE_writeNCount_generic(buffer, bufferSize, normalizedCounter, maxSymbolValue, tableLog, 0);
return FSE_writeNCount_generic(buffer, bufferSize, normalizedCounter, maxSymbolValue, tableLog, 1 /* write in buffer is safe */);
}
/*-**************************************************************
* FSE Compression Code
****************************************************************/
/* provides the minimum logSize to safely represent a distribution */
static unsigned FSE_minTableLog(size_t srcSize, unsigned maxSymbolValue)
{
U32 minBitsSrc = ZSTD_highbit32((U32)(srcSize)) + 1;
U32 minBitsSymbols = ZSTD_highbit32(maxSymbolValue) + 2;
U32 minBits = minBitsSrc < minBitsSymbols ? minBitsSrc : minBitsSymbols;
assert(srcSize > 1); /* Not supported, RLE should be used instead */
return minBits;
}
unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus)
{
U32 maxBitsSrc = ZSTD_highbit32((U32)(srcSize - 1)) - minus;
U32 tableLog = maxTableLog;
U32 minBits = FSE_minTableLog(srcSize, maxSymbolValue);
assert(srcSize > 1); /* Not supported, RLE should be used instead */
if (tableLog==0) tableLog = FSE_DEFAULT_TABLELOG;
if (maxBitsSrc < tableLog) tableLog = maxBitsSrc; /* Accuracy can be reduced */
if (minBits > tableLog) tableLog = minBits; /* Need a minimum to safely represent all symbol values */
if (tableLog < FSE_MIN_TABLELOG) tableLog = FSE_MIN_TABLELOG;
if (tableLog > FSE_MAX_TABLELOG) tableLog = FSE_MAX_TABLELOG;
return tableLog;
}
unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue)
{
return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 2);
}
/* Secondary normalization method.
To be used when primary method fails. */
static size_t FSE_normalizeM2(short* norm, U32 tableLog, const unsigned* count, size_t total, U32 maxSymbolValue, short lowProbCount)
{
short const NOT_YET_ASSIGNED = -2;
U32 s;
U32 distributed = 0;
U32 ToDistribute;
/* Init */
U32 const lowThreshold = (U32)(total >> tableLog);
U32 lowOne = (U32)((total * 3) >> (tableLog + 1));
for (s=0; s<=maxSymbolValue; s++) {
if (count[s] == 0) {
norm[s]=0;
continue;
}
if (count[s] <= lowThreshold) {
norm[s] = lowProbCount;
distributed++;
total -= count[s];
continue;
}
if (count[s] <= lowOne) {
norm[s] = 1;
distributed++;
total -= count[s];
continue;
}
norm[s]=NOT_YET_ASSIGNED;
}
ToDistribute = (1 << tableLog) - distributed;
if (ToDistribute == 0)
return 0;
if ((total / ToDistribute) > lowOne) {
/* risk of rounding to zero */
lowOne = (U32)((total * 3) / (ToDistribute * 2));
for (s=0; s<=maxSymbolValue; s++) {
if ((norm[s] == NOT_YET_ASSIGNED) && (count[s] <= lowOne)) {
norm[s] = 1;
distributed++;
total -= count[s];
continue;
} }
ToDistribute = (1 << tableLog) - distributed;
}
if (distributed == maxSymbolValue+1) {
/* all values are pretty poor;
probably incompressible data (should have already been detected);
find max, then give all remaining points to max */
U32 maxV = 0, maxC = 0;
for (s=0; s<=maxSymbolValue; s++)
if (count[s] > maxC) { maxV=s; maxC=count[s]; }
norm[maxV] += (short)ToDistribute;
return 0;
}
if (total == 0) {
/* all of the symbols were low enough for the lowOne or lowThreshold */
for (s=0; ToDistribute > 0; s = (s+1)%(maxSymbolValue+1))
if (norm[s] > 0) { ToDistribute--; norm[s]++; }
return 0;
}
{ U64 const vStepLog = 62 - tableLog;
U64 const mid = (1ULL << (vStepLog-1)) - 1;
U64 const rStep = ZSTD_div64((((U64)1<<vStepLog) * ToDistribute) + mid, (U32)total); /* scale on remaining */
U64 tmpTotal = mid;
for (s=0; s<=maxSymbolValue; s++) {
if (norm[s]==NOT_YET_ASSIGNED) {
U64 const end = tmpTotal + (count[s] * rStep);
U32 const sStart = (U32)(tmpTotal >> vStepLog);
U32 const sEnd = (U32)(end >> vStepLog);
U32 const weight = sEnd - sStart;
if (weight < 1)
return ERROR(GENERIC);
norm[s] = (short)weight;
tmpTotal = end;
} } }
return 0;
}
size_t FSE_normalizeCount (short* normalizedCounter, unsigned tableLog,
const unsigned* count, size_t total,
unsigned maxSymbolValue, unsigned useLowProbCount)
{
/* Sanity checks */
if (tableLog==0) tableLog = FSE_DEFAULT_TABLELOG;
if (tableLog < FSE_MIN_TABLELOG) return ERROR(GENERIC); /* Unsupported size */
if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge); /* Unsupported size */
if (tableLog < FSE_minTableLog(total, maxSymbolValue)) return ERROR(GENERIC); /* Too small tableLog, compression potentially impossible */
{ static U32 const rtbTable[] = { 0, 473195, 504333, 520860, 550000, 700000, 750000, 830000 };
short const lowProbCount = useLowProbCount ? -1 : 1;
U64 const scale = 62 - tableLog;
U64 const step = ZSTD_div64((U64)1<<62, (U32)total); /* <== here, one division ! */
U64 const vStep = 1ULL<<(scale-20);
int stillToDistribute = 1<<tableLog;
unsigned s;
unsigned largest=0;
short largestP=0;
U32 lowThreshold = (U32)(total >> tableLog);
for (s=0; s<=maxSymbolValue; s++) {
if (count[s] == total) return 0; /* rle special case */
if (count[s] == 0) { normalizedCounter[s]=0; continue; }
if (count[s] <= lowThreshold) {
normalizedCounter[s] = lowProbCount;
stillToDistribute--;
} else {
short proba = (short)((count[s]*step) >> scale);
if (proba<8) {
U64 restToBeat = vStep * rtbTable[proba];
proba += (count[s]*step) - ((U64)proba<<scale) > restToBeat;
}
if (proba > largestP) { largestP=proba; largest=s; }
normalizedCounter[s] = proba;
stillToDistribute -= proba;
} }
if (-stillToDistribute >= (normalizedCounter[largest] >> 1)) {
/* corner case, need another normalization method */
size_t const errorCode = FSE_normalizeM2(normalizedCounter, tableLog, count, total, maxSymbolValue, lowProbCount);
if (FSE_isError(errorCode)) return errorCode;
}
else normalizedCounter[largest] += (short)stillToDistribute;
}
#if 0
{ /* Print Table (debug) */
U32 s;
U32 nTotal = 0;
for (s=0; s<=maxSymbolValue; s++)
RAWLOG(2, "%3i: %4i \n", s, normalizedCounter[s]);
for (s=0; s<=maxSymbolValue; s++)
nTotal += abs(normalizedCounter[s]);
if (nTotal != (1U<<tableLog))
RAWLOG(2, "Warning !!! Total == %u != %u !!!", nTotal, 1U<<tableLog);
getchar();
}
#endif
return tableLog;
}
/* fake FSE_CTable, for rle input (always same symbol) */
size_t FSE_buildCTable_rle (FSE_CTable* ct, BYTE symbolValue)
{
void* ptr = ct;
U16* tableU16 = ( (U16*) ptr) + 2;
void* FSCTptr = (U32*)ptr + 2;
FSE_symbolCompressionTransform* symbolTT = (FSE_symbolCompressionTransform*) FSCTptr;
/* header */
tableU16[-2] = (U16) 0;
tableU16[-1] = (U16) symbolValue;
/* Build table */
tableU16[0] = 0;
tableU16[1] = 0; /* just in case */
/* Build Symbol Transformation Table */
symbolTT[symbolValue].deltaNbBits = 0;
symbolTT[symbolValue].deltaFindState = 0;
return 0;
}
static size_t FSE_compress_usingCTable_generic (void* dst, size_t dstSize,
const void* src, size_t srcSize,
const FSE_CTable* ct, const unsigned fast)
{
const BYTE* const istart = (const BYTE*) src;
const BYTE* const iend = istart + srcSize;
const BYTE* ip=iend;
BIT_CStream_t bitC;
FSE_CState_t CState1, CState2;
/* init */
if (srcSize <= 2) return 0;
{ size_t const initError = BIT_initCStream(&bitC, dst, dstSize);
if (FSE_isError(initError)) return 0; /* not enough space available to write a bitstream */ }
#define FSE_FLUSHBITS(s) (fast ? BIT_flushBitsFast(s) : BIT_flushBits(s))
if (srcSize & 1) {
FSE_initCState2(&CState1, ct, *--ip);
FSE_initCState2(&CState2, ct, *--ip);
FSE_encodeSymbol(&bitC, &CState1, *--ip);
FSE_FLUSHBITS(&bitC);
} else {
FSE_initCState2(&CState2, ct, *--ip);
FSE_initCState2(&CState1, ct, *--ip);
}
/* join to mod 4 */
srcSize -= 2;
if ((sizeof(bitC.bitContainer)*8 > FSE_MAX_TABLELOG*4+7 ) && (srcSize & 2)) { /* test bit 2 */
FSE_encodeSymbol(&bitC, &CState2, *--ip);
FSE_encodeSymbol(&bitC, &CState1, *--ip);
FSE_FLUSHBITS(&bitC);
}
/* 2 or 4 encoding per loop */
while ( ip>istart ) {
FSE_encodeSymbol(&bitC, &CState2, *--ip);
if (sizeof(bitC.bitContainer)*8 < FSE_MAX_TABLELOG*2+7 ) /* this test must be static */
FSE_FLUSHBITS(&bitC);
FSE_encodeSymbol(&bitC, &CState1, *--ip);
if (sizeof(bitC.bitContainer)*8 > FSE_MAX_TABLELOG*4+7 ) { /* this test must be static */
FSE_encodeSymbol(&bitC, &CState2, *--ip);
FSE_encodeSymbol(&bitC, &CState1, *--ip);
}
FSE_FLUSHBITS(&bitC);
}
FSE_flushCState(&bitC, &CState2);
FSE_flushCState(&bitC, &CState1);
return BIT_closeCStream(&bitC);
}
size_t FSE_compress_usingCTable (void* dst, size_t dstSize,
const void* src, size_t srcSize,
const FSE_CTable* ct)
{
unsigned const fast = (dstSize >= FSE_BLOCKBOUND(srcSize));
if (fast)
return FSE_compress_usingCTable_generic(dst, dstSize, src, srcSize, ct, 1);
else
return FSE_compress_usingCTable_generic(dst, dstSize, src, srcSize, ct, 0);
}
size_t FSE_compressBound(size_t size) { return FSE_COMPRESSBOUND(size); }
#endif /* FSE_COMMONDEFS_ONLY */

View File

@ -1,181 +0,0 @@
/* ******************************************************************
* hist : Histogram functions
* part of Finite State Entropy project
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* You can contact the author at :
* - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
* - Public forum : https://groups.google.com/forum/#!forum/lz4c
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
/* --- dependencies --- */
#include "../common/mem.h" /* U32, BYTE, etc. */
#include "../common/debug.h" /* assert, DEBUGLOG */
#include "../common/error_private.h" /* ERROR */
#include "hist.h"
/* --- Error management --- */
unsigned HIST_isError(size_t code) { return ERR_isError(code); }
/*-**************************************************************
* Histogram functions
****************************************************************/
unsigned HIST_count_simple(unsigned* count, unsigned* maxSymbolValuePtr,
const void* src, size_t srcSize)
{
const BYTE* ip = (const BYTE*)src;
const BYTE* const end = ip + srcSize;
unsigned maxSymbolValue = *maxSymbolValuePtr;
unsigned largestCount=0;
ZSTD_memset(count, 0, (maxSymbolValue+1) * sizeof(*count));
if (srcSize==0) { *maxSymbolValuePtr = 0; return 0; }
while (ip<end) {
assert(*ip <= maxSymbolValue);
count[*ip++]++;
}
while (!count[maxSymbolValue]) maxSymbolValue--;
*maxSymbolValuePtr = maxSymbolValue;
{ U32 s;
for (s=0; s<=maxSymbolValue; s++)
if (count[s] > largestCount) largestCount = count[s];
}
return largestCount;
}
typedef enum { trustInput, checkMaxSymbolValue } HIST_checkInput_e;
/* HIST_count_parallel_wksp() :
* store histogram into 4 intermediate tables, recombined at the end.
* this design makes better use of OoO cpus,
* and is noticeably faster when some values are heavily repeated.
* But it needs some additional workspace for intermediate tables.
* `workSpace` must be a U32 table of size >= HIST_WKSP_SIZE_U32.
* @return : largest histogram frequency,
* or an error code (notably when histogram's alphabet is larger than *maxSymbolValuePtr) */
static size_t HIST_count_parallel_wksp(
unsigned* count, unsigned* maxSymbolValuePtr,
const void* source, size_t sourceSize,
HIST_checkInput_e check,
U32* const workSpace)
{
const BYTE* ip = (const BYTE*)source;
const BYTE* const iend = ip+sourceSize;
size_t const countSize = (*maxSymbolValuePtr + 1) * sizeof(*count);
unsigned max=0;
U32* const Counting1 = workSpace;
U32* const Counting2 = Counting1 + 256;
U32* const Counting3 = Counting2 + 256;
U32* const Counting4 = Counting3 + 256;
/* safety checks */
assert(*maxSymbolValuePtr <= 255);
if (!sourceSize) {
ZSTD_memset(count, 0, countSize);
*maxSymbolValuePtr = 0;
return 0;
}
ZSTD_memset(workSpace, 0, 4*256*sizeof(unsigned));
/* by stripes of 16 bytes */
{ U32 cached = MEM_read32(ip); ip += 4;
while (ip < iend-15) {
U32 c = cached; cached = MEM_read32(ip); ip += 4;
Counting1[(BYTE) c ]++;
Counting2[(BYTE)(c>>8) ]++;
Counting3[(BYTE)(c>>16)]++;
Counting4[ c>>24 ]++;
c = cached; cached = MEM_read32(ip); ip += 4;
Counting1[(BYTE) c ]++;
Counting2[(BYTE)(c>>8) ]++;
Counting3[(BYTE)(c>>16)]++;
Counting4[ c>>24 ]++;
c = cached; cached = MEM_read32(ip); ip += 4;
Counting1[(BYTE) c ]++;
Counting2[(BYTE)(c>>8) ]++;
Counting3[(BYTE)(c>>16)]++;
Counting4[ c>>24 ]++;
c = cached; cached = MEM_read32(ip); ip += 4;
Counting1[(BYTE) c ]++;
Counting2[(BYTE)(c>>8) ]++;
Counting3[(BYTE)(c>>16)]++;
Counting4[ c>>24 ]++;
}
ip-=4;
}
/* finish last symbols */
while (ip<iend) Counting1[*ip++]++;
{ U32 s;
for (s=0; s<256; s++) {
Counting1[s] += Counting2[s] + Counting3[s] + Counting4[s];
if (Counting1[s] > max) max = Counting1[s];
} }
{ unsigned maxSymbolValue = 255;
while (!Counting1[maxSymbolValue]) maxSymbolValue--;
if (check && maxSymbolValue > *maxSymbolValuePtr) return ERROR(maxSymbolValue_tooSmall);
*maxSymbolValuePtr = maxSymbolValue;
ZSTD_memmove(count, Counting1, countSize); /* in case count & Counting1 are overlapping */
}
return (size_t)max;
}
/* HIST_countFast_wksp() :
* Same as HIST_countFast(), but using an externally provided scratch buffer.
* `workSpace` is a writable buffer which must be 4-bytes aligned,
* `workSpaceSize` must be >= HIST_WKSP_SIZE
*/
size_t HIST_countFast_wksp(unsigned* count, unsigned* maxSymbolValuePtr,
const void* source, size_t sourceSize,
void* workSpace, size_t workSpaceSize)
{
if (sourceSize < 1500) /* heuristic threshold */
return HIST_count_simple(count, maxSymbolValuePtr, source, sourceSize);
if ((size_t)workSpace & 3) return ERROR(GENERIC); /* must be aligned on 4-bytes boundaries */
if (workSpaceSize < HIST_WKSP_SIZE) return ERROR(workSpace_tooSmall);
return HIST_count_parallel_wksp(count, maxSymbolValuePtr, source, sourceSize, trustInput, (U32*)workSpace);
}
/* HIST_count_wksp() :
* Same as HIST_count(), but using an externally provided scratch buffer.
* `workSpace` size must be table of >= HIST_WKSP_SIZE_U32 unsigned */
size_t HIST_count_wksp(unsigned* count, unsigned* maxSymbolValuePtr,
const void* source, size_t sourceSize,
void* workSpace, size_t workSpaceSize)
{
if ((size_t)workSpace & 3) return ERROR(GENERIC); /* must be aligned on 4-bytes boundaries */
if (workSpaceSize < HIST_WKSP_SIZE) return ERROR(workSpace_tooSmall);
if (*maxSymbolValuePtr < 255)
return HIST_count_parallel_wksp(count, maxSymbolValuePtr, source, sourceSize, checkMaxSymbolValue, (U32*)workSpace);
*maxSymbolValuePtr = 255;
return HIST_countFast_wksp(count, maxSymbolValuePtr, source, sourceSize, workSpace, workSpaceSize);
}
#ifndef ZSTD_NO_UNUSED_FUNCTIONS
/* fast variant (unsafe : won't check if src contains values beyond count[] limit) */
size_t HIST_countFast(unsigned* count, unsigned* maxSymbolValuePtr,
const void* source, size_t sourceSize)
{
unsigned tmpCounters[HIST_WKSP_SIZE_U32];
return HIST_countFast_wksp(count, maxSymbolValuePtr, source, sourceSize, tmpCounters, sizeof(tmpCounters));
}
size_t HIST_count(unsigned* count, unsigned* maxSymbolValuePtr,
const void* src, size_t srcSize)
{
unsigned tmpCounters[HIST_WKSP_SIZE_U32];
return HIST_count_wksp(count, maxSymbolValuePtr, src, srcSize, tmpCounters, sizeof(tmpCounters));
}
#endif

View File

@ -1,75 +0,0 @@
/* ******************************************************************
* hist : Histogram functions
* part of Finite State Entropy project
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* You can contact the author at :
* - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
* - Public forum : https://groups.google.com/forum/#!forum/lz4c
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
/* --- dependencies --- */
#include "../common/zstd_deps.h" /* size_t */
/* --- simple histogram functions --- */
/*! HIST_count():
* Provides the precise count of each byte within a table 'count'.
* 'count' is a table of unsigned int, of minimum size (*maxSymbolValuePtr+1).
* Updates *maxSymbolValuePtr with actual largest symbol value detected.
* @return : count of the most frequent symbol (which isn't identified).
* or an error code, which can be tested using HIST_isError().
* note : if return == srcSize, there is only one symbol.
*/
size_t HIST_count(unsigned* count, unsigned* maxSymbolValuePtr,
const void* src, size_t srcSize);
unsigned HIST_isError(size_t code); /**< tells if a return value is an error code */
/* --- advanced histogram functions --- */
#define HIST_WKSP_SIZE_U32 1024
#define HIST_WKSP_SIZE (HIST_WKSP_SIZE_U32 * sizeof(unsigned))
/** HIST_count_wksp() :
* Same as HIST_count(), but using an externally provided scratch buffer.
* Benefit is this function will use very little stack space.
* `workSpace` is a writable buffer which must be 4-bytes aligned,
* `workSpaceSize` must be >= HIST_WKSP_SIZE
*/
size_t HIST_count_wksp(unsigned* count, unsigned* maxSymbolValuePtr,
const void* src, size_t srcSize,
void* workSpace, size_t workSpaceSize);
/** HIST_countFast() :
* same as HIST_count(), but blindly trusts that all byte values within src are <= *maxSymbolValuePtr.
* This function is unsafe, and will segfault if any value within `src` is `> *maxSymbolValuePtr`
*/
size_t HIST_countFast(unsigned* count, unsigned* maxSymbolValuePtr,
const void* src, size_t srcSize);
/** HIST_countFast_wksp() :
* Same as HIST_countFast(), but using an externally provided scratch buffer.
* `workSpace` is a writable buffer which must be 4-bytes aligned,
* `workSpaceSize` must be >= HIST_WKSP_SIZE
*/
size_t HIST_countFast_wksp(unsigned* count, unsigned* maxSymbolValuePtr,
const void* src, size_t srcSize,
void* workSpace, size_t workSpaceSize);
/*! HIST_count_simple() :
* Same as HIST_countFast(), this function is unsafe,
* and will segfault if any value within `src` is `> *maxSymbolValuePtr`.
* It is also a bit slower for large inputs.
* However, it does not need any additional memory (not even on stack).
* @return : count of the most frequent symbol.
* Note this function doesn't produce any error (i.e. it must succeed).
*/
unsigned HIST_count_simple(unsigned* count, unsigned* maxSymbolValuePtr,
const void* src, size_t srcSize);

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,235 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*-*************************************
* Dependencies
***************************************/
#include "zstd_compress_literals.h"
/* **************************************************************
* Debug Traces
****************************************************************/
#if DEBUGLEVEL >= 2
static size_t showHexa(const void* src, size_t srcSize)
{
const BYTE* const ip = (const BYTE*)src;
size_t u;
for (u=0; u<srcSize; u++) {
RAWLOG(5, " %02X", ip[u]); (void)ip;
}
RAWLOG(5, " \n");
return srcSize;
}
#endif
/* **************************************************************
* Literals compression - special cases
****************************************************************/
size_t ZSTD_noCompressLiterals (void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
BYTE* const ostart = (BYTE*)dst;
U32 const flSize = 1 + (srcSize>31) + (srcSize>4095);
DEBUGLOG(5, "ZSTD_noCompressLiterals: srcSize=%zu, dstCapacity=%zu", srcSize, dstCapacity);
RETURN_ERROR_IF(srcSize + flSize > dstCapacity, dstSize_tooSmall, "");
switch(flSize)
{
case 1: /* 2 - 1 - 5 */
ostart[0] = (BYTE)((U32)set_basic + (srcSize<<3));
break;
case 2: /* 2 - 2 - 12 */
MEM_writeLE16(ostart, (U16)((U32)set_basic + (1<<2) + (srcSize<<4)));
break;
case 3: /* 2 - 2 - 20 */
MEM_writeLE32(ostart, (U32)((U32)set_basic + (3<<2) + (srcSize<<4)));
break;
default: /* not necessary : flSize is {1,2,3} */
assert(0);
}
ZSTD_memcpy(ostart + flSize, src, srcSize);
DEBUGLOG(5, "Raw (uncompressed) literals: %u -> %u", (U32)srcSize, (U32)(srcSize + flSize));
return srcSize + flSize;
}
static int allBytesIdentical(const void* src, size_t srcSize)
{
assert(srcSize >= 1);
assert(src != NULL);
{ const BYTE b = ((const BYTE*)src)[0];
size_t p;
for (p=1; p<srcSize; p++) {
if (((const BYTE*)src)[p] != b) return 0;
}
return 1;
}
}
size_t ZSTD_compressRleLiteralsBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
BYTE* const ostart = (BYTE*)dst;
U32 const flSize = 1 + (srcSize>31) + (srcSize>4095);
assert(dstCapacity >= 4); (void)dstCapacity;
assert(allBytesIdentical(src, srcSize));
switch(flSize)
{
case 1: /* 2 - 1 - 5 */
ostart[0] = (BYTE)((U32)set_rle + (srcSize<<3));
break;
case 2: /* 2 - 2 - 12 */
MEM_writeLE16(ostart, (U16)((U32)set_rle + (1<<2) + (srcSize<<4)));
break;
case 3: /* 2 - 2 - 20 */
MEM_writeLE32(ostart, (U32)((U32)set_rle + (3<<2) + (srcSize<<4)));
break;
default: /* not necessary : flSize is {1,2,3} */
assert(0);
}
ostart[flSize] = *(const BYTE*)src;
DEBUGLOG(5, "RLE : Repeated Literal (%02X: %u times) -> %u bytes encoded", ((const BYTE*)src)[0], (U32)srcSize, (U32)flSize + 1);
return flSize+1;
}
/* ZSTD_minLiteralsToCompress() :
* returns minimal amount of literals
* for literal compression to even be attempted.
* Minimum is made tighter as compression strategy increases.
*/
static size_t
ZSTD_minLiteralsToCompress(ZSTD_strategy strategy, HUF_repeat huf_repeat)
{
assert((int)strategy >= 0);
assert((int)strategy <= 9);
/* btultra2 : min 8 bytes;
* then 2x larger for each successive compression strategy
* max threshold 64 bytes */
{ int const shift = MIN(9-(int)strategy, 3);
size_t const mintc = (huf_repeat == HUF_repeat_valid) ? 6 : (size_t)8 << shift;
DEBUGLOG(7, "minLiteralsToCompress = %zu", mintc);
return mintc;
}
}
size_t ZSTD_compressLiterals (
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
void* entropyWorkspace, size_t entropyWorkspaceSize,
const ZSTD_hufCTables_t* prevHuf,
ZSTD_hufCTables_t* nextHuf,
ZSTD_strategy strategy,
int disableLiteralCompression,
int suspectUncompressible,
int bmi2)
{
size_t const lhSize = 3 + (srcSize >= 1 KB) + (srcSize >= 16 KB);
BYTE* const ostart = (BYTE*)dst;
U32 singleStream = srcSize < 256;
symbolEncodingType_e hType = set_compressed;
size_t cLitSize;
DEBUGLOG(5,"ZSTD_compressLiterals (disableLiteralCompression=%i, srcSize=%u, dstCapacity=%zu)",
disableLiteralCompression, (U32)srcSize, dstCapacity);
DEBUGLOG(6, "Completed literals listing (%zu bytes)", showHexa(src, srcSize));
/* Prepare nextEntropy assuming reusing the existing table */
ZSTD_memcpy(nextHuf, prevHuf, sizeof(*prevHuf));
if (disableLiteralCompression)
return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
/* if too small, don't even attempt compression (speed opt) */
if (srcSize < ZSTD_minLiteralsToCompress(strategy, prevHuf->repeatMode))
return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
RETURN_ERROR_IF(dstCapacity < lhSize+1, dstSize_tooSmall, "not enough space for compression");
{ HUF_repeat repeat = prevHuf->repeatMode;
int const flags = 0
| (bmi2 ? HUF_flags_bmi2 : 0)
| (strategy < ZSTD_lazy && srcSize <= 1024 ? HUF_flags_preferRepeat : 0)
| (strategy >= HUF_OPTIMAL_DEPTH_THRESHOLD ? HUF_flags_optimalDepth : 0)
| (suspectUncompressible ? HUF_flags_suspectUncompressible : 0);
typedef size_t (*huf_compress_f)(void*, size_t, const void*, size_t, unsigned, unsigned, void*, size_t, HUF_CElt*, HUF_repeat*, int);
huf_compress_f huf_compress;
if (repeat == HUF_repeat_valid && lhSize == 3) singleStream = 1;
huf_compress = singleStream ? HUF_compress1X_repeat : HUF_compress4X_repeat;
cLitSize = huf_compress(ostart+lhSize, dstCapacity-lhSize,
src, srcSize,
HUF_SYMBOLVALUE_MAX, LitHufLog,
entropyWorkspace, entropyWorkspaceSize,
(HUF_CElt*)nextHuf->CTable,
&repeat, flags);
DEBUGLOG(5, "%zu literals compressed into %zu bytes (before header)", srcSize, cLitSize);
if (repeat != HUF_repeat_none) {
/* reused the existing table */
DEBUGLOG(5, "reusing statistics from previous huffman block");
hType = set_repeat;
}
}
{ size_t const minGain = ZSTD_minGain(srcSize, strategy);
if ((cLitSize==0) || (cLitSize >= srcSize - minGain) || ERR_isError(cLitSize)) {
ZSTD_memcpy(nextHuf, prevHuf, sizeof(*prevHuf));
return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
} }
if (cLitSize==1) {
/* A return value of 1 signals that the alphabet consists of a single symbol.
* However, in some rare circumstances, it could be the compressed size (a single byte).
* For that outcome to have a chance to happen, it's necessary that `srcSize < 8`.
* (it's also necessary to not generate statistics).
* Therefore, in such a case, actively check that all bytes are identical. */
if ((srcSize >= 8) || allBytesIdentical(src, srcSize)) {
ZSTD_memcpy(nextHuf, prevHuf, sizeof(*prevHuf));
return ZSTD_compressRleLiteralsBlock(dst, dstCapacity, src, srcSize);
} }
if (hType == set_compressed) {
/* using a newly constructed table */
nextHuf->repeatMode = HUF_repeat_check;
}
/* Build header */
switch(lhSize)
{
case 3: /* 2 - 2 - 10 - 10 */
if (!singleStream) assert(srcSize >= MIN_LITERALS_FOR_4_STREAMS);
{ U32 const lhc = hType + ((U32)(!singleStream) << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<14);
MEM_writeLE24(ostart, lhc);
break;
}
case 4: /* 2 - 2 - 14 - 14 */
assert(srcSize >= MIN_LITERALS_FOR_4_STREAMS);
{ U32 const lhc = hType + (2 << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<18);
MEM_writeLE32(ostart, lhc);
break;
}
case 5: /* 2 - 2 - 18 - 18 */
assert(srcSize >= MIN_LITERALS_FOR_4_STREAMS);
{ U32 const lhc = hType + (3 << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<22);
MEM_writeLE32(ostart, lhc);
ostart[4] = (BYTE)(cLitSize >> 10);
break;
}
default: /* not possible : lhSize is {3,4,5} */
assert(0);
}
DEBUGLOG(5, "Compressed literals: %u -> %u", (U32)srcSize, (U32)(lhSize+cLitSize));
return lhSize+cLitSize;
}

View File

@ -1,39 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_COMPRESS_LITERALS_H
#define ZSTD_COMPRESS_LITERALS_H
#include "zstd_compress_internal.h" /* ZSTD_hufCTables_t, ZSTD_minGain() */
size_t ZSTD_noCompressLiterals (void* dst, size_t dstCapacity, const void* src, size_t srcSize);
/* ZSTD_compressRleLiteralsBlock() :
* Conditions :
* - All bytes in @src are identical
* - dstCapacity >= 4 */
size_t ZSTD_compressRleLiteralsBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize);
/* ZSTD_compressLiterals():
* @entropyWorkspace: must be aligned on 4-bytes boundaries
* @entropyWorkspaceSize : must be >= HUF_WORKSPACE_SIZE
* @suspectUncompressible: sampling checks, to potentially skip huffman coding
*/
size_t ZSTD_compressLiterals (void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
void* entropyWorkspace, size_t entropyWorkspaceSize,
const ZSTD_hufCTables_t* prevHuf,
ZSTD_hufCTables_t* nextHuf,
ZSTD_strategy strategy, int disableLiteralCompression,
int suspectUncompressible,
int bmi2);
#endif /* ZSTD_COMPRESS_LITERALS_H */

View File

@ -1,442 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*-*************************************
* Dependencies
***************************************/
#include "zstd_compress_sequences.h"
/**
* -log2(x / 256) lookup table for x in [0, 256).
* If x == 0: Return 0
* Else: Return floor(-log2(x / 256) * 256)
*/
static unsigned const kInverseProbabilityLog256[256] = {
0, 2048, 1792, 1642, 1536, 1453, 1386, 1329, 1280, 1236, 1197, 1162,
1130, 1100, 1073, 1047, 1024, 1001, 980, 960, 941, 923, 906, 889,
874, 859, 844, 830, 817, 804, 791, 779, 768, 756, 745, 734,
724, 714, 704, 694, 685, 676, 667, 658, 650, 642, 633, 626,
618, 610, 603, 595, 588, 581, 574, 567, 561, 554, 548, 542,
535, 529, 523, 517, 512, 506, 500, 495, 489, 484, 478, 473,
468, 463, 458, 453, 448, 443, 438, 434, 429, 424, 420, 415,
411, 407, 402, 398, 394, 390, 386, 382, 377, 373, 370, 366,
362, 358, 354, 350, 347, 343, 339, 336, 332, 329, 325, 322,
318, 315, 311, 308, 305, 302, 298, 295, 292, 289, 286, 282,
279, 276, 273, 270, 267, 264, 261, 258, 256, 253, 250, 247,
244, 241, 239, 236, 233, 230, 228, 225, 222, 220, 217, 215,
212, 209, 207, 204, 202, 199, 197, 194, 192, 190, 187, 185,
182, 180, 178, 175, 173, 171, 168, 166, 164, 162, 159, 157,
155, 153, 151, 149, 146, 144, 142, 140, 138, 136, 134, 132,
130, 128, 126, 123, 121, 119, 117, 115, 114, 112, 110, 108,
106, 104, 102, 100, 98, 96, 94, 93, 91, 89, 87, 85,
83, 82, 80, 78, 76, 74, 73, 71, 69, 67, 66, 64,
62, 61, 59, 57, 55, 54, 52, 50, 49, 47, 46, 44,
42, 41, 39, 37, 36, 34, 33, 31, 30, 28, 26, 25,
23, 22, 20, 19, 17, 16, 14, 13, 11, 10, 8, 7,
5, 4, 2, 1,
};
static unsigned ZSTD_getFSEMaxSymbolValue(FSE_CTable const* ctable) {
void const* ptr = ctable;
U16 const* u16ptr = (U16 const*)ptr;
U32 const maxSymbolValue = MEM_read16(u16ptr + 1);
return maxSymbolValue;
}
/**
* Returns true if we should use ncount=-1 else we should
* use ncount=1 for low probability symbols instead.
*/
static unsigned ZSTD_useLowProbCount(size_t const nbSeq)
{
/* Heuristic: This should cover most blocks <= 16K and
* start to fade out after 16K to about 32K depending on
* compressibility.
*/
return nbSeq >= 2048;
}
/**
* Returns the cost in bytes of encoding the normalized count header.
* Returns an error if any of the helper functions return an error.
*/
static size_t ZSTD_NCountCost(unsigned const* count, unsigned const max,
size_t const nbSeq, unsigned const FSELog)
{
BYTE wksp[FSE_NCOUNTBOUND];
S16 norm[MaxSeq + 1];
const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max);
FORWARD_IF_ERROR(FSE_normalizeCount(norm, tableLog, count, nbSeq, max, ZSTD_useLowProbCount(nbSeq)), "");
return FSE_writeNCount(wksp, sizeof(wksp), norm, max, tableLog);
}
/**
* Returns the cost in bits of encoding the distribution described by count
* using the entropy bound.
*/
static size_t ZSTD_entropyCost(unsigned const* count, unsigned const max, size_t const total)
{
unsigned cost = 0;
unsigned s;
assert(total > 0);
for (s = 0; s <= max; ++s) {
unsigned norm = (unsigned)((256 * count[s]) / total);
if (count[s] != 0 && norm == 0)
norm = 1;
assert(count[s] < total);
cost += count[s] * kInverseProbabilityLog256[norm];
}
return cost >> 8;
}
/**
* Returns the cost in bits of encoding the distribution in count using ctable.
* Returns an error if ctable cannot represent all the symbols in count.
*/
size_t ZSTD_fseBitCost(
FSE_CTable const* ctable,
unsigned const* count,
unsigned const max)
{
unsigned const kAccuracyLog = 8;
size_t cost = 0;
unsigned s;
FSE_CState_t cstate;
FSE_initCState(&cstate, ctable);
if (ZSTD_getFSEMaxSymbolValue(ctable) < max) {
DEBUGLOG(5, "Repeat FSE_CTable has maxSymbolValue %u < %u",
ZSTD_getFSEMaxSymbolValue(ctable), max);
return ERROR(GENERIC);
}
for (s = 0; s <= max; ++s) {
unsigned const tableLog = cstate.stateLog;
unsigned const badCost = (tableLog + 1) << kAccuracyLog;
unsigned const bitCost = FSE_bitCost(cstate.symbolTT, tableLog, s, kAccuracyLog);
if (count[s] == 0)
continue;
if (bitCost >= badCost) {
DEBUGLOG(5, "Repeat FSE_CTable has Prob[%u] == 0", s);
return ERROR(GENERIC);
}
cost += (size_t)count[s] * bitCost;
}
return cost >> kAccuracyLog;
}
/**
* Returns the cost in bits of encoding the distribution in count using the
* table described by norm. The max symbol support by norm is assumed >= max.
* norm must be valid for every symbol with non-zero probability in count.
*/
size_t ZSTD_crossEntropyCost(short const* norm, unsigned accuracyLog,
unsigned const* count, unsigned const max)
{
unsigned const shift = 8 - accuracyLog;
size_t cost = 0;
unsigned s;
assert(accuracyLog <= 8);
for (s = 0; s <= max; ++s) {
unsigned const normAcc = (norm[s] != -1) ? (unsigned)norm[s] : 1;
unsigned const norm256 = normAcc << shift;
assert(norm256 > 0);
assert(norm256 < 256);
cost += count[s] * kInverseProbabilityLog256[norm256];
}
return cost >> 8;
}
symbolEncodingType_e
ZSTD_selectEncodingType(
FSE_repeat* repeatMode, unsigned const* count, unsigned const max,
size_t const mostFrequent, size_t nbSeq, unsigned const FSELog,
FSE_CTable const* prevCTable,
short const* defaultNorm, U32 defaultNormLog,
ZSTD_defaultPolicy_e const isDefaultAllowed,
ZSTD_strategy const strategy)
{
ZSTD_STATIC_ASSERT(ZSTD_defaultDisallowed == 0 && ZSTD_defaultAllowed != 0);
if (mostFrequent == nbSeq) {
*repeatMode = FSE_repeat_none;
if (isDefaultAllowed && nbSeq <= 2) {
/* Prefer set_basic over set_rle when there are 2 or fewer symbols,
* since RLE uses 1 byte, but set_basic uses 5-6 bits per symbol.
* If basic encoding isn't possible, always choose RLE.
*/
DEBUGLOG(5, "Selected set_basic");
return set_basic;
}
DEBUGLOG(5, "Selected set_rle");
return set_rle;
}
if (strategy < ZSTD_lazy) {
if (isDefaultAllowed) {
size_t const staticFse_nbSeq_max = 1000;
size_t const mult = 10 - strategy;
size_t const baseLog = 3;
size_t const dynamicFse_nbSeq_min = (((size_t)1 << defaultNormLog) * mult) >> baseLog; /* 28-36 for offset, 56-72 for lengths */
assert(defaultNormLog >= 5 && defaultNormLog <= 6); /* xx_DEFAULTNORMLOG */
assert(mult <= 9 && mult >= 7);
if ( (*repeatMode == FSE_repeat_valid)
&& (nbSeq < staticFse_nbSeq_max) ) {
DEBUGLOG(5, "Selected set_repeat");
return set_repeat;
}
if ( (nbSeq < dynamicFse_nbSeq_min)
|| (mostFrequent < (nbSeq >> (defaultNormLog-1))) ) {
DEBUGLOG(5, "Selected set_basic");
/* The format allows default tables to be repeated, but it isn't useful.
* When using simple heuristics to select encoding type, we don't want
* to confuse these tables with dictionaries. When running more careful
* analysis, we don't need to waste time checking both repeating tables
* and default tables.
*/
*repeatMode = FSE_repeat_none;
return set_basic;
}
}
} else {
size_t const basicCost = isDefaultAllowed ? ZSTD_crossEntropyCost(defaultNorm, defaultNormLog, count, max) : ERROR(GENERIC);
size_t const repeatCost = *repeatMode != FSE_repeat_none ? ZSTD_fseBitCost(prevCTable, count, max) : ERROR(GENERIC);
size_t const NCountCost = ZSTD_NCountCost(count, max, nbSeq, FSELog);
size_t const compressedCost = (NCountCost << 3) + ZSTD_entropyCost(count, max, nbSeq);
if (isDefaultAllowed) {
assert(!ZSTD_isError(basicCost));
assert(!(*repeatMode == FSE_repeat_valid && ZSTD_isError(repeatCost)));
}
assert(!ZSTD_isError(NCountCost));
assert(compressedCost < ERROR(maxCode));
DEBUGLOG(5, "Estimated bit costs: basic=%u\trepeat=%u\tcompressed=%u",
(unsigned)basicCost, (unsigned)repeatCost, (unsigned)compressedCost);
if (basicCost <= repeatCost && basicCost <= compressedCost) {
DEBUGLOG(5, "Selected set_basic");
assert(isDefaultAllowed);
*repeatMode = FSE_repeat_none;
return set_basic;
}
if (repeatCost <= compressedCost) {
DEBUGLOG(5, "Selected set_repeat");
assert(!ZSTD_isError(repeatCost));
return set_repeat;
}
assert(compressedCost < basicCost && compressedCost < repeatCost);
}
DEBUGLOG(5, "Selected set_compressed");
*repeatMode = FSE_repeat_check;
return set_compressed;
}
typedef struct {
S16 norm[MaxSeq + 1];
U32 wksp[FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(MaxSeq, MaxFSELog)];
} ZSTD_BuildCTableWksp;
size_t
ZSTD_buildCTable(void* dst, size_t dstCapacity,
FSE_CTable* nextCTable, U32 FSELog, symbolEncodingType_e type,
unsigned* count, U32 max,
const BYTE* codeTable, size_t nbSeq,
const S16* defaultNorm, U32 defaultNormLog, U32 defaultMax,
const FSE_CTable* prevCTable, size_t prevCTableSize,
void* entropyWorkspace, size_t entropyWorkspaceSize)
{
BYTE* op = (BYTE*)dst;
const BYTE* const oend = op + dstCapacity;
DEBUGLOG(6, "ZSTD_buildCTable (dstCapacity=%u)", (unsigned)dstCapacity);
switch (type) {
case set_rle:
FORWARD_IF_ERROR(FSE_buildCTable_rle(nextCTable, (BYTE)max), "");
RETURN_ERROR_IF(dstCapacity==0, dstSize_tooSmall, "not enough space");
*op = codeTable[0];
return 1;
case set_repeat:
ZSTD_memcpy(nextCTable, prevCTable, prevCTableSize);
return 0;
case set_basic:
FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, defaultNorm, defaultMax, defaultNormLog, entropyWorkspace, entropyWorkspaceSize), ""); /* note : could be pre-calculated */
return 0;
case set_compressed: {
ZSTD_BuildCTableWksp* wksp = (ZSTD_BuildCTableWksp*)entropyWorkspace;
size_t nbSeq_1 = nbSeq;
const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max);
if (count[codeTable[nbSeq-1]] > 1) {
count[codeTable[nbSeq-1]]--;
nbSeq_1--;
}
assert(nbSeq_1 > 1);
assert(entropyWorkspaceSize >= sizeof(ZSTD_BuildCTableWksp));
(void)entropyWorkspaceSize;
FORWARD_IF_ERROR(FSE_normalizeCount(wksp->norm, tableLog, count, nbSeq_1, max, ZSTD_useLowProbCount(nbSeq_1)), "FSE_normalizeCount failed");
assert(oend >= op);
{ size_t const NCountSize = FSE_writeNCount(op, (size_t)(oend - op), wksp->norm, max, tableLog); /* overflow protected */
FORWARD_IF_ERROR(NCountSize, "FSE_writeNCount failed");
FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, wksp->norm, max, tableLog, wksp->wksp, sizeof(wksp->wksp)), "FSE_buildCTable_wksp failed");
return NCountSize;
}
}
default: assert(0); RETURN_ERROR(GENERIC, "impossible to reach");
}
}
FORCE_INLINE_TEMPLATE size_t
ZSTD_encodeSequences_body(
void* dst, size_t dstCapacity,
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
seqDef const* sequences, size_t nbSeq, int longOffsets)
{
BIT_CStream_t blockStream;
FSE_CState_t stateMatchLength;
FSE_CState_t stateOffsetBits;
FSE_CState_t stateLitLength;
RETURN_ERROR_IF(
ERR_isError(BIT_initCStream(&blockStream, dst, dstCapacity)),
dstSize_tooSmall, "not enough space remaining");
DEBUGLOG(6, "available space for bitstream : %i (dstCapacity=%u)",
(int)(blockStream.endPtr - blockStream.startPtr),
(unsigned)dstCapacity);
/* first symbols */
FSE_initCState2(&stateMatchLength, CTable_MatchLength, mlCodeTable[nbSeq-1]);
FSE_initCState2(&stateOffsetBits, CTable_OffsetBits, ofCodeTable[nbSeq-1]);
FSE_initCState2(&stateLitLength, CTable_LitLength, llCodeTable[nbSeq-1]);
BIT_addBits(&blockStream, sequences[nbSeq-1].litLength, LL_bits[llCodeTable[nbSeq-1]]);
if (MEM_32bits()) BIT_flushBits(&blockStream);
BIT_addBits(&blockStream, sequences[nbSeq-1].mlBase, ML_bits[mlCodeTable[nbSeq-1]]);
if (MEM_32bits()) BIT_flushBits(&blockStream);
if (longOffsets) {
U32 const ofBits = ofCodeTable[nbSeq-1];
unsigned const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
if (extraBits) {
BIT_addBits(&blockStream, sequences[nbSeq-1].offBase, extraBits);
BIT_flushBits(&blockStream);
}
BIT_addBits(&blockStream, sequences[nbSeq-1].offBase >> extraBits,
ofBits - extraBits);
} else {
BIT_addBits(&blockStream, sequences[nbSeq-1].offBase, ofCodeTable[nbSeq-1]);
}
BIT_flushBits(&blockStream);
{ size_t n;
for (n=nbSeq-2 ; n<nbSeq ; n--) { /* intentional underflow */
BYTE const llCode = llCodeTable[n];
BYTE const ofCode = ofCodeTable[n];
BYTE const mlCode = mlCodeTable[n];
U32 const llBits = LL_bits[llCode];
U32 const ofBits = ofCode;
U32 const mlBits = ML_bits[mlCode];
DEBUGLOG(6, "encoding: litlen:%2u - matchlen:%2u - offCode:%7u",
(unsigned)sequences[n].litLength,
(unsigned)sequences[n].mlBase + MINMATCH,
(unsigned)sequences[n].offBase);
/* 32b*/ /* 64b*/
/* (7)*/ /* (7)*/
FSE_encodeSymbol(&blockStream, &stateOffsetBits, ofCode); /* 15 */ /* 15 */
FSE_encodeSymbol(&blockStream, &stateMatchLength, mlCode); /* 24 */ /* 24 */
if (MEM_32bits()) BIT_flushBits(&blockStream); /* (7)*/
FSE_encodeSymbol(&blockStream, &stateLitLength, llCode); /* 16 */ /* 33 */
if (MEM_32bits() || (ofBits+mlBits+llBits >= 64-7-(LLFSELog+MLFSELog+OffFSELog)))
BIT_flushBits(&blockStream); /* (7)*/
BIT_addBits(&blockStream, sequences[n].litLength, llBits);
if (MEM_32bits() && ((llBits+mlBits)>24)) BIT_flushBits(&blockStream);
BIT_addBits(&blockStream, sequences[n].mlBase, mlBits);
if (MEM_32bits() || (ofBits+mlBits+llBits > 56)) BIT_flushBits(&blockStream);
if (longOffsets) {
unsigned const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
if (extraBits) {
BIT_addBits(&blockStream, sequences[n].offBase, extraBits);
BIT_flushBits(&blockStream); /* (7)*/
}
BIT_addBits(&blockStream, sequences[n].offBase >> extraBits,
ofBits - extraBits); /* 31 */
} else {
BIT_addBits(&blockStream, sequences[n].offBase, ofBits); /* 31 */
}
BIT_flushBits(&blockStream); /* (7)*/
DEBUGLOG(7, "remaining space : %i", (int)(blockStream.endPtr - blockStream.ptr));
} }
DEBUGLOG(6, "ZSTD_encodeSequences: flushing ML state with %u bits", stateMatchLength.stateLog);
FSE_flushCState(&blockStream, &stateMatchLength);
DEBUGLOG(6, "ZSTD_encodeSequences: flushing Off state with %u bits", stateOffsetBits.stateLog);
FSE_flushCState(&blockStream, &stateOffsetBits);
DEBUGLOG(6, "ZSTD_encodeSequences: flushing LL state with %u bits", stateLitLength.stateLog);
FSE_flushCState(&blockStream, &stateLitLength);
{ size_t const streamSize = BIT_closeCStream(&blockStream);
RETURN_ERROR_IF(streamSize==0, dstSize_tooSmall, "not enough space");
return streamSize;
}
}
static size_t
ZSTD_encodeSequences_default(
void* dst, size_t dstCapacity,
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
seqDef const* sequences, size_t nbSeq, int longOffsets)
{
return ZSTD_encodeSequences_body(dst, dstCapacity,
CTable_MatchLength, mlCodeTable,
CTable_OffsetBits, ofCodeTable,
CTable_LitLength, llCodeTable,
sequences, nbSeq, longOffsets);
}
#if DYNAMIC_BMI2
static BMI2_TARGET_ATTRIBUTE size_t
ZSTD_encodeSequences_bmi2(
void* dst, size_t dstCapacity,
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
seqDef const* sequences, size_t nbSeq, int longOffsets)
{
return ZSTD_encodeSequences_body(dst, dstCapacity,
CTable_MatchLength, mlCodeTable,
CTable_OffsetBits, ofCodeTable,
CTable_LitLength, llCodeTable,
sequences, nbSeq, longOffsets);
}
#endif
size_t ZSTD_encodeSequences(
void* dst, size_t dstCapacity,
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
seqDef const* sequences, size_t nbSeq, int longOffsets, int bmi2)
{
DEBUGLOG(5, "ZSTD_encodeSequences: dstCapacity = %u", (unsigned)dstCapacity);
#if DYNAMIC_BMI2
if (bmi2) {
return ZSTD_encodeSequences_bmi2(dst, dstCapacity,
CTable_MatchLength, mlCodeTable,
CTable_OffsetBits, ofCodeTable,
CTable_LitLength, llCodeTable,
sequences, nbSeq, longOffsets);
}
#endif
(void)bmi2;
return ZSTD_encodeSequences_default(dst, dstCapacity,
CTable_MatchLength, mlCodeTable,
CTable_OffsetBits, ofCodeTable,
CTable_LitLength, llCodeTable,
sequences, nbSeq, longOffsets);
}

View File

@ -1,54 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_COMPRESS_SEQUENCES_H
#define ZSTD_COMPRESS_SEQUENCES_H
#include "../common/fse.h" /* FSE_repeat, FSE_CTable */
#include "../common/zstd_internal.h" /* symbolEncodingType_e, ZSTD_strategy */
typedef enum {
ZSTD_defaultDisallowed = 0,
ZSTD_defaultAllowed = 1
} ZSTD_defaultPolicy_e;
symbolEncodingType_e
ZSTD_selectEncodingType(
FSE_repeat* repeatMode, unsigned const* count, unsigned const max,
size_t const mostFrequent, size_t nbSeq, unsigned const FSELog,
FSE_CTable const* prevCTable,
short const* defaultNorm, U32 defaultNormLog,
ZSTD_defaultPolicy_e const isDefaultAllowed,
ZSTD_strategy const strategy);
size_t
ZSTD_buildCTable(void* dst, size_t dstCapacity,
FSE_CTable* nextCTable, U32 FSELog, symbolEncodingType_e type,
unsigned* count, U32 max,
const BYTE* codeTable, size_t nbSeq,
const S16* defaultNorm, U32 defaultNormLog, U32 defaultMax,
const FSE_CTable* prevCTable, size_t prevCTableSize,
void* entropyWorkspace, size_t entropyWorkspaceSize);
size_t ZSTD_encodeSequences(
void* dst, size_t dstCapacity,
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
seqDef const* sequences, size_t nbSeq, int longOffsets, int bmi2);
size_t ZSTD_fseBitCost(
FSE_CTable const* ctable,
unsigned const* count,
unsigned const max);
size_t ZSTD_crossEntropyCost(short const* norm, unsigned accuracyLog,
unsigned const* count, unsigned const max);
#endif /* ZSTD_COMPRESS_SEQUENCES_H */

View File

@ -1,577 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*-*************************************
* Dependencies
***************************************/
#include "zstd_compress_superblock.h"
#include "../common/zstd_internal.h" /* ZSTD_getSequenceLength */
#include "hist.h" /* HIST_countFast_wksp */
#include "zstd_compress_internal.h" /* ZSTD_[huf|fse|entropy]CTablesMetadata_t */
#include "zstd_compress_sequences.h"
#include "zstd_compress_literals.h"
/** ZSTD_compressSubBlock_literal() :
* Compresses literals section for a sub-block.
* When we have to write the Huffman table we will sometimes choose a header
* size larger than necessary. This is because we have to pick the header size
* before we know the table size + compressed size, so we have a bound on the
* table size. If we guessed incorrectly, we fall back to uncompressed literals.
*
* We write the header when writeEntropy=1 and set entropyWritten=1 when we succeeded
* in writing the header, otherwise it is set to 0.
*
* hufMetadata->hType has literals block type info.
* If it is set_basic, all sub-blocks literals section will be Raw_Literals_Block.
* If it is set_rle, all sub-blocks literals section will be RLE_Literals_Block.
* If it is set_compressed, first sub-block's literals section will be Compressed_Literals_Block
* If it is set_compressed, first sub-block's literals section will be Treeless_Literals_Block
* and the following sub-blocks' literals sections will be Treeless_Literals_Block.
* @return : compressed size of literals section of a sub-block
* Or 0 if unable to compress.
* Or error code */
static size_t
ZSTD_compressSubBlock_literal(const HUF_CElt* hufTable,
const ZSTD_hufCTablesMetadata_t* hufMetadata,
const BYTE* literals, size_t litSize,
void* dst, size_t dstSize,
const int bmi2, int writeEntropy, int* entropyWritten)
{
size_t const header = writeEntropy ? 200 : 0;
size_t const lhSize = 3 + (litSize >= (1 KB - header)) + (litSize >= (16 KB - header));
BYTE* const ostart = (BYTE*)dst;
BYTE* const oend = ostart + dstSize;
BYTE* op = ostart + lhSize;
U32 const singleStream = lhSize == 3;
symbolEncodingType_e hType = writeEntropy ? hufMetadata->hType : set_repeat;
size_t cLitSize = 0;
DEBUGLOG(5, "ZSTD_compressSubBlock_literal (litSize=%zu, lhSize=%zu, writeEntropy=%d)", litSize, lhSize, writeEntropy);
*entropyWritten = 0;
if (litSize == 0 || hufMetadata->hType == set_basic) {
DEBUGLOG(5, "ZSTD_compressSubBlock_literal using raw literal");
return ZSTD_noCompressLiterals(dst, dstSize, literals, litSize);
} else if (hufMetadata->hType == set_rle) {
DEBUGLOG(5, "ZSTD_compressSubBlock_literal using rle literal");
return ZSTD_compressRleLiteralsBlock(dst, dstSize, literals, litSize);
}
assert(litSize > 0);
assert(hufMetadata->hType == set_compressed || hufMetadata->hType == set_repeat);
if (writeEntropy && hufMetadata->hType == set_compressed) {
ZSTD_memcpy(op, hufMetadata->hufDesBuffer, hufMetadata->hufDesSize);
op += hufMetadata->hufDesSize;
cLitSize += hufMetadata->hufDesSize;
DEBUGLOG(5, "ZSTD_compressSubBlock_literal (hSize=%zu)", hufMetadata->hufDesSize);
}
{ int const flags = bmi2 ? HUF_flags_bmi2 : 0;
const size_t cSize = singleStream ? HUF_compress1X_usingCTable(op, oend-op, literals, litSize, hufTable, flags)
: HUF_compress4X_usingCTable(op, oend-op, literals, litSize, hufTable, flags);
op += cSize;
cLitSize += cSize;
if (cSize == 0 || ERR_isError(cSize)) {
DEBUGLOG(5, "Failed to write entropy tables %s", ZSTD_getErrorName(cSize));
return 0;
}
/* If we expand and we aren't writing a header then emit uncompressed */
if (!writeEntropy && cLitSize >= litSize) {
DEBUGLOG(5, "ZSTD_compressSubBlock_literal using raw literal because uncompressible");
return ZSTD_noCompressLiterals(dst, dstSize, literals, litSize);
}
/* If we are writing headers then allow expansion that doesn't change our header size. */
if (lhSize < (size_t)(3 + (cLitSize >= 1 KB) + (cLitSize >= 16 KB))) {
assert(cLitSize > litSize);
DEBUGLOG(5, "Literals expanded beyond allowed header size");
return ZSTD_noCompressLiterals(dst, dstSize, literals, litSize);
}
DEBUGLOG(5, "ZSTD_compressSubBlock_literal (cSize=%zu)", cSize);
}
/* Build header */
switch(lhSize)
{
case 3: /* 2 - 2 - 10 - 10 */
{ U32 const lhc = hType + ((!singleStream) << 2) + ((U32)litSize<<4) + ((U32)cLitSize<<14);
MEM_writeLE24(ostart, lhc);
break;
}
case 4: /* 2 - 2 - 14 - 14 */
{ U32 const lhc = hType + (2 << 2) + ((U32)litSize<<4) + ((U32)cLitSize<<18);
MEM_writeLE32(ostart, lhc);
break;
}
case 5: /* 2 - 2 - 18 - 18 */
{ U32 const lhc = hType + (3 << 2) + ((U32)litSize<<4) + ((U32)cLitSize<<22);
MEM_writeLE32(ostart, lhc);
ostart[4] = (BYTE)(cLitSize >> 10);
break;
}
default: /* not possible : lhSize is {3,4,5} */
assert(0);
}
*entropyWritten = 1;
DEBUGLOG(5, "Compressed literals: %u -> %u", (U32)litSize, (U32)(op-ostart));
return op-ostart;
}
static size_t
ZSTD_seqDecompressedSize(seqStore_t const* seqStore,
const seqDef* sequences, size_t nbSeq,
size_t litSize, int lastSequence)
{
const seqDef* const sstart = sequences;
const seqDef* const send = sequences + nbSeq;
const seqDef* sp = sstart;
size_t matchLengthSum = 0;
size_t litLengthSum = 0;
(void)(litLengthSum); /* suppress unused variable warning on some environments */
while (send-sp > 0) {
ZSTD_sequenceLength const seqLen = ZSTD_getSequenceLength(seqStore, sp);
litLengthSum += seqLen.litLength;
matchLengthSum += seqLen.matchLength;
sp++;
}
assert(litLengthSum <= litSize);
if (!lastSequence) {
assert(litLengthSum == litSize);
}
return matchLengthSum + litSize;
}
/** ZSTD_compressSubBlock_sequences() :
* Compresses sequences section for a sub-block.
* fseMetadata->llType, fseMetadata->ofType, and fseMetadata->mlType have
* symbol compression modes for the super-block.
* The first successfully compressed block will have these in its header.
* We set entropyWritten=1 when we succeed in compressing the sequences.
* The following sub-blocks will always have repeat mode.
* @return : compressed size of sequences section of a sub-block
* Or 0 if it is unable to compress
* Or error code. */
static size_t
ZSTD_compressSubBlock_sequences(const ZSTD_fseCTables_t* fseTables,
const ZSTD_fseCTablesMetadata_t* fseMetadata,
const seqDef* sequences, size_t nbSeq,
const BYTE* llCode, const BYTE* mlCode, const BYTE* ofCode,
const ZSTD_CCtx_params* cctxParams,
void* dst, size_t dstCapacity,
const int bmi2, int writeEntropy, int* entropyWritten)
{
const int longOffsets = cctxParams->cParams.windowLog > STREAM_ACCUMULATOR_MIN;
BYTE* const ostart = (BYTE*)dst;
BYTE* const oend = ostart + dstCapacity;
BYTE* op = ostart;
BYTE* seqHead;
DEBUGLOG(5, "ZSTD_compressSubBlock_sequences (nbSeq=%zu, writeEntropy=%d, longOffsets=%d)", nbSeq, writeEntropy, longOffsets);
*entropyWritten = 0;
/* Sequences Header */
RETURN_ERROR_IF((oend-op) < 3 /*max nbSeq Size*/ + 1 /*seqHead*/,
dstSize_tooSmall, "");
if (nbSeq < 0x7F)
*op++ = (BYTE)nbSeq;
else if (nbSeq < LONGNBSEQ)
op[0] = (BYTE)((nbSeq>>8) + 0x80), op[1] = (BYTE)nbSeq, op+=2;
else
op[0]=0xFF, MEM_writeLE16(op+1, (U16)(nbSeq - LONGNBSEQ)), op+=3;
if (nbSeq==0) {
return op - ostart;
}
/* seqHead : flags for FSE encoding type */
seqHead = op++;
DEBUGLOG(5, "ZSTD_compressSubBlock_sequences (seqHeadSize=%u)", (unsigned)(op-ostart));
if (writeEntropy) {
const U32 LLtype = fseMetadata->llType;
const U32 Offtype = fseMetadata->ofType;
const U32 MLtype = fseMetadata->mlType;
DEBUGLOG(5, "ZSTD_compressSubBlock_sequences (fseTablesSize=%zu)", fseMetadata->fseTablesSize);
*seqHead = (BYTE)((LLtype<<6) + (Offtype<<4) + (MLtype<<2));
ZSTD_memcpy(op, fseMetadata->fseTablesBuffer, fseMetadata->fseTablesSize);
op += fseMetadata->fseTablesSize;
} else {
const U32 repeat = set_repeat;
*seqHead = (BYTE)((repeat<<6) + (repeat<<4) + (repeat<<2));
}
{ size_t const bitstreamSize = ZSTD_encodeSequences(
op, oend - op,
fseTables->matchlengthCTable, mlCode,
fseTables->offcodeCTable, ofCode,
fseTables->litlengthCTable, llCode,
sequences, nbSeq,
longOffsets, bmi2);
FORWARD_IF_ERROR(bitstreamSize, "ZSTD_encodeSequences failed");
op += bitstreamSize;
/* zstd versions <= 1.3.4 mistakenly report corruption when
* FSE_readNCount() receives a buffer < 4 bytes.
* Fixed by https://github.com/facebook/zstd/pull/1146.
* This can happen when the last set_compressed table present is 2
* bytes and the bitstream is only one byte.
* In this exceedingly rare case, we will simply emit an uncompressed
* block, since it isn't worth optimizing.
*/
#ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
if (writeEntropy && fseMetadata->lastCountSize && fseMetadata->lastCountSize + bitstreamSize < 4) {
/* NCountSize >= 2 && bitstreamSize > 0 ==> lastCountSize == 3 */
assert(fseMetadata->lastCountSize + bitstreamSize == 3);
DEBUGLOG(5, "Avoiding bug in zstd decoder in versions <= 1.3.4 by "
"emitting an uncompressed block.");
return 0;
}
#endif
DEBUGLOG(5, "ZSTD_compressSubBlock_sequences (bitstreamSize=%zu)", bitstreamSize);
}
/* zstd versions <= 1.4.0 mistakenly report error when
* sequences section body size is less than 3 bytes.
* Fixed by https://github.com/facebook/zstd/pull/1664.
* This can happen when the previous sequences section block is compressed
* with rle mode and the current block's sequences section is compressed
* with repeat mode where sequences section body size can be 1 byte.
*/
#ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
if (op-seqHead < 4) {
DEBUGLOG(5, "Avoiding bug in zstd decoder in versions <= 1.4.0 by emitting "
"an uncompressed block when sequences are < 4 bytes");
return 0;
}
#endif
*entropyWritten = 1;
return op - ostart;
}
/** ZSTD_compressSubBlock() :
* Compresses a single sub-block.
* @return : compressed size of the sub-block
* Or 0 if it failed to compress. */
static size_t ZSTD_compressSubBlock(const ZSTD_entropyCTables_t* entropy,
const ZSTD_entropyCTablesMetadata_t* entropyMetadata,
const seqDef* sequences, size_t nbSeq,
const BYTE* literals, size_t litSize,
const BYTE* llCode, const BYTE* mlCode, const BYTE* ofCode,
const ZSTD_CCtx_params* cctxParams,
void* dst, size_t dstCapacity,
const int bmi2,
int writeLitEntropy, int writeSeqEntropy,
int* litEntropyWritten, int* seqEntropyWritten,
U32 lastBlock)
{
BYTE* const ostart = (BYTE*)dst;
BYTE* const oend = ostart + dstCapacity;
BYTE* op = ostart + ZSTD_blockHeaderSize;
DEBUGLOG(5, "ZSTD_compressSubBlock (litSize=%zu, nbSeq=%zu, writeLitEntropy=%d, writeSeqEntropy=%d, lastBlock=%d)",
litSize, nbSeq, writeLitEntropy, writeSeqEntropy, lastBlock);
{ size_t cLitSize = ZSTD_compressSubBlock_literal((const HUF_CElt*)entropy->huf.CTable,
&entropyMetadata->hufMetadata, literals, litSize,
op, oend-op, bmi2, writeLitEntropy, litEntropyWritten);
FORWARD_IF_ERROR(cLitSize, "ZSTD_compressSubBlock_literal failed");
if (cLitSize == 0) return 0;
op += cLitSize;
}
{ size_t cSeqSize = ZSTD_compressSubBlock_sequences(&entropy->fse,
&entropyMetadata->fseMetadata,
sequences, nbSeq,
llCode, mlCode, ofCode,
cctxParams,
op, oend-op,
bmi2, writeSeqEntropy, seqEntropyWritten);
FORWARD_IF_ERROR(cSeqSize, "ZSTD_compressSubBlock_sequences failed");
if (cSeqSize == 0) return 0;
op += cSeqSize;
}
/* Write block header */
{ size_t cSize = (op-ostart)-ZSTD_blockHeaderSize;
U32 const cBlockHeader24 = lastBlock + (((U32)bt_compressed)<<1) + (U32)(cSize << 3);
MEM_writeLE24(ostart, cBlockHeader24);
}
return op-ostart;
}
static size_t ZSTD_estimateSubBlockSize_literal(const BYTE* literals, size_t litSize,
const ZSTD_hufCTables_t* huf,
const ZSTD_hufCTablesMetadata_t* hufMetadata,
void* workspace, size_t wkspSize,
int writeEntropy)
{
unsigned* const countWksp = (unsigned*)workspace;
unsigned maxSymbolValue = 255;
size_t literalSectionHeaderSize = 3; /* Use hard coded size of 3 bytes */
if (hufMetadata->hType == set_basic) return litSize;
else if (hufMetadata->hType == set_rle) return 1;
else if (hufMetadata->hType == set_compressed || hufMetadata->hType == set_repeat) {
size_t const largest = HIST_count_wksp (countWksp, &maxSymbolValue, (const BYTE*)literals, litSize, workspace, wkspSize);
if (ZSTD_isError(largest)) return litSize;
{ size_t cLitSizeEstimate = HUF_estimateCompressedSize((const HUF_CElt*)huf->CTable, countWksp, maxSymbolValue);
if (writeEntropy) cLitSizeEstimate += hufMetadata->hufDesSize;
return cLitSizeEstimate + literalSectionHeaderSize;
} }
assert(0); /* impossible */
return 0;
}
static size_t ZSTD_estimateSubBlockSize_symbolType(symbolEncodingType_e type,
const BYTE* codeTable, unsigned maxCode,
size_t nbSeq, const FSE_CTable* fseCTable,
const U8* additionalBits,
short const* defaultNorm, U32 defaultNormLog, U32 defaultMax,
void* workspace, size_t wkspSize)
{
unsigned* const countWksp = (unsigned*)workspace;
const BYTE* ctp = codeTable;
const BYTE* const ctStart = ctp;
const BYTE* const ctEnd = ctStart + nbSeq;
size_t cSymbolTypeSizeEstimateInBits = 0;
unsigned max = maxCode;
HIST_countFast_wksp(countWksp, &max, codeTable, nbSeq, workspace, wkspSize); /* can't fail */
if (type == set_basic) {
/* We selected this encoding type, so it must be valid. */
assert(max <= defaultMax);
cSymbolTypeSizeEstimateInBits = max <= defaultMax
? ZSTD_crossEntropyCost(defaultNorm, defaultNormLog, countWksp, max)
: ERROR(GENERIC);
} else if (type == set_rle) {
cSymbolTypeSizeEstimateInBits = 0;
} else if (type == set_compressed || type == set_repeat) {
cSymbolTypeSizeEstimateInBits = ZSTD_fseBitCost(fseCTable, countWksp, max);
}
if (ZSTD_isError(cSymbolTypeSizeEstimateInBits)) return nbSeq * 10;
while (ctp < ctEnd) {
if (additionalBits) cSymbolTypeSizeEstimateInBits += additionalBits[*ctp];
else cSymbolTypeSizeEstimateInBits += *ctp; /* for offset, offset code is also the number of additional bits */
ctp++;
}
return cSymbolTypeSizeEstimateInBits / 8;
}
static size_t ZSTD_estimateSubBlockSize_sequences(const BYTE* ofCodeTable,
const BYTE* llCodeTable,
const BYTE* mlCodeTable,
size_t nbSeq,
const ZSTD_fseCTables_t* fseTables,
const ZSTD_fseCTablesMetadata_t* fseMetadata,
void* workspace, size_t wkspSize,
int writeEntropy)
{
size_t const sequencesSectionHeaderSize = 3; /* Use hard coded size of 3 bytes */
size_t cSeqSizeEstimate = 0;
if (nbSeq == 0) return sequencesSectionHeaderSize;
cSeqSizeEstimate += ZSTD_estimateSubBlockSize_symbolType(fseMetadata->ofType, ofCodeTable, MaxOff,
nbSeq, fseTables->offcodeCTable, NULL,
OF_defaultNorm, OF_defaultNormLog, DefaultMaxOff,
workspace, wkspSize);
cSeqSizeEstimate += ZSTD_estimateSubBlockSize_symbolType(fseMetadata->llType, llCodeTable, MaxLL,
nbSeq, fseTables->litlengthCTable, LL_bits,
LL_defaultNorm, LL_defaultNormLog, MaxLL,
workspace, wkspSize);
cSeqSizeEstimate += ZSTD_estimateSubBlockSize_symbolType(fseMetadata->mlType, mlCodeTable, MaxML,
nbSeq, fseTables->matchlengthCTable, ML_bits,
ML_defaultNorm, ML_defaultNormLog, MaxML,
workspace, wkspSize);
if (writeEntropy) cSeqSizeEstimate += fseMetadata->fseTablesSize;
return cSeqSizeEstimate + sequencesSectionHeaderSize;
}
static size_t ZSTD_estimateSubBlockSize(const BYTE* literals, size_t litSize,
const BYTE* ofCodeTable,
const BYTE* llCodeTable,
const BYTE* mlCodeTable,
size_t nbSeq,
const ZSTD_entropyCTables_t* entropy,
const ZSTD_entropyCTablesMetadata_t* entropyMetadata,
void* workspace, size_t wkspSize,
int writeLitEntropy, int writeSeqEntropy) {
size_t cSizeEstimate = 0;
cSizeEstimate += ZSTD_estimateSubBlockSize_literal(literals, litSize,
&entropy->huf, &entropyMetadata->hufMetadata,
workspace, wkspSize, writeLitEntropy);
cSizeEstimate += ZSTD_estimateSubBlockSize_sequences(ofCodeTable, llCodeTable, mlCodeTable,
nbSeq, &entropy->fse, &entropyMetadata->fseMetadata,
workspace, wkspSize, writeSeqEntropy);
return cSizeEstimate + ZSTD_blockHeaderSize;
}
static int ZSTD_needSequenceEntropyTables(ZSTD_fseCTablesMetadata_t const* fseMetadata)
{
if (fseMetadata->llType == set_compressed || fseMetadata->llType == set_rle)
return 1;
if (fseMetadata->mlType == set_compressed || fseMetadata->mlType == set_rle)
return 1;
if (fseMetadata->ofType == set_compressed || fseMetadata->ofType == set_rle)
return 1;
return 0;
}
/** ZSTD_compressSubBlock_multi() :
* Breaks super-block into multiple sub-blocks and compresses them.
* Entropy will be written to the first block.
* The following blocks will use repeat mode to compress.
* All sub-blocks are compressed blocks (no raw or rle blocks).
* @return : compressed size of the super block (which is multiple ZSTD blocks)
* Or 0 if it failed to compress. */
static size_t ZSTD_compressSubBlock_multi(const seqStore_t* seqStorePtr,
const ZSTD_compressedBlockState_t* prevCBlock,
ZSTD_compressedBlockState_t* nextCBlock,
const ZSTD_entropyCTablesMetadata_t* entropyMetadata,
const ZSTD_CCtx_params* cctxParams,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const int bmi2, U32 lastBlock,
void* workspace, size_t wkspSize)
{
const seqDef* const sstart = seqStorePtr->sequencesStart;
const seqDef* const send = seqStorePtr->sequences;
const seqDef* sp = sstart;
const BYTE* const lstart = seqStorePtr->litStart;
const BYTE* const lend = seqStorePtr->lit;
const BYTE* lp = lstart;
BYTE const* ip = (BYTE const*)src;
BYTE const* const iend = ip + srcSize;
BYTE* const ostart = (BYTE*)dst;
BYTE* const oend = ostart + dstCapacity;
BYTE* op = ostart;
const BYTE* llCodePtr = seqStorePtr->llCode;
const BYTE* mlCodePtr = seqStorePtr->mlCode;
const BYTE* ofCodePtr = seqStorePtr->ofCode;
size_t targetCBlockSize = cctxParams->targetCBlockSize;
size_t litSize, seqCount;
int writeLitEntropy = entropyMetadata->hufMetadata.hType == set_compressed;
int writeSeqEntropy = 1;
int lastSequence = 0;
DEBUGLOG(5, "ZSTD_compressSubBlock_multi (litSize=%u, nbSeq=%u)",
(unsigned)(lend-lp), (unsigned)(send-sstart));
litSize = 0;
seqCount = 0;
do {
size_t cBlockSizeEstimate = 0;
if (sstart == send) {
lastSequence = 1;
} else {
const seqDef* const sequence = sp + seqCount;
lastSequence = sequence == send - 1;
litSize += ZSTD_getSequenceLength(seqStorePtr, sequence).litLength;
seqCount++;
}
if (lastSequence) {
assert(lp <= lend);
assert(litSize <= (size_t)(lend - lp));
litSize = (size_t)(lend - lp);
}
/* I think there is an optimization opportunity here.
* Calling ZSTD_estimateSubBlockSize for every sequence can be wasteful
* since it recalculates estimate from scratch.
* For example, it would recount literal distribution and symbol codes every time.
*/
cBlockSizeEstimate = ZSTD_estimateSubBlockSize(lp, litSize, ofCodePtr, llCodePtr, mlCodePtr, seqCount,
&nextCBlock->entropy, entropyMetadata,
workspace, wkspSize, writeLitEntropy, writeSeqEntropy);
if (cBlockSizeEstimate > targetCBlockSize || lastSequence) {
int litEntropyWritten = 0;
int seqEntropyWritten = 0;
const size_t decompressedSize = ZSTD_seqDecompressedSize(seqStorePtr, sp, seqCount, litSize, lastSequence);
const size_t cSize = ZSTD_compressSubBlock(&nextCBlock->entropy, entropyMetadata,
sp, seqCount,
lp, litSize,
llCodePtr, mlCodePtr, ofCodePtr,
cctxParams,
op, oend-op,
bmi2, writeLitEntropy, writeSeqEntropy,
&litEntropyWritten, &seqEntropyWritten,
lastBlock && lastSequence);
FORWARD_IF_ERROR(cSize, "ZSTD_compressSubBlock failed");
if (cSize > 0 && cSize < decompressedSize) {
DEBUGLOG(5, "Committed the sub-block");
assert(ip + decompressedSize <= iend);
ip += decompressedSize;
sp += seqCount;
lp += litSize;
op += cSize;
llCodePtr += seqCount;
mlCodePtr += seqCount;
ofCodePtr += seqCount;
litSize = 0;
seqCount = 0;
/* Entropy only needs to be written once */
if (litEntropyWritten) {
writeLitEntropy = 0;
}
if (seqEntropyWritten) {
writeSeqEntropy = 0;
}
}
}
} while (!lastSequence);
if (writeLitEntropy) {
DEBUGLOG(5, "ZSTD_compressSubBlock_multi has literal entropy tables unwritten");
ZSTD_memcpy(&nextCBlock->entropy.huf, &prevCBlock->entropy.huf, sizeof(prevCBlock->entropy.huf));
}
if (writeSeqEntropy && ZSTD_needSequenceEntropyTables(&entropyMetadata->fseMetadata)) {
/* If we haven't written our entropy tables, then we've violated our contract and
* must emit an uncompressed block.
*/
DEBUGLOG(5, "ZSTD_compressSubBlock_multi has sequence entropy tables unwritten");
return 0;
}
if (ip < iend) {
size_t const cSize = ZSTD_noCompressBlock(op, oend - op, ip, iend - ip, lastBlock);
DEBUGLOG(5, "ZSTD_compressSubBlock_multi last sub-block uncompressed, %zu bytes", (size_t)(iend - ip));
FORWARD_IF_ERROR(cSize, "ZSTD_noCompressBlock failed");
assert(cSize != 0);
op += cSize;
/* We have to regenerate the repcodes because we've skipped some sequences */
if (sp < send) {
seqDef const* seq;
repcodes_t rep;
ZSTD_memcpy(&rep, prevCBlock->rep, sizeof(rep));
for (seq = sstart; seq < sp; ++seq) {
ZSTD_updateRep(rep.rep, seq->offBase, ZSTD_getSequenceLength(seqStorePtr, seq).litLength == 0);
}
ZSTD_memcpy(nextCBlock->rep, &rep, sizeof(rep));
}
}
DEBUGLOG(5, "ZSTD_compressSubBlock_multi compressed");
return op-ostart;
}
size_t ZSTD_compressSuperBlock(ZSTD_CCtx* zc,
void* dst, size_t dstCapacity,
void const* src, size_t srcSize,
unsigned lastBlock) {
ZSTD_entropyCTablesMetadata_t entropyMetadata;
FORWARD_IF_ERROR(ZSTD_buildBlockEntropyStats(&zc->seqStore,
&zc->blockState.prevCBlock->entropy,
&zc->blockState.nextCBlock->entropy,
&zc->appliedParams,
&entropyMetadata,
zc->entropyWorkspace, ENTROPY_WORKSPACE_SIZE /* statically allocated in resetCCtx */), "");
return ZSTD_compressSubBlock_multi(&zc->seqStore,
zc->blockState.prevCBlock,
zc->blockState.nextCBlock,
&entropyMetadata,
&zc->appliedParams,
dst, dstCapacity,
src, srcSize,
zc->bmi2, lastBlock,
zc->entropyWorkspace, ENTROPY_WORKSPACE_SIZE /* statically allocated in resetCCtx */);
}

View File

@ -1,32 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_COMPRESS_ADVANCED_H
#define ZSTD_COMPRESS_ADVANCED_H
/*-*************************************
* Dependencies
***************************************/
#include "../zstd.h" /* ZSTD_CCtx */
/*-*************************************
* Target Compressed Block Size
***************************************/
/* ZSTD_compressSuperBlock() :
* Used to compress a super block when targetCBlockSize is being used.
* The given block will be compressed into multiple sub blocks that are around targetCBlockSize. */
size_t ZSTD_compressSuperBlock(ZSTD_CCtx* zc,
void* dst, size_t dstCapacity,
void const* src, size_t srcSize,
unsigned lastBlock);
#endif /* ZSTD_COMPRESS_ADVANCED_H */

View File

@ -1,679 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_CWKSP_H
#define ZSTD_CWKSP_H
/*-*************************************
* Dependencies
***************************************/
#include "../common/allocations.h" /* ZSTD_customMalloc, ZSTD_customFree */
#include "../common/zstd_internal.h"
#if defined (__cplusplus)
extern "C" {
#endif
/*-*************************************
* Constants
***************************************/
/* Since the workspace is effectively its own little malloc implementation /
* arena, when we run under ASAN, we should similarly insert redzones between
* each internal element of the workspace, so ASAN will catch overruns that
* reach outside an object but that stay inside the workspace.
*
* This defines the size of that redzone.
*/
#ifndef ZSTD_CWKSP_ASAN_REDZONE_SIZE
#define ZSTD_CWKSP_ASAN_REDZONE_SIZE 128
#endif
/* Set our tables and aligneds to align by 64 bytes */
#define ZSTD_CWKSP_ALIGNMENT_BYTES 64
/*-*************************************
* Structures
***************************************/
typedef enum {
ZSTD_cwksp_alloc_objects,
ZSTD_cwksp_alloc_buffers,
ZSTD_cwksp_alloc_aligned
} ZSTD_cwksp_alloc_phase_e;
/**
* Used to describe whether the workspace is statically allocated (and will not
* necessarily ever be freed), or if it's dynamically allocated and we can
* expect a well-formed caller to free this.
*/
typedef enum {
ZSTD_cwksp_dynamic_alloc,
ZSTD_cwksp_static_alloc
} ZSTD_cwksp_static_alloc_e;
/**
* Zstd fits all its internal datastructures into a single continuous buffer,
* so that it only needs to perform a single OS allocation (or so that a buffer
* can be provided to it and it can perform no allocations at all). This buffer
* is called the workspace.
*
* Several optimizations complicate that process of allocating memory ranges
* from this workspace for each internal datastructure:
*
* - These different internal datastructures have different setup requirements:
*
* - The static objects need to be cleared once and can then be trivially
* reused for each compression.
*
* - Various buffers don't need to be initialized at all--they are always
* written into before they're read.
*
* - The matchstate tables have a unique requirement that they don't need
* their memory to be totally cleared, but they do need the memory to have
* some bound, i.e., a guarantee that all values in the memory they've been
* allocated is less than some maximum value (which is the starting value
* for the indices that they will then use for compression). When this
* guarantee is provided to them, they can use the memory without any setup
* work. When it can't, they have to clear the area.
*
* - These buffers also have different alignment requirements.
*
* - We would like to reuse the objects in the workspace for multiple
* compressions without having to perform any expensive reallocation or
* reinitialization work.
*
* - We would like to be able to efficiently reuse the workspace across
* multiple compressions **even when the compression parameters change** and
* we need to resize some of the objects (where possible).
*
* To attempt to manage this buffer, given these constraints, the ZSTD_cwksp
* abstraction was created. It works as follows:
*
* Workspace Layout:
*
* [ ... workspace ... ]
* [objects][tables ... ->] free space [<- ... aligned][<- ... buffers]
*
* The various objects that live in the workspace are divided into the
* following categories, and are allocated separately:
*
* - Static objects: this is optionally the enclosing ZSTD_CCtx or ZSTD_CDict,
* so that literally everything fits in a single buffer. Note: if present,
* this must be the first object in the workspace, since ZSTD_customFree{CCtx,
* CDict}() rely on a pointer comparison to see whether one or two frees are
* required.
*
* - Fixed size objects: these are fixed-size, fixed-count objects that are
* nonetheless "dynamically" allocated in the workspace so that we can
* control how they're initialized separately from the broader ZSTD_CCtx.
* Examples:
* - Entropy Workspace
* - 2 x ZSTD_compressedBlockState_t
* - CDict dictionary contents
*
* - Tables: these are any of several different datastructures (hash tables,
* chain tables, binary trees) that all respect a common format: they are
* uint32_t arrays, all of whose values are between 0 and (nextSrc - base).
* Their sizes depend on the cparams. These tables are 64-byte aligned.
*
* - Aligned: these buffers are used for various purposes that require 4 byte
* alignment, but don't require any initialization before they're used. These
* buffers are each aligned to 64 bytes.
*
* - Buffers: these buffers are used for various purposes that don't require
* any alignment or initialization before they're used. This means they can
* be moved around at no cost for a new compression.
*
* Allocating Memory:
*
* The various types of objects must be allocated in order, so they can be
* correctly packed into the workspace buffer. That order is:
*
* 1. Objects
* 2. Buffers
* 3. Aligned/Tables
*
* Attempts to reserve objects of different types out of order will fail.
*/
typedef struct {
void* workspace;
void* workspaceEnd;
void* objectEnd;
void* tableEnd;
void* tableValidEnd;
void* allocStart;
BYTE allocFailed;
int workspaceOversizedDuration;
ZSTD_cwksp_alloc_phase_e phase;
ZSTD_cwksp_static_alloc_e isStatic;
} ZSTD_cwksp;
/*-*************************************
* Functions
***************************************/
MEM_STATIC size_t ZSTD_cwksp_available_space(ZSTD_cwksp* ws);
MEM_STATIC void ZSTD_cwksp_assert_internal_consistency(ZSTD_cwksp* ws) {
(void)ws;
assert(ws->workspace <= ws->objectEnd);
assert(ws->objectEnd <= ws->tableEnd);
assert(ws->objectEnd <= ws->tableValidEnd);
assert(ws->tableEnd <= ws->allocStart);
assert(ws->tableValidEnd <= ws->allocStart);
assert(ws->allocStart <= ws->workspaceEnd);
}
/**
* Align must be a power of 2.
*/
MEM_STATIC size_t ZSTD_cwksp_align(size_t size, size_t const align) {
size_t const mask = align - 1;
assert((align & mask) == 0);
return (size + mask) & ~mask;
}
/**
* Use this to determine how much space in the workspace we will consume to
* allocate this object. (Normally it should be exactly the size of the object,
* but under special conditions, like ASAN, where we pad each object, it might
* be larger.)
*
* Since tables aren't currently redzoned, you don't need to call through this
* to figure out how much space you need for the matchState tables. Everything
* else is though.
*
* Do not use for sizing aligned buffers. Instead, use ZSTD_cwksp_aligned_alloc_size().
*/
MEM_STATIC size_t ZSTD_cwksp_alloc_size(size_t size) {
if (size == 0)
return 0;
#if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
return size + 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE;
#else
return size;
#endif
}
/**
* Returns an adjusted alloc size that is the nearest larger multiple of 64 bytes.
* Used to determine the number of bytes required for a given "aligned".
*/
MEM_STATIC size_t ZSTD_cwksp_aligned_alloc_size(size_t size) {
return ZSTD_cwksp_alloc_size(ZSTD_cwksp_align(size, ZSTD_CWKSP_ALIGNMENT_BYTES));
}
/**
* Returns the amount of additional space the cwksp must allocate
* for internal purposes (currently only alignment).
*/
MEM_STATIC size_t ZSTD_cwksp_slack_space_required(void) {
/* For alignment, the wksp will always allocate an additional n_1=[1, 64] bytes
* to align the beginning of tables section, as well as another n_2=[0, 63] bytes
* to align the beginning of the aligned section.
*
* n_1 + n_2 == 64 bytes if the cwksp is freshly allocated, due to tables and
* aligneds being sized in multiples of 64 bytes.
*/
size_t const slackSpace = ZSTD_CWKSP_ALIGNMENT_BYTES;
return slackSpace;
}
/**
* Return the number of additional bytes required to align a pointer to the given number of bytes.
* alignBytes must be a power of two.
*/
MEM_STATIC size_t ZSTD_cwksp_bytes_to_align_ptr(void* ptr, const size_t alignBytes) {
size_t const alignBytesMask = alignBytes - 1;
size_t const bytes = (alignBytes - ((size_t)ptr & (alignBytesMask))) & alignBytesMask;
assert((alignBytes & alignBytesMask) == 0);
assert(bytes != ZSTD_CWKSP_ALIGNMENT_BYTES);
return bytes;
}
/**
* Internal function. Do not use directly.
* Reserves the given number of bytes within the aligned/buffer segment of the wksp,
* which counts from the end of the wksp (as opposed to the object/table segment).
*
* Returns a pointer to the beginning of that space.
*/
MEM_STATIC void*
ZSTD_cwksp_reserve_internal_buffer_space(ZSTD_cwksp* ws, size_t const bytes)
{
void* const alloc = (BYTE*)ws->allocStart - bytes;
void* const bottom = ws->tableEnd;
DEBUGLOG(5, "cwksp: reserving %p %zd bytes, %zd bytes remaining",
alloc, bytes, ZSTD_cwksp_available_space(ws) - bytes);
ZSTD_cwksp_assert_internal_consistency(ws);
assert(alloc >= bottom);
if (alloc < bottom) {
DEBUGLOG(4, "cwksp: alloc failed!");
ws->allocFailed = 1;
return NULL;
}
/* the area is reserved from the end of wksp.
* If it overlaps with tableValidEnd, it voids guarantees on values' range */
if (alloc < ws->tableValidEnd) {
ws->tableValidEnd = alloc;
}
ws->allocStart = alloc;
return alloc;
}
/**
* Moves the cwksp to the next phase, and does any necessary allocations.
* cwksp initialization must necessarily go through each phase in order.
* Returns a 0 on success, or zstd error
*/
MEM_STATIC size_t
ZSTD_cwksp_internal_advance_phase(ZSTD_cwksp* ws, ZSTD_cwksp_alloc_phase_e phase)
{
assert(phase >= ws->phase);
if (phase > ws->phase) {
/* Going from allocating objects to allocating buffers */
if (ws->phase < ZSTD_cwksp_alloc_buffers &&
phase >= ZSTD_cwksp_alloc_buffers) {
ws->tableValidEnd = ws->objectEnd;
}
/* Going from allocating buffers to allocating aligneds/tables */
if (ws->phase < ZSTD_cwksp_alloc_aligned &&
phase >= ZSTD_cwksp_alloc_aligned) {
{ /* Align the start of the "aligned" to 64 bytes. Use [1, 64] bytes. */
size_t const bytesToAlign =
ZSTD_CWKSP_ALIGNMENT_BYTES - ZSTD_cwksp_bytes_to_align_ptr(ws->allocStart, ZSTD_CWKSP_ALIGNMENT_BYTES);
DEBUGLOG(5, "reserving aligned alignment addtl space: %zu", bytesToAlign);
ZSTD_STATIC_ASSERT((ZSTD_CWKSP_ALIGNMENT_BYTES & (ZSTD_CWKSP_ALIGNMENT_BYTES - 1)) == 0); /* power of 2 */
RETURN_ERROR_IF(!ZSTD_cwksp_reserve_internal_buffer_space(ws, bytesToAlign),
memory_allocation, "aligned phase - alignment initial allocation failed!");
}
{ /* Align the start of the tables to 64 bytes. Use [0, 63] bytes */
void* const alloc = ws->objectEnd;
size_t const bytesToAlign = ZSTD_cwksp_bytes_to_align_ptr(alloc, ZSTD_CWKSP_ALIGNMENT_BYTES);
void* const objectEnd = (BYTE*)alloc + bytesToAlign;
DEBUGLOG(5, "reserving table alignment addtl space: %zu", bytesToAlign);
RETURN_ERROR_IF(objectEnd > ws->workspaceEnd, memory_allocation,
"table phase - alignment initial allocation failed!");
ws->objectEnd = objectEnd;
ws->tableEnd = objectEnd; /* table area starts being empty */
if (ws->tableValidEnd < ws->tableEnd) {
ws->tableValidEnd = ws->tableEnd;
} } }
ws->phase = phase;
ZSTD_cwksp_assert_internal_consistency(ws);
}
return 0;
}
/**
* Returns whether this object/buffer/etc was allocated in this workspace.
*/
MEM_STATIC int ZSTD_cwksp_owns_buffer(const ZSTD_cwksp* ws, const void* ptr)
{
return (ptr != NULL) && (ws->workspace <= ptr) && (ptr <= ws->workspaceEnd);
}
/**
* Internal function. Do not use directly.
*/
MEM_STATIC void*
ZSTD_cwksp_reserve_internal(ZSTD_cwksp* ws, size_t bytes, ZSTD_cwksp_alloc_phase_e phase)
{
void* alloc;
if (ZSTD_isError(ZSTD_cwksp_internal_advance_phase(ws, phase)) || bytes == 0) {
return NULL;
}
#if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
/* over-reserve space */
bytes += 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE;
#endif
alloc = ZSTD_cwksp_reserve_internal_buffer_space(ws, bytes);
#if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
/* Move alloc so there's ZSTD_CWKSP_ASAN_REDZONE_SIZE unused space on
* either size. */
if (alloc) {
alloc = (BYTE *)alloc + ZSTD_CWKSP_ASAN_REDZONE_SIZE;
if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) {
/* We need to keep the redzone poisoned while unpoisoning the bytes that
* are actually allocated. */
__asan_unpoison_memory_region(alloc, bytes - 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE);
}
}
#endif
return alloc;
}
/**
* Reserves and returns unaligned memory.
*/
MEM_STATIC BYTE* ZSTD_cwksp_reserve_buffer(ZSTD_cwksp* ws, size_t bytes)
{
return (BYTE*)ZSTD_cwksp_reserve_internal(ws, bytes, ZSTD_cwksp_alloc_buffers);
}
/**
* Reserves and returns memory sized on and aligned on ZSTD_CWKSP_ALIGNMENT_BYTES (64 bytes).
*/
MEM_STATIC void* ZSTD_cwksp_reserve_aligned(ZSTD_cwksp* ws, size_t bytes)
{
void* ptr = ZSTD_cwksp_reserve_internal(ws, ZSTD_cwksp_align(bytes, ZSTD_CWKSP_ALIGNMENT_BYTES),
ZSTD_cwksp_alloc_aligned);
assert(((size_t)ptr & (ZSTD_CWKSP_ALIGNMENT_BYTES-1))== 0);
return ptr;
}
/**
* Aligned on 64 bytes. These buffers have the special property that
* their values remain constrained, allowing us to re-use them without
* memset()-ing them.
*/
MEM_STATIC void* ZSTD_cwksp_reserve_table(ZSTD_cwksp* ws, size_t bytes)
{
const ZSTD_cwksp_alloc_phase_e phase = ZSTD_cwksp_alloc_aligned;
void* alloc;
void* end;
void* top;
if (ZSTD_isError(ZSTD_cwksp_internal_advance_phase(ws, phase))) {
return NULL;
}
alloc = ws->tableEnd;
end = (BYTE *)alloc + bytes;
top = ws->allocStart;
DEBUGLOG(5, "cwksp: reserving %p table %zd bytes, %zd bytes remaining",
alloc, bytes, ZSTD_cwksp_available_space(ws) - bytes);
assert((bytes & (sizeof(U32)-1)) == 0);
ZSTD_cwksp_assert_internal_consistency(ws);
assert(end <= top);
if (end > top) {
DEBUGLOG(4, "cwksp: table alloc failed!");
ws->allocFailed = 1;
return NULL;
}
ws->tableEnd = end;
#if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) {
__asan_unpoison_memory_region(alloc, bytes);
}
#endif
assert((bytes & (ZSTD_CWKSP_ALIGNMENT_BYTES-1)) == 0);
assert(((size_t)alloc & (ZSTD_CWKSP_ALIGNMENT_BYTES-1))== 0);
return alloc;
}
/**
* Aligned on sizeof(void*).
* Note : should happen only once, at workspace first initialization
*/
MEM_STATIC void* ZSTD_cwksp_reserve_object(ZSTD_cwksp* ws, size_t bytes)
{
size_t const roundedBytes = ZSTD_cwksp_align(bytes, sizeof(void*));
void* alloc = ws->objectEnd;
void* end = (BYTE*)alloc + roundedBytes;
#if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
/* over-reserve space */
end = (BYTE *)end + 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE;
#endif
DEBUGLOG(4,
"cwksp: reserving %p object %zd bytes (rounded to %zd), %zd bytes remaining",
alloc, bytes, roundedBytes, ZSTD_cwksp_available_space(ws) - roundedBytes);
assert((size_t)alloc % ZSTD_ALIGNOF(void*) == 0);
assert(bytes % ZSTD_ALIGNOF(void*) == 0);
ZSTD_cwksp_assert_internal_consistency(ws);
/* we must be in the first phase, no advance is possible */
if (ws->phase != ZSTD_cwksp_alloc_objects || end > ws->workspaceEnd) {
DEBUGLOG(3, "cwksp: object alloc failed!");
ws->allocFailed = 1;
return NULL;
}
ws->objectEnd = end;
ws->tableEnd = end;
ws->tableValidEnd = end;
#if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
/* Move alloc so there's ZSTD_CWKSP_ASAN_REDZONE_SIZE unused space on
* either size. */
alloc = (BYTE*)alloc + ZSTD_CWKSP_ASAN_REDZONE_SIZE;
if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) {
__asan_unpoison_memory_region(alloc, bytes);
}
#endif
return alloc;
}
MEM_STATIC void ZSTD_cwksp_mark_tables_dirty(ZSTD_cwksp* ws)
{
DEBUGLOG(4, "cwksp: ZSTD_cwksp_mark_tables_dirty");
#if ZSTD_MEMORY_SANITIZER && !defined (ZSTD_MSAN_DONT_POISON_WORKSPACE)
/* To validate that the table re-use logic is sound, and that we don't
* access table space that we haven't cleaned, we re-"poison" the table
* space every time we mark it dirty. */
{
size_t size = (BYTE*)ws->tableValidEnd - (BYTE*)ws->objectEnd;
assert(__msan_test_shadow(ws->objectEnd, size) == -1);
__msan_poison(ws->objectEnd, size);
}
#endif
assert(ws->tableValidEnd >= ws->objectEnd);
assert(ws->tableValidEnd <= ws->allocStart);
ws->tableValidEnd = ws->objectEnd;
ZSTD_cwksp_assert_internal_consistency(ws);
}
MEM_STATIC void ZSTD_cwksp_mark_tables_clean(ZSTD_cwksp* ws) {
DEBUGLOG(4, "cwksp: ZSTD_cwksp_mark_tables_clean");
assert(ws->tableValidEnd >= ws->objectEnd);
assert(ws->tableValidEnd <= ws->allocStart);
if (ws->tableValidEnd < ws->tableEnd) {
ws->tableValidEnd = ws->tableEnd;
}
ZSTD_cwksp_assert_internal_consistency(ws);
}
/**
* Zero the part of the allocated tables not already marked clean.
*/
MEM_STATIC void ZSTD_cwksp_clean_tables(ZSTD_cwksp* ws) {
DEBUGLOG(4, "cwksp: ZSTD_cwksp_clean_tables");
assert(ws->tableValidEnd >= ws->objectEnd);
assert(ws->tableValidEnd <= ws->allocStart);
if (ws->tableValidEnd < ws->tableEnd) {
ZSTD_memset(ws->tableValidEnd, 0, (size_t)((BYTE*)ws->tableEnd - (BYTE*)ws->tableValidEnd));
}
ZSTD_cwksp_mark_tables_clean(ws);
}
/**
* Invalidates table allocations.
* All other allocations remain valid.
*/
MEM_STATIC void ZSTD_cwksp_clear_tables(ZSTD_cwksp* ws) {
DEBUGLOG(4, "cwksp: clearing tables!");
#if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
/* We don't do this when the workspace is statically allocated, because
* when that is the case, we have no capability to hook into the end of the
* workspace's lifecycle to unpoison the memory.
*/
if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) {
size_t size = (BYTE*)ws->tableValidEnd - (BYTE*)ws->objectEnd;
__asan_poison_memory_region(ws->objectEnd, size);
}
#endif
ws->tableEnd = ws->objectEnd;
ZSTD_cwksp_assert_internal_consistency(ws);
}
/**
* Invalidates all buffer, aligned, and table allocations.
* Object allocations remain valid.
*/
MEM_STATIC void ZSTD_cwksp_clear(ZSTD_cwksp* ws) {
DEBUGLOG(4, "cwksp: clearing!");
#if ZSTD_MEMORY_SANITIZER && !defined (ZSTD_MSAN_DONT_POISON_WORKSPACE)
/* To validate that the context re-use logic is sound, and that we don't
* access stuff that this compression hasn't initialized, we re-"poison"
* the workspace (or at least the non-static, non-table parts of it)
* every time we start a new compression. */
{
size_t size = (BYTE*)ws->workspaceEnd - (BYTE*)ws->tableValidEnd;
__msan_poison(ws->tableValidEnd, size);
}
#endif
#if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
/* We don't do this when the workspace is statically allocated, because
* when that is the case, we have no capability to hook into the end of the
* workspace's lifecycle to unpoison the memory.
*/
if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) {
size_t size = (BYTE*)ws->workspaceEnd - (BYTE*)ws->objectEnd;
__asan_poison_memory_region(ws->objectEnd, size);
}
#endif
ws->tableEnd = ws->objectEnd;
ws->allocStart = ws->workspaceEnd;
ws->allocFailed = 0;
if (ws->phase > ZSTD_cwksp_alloc_buffers) {
ws->phase = ZSTD_cwksp_alloc_buffers;
}
ZSTD_cwksp_assert_internal_consistency(ws);
}
/**
* The provided workspace takes ownership of the buffer [start, start+size).
* Any existing values in the workspace are ignored (the previously managed
* buffer, if present, must be separately freed).
*/
MEM_STATIC void ZSTD_cwksp_init(ZSTD_cwksp* ws, void* start, size_t size, ZSTD_cwksp_static_alloc_e isStatic) {
DEBUGLOG(4, "cwksp: init'ing workspace with %zd bytes", size);
assert(((size_t)start & (sizeof(void*)-1)) == 0); /* ensure correct alignment */
ws->workspace = start;
ws->workspaceEnd = (BYTE*)start + size;
ws->objectEnd = ws->workspace;
ws->tableValidEnd = ws->objectEnd;
ws->phase = ZSTD_cwksp_alloc_objects;
ws->isStatic = isStatic;
ZSTD_cwksp_clear(ws);
ws->workspaceOversizedDuration = 0;
ZSTD_cwksp_assert_internal_consistency(ws);
}
MEM_STATIC size_t ZSTD_cwksp_create(ZSTD_cwksp* ws, size_t size, ZSTD_customMem customMem) {
void* workspace = ZSTD_customMalloc(size, customMem);
DEBUGLOG(4, "cwksp: creating new workspace with %zd bytes", size);
RETURN_ERROR_IF(workspace == NULL, memory_allocation, "NULL pointer!");
ZSTD_cwksp_init(ws, workspace, size, ZSTD_cwksp_dynamic_alloc);
return 0;
}
MEM_STATIC void ZSTD_cwksp_free(ZSTD_cwksp* ws, ZSTD_customMem customMem) {
void *ptr = ws->workspace;
DEBUGLOG(4, "cwksp: freeing workspace");
ZSTD_memset(ws, 0, sizeof(ZSTD_cwksp));
ZSTD_customFree(ptr, customMem);
}
/**
* Moves the management of a workspace from one cwksp to another. The src cwksp
* is left in an invalid state (src must be re-init()'ed before it's used again).
*/
MEM_STATIC void ZSTD_cwksp_move(ZSTD_cwksp* dst, ZSTD_cwksp* src) {
*dst = *src;
ZSTD_memset(src, 0, sizeof(ZSTD_cwksp));
}
MEM_STATIC size_t ZSTD_cwksp_sizeof(const ZSTD_cwksp* ws) {
return (size_t)((BYTE*)ws->workspaceEnd - (BYTE*)ws->workspace);
}
MEM_STATIC size_t ZSTD_cwksp_used(const ZSTD_cwksp* ws) {
return (size_t)((BYTE*)ws->tableEnd - (BYTE*)ws->workspace)
+ (size_t)((BYTE*)ws->workspaceEnd - (BYTE*)ws->allocStart);
}
MEM_STATIC int ZSTD_cwksp_reserve_failed(const ZSTD_cwksp* ws) {
return ws->allocFailed;
}
/*-*************************************
* Functions Checking Free Space
***************************************/
/* ZSTD_alignmentSpaceWithinBounds() :
* Returns if the estimated space needed for a wksp is within an acceptable limit of the
* actual amount of space used.
*/
MEM_STATIC int ZSTD_cwksp_estimated_space_within_bounds(const ZSTD_cwksp* const ws,
size_t const estimatedSpace, int resizedWorkspace) {
if (resizedWorkspace) {
/* Resized/newly allocated wksp should have exact bounds */
return ZSTD_cwksp_used(ws) == estimatedSpace;
} else {
/* Due to alignment, when reusing a workspace, we can actually consume 63 fewer or more bytes
* than estimatedSpace. See the comments in zstd_cwksp.h for details.
*/
return (ZSTD_cwksp_used(ws) >= estimatedSpace - 63) && (ZSTD_cwksp_used(ws) <= estimatedSpace + 63);
}
}
MEM_STATIC size_t ZSTD_cwksp_available_space(ZSTD_cwksp* ws) {
return (size_t)((BYTE*)ws->allocStart - (BYTE*)ws->tableEnd);
}
MEM_STATIC int ZSTD_cwksp_check_available(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
return ZSTD_cwksp_available_space(ws) >= additionalNeededSpace;
}
MEM_STATIC int ZSTD_cwksp_check_too_large(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
return ZSTD_cwksp_check_available(
ws, additionalNeededSpace * ZSTD_WORKSPACETOOLARGE_FACTOR);
}
MEM_STATIC int ZSTD_cwksp_check_wasteful(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
return ZSTD_cwksp_check_too_large(ws, additionalNeededSpace)
&& ws->workspaceOversizedDuration > ZSTD_WORKSPACETOOLARGE_MAXDURATION;
}
MEM_STATIC void ZSTD_cwksp_bump_oversized_duration(
ZSTD_cwksp* ws, size_t additionalNeededSpace) {
if (ZSTD_cwksp_check_too_large(ws, additionalNeededSpace)) {
ws->workspaceOversizedDuration++;
} else {
ws->workspaceOversizedDuration = 0;
}
}
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_CWKSP_H */

View File

@ -1,758 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#include "zstd_compress_internal.h"
#include "zstd_double_fast.h"
static void ZSTD_fillDoubleHashTableForCDict(ZSTD_matchState_t* ms,
void const* end, ZSTD_dictTableLoadMethod_e dtlm)
{
const ZSTD_compressionParameters* const cParams = &ms->cParams;
U32* const hashLarge = ms->hashTable;
U32 const hBitsL = cParams->hashLog + ZSTD_SHORT_CACHE_TAG_BITS;
U32 const mls = cParams->minMatch;
U32* const hashSmall = ms->chainTable;
U32 const hBitsS = cParams->chainLog + ZSTD_SHORT_CACHE_TAG_BITS;
const BYTE* const base = ms->window.base;
const BYTE* ip = base + ms->nextToUpdate;
const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE;
const U32 fastHashFillStep = 3;
/* Always insert every fastHashFillStep position into the hash tables.
* Insert the other positions into the large hash table if their entry
* is empty.
*/
for (; ip + fastHashFillStep - 1 <= iend; ip += fastHashFillStep) {
U32 const curr = (U32)(ip - base);
U32 i;
for (i = 0; i < fastHashFillStep; ++i) {
size_t const smHashAndTag = ZSTD_hashPtr(ip + i, hBitsS, mls);
size_t const lgHashAndTag = ZSTD_hashPtr(ip + i, hBitsL, 8);
if (i == 0) {
ZSTD_writeTaggedIndex(hashSmall, smHashAndTag, curr + i);
}
if (i == 0 || hashLarge[lgHashAndTag >> ZSTD_SHORT_CACHE_TAG_BITS] == 0) {
ZSTD_writeTaggedIndex(hashLarge, lgHashAndTag, curr + i);
}
/* Only load extra positions for ZSTD_dtlm_full */
if (dtlm == ZSTD_dtlm_fast)
break;
} }
}
static void ZSTD_fillDoubleHashTableForCCtx(ZSTD_matchState_t* ms,
void const* end, ZSTD_dictTableLoadMethod_e dtlm)
{
const ZSTD_compressionParameters* const cParams = &ms->cParams;
U32* const hashLarge = ms->hashTable;
U32 const hBitsL = cParams->hashLog;
U32 const mls = cParams->minMatch;
U32* const hashSmall = ms->chainTable;
U32 const hBitsS = cParams->chainLog;
const BYTE* const base = ms->window.base;
const BYTE* ip = base + ms->nextToUpdate;
const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE;
const U32 fastHashFillStep = 3;
/* Always insert every fastHashFillStep position into the hash tables.
* Insert the other positions into the large hash table if their entry
* is empty.
*/
for (; ip + fastHashFillStep - 1 <= iend; ip += fastHashFillStep) {
U32 const curr = (U32)(ip - base);
U32 i;
for (i = 0; i < fastHashFillStep; ++i) {
size_t const smHash = ZSTD_hashPtr(ip + i, hBitsS, mls);
size_t const lgHash = ZSTD_hashPtr(ip + i, hBitsL, 8);
if (i == 0)
hashSmall[smHash] = curr + i;
if (i == 0 || hashLarge[lgHash] == 0)
hashLarge[lgHash] = curr + i;
/* Only load extra positions for ZSTD_dtlm_full */
if (dtlm == ZSTD_dtlm_fast)
break;
} }
}
void ZSTD_fillDoubleHashTable(ZSTD_matchState_t* ms,
const void* const end,
ZSTD_dictTableLoadMethod_e dtlm,
ZSTD_tableFillPurpose_e tfp)
{
if (tfp == ZSTD_tfp_forCDict) {
ZSTD_fillDoubleHashTableForCDict(ms, end, dtlm);
} else {
ZSTD_fillDoubleHashTableForCCtx(ms, end, dtlm);
}
}
FORCE_INLINE_TEMPLATE
size_t ZSTD_compressBlock_doubleFast_noDict_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize, U32 const mls /* template */)
{
ZSTD_compressionParameters const* cParams = &ms->cParams;
U32* const hashLong = ms->hashTable;
const U32 hBitsL = cParams->hashLog;
U32* const hashSmall = ms->chainTable;
const U32 hBitsS = cParams->chainLog;
const BYTE* const base = ms->window.base;
const BYTE* const istart = (const BYTE*)src;
const BYTE* anchor = istart;
const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
/* presumes that, if there is a dictionary, it must be using Attach mode */
const U32 prefixLowestIndex = ZSTD_getLowestPrefixIndex(ms, endIndex, cParams->windowLog);
const BYTE* const prefixLowest = base + prefixLowestIndex;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - HASH_READ_SIZE;
U32 offset_1=rep[0], offset_2=rep[1];
U32 offsetSaved1 = 0, offsetSaved2 = 0;
size_t mLength;
U32 offset;
U32 curr;
/* how many positions to search before increasing step size */
const size_t kStepIncr = 1 << kSearchStrength;
/* the position at which to increment the step size if no match is found */
const BYTE* nextStep;
size_t step; /* the current step size */
size_t hl0; /* the long hash at ip */
size_t hl1; /* the long hash at ip1 */
U32 idxl0; /* the long match index for ip */
U32 idxl1; /* the long match index for ip1 */
const BYTE* matchl0; /* the long match for ip */
const BYTE* matchs0; /* the short match for ip */
const BYTE* matchl1; /* the long match for ip1 */
const BYTE* ip = istart; /* the current position */
const BYTE* ip1; /* the next position */
DEBUGLOG(5, "ZSTD_compressBlock_doubleFast_noDict_generic");
/* init */
ip += ((ip - prefixLowest) == 0);
{
U32 const current = (U32)(ip - base);
U32 const windowLow = ZSTD_getLowestPrefixIndex(ms, current, cParams->windowLog);
U32 const maxRep = current - windowLow;
if (offset_2 > maxRep) offsetSaved2 = offset_2, offset_2 = 0;
if (offset_1 > maxRep) offsetSaved1 = offset_1, offset_1 = 0;
}
/* Outer Loop: one iteration per match found and stored */
while (1) {
step = 1;
nextStep = ip + kStepIncr;
ip1 = ip + step;
if (ip1 > ilimit) {
goto _cleanup;
}
hl0 = ZSTD_hashPtr(ip, hBitsL, 8);
idxl0 = hashLong[hl0];
matchl0 = base + idxl0;
/* Inner Loop: one iteration per search / position */
do {
const size_t hs0 = ZSTD_hashPtr(ip, hBitsS, mls);
const U32 idxs0 = hashSmall[hs0];
curr = (U32)(ip-base);
matchs0 = base + idxs0;
hashLong[hl0] = hashSmall[hs0] = curr; /* update hash tables */
/* check noDict repcode */
if ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1))) {
mLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4;
ip++;
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, REPCODE1_TO_OFFBASE, mLength);
goto _match_stored;
}
hl1 = ZSTD_hashPtr(ip1, hBitsL, 8);
if (idxl0 > prefixLowestIndex) {
/* check prefix long match */
if (MEM_read64(matchl0) == MEM_read64(ip)) {
mLength = ZSTD_count(ip+8, matchl0+8, iend) + 8;
offset = (U32)(ip-matchl0);
while (((ip>anchor) & (matchl0>prefixLowest)) && (ip[-1] == matchl0[-1])) { ip--; matchl0--; mLength++; } /* catch up */
goto _match_found;
}
}
idxl1 = hashLong[hl1];
matchl1 = base + idxl1;
if (idxs0 > prefixLowestIndex) {
/* check prefix short match */
if (MEM_read32(matchs0) == MEM_read32(ip)) {
goto _search_next_long;
}
}
if (ip1 >= nextStep) {
PREFETCH_L1(ip1 + 64);
PREFETCH_L1(ip1 + 128);
step++;
nextStep += kStepIncr;
}
ip = ip1;
ip1 += step;
hl0 = hl1;
idxl0 = idxl1;
matchl0 = matchl1;
#if defined(__aarch64__)
PREFETCH_L1(ip+256);
#endif
} while (ip1 <= ilimit);
_cleanup:
/* If offset_1 started invalid (offsetSaved1 != 0) and became valid (offset_1 != 0),
* rotate saved offsets. See comment in ZSTD_compressBlock_fast_noDict for more context. */
offsetSaved2 = ((offsetSaved1 != 0) && (offset_1 != 0)) ? offsetSaved1 : offsetSaved2;
/* save reps for next block */
rep[0] = offset_1 ? offset_1 : offsetSaved1;
rep[1] = offset_2 ? offset_2 : offsetSaved2;
/* Return the last literals size */
return (size_t)(iend - anchor);
_search_next_long:
/* check prefix long +1 match */
if (idxl1 > prefixLowestIndex) {
if (MEM_read64(matchl1) == MEM_read64(ip1)) {
ip = ip1;
mLength = ZSTD_count(ip+8, matchl1+8, iend) + 8;
offset = (U32)(ip-matchl1);
while (((ip>anchor) & (matchl1>prefixLowest)) && (ip[-1] == matchl1[-1])) { ip--; matchl1--; mLength++; } /* catch up */
goto _match_found;
}
}
/* if no long +1 match, explore the short match we found */
mLength = ZSTD_count(ip+4, matchs0+4, iend) + 4;
offset = (U32)(ip - matchs0);
while (((ip>anchor) & (matchs0>prefixLowest)) && (ip[-1] == matchs0[-1])) { ip--; matchs0--; mLength++; } /* catch up */
/* fall-through */
_match_found: /* requires ip, offset, mLength */
offset_2 = offset_1;
offset_1 = offset;
if (step < 4) {
/* It is unsafe to write this value back to the hashtable when ip1 is
* greater than or equal to the new ip we will have after we're done
* processing this match. Rather than perform that test directly
* (ip1 >= ip + mLength), which costs speed in practice, we do a simpler
* more predictable test. The minmatch even if we take a short match is
* 4 bytes, so as long as step, the distance between ip and ip1
* (initially) is less than 4, we know ip1 < new ip. */
hashLong[hl1] = (U32)(ip1 - base);
}
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, OFFSET_TO_OFFBASE(offset), mLength);
_match_stored:
/* match found */
ip += mLength;
anchor = ip;
if (ip <= ilimit) {
/* Complementary insertion */
/* done after iLimit test, as candidates could be > iend-8 */
{ U32 const indexToInsert = curr+2;
hashLong[ZSTD_hashPtr(base+indexToInsert, hBitsL, 8)] = indexToInsert;
hashLong[ZSTD_hashPtr(ip-2, hBitsL, 8)] = (U32)(ip-2-base);
hashSmall[ZSTD_hashPtr(base+indexToInsert, hBitsS, mls)] = indexToInsert;
hashSmall[ZSTD_hashPtr(ip-1, hBitsS, mls)] = (U32)(ip-1-base);
}
/* check immediate repcode */
while ( (ip <= ilimit)
&& ( (offset_2>0)
& (MEM_read32(ip) == MEM_read32(ip - offset_2)) )) {
/* store sequence */
size_t const rLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4;
U32 const tmpOff = offset_2; offset_2 = offset_1; offset_1 = tmpOff; /* swap offset_2 <=> offset_1 */
hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = (U32)(ip-base);
hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = (U32)(ip-base);
ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, rLength);
ip += rLength;
anchor = ip;
continue; /* faster when present ... (?) */
}
}
}
}
FORCE_INLINE_TEMPLATE
size_t ZSTD_compressBlock_doubleFast_dictMatchState_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize,
U32 const mls /* template */)
{
ZSTD_compressionParameters const* cParams = &ms->cParams;
U32* const hashLong = ms->hashTable;
const U32 hBitsL = cParams->hashLog;
U32* const hashSmall = ms->chainTable;
const U32 hBitsS = cParams->chainLog;
const BYTE* const base = ms->window.base;
const BYTE* const istart = (const BYTE*)src;
const BYTE* ip = istart;
const BYTE* anchor = istart;
const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
/* presumes that, if there is a dictionary, it must be using Attach mode */
const U32 prefixLowestIndex = ZSTD_getLowestPrefixIndex(ms, endIndex, cParams->windowLog);
const BYTE* const prefixLowest = base + prefixLowestIndex;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - HASH_READ_SIZE;
U32 offset_1=rep[0], offset_2=rep[1];
const ZSTD_matchState_t* const dms = ms->dictMatchState;
const ZSTD_compressionParameters* const dictCParams = &dms->cParams;
const U32* const dictHashLong = dms->hashTable;
const U32* const dictHashSmall = dms->chainTable;
const U32 dictStartIndex = dms->window.dictLimit;
const BYTE* const dictBase = dms->window.base;
const BYTE* const dictStart = dictBase + dictStartIndex;
const BYTE* const dictEnd = dms->window.nextSrc;
const U32 dictIndexDelta = prefixLowestIndex - (U32)(dictEnd - dictBase);
const U32 dictHBitsL = dictCParams->hashLog + ZSTD_SHORT_CACHE_TAG_BITS;
const U32 dictHBitsS = dictCParams->chainLog + ZSTD_SHORT_CACHE_TAG_BITS;
const U32 dictAndPrefixLength = (U32)((ip - prefixLowest) + (dictEnd - dictStart));
DEBUGLOG(5, "ZSTD_compressBlock_doubleFast_dictMatchState_generic");
/* if a dictionary is attached, it must be within window range */
assert(ms->window.dictLimit + (1U << cParams->windowLog) >= endIndex);
if (ms->prefetchCDictTables) {
size_t const hashTableBytes = (((size_t)1) << dictCParams->hashLog) * sizeof(U32);
size_t const chainTableBytes = (((size_t)1) << dictCParams->chainLog) * sizeof(U32);
PREFETCH_AREA(dictHashLong, hashTableBytes)
PREFETCH_AREA(dictHashSmall, chainTableBytes)
}
/* init */
ip += (dictAndPrefixLength == 0);
/* dictMatchState repCode checks don't currently handle repCode == 0
* disabling. */
assert(offset_1 <= dictAndPrefixLength);
assert(offset_2 <= dictAndPrefixLength);
/* Main Search Loop */
while (ip < ilimit) { /* < instead of <=, because repcode check at (ip+1) */
size_t mLength;
U32 offset;
size_t const h2 = ZSTD_hashPtr(ip, hBitsL, 8);
size_t const h = ZSTD_hashPtr(ip, hBitsS, mls);
size_t const dictHashAndTagL = ZSTD_hashPtr(ip, dictHBitsL, 8);
size_t const dictHashAndTagS = ZSTD_hashPtr(ip, dictHBitsS, mls);
U32 const dictMatchIndexAndTagL = dictHashLong[dictHashAndTagL >> ZSTD_SHORT_CACHE_TAG_BITS];
U32 const dictMatchIndexAndTagS = dictHashSmall[dictHashAndTagS >> ZSTD_SHORT_CACHE_TAG_BITS];
int const dictTagsMatchL = ZSTD_comparePackedTags(dictMatchIndexAndTagL, dictHashAndTagL);
int const dictTagsMatchS = ZSTD_comparePackedTags(dictMatchIndexAndTagS, dictHashAndTagS);
U32 const curr = (U32)(ip-base);
U32 const matchIndexL = hashLong[h2];
U32 matchIndexS = hashSmall[h];
const BYTE* matchLong = base + matchIndexL;
const BYTE* match = base + matchIndexS;
const U32 repIndex = curr + 1 - offset_1;
const BYTE* repMatch = (repIndex < prefixLowestIndex) ?
dictBase + (repIndex - dictIndexDelta) :
base + repIndex;
hashLong[h2] = hashSmall[h] = curr; /* update hash tables */
/* check repcode */
if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */)
&& (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend;
mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4;
ip++;
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, REPCODE1_TO_OFFBASE, mLength);
goto _match_stored;
}
if (matchIndexL > prefixLowestIndex) {
/* check prefix long match */
if (MEM_read64(matchLong) == MEM_read64(ip)) {
mLength = ZSTD_count(ip+8, matchLong+8, iend) + 8;
offset = (U32)(ip-matchLong);
while (((ip>anchor) & (matchLong>prefixLowest)) && (ip[-1] == matchLong[-1])) { ip--; matchLong--; mLength++; } /* catch up */
goto _match_found;
}
} else if (dictTagsMatchL) {
/* check dictMatchState long match */
U32 const dictMatchIndexL = dictMatchIndexAndTagL >> ZSTD_SHORT_CACHE_TAG_BITS;
const BYTE* dictMatchL = dictBase + dictMatchIndexL;
assert(dictMatchL < dictEnd);
if (dictMatchL > dictStart && MEM_read64(dictMatchL) == MEM_read64(ip)) {
mLength = ZSTD_count_2segments(ip+8, dictMatchL+8, iend, dictEnd, prefixLowest) + 8;
offset = (U32)(curr - dictMatchIndexL - dictIndexDelta);
while (((ip>anchor) & (dictMatchL>dictStart)) && (ip[-1] == dictMatchL[-1])) { ip--; dictMatchL--; mLength++; } /* catch up */
goto _match_found;
} }
if (matchIndexS > prefixLowestIndex) {
/* check prefix short match */
if (MEM_read32(match) == MEM_read32(ip)) {
goto _search_next_long;
}
} else if (dictTagsMatchS) {
/* check dictMatchState short match */
U32 const dictMatchIndexS = dictMatchIndexAndTagS >> ZSTD_SHORT_CACHE_TAG_BITS;
match = dictBase + dictMatchIndexS;
matchIndexS = dictMatchIndexS + dictIndexDelta;
if (match > dictStart && MEM_read32(match) == MEM_read32(ip)) {
goto _search_next_long;
} }
ip += ((ip-anchor) >> kSearchStrength) + 1;
#if defined(__aarch64__)
PREFETCH_L1(ip+256);
#endif
continue;
_search_next_long:
{ size_t const hl3 = ZSTD_hashPtr(ip+1, hBitsL, 8);
size_t const dictHashAndTagL3 = ZSTD_hashPtr(ip+1, dictHBitsL, 8);
U32 const matchIndexL3 = hashLong[hl3];
U32 const dictMatchIndexAndTagL3 = dictHashLong[dictHashAndTagL3 >> ZSTD_SHORT_CACHE_TAG_BITS];
int const dictTagsMatchL3 = ZSTD_comparePackedTags(dictMatchIndexAndTagL3, dictHashAndTagL3);
const BYTE* matchL3 = base + matchIndexL3;
hashLong[hl3] = curr + 1;
/* check prefix long +1 match */
if (matchIndexL3 > prefixLowestIndex) {
if (MEM_read64(matchL3) == MEM_read64(ip+1)) {
mLength = ZSTD_count(ip+9, matchL3+8, iend) + 8;
ip++;
offset = (U32)(ip-matchL3);
while (((ip>anchor) & (matchL3>prefixLowest)) && (ip[-1] == matchL3[-1])) { ip--; matchL3--; mLength++; } /* catch up */
goto _match_found;
}
} else if (dictTagsMatchL3) {
/* check dict long +1 match */
U32 const dictMatchIndexL3 = dictMatchIndexAndTagL3 >> ZSTD_SHORT_CACHE_TAG_BITS;
const BYTE* dictMatchL3 = dictBase + dictMatchIndexL3;
assert(dictMatchL3 < dictEnd);
if (dictMatchL3 > dictStart && MEM_read64(dictMatchL3) == MEM_read64(ip+1)) {
mLength = ZSTD_count_2segments(ip+1+8, dictMatchL3+8, iend, dictEnd, prefixLowest) + 8;
ip++;
offset = (U32)(curr + 1 - dictMatchIndexL3 - dictIndexDelta);
while (((ip>anchor) & (dictMatchL3>dictStart)) && (ip[-1] == dictMatchL3[-1])) { ip--; dictMatchL3--; mLength++; } /* catch up */
goto _match_found;
} } }
/* if no long +1 match, explore the short match we found */
if (matchIndexS < prefixLowestIndex) {
mLength = ZSTD_count_2segments(ip+4, match+4, iend, dictEnd, prefixLowest) + 4;
offset = (U32)(curr - matchIndexS);
while (((ip>anchor) & (match>dictStart)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
} else {
mLength = ZSTD_count(ip+4, match+4, iend) + 4;
offset = (U32)(ip - match);
while (((ip>anchor) & (match>prefixLowest)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
}
_match_found:
offset_2 = offset_1;
offset_1 = offset;
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, OFFSET_TO_OFFBASE(offset), mLength);
_match_stored:
/* match found */
ip += mLength;
anchor = ip;
if (ip <= ilimit) {
/* Complementary insertion */
/* done after iLimit test, as candidates could be > iend-8 */
{ U32 const indexToInsert = curr+2;
hashLong[ZSTD_hashPtr(base+indexToInsert, hBitsL, 8)] = indexToInsert;
hashLong[ZSTD_hashPtr(ip-2, hBitsL, 8)] = (U32)(ip-2-base);
hashSmall[ZSTD_hashPtr(base+indexToInsert, hBitsS, mls)] = indexToInsert;
hashSmall[ZSTD_hashPtr(ip-1, hBitsS, mls)] = (U32)(ip-1-base);
}
/* check immediate repcode */
while (ip <= ilimit) {
U32 const current2 = (U32)(ip-base);
U32 const repIndex2 = current2 - offset_2;
const BYTE* repMatch2 = repIndex2 < prefixLowestIndex ?
dictBase + repIndex2 - dictIndexDelta :
base + repIndex2;
if ( ((U32)((prefixLowestIndex-1) - (U32)repIndex2) >= 3 /* intentional overflow */)
&& (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
const BYTE* const repEnd2 = repIndex2 < prefixLowestIndex ? dictEnd : iend;
size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixLowest) + 4;
U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, repLength2);
hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = current2;
hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = current2;
ip += repLength2;
anchor = ip;
continue;
}
break;
}
}
} /* while (ip < ilimit) */
/* save reps for next block */
rep[0] = offset_1;
rep[1] = offset_2;
/* Return the last literals size */
return (size_t)(iend - anchor);
}
#define ZSTD_GEN_DFAST_FN(dictMode, mls) \
static size_t ZSTD_compressBlock_doubleFast_##dictMode##_##mls( \
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], \
void const* src, size_t srcSize) \
{ \
return ZSTD_compressBlock_doubleFast_##dictMode##_generic(ms, seqStore, rep, src, srcSize, mls); \
}
ZSTD_GEN_DFAST_FN(noDict, 4)
ZSTD_GEN_DFAST_FN(noDict, 5)
ZSTD_GEN_DFAST_FN(noDict, 6)
ZSTD_GEN_DFAST_FN(noDict, 7)
ZSTD_GEN_DFAST_FN(dictMatchState, 4)
ZSTD_GEN_DFAST_FN(dictMatchState, 5)
ZSTD_GEN_DFAST_FN(dictMatchState, 6)
ZSTD_GEN_DFAST_FN(dictMatchState, 7)
size_t ZSTD_compressBlock_doubleFast(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
const U32 mls = ms->cParams.minMatch;
switch(mls)
{
default: /* includes case 3 */
case 4 :
return ZSTD_compressBlock_doubleFast_noDict_4(ms, seqStore, rep, src, srcSize);
case 5 :
return ZSTD_compressBlock_doubleFast_noDict_5(ms, seqStore, rep, src, srcSize);
case 6 :
return ZSTD_compressBlock_doubleFast_noDict_6(ms, seqStore, rep, src, srcSize);
case 7 :
return ZSTD_compressBlock_doubleFast_noDict_7(ms, seqStore, rep, src, srcSize);
}
}
size_t ZSTD_compressBlock_doubleFast_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
const U32 mls = ms->cParams.minMatch;
switch(mls)
{
default: /* includes case 3 */
case 4 :
return ZSTD_compressBlock_doubleFast_dictMatchState_4(ms, seqStore, rep, src, srcSize);
case 5 :
return ZSTD_compressBlock_doubleFast_dictMatchState_5(ms, seqStore, rep, src, srcSize);
case 6 :
return ZSTD_compressBlock_doubleFast_dictMatchState_6(ms, seqStore, rep, src, srcSize);
case 7 :
return ZSTD_compressBlock_doubleFast_dictMatchState_7(ms, seqStore, rep, src, srcSize);
}
}
static size_t ZSTD_compressBlock_doubleFast_extDict_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize,
U32 const mls /* template */)
{
ZSTD_compressionParameters const* cParams = &ms->cParams;
U32* const hashLong = ms->hashTable;
U32 const hBitsL = cParams->hashLog;
U32* const hashSmall = ms->chainTable;
U32 const hBitsS = cParams->chainLog;
const BYTE* const istart = (const BYTE*)src;
const BYTE* ip = istart;
const BYTE* anchor = istart;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - 8;
const BYTE* const base = ms->window.base;
const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
const U32 lowLimit = ZSTD_getLowestMatchIndex(ms, endIndex, cParams->windowLog);
const U32 dictStartIndex = lowLimit;
const U32 dictLimit = ms->window.dictLimit;
const U32 prefixStartIndex = (dictLimit > lowLimit) ? dictLimit : lowLimit;
const BYTE* const prefixStart = base + prefixStartIndex;
const BYTE* const dictBase = ms->window.dictBase;
const BYTE* const dictStart = dictBase + dictStartIndex;
const BYTE* const dictEnd = dictBase + prefixStartIndex;
U32 offset_1=rep[0], offset_2=rep[1];
DEBUGLOG(5, "ZSTD_compressBlock_doubleFast_extDict_generic (srcSize=%zu)", srcSize);
/* if extDict is invalidated due to maxDistance, switch to "regular" variant */
if (prefixStartIndex == dictStartIndex)
return ZSTD_compressBlock_doubleFast(ms, seqStore, rep, src, srcSize);
/* Search Loop */
while (ip < ilimit) { /* < instead of <=, because (ip+1) */
const size_t hSmall = ZSTD_hashPtr(ip, hBitsS, mls);
const U32 matchIndex = hashSmall[hSmall];
const BYTE* const matchBase = matchIndex < prefixStartIndex ? dictBase : base;
const BYTE* match = matchBase + matchIndex;
const size_t hLong = ZSTD_hashPtr(ip, hBitsL, 8);
const U32 matchLongIndex = hashLong[hLong];
const BYTE* const matchLongBase = matchLongIndex < prefixStartIndex ? dictBase : base;
const BYTE* matchLong = matchLongBase + matchLongIndex;
const U32 curr = (U32)(ip-base);
const U32 repIndex = curr + 1 - offset_1; /* offset_1 expected <= curr +1 */
const BYTE* const repBase = repIndex < prefixStartIndex ? dictBase : base;
const BYTE* const repMatch = repBase + repIndex;
size_t mLength;
hashSmall[hSmall] = hashLong[hLong] = curr; /* update hash table */
if ((((U32)((prefixStartIndex-1) - repIndex) >= 3) /* intentional underflow : ensure repIndex doesn't overlap dict + prefix */
& (offset_1 <= curr+1 - dictStartIndex)) /* note: we are searching at curr+1 */
&& (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
const BYTE* repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend;
mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixStart) + 4;
ip++;
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, REPCODE1_TO_OFFBASE, mLength);
} else {
if ((matchLongIndex > dictStartIndex) && (MEM_read64(matchLong) == MEM_read64(ip))) {
const BYTE* const matchEnd = matchLongIndex < prefixStartIndex ? dictEnd : iend;
const BYTE* const lowMatchPtr = matchLongIndex < prefixStartIndex ? dictStart : prefixStart;
U32 offset;
mLength = ZSTD_count_2segments(ip+8, matchLong+8, iend, matchEnd, prefixStart) + 8;
offset = curr - matchLongIndex;
while (((ip>anchor) & (matchLong>lowMatchPtr)) && (ip[-1] == matchLong[-1])) { ip--; matchLong--; mLength++; } /* catch up */
offset_2 = offset_1;
offset_1 = offset;
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, OFFSET_TO_OFFBASE(offset), mLength);
} else if ((matchIndex > dictStartIndex) && (MEM_read32(match) == MEM_read32(ip))) {
size_t const h3 = ZSTD_hashPtr(ip+1, hBitsL, 8);
U32 const matchIndex3 = hashLong[h3];
const BYTE* const match3Base = matchIndex3 < prefixStartIndex ? dictBase : base;
const BYTE* match3 = match3Base + matchIndex3;
U32 offset;
hashLong[h3] = curr + 1;
if ( (matchIndex3 > dictStartIndex) && (MEM_read64(match3) == MEM_read64(ip+1)) ) {
const BYTE* const matchEnd = matchIndex3 < prefixStartIndex ? dictEnd : iend;
const BYTE* const lowMatchPtr = matchIndex3 < prefixStartIndex ? dictStart : prefixStart;
mLength = ZSTD_count_2segments(ip+9, match3+8, iend, matchEnd, prefixStart) + 8;
ip++;
offset = curr+1 - matchIndex3;
while (((ip>anchor) & (match3>lowMatchPtr)) && (ip[-1] == match3[-1])) { ip--; match3--; mLength++; } /* catch up */
} else {
const BYTE* const matchEnd = matchIndex < prefixStartIndex ? dictEnd : iend;
const BYTE* const lowMatchPtr = matchIndex < prefixStartIndex ? dictStart : prefixStart;
mLength = ZSTD_count_2segments(ip+4, match+4, iend, matchEnd, prefixStart) + 4;
offset = curr - matchIndex;
while (((ip>anchor) & (match>lowMatchPtr)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
}
offset_2 = offset_1;
offset_1 = offset;
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, OFFSET_TO_OFFBASE(offset), mLength);
} else {
ip += ((ip-anchor) >> kSearchStrength) + 1;
continue;
} }
/* move to next sequence start */
ip += mLength;
anchor = ip;
if (ip <= ilimit) {
/* Complementary insertion */
/* done after iLimit test, as candidates could be > iend-8 */
{ U32 const indexToInsert = curr+2;
hashLong[ZSTD_hashPtr(base+indexToInsert, hBitsL, 8)] = indexToInsert;
hashLong[ZSTD_hashPtr(ip-2, hBitsL, 8)] = (U32)(ip-2-base);
hashSmall[ZSTD_hashPtr(base+indexToInsert, hBitsS, mls)] = indexToInsert;
hashSmall[ZSTD_hashPtr(ip-1, hBitsS, mls)] = (U32)(ip-1-base);
}
/* check immediate repcode */
while (ip <= ilimit) {
U32 const current2 = (U32)(ip-base);
U32 const repIndex2 = current2 - offset_2;
const BYTE* repMatch2 = repIndex2 < prefixStartIndex ? dictBase + repIndex2 : base + repIndex2;
if ( (((U32)((prefixStartIndex-1) - repIndex2) >= 3) /* intentional overflow : ensure repIndex2 doesn't overlap dict + prefix */
& (offset_2 <= current2 - dictStartIndex))
&& (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend;
size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixStart) + 4;
U32 const tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, repLength2);
hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = current2;
hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = current2;
ip += repLength2;
anchor = ip;
continue;
}
break;
} } }
/* save reps for next block */
rep[0] = offset_1;
rep[1] = offset_2;
/* Return the last literals size */
return (size_t)(iend - anchor);
}
ZSTD_GEN_DFAST_FN(extDict, 4)
ZSTD_GEN_DFAST_FN(extDict, 5)
ZSTD_GEN_DFAST_FN(extDict, 6)
ZSTD_GEN_DFAST_FN(extDict, 7)
size_t ZSTD_compressBlock_doubleFast_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
U32 const mls = ms->cParams.minMatch;
switch(mls)
{
default: /* includes case 3 */
case 4 :
return ZSTD_compressBlock_doubleFast_extDict_4(ms, seqStore, rep, src, srcSize);
case 5 :
return ZSTD_compressBlock_doubleFast_extDict_5(ms, seqStore, rep, src, srcSize);
case 6 :
return ZSTD_compressBlock_doubleFast_extDict_6(ms, seqStore, rep, src, srcSize);
case 7 :
return ZSTD_compressBlock_doubleFast_extDict_7(ms, seqStore, rep, src, srcSize);
}
}

View File

@ -1,39 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_DOUBLE_FAST_H
#define ZSTD_DOUBLE_FAST_H
#if defined (__cplusplus)
extern "C" {
#endif
#include "../common/mem.h" /* U32 */
#include "zstd_compress_internal.h" /* ZSTD_CCtx, size_t */
void ZSTD_fillDoubleHashTable(ZSTD_matchState_t* ms,
void const* end, ZSTD_dictTableLoadMethod_e dtlm,
ZSTD_tableFillPurpose_e tfp);
size_t ZSTD_compressBlock_doubleFast(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_doubleFast_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_doubleFast_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_DOUBLE_FAST_H */

View File

@ -1,960 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#include "zstd_compress_internal.h" /* ZSTD_hashPtr, ZSTD_count, ZSTD_storeSeq */
#include "zstd_fast.h"
static void ZSTD_fillHashTableForCDict(ZSTD_matchState_t* ms,
const void* const end,
ZSTD_dictTableLoadMethod_e dtlm)
{
const ZSTD_compressionParameters* const cParams = &ms->cParams;
U32* const hashTable = ms->hashTable;
U32 const hBits = cParams->hashLog + ZSTD_SHORT_CACHE_TAG_BITS;
U32 const mls = cParams->minMatch;
const BYTE* const base = ms->window.base;
const BYTE* ip = base + ms->nextToUpdate;
const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE;
const U32 fastHashFillStep = 3;
/* Currently, we always use ZSTD_dtlm_full for filling CDict tables.
* Feel free to remove this assert if there's a good reason! */
assert(dtlm == ZSTD_dtlm_full);
/* Always insert every fastHashFillStep position into the hash table.
* Insert the other positions if their hash entry is empty.
*/
for ( ; ip + fastHashFillStep < iend + 2; ip += fastHashFillStep) {
U32 const curr = (U32)(ip - base);
{ size_t const hashAndTag = ZSTD_hashPtr(ip, hBits, mls);
ZSTD_writeTaggedIndex(hashTable, hashAndTag, curr); }
if (dtlm == ZSTD_dtlm_fast) continue;
/* Only load extra positions for ZSTD_dtlm_full */
{ U32 p;
for (p = 1; p < fastHashFillStep; ++p) {
size_t const hashAndTag = ZSTD_hashPtr(ip + p, hBits, mls);
if (hashTable[hashAndTag >> ZSTD_SHORT_CACHE_TAG_BITS] == 0) { /* not yet filled */
ZSTD_writeTaggedIndex(hashTable, hashAndTag, curr + p);
} } } }
}
static void ZSTD_fillHashTableForCCtx(ZSTD_matchState_t* ms,
const void* const end,
ZSTD_dictTableLoadMethod_e dtlm)
{
const ZSTD_compressionParameters* const cParams = &ms->cParams;
U32* const hashTable = ms->hashTable;
U32 const hBits = cParams->hashLog;
U32 const mls = cParams->minMatch;
const BYTE* const base = ms->window.base;
const BYTE* ip = base + ms->nextToUpdate;
const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE;
const U32 fastHashFillStep = 3;
/* Currently, we always use ZSTD_dtlm_fast for filling CCtx tables.
* Feel free to remove this assert if there's a good reason! */
assert(dtlm == ZSTD_dtlm_fast);
/* Always insert every fastHashFillStep position into the hash table.
* Insert the other positions if their hash entry is empty.
*/
for ( ; ip + fastHashFillStep < iend + 2; ip += fastHashFillStep) {
U32 const curr = (U32)(ip - base);
size_t const hash0 = ZSTD_hashPtr(ip, hBits, mls);
hashTable[hash0] = curr;
if (dtlm == ZSTD_dtlm_fast) continue;
/* Only load extra positions for ZSTD_dtlm_full */
{ U32 p;
for (p = 1; p < fastHashFillStep; ++p) {
size_t const hash = ZSTD_hashPtr(ip + p, hBits, mls);
if (hashTable[hash] == 0) { /* not yet filled */
hashTable[hash] = curr + p;
} } } }
}
void ZSTD_fillHashTable(ZSTD_matchState_t* ms,
const void* const end,
ZSTD_dictTableLoadMethod_e dtlm,
ZSTD_tableFillPurpose_e tfp)
{
if (tfp == ZSTD_tfp_forCDict) {
ZSTD_fillHashTableForCDict(ms, end, dtlm);
} else {
ZSTD_fillHashTableForCCtx(ms, end, dtlm);
}
}
/**
* If you squint hard enough (and ignore repcodes), the search operation at any
* given position is broken into 4 stages:
*
* 1. Hash (map position to hash value via input read)
* 2. Lookup (map hash val to index via hashtable read)
* 3. Load (map index to value at that position via input read)
* 4. Compare
*
* Each of these steps involves a memory read at an address which is computed
* from the previous step. This means these steps must be sequenced and their
* latencies are cumulative.
*
* Rather than do 1->2->3->4 sequentially for a single position before moving
* onto the next, this implementation interleaves these operations across the
* next few positions:
*
* R = Repcode Read & Compare
* H = Hash
* T = Table Lookup
* M = Match Read & Compare
*
* Pos | Time -->
* ----+-------------------
* N | ... M
* N+1 | ... TM
* N+2 | R H T M
* N+3 | H TM
* N+4 | R H T M
* N+5 | H ...
* N+6 | R ...
*
* This is very much analogous to the pipelining of execution in a CPU. And just
* like a CPU, we have to dump the pipeline when we find a match (i.e., take a
* branch).
*
* When this happens, we throw away our current state, and do the following prep
* to re-enter the loop:
*
* Pos | Time -->
* ----+-------------------
* N | H T
* N+1 | H
*
* This is also the work we do at the beginning to enter the loop initially.
*/
FORCE_INLINE_TEMPLATE size_t
ZSTD_compressBlock_fast_noDict_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize,
U32 const mls, U32 const hasStep)
{
const ZSTD_compressionParameters* const cParams = &ms->cParams;
U32* const hashTable = ms->hashTable;
U32 const hlog = cParams->hashLog;
/* support stepSize of 0 */
size_t const stepSize = hasStep ? (cParams->targetLength + !(cParams->targetLength) + 1) : 2;
const BYTE* const base = ms->window.base;
const BYTE* const istart = (const BYTE*)src;
const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
const U32 prefixStartIndex = ZSTD_getLowestPrefixIndex(ms, endIndex, cParams->windowLog);
const BYTE* const prefixStart = base + prefixStartIndex;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - HASH_READ_SIZE;
const BYTE* anchor = istart;
const BYTE* ip0 = istart;
const BYTE* ip1;
const BYTE* ip2;
const BYTE* ip3;
U32 current0;
U32 rep_offset1 = rep[0];
U32 rep_offset2 = rep[1];
U32 offsetSaved1 = 0, offsetSaved2 = 0;
size_t hash0; /* hash for ip0 */
size_t hash1; /* hash for ip1 */
U32 idx; /* match idx for ip0 */
U32 mval; /* src value at match idx */
U32 offcode;
const BYTE* match0;
size_t mLength;
/* ip0 and ip1 are always adjacent. The targetLength skipping and
* uncompressibility acceleration is applied to every other position,
* matching the behavior of #1562. step therefore represents the gap
* between pairs of positions, from ip0 to ip2 or ip1 to ip3. */
size_t step;
const BYTE* nextStep;
const size_t kStepIncr = (1 << (kSearchStrength - 1));
DEBUGLOG(5, "ZSTD_compressBlock_fast_generic");
ip0 += (ip0 == prefixStart);
{ U32 const curr = (U32)(ip0 - base);
U32 const windowLow = ZSTD_getLowestPrefixIndex(ms, curr, cParams->windowLog);
U32 const maxRep = curr - windowLow;
if (rep_offset2 > maxRep) offsetSaved2 = rep_offset2, rep_offset2 = 0;
if (rep_offset1 > maxRep) offsetSaved1 = rep_offset1, rep_offset1 = 0;
}
/* start each op */
_start: /* Requires: ip0 */
step = stepSize;
nextStep = ip0 + kStepIncr;
/* calculate positions, ip0 - anchor == 0, so we skip step calc */
ip1 = ip0 + 1;
ip2 = ip0 + step;
ip3 = ip2 + 1;
if (ip3 >= ilimit) {
goto _cleanup;
}
hash0 = ZSTD_hashPtr(ip0, hlog, mls);
hash1 = ZSTD_hashPtr(ip1, hlog, mls);
idx = hashTable[hash0];
do {
/* load repcode match for ip[2]*/
const U32 rval = MEM_read32(ip2 - rep_offset1);
/* write back hash table entry */
current0 = (U32)(ip0 - base);
hashTable[hash0] = current0;
/* check repcode at ip[2] */
if ((MEM_read32(ip2) == rval) & (rep_offset1 > 0)) {
ip0 = ip2;
match0 = ip0 - rep_offset1;
mLength = ip0[-1] == match0[-1];
ip0 -= mLength;
match0 -= mLength;
offcode = REPCODE1_TO_OFFBASE;
mLength += 4;
/* First write next hash table entry; we've already calculated it.
* This write is known to be safe because the ip1 is before the
* repcode (ip2). */
hashTable[hash1] = (U32)(ip1 - base);
goto _match;
}
/* load match for ip[0] */
if (idx >= prefixStartIndex) {
mval = MEM_read32(base + idx);
} else {
mval = MEM_read32(ip0) ^ 1; /* guaranteed to not match. */
}
/* check match at ip[0] */
if (MEM_read32(ip0) == mval) {
/* found a match! */
/* First write next hash table entry; we've already calculated it.
* This write is known to be safe because the ip1 == ip0 + 1, so
* we know we will resume searching after ip1 */
hashTable[hash1] = (U32)(ip1 - base);
goto _offset;
}
/* lookup ip[1] */
idx = hashTable[hash1];
/* hash ip[2] */
hash0 = hash1;
hash1 = ZSTD_hashPtr(ip2, hlog, mls);
/* advance to next positions */
ip0 = ip1;
ip1 = ip2;
ip2 = ip3;
/* write back hash table entry */
current0 = (U32)(ip0 - base);
hashTable[hash0] = current0;
/* load match for ip[0] */
if (idx >= prefixStartIndex) {
mval = MEM_read32(base + idx);
} else {
mval = MEM_read32(ip0) ^ 1; /* guaranteed to not match. */
}
/* check match at ip[0] */
if (MEM_read32(ip0) == mval) {
/* found a match! */
/* first write next hash table entry; we've already calculated it */
if (step <= 4) {
/* We need to avoid writing an index into the hash table >= the
* position at which we will pick up our searching after we've
* taken this match.
*
* The minimum possible match has length 4, so the earliest ip0
* can be after we take this match will be the current ip0 + 4.
* ip1 is ip0 + step - 1. If ip1 is >= ip0 + 4, we can't safely
* write this position.
*/
hashTable[hash1] = (U32)(ip1 - base);
}
goto _offset;
}
/* lookup ip[1] */
idx = hashTable[hash1];
/* hash ip[2] */
hash0 = hash1;
hash1 = ZSTD_hashPtr(ip2, hlog, mls);
/* advance to next positions */
ip0 = ip1;
ip1 = ip2;
ip2 = ip0 + step;
ip3 = ip1 + step;
/* calculate step */
if (ip2 >= nextStep) {
step++;
PREFETCH_L1(ip1 + 64);
PREFETCH_L1(ip1 + 128);
nextStep += kStepIncr;
}
} while (ip3 < ilimit);
_cleanup:
/* Note that there are probably still a couple positions we could search.
* However, it seems to be a meaningful performance hit to try to search
* them. So let's not. */
/* When the repcodes are outside of the prefix, we set them to zero before the loop.
* When the offsets are still zero, we need to restore them after the block to have a correct
* repcode history. If only one offset was invalid, it is easy. The tricky case is when both
* offsets were invalid. We need to figure out which offset to refill with.
* - If both offsets are zero they are in the same order.
* - If both offsets are non-zero, we won't restore the offsets from `offsetSaved[12]`.
* - If only one is zero, we need to decide which offset to restore.
* - If rep_offset1 is non-zero, then rep_offset2 must be offsetSaved1.
* - It is impossible for rep_offset2 to be non-zero.
*
* So if rep_offset1 started invalid (offsetSaved1 != 0) and became valid (rep_offset1 != 0), then
* set rep[0] = rep_offset1 and rep[1] = offsetSaved1.
*/
offsetSaved2 = ((offsetSaved1 != 0) && (rep_offset1 != 0)) ? offsetSaved1 : offsetSaved2;
/* save reps for next block */
rep[0] = rep_offset1 ? rep_offset1 : offsetSaved1;
rep[1] = rep_offset2 ? rep_offset2 : offsetSaved2;
/* Return the last literals size */
return (size_t)(iend - anchor);
_offset: /* Requires: ip0, idx */
/* Compute the offset code. */
match0 = base + idx;
rep_offset2 = rep_offset1;
rep_offset1 = (U32)(ip0-match0);
offcode = OFFSET_TO_OFFBASE(rep_offset1);
mLength = 4;
/* Count the backwards match length. */
while (((ip0>anchor) & (match0>prefixStart)) && (ip0[-1] == match0[-1])) {
ip0--;
match0--;
mLength++;
}
_match: /* Requires: ip0, match0, offcode */
/* Count the forward length. */
mLength += ZSTD_count(ip0 + mLength, match0 + mLength, iend);
ZSTD_storeSeq(seqStore, (size_t)(ip0 - anchor), anchor, iend, offcode, mLength);
ip0 += mLength;
anchor = ip0;
/* Fill table and check for immediate repcode. */
if (ip0 <= ilimit) {
/* Fill Table */
assert(base+current0+2 > istart); /* check base overflow */
hashTable[ZSTD_hashPtr(base+current0+2, hlog, mls)] = current0+2; /* here because current+2 could be > iend-8 */
hashTable[ZSTD_hashPtr(ip0-2, hlog, mls)] = (U32)(ip0-2-base);
if (rep_offset2 > 0) { /* rep_offset2==0 means rep_offset2 is invalidated */
while ( (ip0 <= ilimit) && (MEM_read32(ip0) == MEM_read32(ip0 - rep_offset2)) ) {
/* store sequence */
size_t const rLength = ZSTD_count(ip0+4, ip0+4-rep_offset2, iend) + 4;
{ U32 const tmpOff = rep_offset2; rep_offset2 = rep_offset1; rep_offset1 = tmpOff; } /* swap rep_offset2 <=> rep_offset1 */
hashTable[ZSTD_hashPtr(ip0, hlog, mls)] = (U32)(ip0-base);
ip0 += rLength;
ZSTD_storeSeq(seqStore, 0 /*litLen*/, anchor, iend, REPCODE1_TO_OFFBASE, rLength);
anchor = ip0;
continue; /* faster when present (confirmed on gcc-8) ... (?) */
} } }
goto _start;
}
#define ZSTD_GEN_FAST_FN(dictMode, mls, step) \
static size_t ZSTD_compressBlock_fast_##dictMode##_##mls##_##step( \
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], \
void const* src, size_t srcSize) \
{ \
return ZSTD_compressBlock_fast_##dictMode##_generic(ms, seqStore, rep, src, srcSize, mls, step); \
}
ZSTD_GEN_FAST_FN(noDict, 4, 1)
ZSTD_GEN_FAST_FN(noDict, 5, 1)
ZSTD_GEN_FAST_FN(noDict, 6, 1)
ZSTD_GEN_FAST_FN(noDict, 7, 1)
ZSTD_GEN_FAST_FN(noDict, 4, 0)
ZSTD_GEN_FAST_FN(noDict, 5, 0)
ZSTD_GEN_FAST_FN(noDict, 6, 0)
ZSTD_GEN_FAST_FN(noDict, 7, 0)
size_t ZSTD_compressBlock_fast(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
U32 const mls = ms->cParams.minMatch;
assert(ms->dictMatchState == NULL);
if (ms->cParams.targetLength > 1) {
switch(mls)
{
default: /* includes case 3 */
case 4 :
return ZSTD_compressBlock_fast_noDict_4_1(ms, seqStore, rep, src, srcSize);
case 5 :
return ZSTD_compressBlock_fast_noDict_5_1(ms, seqStore, rep, src, srcSize);
case 6 :
return ZSTD_compressBlock_fast_noDict_6_1(ms, seqStore, rep, src, srcSize);
case 7 :
return ZSTD_compressBlock_fast_noDict_7_1(ms, seqStore, rep, src, srcSize);
}
} else {
switch(mls)
{
default: /* includes case 3 */
case 4 :
return ZSTD_compressBlock_fast_noDict_4_0(ms, seqStore, rep, src, srcSize);
case 5 :
return ZSTD_compressBlock_fast_noDict_5_0(ms, seqStore, rep, src, srcSize);
case 6 :
return ZSTD_compressBlock_fast_noDict_6_0(ms, seqStore, rep, src, srcSize);
case 7 :
return ZSTD_compressBlock_fast_noDict_7_0(ms, seqStore, rep, src, srcSize);
}
}
}
FORCE_INLINE_TEMPLATE
size_t ZSTD_compressBlock_fast_dictMatchState_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize, U32 const mls, U32 const hasStep)
{
const ZSTD_compressionParameters* const cParams = &ms->cParams;
U32* const hashTable = ms->hashTable;
U32 const hlog = cParams->hashLog;
/* support stepSize of 0 */
U32 const stepSize = cParams->targetLength + !(cParams->targetLength);
const BYTE* const base = ms->window.base;
const BYTE* const istart = (const BYTE*)src;
const BYTE* ip0 = istart;
const BYTE* ip1 = ip0 + stepSize; /* we assert below that stepSize >= 1 */
const BYTE* anchor = istart;
const U32 prefixStartIndex = ms->window.dictLimit;
const BYTE* const prefixStart = base + prefixStartIndex;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - HASH_READ_SIZE;
U32 offset_1=rep[0], offset_2=rep[1];
const ZSTD_matchState_t* const dms = ms->dictMatchState;
const ZSTD_compressionParameters* const dictCParams = &dms->cParams ;
const U32* const dictHashTable = dms->hashTable;
const U32 dictStartIndex = dms->window.dictLimit;
const BYTE* const dictBase = dms->window.base;
const BYTE* const dictStart = dictBase + dictStartIndex;
const BYTE* const dictEnd = dms->window.nextSrc;
const U32 dictIndexDelta = prefixStartIndex - (U32)(dictEnd - dictBase);
const U32 dictAndPrefixLength = (U32)(istart - prefixStart + dictEnd - dictStart);
const U32 dictHBits = dictCParams->hashLog + ZSTD_SHORT_CACHE_TAG_BITS;
/* if a dictionary is still attached, it necessarily means that
* it is within window size. So we just check it. */
const U32 maxDistance = 1U << cParams->windowLog;
const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
assert(endIndex - prefixStartIndex <= maxDistance);
(void)maxDistance; (void)endIndex; /* these variables are not used when assert() is disabled */
(void)hasStep; /* not currently specialized on whether it's accelerated */
/* ensure there will be no underflow
* when translating a dict index into a local index */
assert(prefixStartIndex >= (U32)(dictEnd - dictBase));
if (ms->prefetchCDictTables) {
size_t const hashTableBytes = (((size_t)1) << dictCParams->hashLog) * sizeof(U32);
PREFETCH_AREA(dictHashTable, hashTableBytes)
}
/* init */
DEBUGLOG(5, "ZSTD_compressBlock_fast_dictMatchState_generic");
ip0 += (dictAndPrefixLength == 0);
/* dictMatchState repCode checks don't currently handle repCode == 0
* disabling. */
assert(offset_1 <= dictAndPrefixLength);
assert(offset_2 <= dictAndPrefixLength);
/* Outer search loop */
assert(stepSize >= 1);
while (ip1 <= ilimit) { /* repcode check at (ip0 + 1) is safe because ip0 < ip1 */
size_t mLength;
size_t hash0 = ZSTD_hashPtr(ip0, hlog, mls);
size_t const dictHashAndTag0 = ZSTD_hashPtr(ip0, dictHBits, mls);
U32 dictMatchIndexAndTag = dictHashTable[dictHashAndTag0 >> ZSTD_SHORT_CACHE_TAG_BITS];
int dictTagsMatch = ZSTD_comparePackedTags(dictMatchIndexAndTag, dictHashAndTag0);
U32 matchIndex = hashTable[hash0];
U32 curr = (U32)(ip0 - base);
size_t step = stepSize;
const size_t kStepIncr = 1 << kSearchStrength;
const BYTE* nextStep = ip0 + kStepIncr;
/* Inner search loop */
while (1) {
const BYTE* match = base + matchIndex;
const U32 repIndex = curr + 1 - offset_1;
const BYTE* repMatch = (repIndex < prefixStartIndex) ?
dictBase + (repIndex - dictIndexDelta) :
base + repIndex;
const size_t hash1 = ZSTD_hashPtr(ip1, hlog, mls);
size_t const dictHashAndTag1 = ZSTD_hashPtr(ip1, dictHBits, mls);
hashTable[hash0] = curr; /* update hash table */
if (((U32) ((prefixStartIndex - 1) - repIndex) >=
3) /* intentional underflow : ensure repIndex isn't overlapping dict + prefix */
&& (MEM_read32(repMatch) == MEM_read32(ip0 + 1))) {
const BYTE* const repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend;
mLength = ZSTD_count_2segments(ip0 + 1 + 4, repMatch + 4, iend, repMatchEnd, prefixStart) + 4;
ip0++;
ZSTD_storeSeq(seqStore, (size_t) (ip0 - anchor), anchor, iend, REPCODE1_TO_OFFBASE, mLength);
break;
}
if (dictTagsMatch) {
/* Found a possible dict match */
const U32 dictMatchIndex = dictMatchIndexAndTag >> ZSTD_SHORT_CACHE_TAG_BITS;
const BYTE* dictMatch = dictBase + dictMatchIndex;
if (dictMatchIndex > dictStartIndex &&
MEM_read32(dictMatch) == MEM_read32(ip0)) {
/* To replicate extDict parse behavior, we only use dict matches when the normal matchIndex is invalid */
if (matchIndex <= prefixStartIndex) {
U32 const offset = (U32) (curr - dictMatchIndex - dictIndexDelta);
mLength = ZSTD_count_2segments(ip0 + 4, dictMatch + 4, iend, dictEnd, prefixStart) + 4;
while (((ip0 > anchor) & (dictMatch > dictStart))
&& (ip0[-1] == dictMatch[-1])) {
ip0--;
dictMatch--;
mLength++;
} /* catch up */
offset_2 = offset_1;
offset_1 = offset;
ZSTD_storeSeq(seqStore, (size_t) (ip0 - anchor), anchor, iend, OFFSET_TO_OFFBASE(offset), mLength);
break;
}
}
}
if (matchIndex > prefixStartIndex && MEM_read32(match) == MEM_read32(ip0)) {
/* found a regular match */
U32 const offset = (U32) (ip0 - match);
mLength = ZSTD_count(ip0 + 4, match + 4, iend) + 4;
while (((ip0 > anchor) & (match > prefixStart))
&& (ip0[-1] == match[-1])) {
ip0--;
match--;
mLength++;
} /* catch up */
offset_2 = offset_1;
offset_1 = offset;
ZSTD_storeSeq(seqStore, (size_t) (ip0 - anchor), anchor, iend, OFFSET_TO_OFFBASE(offset), mLength);
break;
}
/* Prepare for next iteration */
dictMatchIndexAndTag = dictHashTable[dictHashAndTag1 >> ZSTD_SHORT_CACHE_TAG_BITS];
dictTagsMatch = ZSTD_comparePackedTags(dictMatchIndexAndTag, dictHashAndTag1);
matchIndex = hashTable[hash1];
if (ip1 >= nextStep) {
step++;
nextStep += kStepIncr;
}
ip0 = ip1;
ip1 = ip1 + step;
if (ip1 > ilimit) goto _cleanup;
curr = (U32)(ip0 - base);
hash0 = hash1;
} /* end inner search loop */
/* match found */
assert(mLength);
ip0 += mLength;
anchor = ip0;
if (ip0 <= ilimit) {
/* Fill Table */
assert(base+curr+2 > istart); /* check base overflow */
hashTable[ZSTD_hashPtr(base+curr+2, hlog, mls)] = curr+2; /* here because curr+2 could be > iend-8 */
hashTable[ZSTD_hashPtr(ip0-2, hlog, mls)] = (U32)(ip0-2-base);
/* check immediate repcode */
while (ip0 <= ilimit) {
U32 const current2 = (U32)(ip0-base);
U32 const repIndex2 = current2 - offset_2;
const BYTE* repMatch2 = repIndex2 < prefixStartIndex ?
dictBase - dictIndexDelta + repIndex2 :
base + repIndex2;
if ( ((U32)((prefixStartIndex-1) - (U32)repIndex2) >= 3 /* intentional overflow */)
&& (MEM_read32(repMatch2) == MEM_read32(ip0))) {
const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend;
size_t const repLength2 = ZSTD_count_2segments(ip0+4, repMatch2+4, iend, repEnd2, prefixStart) + 4;
U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, repLength2);
hashTable[ZSTD_hashPtr(ip0, hlog, mls)] = current2;
ip0 += repLength2;
anchor = ip0;
continue;
}
break;
}
}
/* Prepare for next iteration */
assert(ip0 == anchor);
ip1 = ip0 + stepSize;
}
_cleanup:
/* save reps for next block */
rep[0] = offset_1;
rep[1] = offset_2;
/* Return the last literals size */
return (size_t)(iend - anchor);
}
ZSTD_GEN_FAST_FN(dictMatchState, 4, 0)
ZSTD_GEN_FAST_FN(dictMatchState, 5, 0)
ZSTD_GEN_FAST_FN(dictMatchState, 6, 0)
ZSTD_GEN_FAST_FN(dictMatchState, 7, 0)
size_t ZSTD_compressBlock_fast_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
U32 const mls = ms->cParams.minMatch;
assert(ms->dictMatchState != NULL);
switch(mls)
{
default: /* includes case 3 */
case 4 :
return ZSTD_compressBlock_fast_dictMatchState_4_0(ms, seqStore, rep, src, srcSize);
case 5 :
return ZSTD_compressBlock_fast_dictMatchState_5_0(ms, seqStore, rep, src, srcSize);
case 6 :
return ZSTD_compressBlock_fast_dictMatchState_6_0(ms, seqStore, rep, src, srcSize);
case 7 :
return ZSTD_compressBlock_fast_dictMatchState_7_0(ms, seqStore, rep, src, srcSize);
}
}
static size_t ZSTD_compressBlock_fast_extDict_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize, U32 const mls, U32 const hasStep)
{
const ZSTD_compressionParameters* const cParams = &ms->cParams;
U32* const hashTable = ms->hashTable;
U32 const hlog = cParams->hashLog;
/* support stepSize of 0 */
size_t const stepSize = cParams->targetLength + !(cParams->targetLength) + 1;
const BYTE* const base = ms->window.base;
const BYTE* const dictBase = ms->window.dictBase;
const BYTE* const istart = (const BYTE*)src;
const BYTE* anchor = istart;
const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
const U32 lowLimit = ZSTD_getLowestMatchIndex(ms, endIndex, cParams->windowLog);
const U32 dictStartIndex = lowLimit;
const BYTE* const dictStart = dictBase + dictStartIndex;
const U32 dictLimit = ms->window.dictLimit;
const U32 prefixStartIndex = dictLimit < lowLimit ? lowLimit : dictLimit;
const BYTE* const prefixStart = base + prefixStartIndex;
const BYTE* const dictEnd = dictBase + prefixStartIndex;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - 8;
U32 offset_1=rep[0], offset_2=rep[1];
U32 offsetSaved1 = 0, offsetSaved2 = 0;
const BYTE* ip0 = istart;
const BYTE* ip1;
const BYTE* ip2;
const BYTE* ip3;
U32 current0;
size_t hash0; /* hash for ip0 */
size_t hash1; /* hash for ip1 */
U32 idx; /* match idx for ip0 */
const BYTE* idxBase; /* base pointer for idx */
U32 offcode;
const BYTE* match0;
size_t mLength;
const BYTE* matchEnd = 0; /* initialize to avoid warning, assert != 0 later */
size_t step;
const BYTE* nextStep;
const size_t kStepIncr = (1 << (kSearchStrength - 1));
(void)hasStep; /* not currently specialized on whether it's accelerated */
DEBUGLOG(5, "ZSTD_compressBlock_fast_extDict_generic (offset_1=%u)", offset_1);
/* switch to "regular" variant if extDict is invalidated due to maxDistance */
if (prefixStartIndex == dictStartIndex)
return ZSTD_compressBlock_fast(ms, seqStore, rep, src, srcSize);
{ U32 const curr = (U32)(ip0 - base);
U32 const maxRep = curr - dictStartIndex;
if (offset_2 >= maxRep) offsetSaved2 = offset_2, offset_2 = 0;
if (offset_1 >= maxRep) offsetSaved1 = offset_1, offset_1 = 0;
}
/* start each op */
_start: /* Requires: ip0 */
step = stepSize;
nextStep = ip0 + kStepIncr;
/* calculate positions, ip0 - anchor == 0, so we skip step calc */
ip1 = ip0 + 1;
ip2 = ip0 + step;
ip3 = ip2 + 1;
if (ip3 >= ilimit) {
goto _cleanup;
}
hash0 = ZSTD_hashPtr(ip0, hlog, mls);
hash1 = ZSTD_hashPtr(ip1, hlog, mls);
idx = hashTable[hash0];
idxBase = idx < prefixStartIndex ? dictBase : base;
do {
{ /* load repcode match for ip[2] */
U32 const current2 = (U32)(ip2 - base);
U32 const repIndex = current2 - offset_1;
const BYTE* const repBase = repIndex < prefixStartIndex ? dictBase : base;
U32 rval;
if ( ((U32)(prefixStartIndex - repIndex) >= 4) /* intentional underflow */
& (offset_1 > 0) ) {
rval = MEM_read32(repBase + repIndex);
} else {
rval = MEM_read32(ip2) ^ 1; /* guaranteed to not match. */
}
/* write back hash table entry */
current0 = (U32)(ip0 - base);
hashTable[hash0] = current0;
/* check repcode at ip[2] */
if (MEM_read32(ip2) == rval) {
ip0 = ip2;
match0 = repBase + repIndex;
matchEnd = repIndex < prefixStartIndex ? dictEnd : iend;
assert((match0 != prefixStart) & (match0 != dictStart));
mLength = ip0[-1] == match0[-1];
ip0 -= mLength;
match0 -= mLength;
offcode = REPCODE1_TO_OFFBASE;
mLength += 4;
goto _match;
} }
{ /* load match for ip[0] */
U32 const mval = idx >= dictStartIndex ?
MEM_read32(idxBase + idx) :
MEM_read32(ip0) ^ 1; /* guaranteed not to match */
/* check match at ip[0] */
if (MEM_read32(ip0) == mval) {
/* found a match! */
goto _offset;
} }
/* lookup ip[1] */
idx = hashTable[hash1];
idxBase = idx < prefixStartIndex ? dictBase : base;
/* hash ip[2] */
hash0 = hash1;
hash1 = ZSTD_hashPtr(ip2, hlog, mls);
/* advance to next positions */
ip0 = ip1;
ip1 = ip2;
ip2 = ip3;
/* write back hash table entry */
current0 = (U32)(ip0 - base);
hashTable[hash0] = current0;
{ /* load match for ip[0] */
U32 const mval = idx >= dictStartIndex ?
MEM_read32(idxBase + idx) :
MEM_read32(ip0) ^ 1; /* guaranteed not to match */
/* check match at ip[0] */
if (MEM_read32(ip0) == mval) {
/* found a match! */
goto _offset;
} }
/* lookup ip[1] */
idx = hashTable[hash1];
idxBase = idx < prefixStartIndex ? dictBase : base;
/* hash ip[2] */
hash0 = hash1;
hash1 = ZSTD_hashPtr(ip2, hlog, mls);
/* advance to next positions */
ip0 = ip1;
ip1 = ip2;
ip2 = ip0 + step;
ip3 = ip1 + step;
/* calculate step */
if (ip2 >= nextStep) {
step++;
PREFETCH_L1(ip1 + 64);
PREFETCH_L1(ip1 + 128);
nextStep += kStepIncr;
}
} while (ip3 < ilimit);
_cleanup:
/* Note that there are probably still a couple positions we could search.
* However, it seems to be a meaningful performance hit to try to search
* them. So let's not. */
/* If offset_1 started invalid (offsetSaved1 != 0) and became valid (offset_1 != 0),
* rotate saved offsets. See comment in ZSTD_compressBlock_fast_noDict for more context. */
offsetSaved2 = ((offsetSaved1 != 0) && (offset_1 != 0)) ? offsetSaved1 : offsetSaved2;
/* save reps for next block */
rep[0] = offset_1 ? offset_1 : offsetSaved1;
rep[1] = offset_2 ? offset_2 : offsetSaved2;
/* Return the last literals size */
return (size_t)(iend - anchor);
_offset: /* Requires: ip0, idx, idxBase */
/* Compute the offset code. */
{ U32 const offset = current0 - idx;
const BYTE* const lowMatchPtr = idx < prefixStartIndex ? dictStart : prefixStart;
matchEnd = idx < prefixStartIndex ? dictEnd : iend;
match0 = idxBase + idx;
offset_2 = offset_1;
offset_1 = offset;
offcode = OFFSET_TO_OFFBASE(offset);
mLength = 4;
/* Count the backwards match length. */
while (((ip0>anchor) & (match0>lowMatchPtr)) && (ip0[-1] == match0[-1])) {
ip0--;
match0--;
mLength++;
} }
_match: /* Requires: ip0, match0, offcode, matchEnd */
/* Count the forward length. */
assert(matchEnd != 0);
mLength += ZSTD_count_2segments(ip0 + mLength, match0 + mLength, iend, matchEnd, prefixStart);
ZSTD_storeSeq(seqStore, (size_t)(ip0 - anchor), anchor, iend, offcode, mLength);
ip0 += mLength;
anchor = ip0;
/* write next hash table entry */
if (ip1 < ip0) {
hashTable[hash1] = (U32)(ip1 - base);
}
/* Fill table and check for immediate repcode. */
if (ip0 <= ilimit) {
/* Fill Table */
assert(base+current0+2 > istart); /* check base overflow */
hashTable[ZSTD_hashPtr(base+current0+2, hlog, mls)] = current0+2; /* here because current+2 could be > iend-8 */
hashTable[ZSTD_hashPtr(ip0-2, hlog, mls)] = (U32)(ip0-2-base);
while (ip0 <= ilimit) {
U32 const repIndex2 = (U32)(ip0-base) - offset_2;
const BYTE* const repMatch2 = repIndex2 < prefixStartIndex ? dictBase + repIndex2 : base + repIndex2;
if ( (((U32)((prefixStartIndex-1) - repIndex2) >= 3) & (offset_2 > 0)) /* intentional underflow */
&& (MEM_read32(repMatch2) == MEM_read32(ip0)) ) {
const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend;
size_t const repLength2 = ZSTD_count_2segments(ip0+4, repMatch2+4, iend, repEnd2, prefixStart) + 4;
{ U32 const tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; } /* swap offset_2 <=> offset_1 */
ZSTD_storeSeq(seqStore, 0 /*litlen*/, anchor, iend, REPCODE1_TO_OFFBASE, repLength2);
hashTable[ZSTD_hashPtr(ip0, hlog, mls)] = (U32)(ip0-base);
ip0 += repLength2;
anchor = ip0;
continue;
}
break;
} }
goto _start;
}
ZSTD_GEN_FAST_FN(extDict, 4, 0)
ZSTD_GEN_FAST_FN(extDict, 5, 0)
ZSTD_GEN_FAST_FN(extDict, 6, 0)
ZSTD_GEN_FAST_FN(extDict, 7, 0)
size_t ZSTD_compressBlock_fast_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
U32 const mls = ms->cParams.minMatch;
assert(ms->dictMatchState == NULL);
switch(mls)
{
default: /* includes case 3 */
case 4 :
return ZSTD_compressBlock_fast_extDict_4_0(ms, seqStore, rep, src, srcSize);
case 5 :
return ZSTD_compressBlock_fast_extDict_5_0(ms, seqStore, rep, src, srcSize);
case 6 :
return ZSTD_compressBlock_fast_extDict_6_0(ms, seqStore, rep, src, srcSize);
case 7 :
return ZSTD_compressBlock_fast_extDict_7_0(ms, seqStore, rep, src, srcSize);
}
}

View File

@ -1,38 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_FAST_H
#define ZSTD_FAST_H
#if defined (__cplusplus)
extern "C" {
#endif
#include "../common/mem.h" /* U32 */
#include "zstd_compress_internal.h"
void ZSTD_fillHashTable(ZSTD_matchState_t* ms,
void const* end, ZSTD_dictTableLoadMethod_e dtlm,
ZSTD_tableFillPurpose_e tfp);
size_t ZSTD_compressBlock_fast(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_fast_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_fast_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_FAST_H */

File diff suppressed because it is too large Load Diff

View File

@ -1,127 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_LAZY_H
#define ZSTD_LAZY_H
#if defined (__cplusplus)
extern "C" {
#endif
#include "zstd_compress_internal.h"
/**
* Dedicated Dictionary Search Structure bucket log. In the
* ZSTD_dedicatedDictSearch mode, the hashTable has
* 2 ** ZSTD_LAZY_DDSS_BUCKET_LOG entries in each bucket, rather than just
* one.
*/
#define ZSTD_LAZY_DDSS_BUCKET_LOG 2
#define ZSTD_ROW_HASH_TAG_BITS 8 /* nb bits to use for the tag */
U32 ZSTD_insertAndFindFirstIndex(ZSTD_matchState_t* ms, const BYTE* ip);
void ZSTD_row_update(ZSTD_matchState_t* const ms, const BYTE* ip);
void ZSTD_dedicatedDictSearch_lazy_loadDictionary(ZSTD_matchState_t* ms, const BYTE* const ip);
void ZSTD_preserveUnsortedMark (U32* const table, U32 const size, U32 const reducerValue); /*! used in ZSTD_reduceIndex(). preemptively increase value of ZSTD_DUBT_UNSORTED_MARK */
size_t ZSTD_compressBlock_btlazy2(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy2(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_greedy(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy2_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_greedy_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_btlazy2_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy2_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_greedy_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy2_dictMatchState_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy_dictMatchState_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_greedy_dictMatchState_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy_dedicatedDictSearch(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_greedy_dedicatedDictSearch(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy_dedicatedDictSearch_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_greedy_dedicatedDictSearch_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_greedy_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy2_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_greedy_extDict_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy_extDict_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy2_extDict_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_btlazy2_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_LAZY_H */

View File

@ -1,724 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#include "zstd_ldm.h"
#include "../common/debug.h"
#include "../common/xxhash.h"
#include "zstd_fast.h" /* ZSTD_fillHashTable() */
#include "zstd_double_fast.h" /* ZSTD_fillDoubleHashTable() */
#include "zstd_ldm_geartab.h"
#define LDM_BUCKET_SIZE_LOG 3
#define LDM_MIN_MATCH_LENGTH 64
#define LDM_HASH_RLOG 7
typedef struct {
U64 rolling;
U64 stopMask;
} ldmRollingHashState_t;
/** ZSTD_ldm_gear_init():
*
* Initializes the rolling hash state such that it will honor the
* settings in params. */
static void ZSTD_ldm_gear_init(ldmRollingHashState_t* state, ldmParams_t const* params)
{
unsigned maxBitsInMask = MIN(params->minMatchLength, 64);
unsigned hashRateLog = params->hashRateLog;
state->rolling = ~(U32)0;
/* The choice of the splitting criterion is subject to two conditions:
* 1. it has to trigger on average every 2^(hashRateLog) bytes;
* 2. ideally, it has to depend on a window of minMatchLength bytes.
*
* In the gear hash algorithm, bit n depends on the last n bytes;
* so in order to obtain a good quality splitting criterion it is
* preferable to use bits with high weight.
*
* To match condition 1 we use a mask with hashRateLog bits set
* and, because of the previous remark, we make sure these bits
* have the highest possible weight while still respecting
* condition 2.
*/
if (hashRateLog > 0 && hashRateLog <= maxBitsInMask) {
state->stopMask = (((U64)1 << hashRateLog) - 1) << (maxBitsInMask - hashRateLog);
} else {
/* In this degenerate case we simply honor the hash rate. */
state->stopMask = ((U64)1 << hashRateLog) - 1;
}
}
/** ZSTD_ldm_gear_reset()
* Feeds [data, data + minMatchLength) into the hash without registering any
* splits. This effectively resets the hash state. This is used when skipping
* over data, either at the beginning of a block, or skipping sections.
*/
static void ZSTD_ldm_gear_reset(ldmRollingHashState_t* state,
BYTE const* data, size_t minMatchLength)
{
U64 hash = state->rolling;
size_t n = 0;
#define GEAR_ITER_ONCE() do { \
hash = (hash << 1) + ZSTD_ldm_gearTab[data[n] & 0xff]; \
n += 1; \
} while (0)
while (n + 3 < minMatchLength) {
GEAR_ITER_ONCE();
GEAR_ITER_ONCE();
GEAR_ITER_ONCE();
GEAR_ITER_ONCE();
}
while (n < minMatchLength) {
GEAR_ITER_ONCE();
}
#undef GEAR_ITER_ONCE
}
/** ZSTD_ldm_gear_feed():
*
* Registers in the splits array all the split points found in the first
* size bytes following the data pointer. This function terminates when
* either all the data has been processed or LDM_BATCH_SIZE splits are
* present in the splits array.
*
* Precondition: The splits array must not be full.
* Returns: The number of bytes processed. */
static size_t ZSTD_ldm_gear_feed(ldmRollingHashState_t* state,
BYTE const* data, size_t size,
size_t* splits, unsigned* numSplits)
{
size_t n;
U64 hash, mask;
hash = state->rolling;
mask = state->stopMask;
n = 0;
#define GEAR_ITER_ONCE() do { \
hash = (hash << 1) + ZSTD_ldm_gearTab[data[n] & 0xff]; \
n += 1; \
if (UNLIKELY((hash & mask) == 0)) { \
splits[*numSplits] = n; \
*numSplits += 1; \
if (*numSplits == LDM_BATCH_SIZE) \
goto done; \
} \
} while (0)
while (n + 3 < size) {
GEAR_ITER_ONCE();
GEAR_ITER_ONCE();
GEAR_ITER_ONCE();
GEAR_ITER_ONCE();
}
while (n < size) {
GEAR_ITER_ONCE();
}
#undef GEAR_ITER_ONCE
done:
state->rolling = hash;
return n;
}
void ZSTD_ldm_adjustParameters(ldmParams_t* params,
ZSTD_compressionParameters const* cParams)
{
params->windowLog = cParams->windowLog;
ZSTD_STATIC_ASSERT(LDM_BUCKET_SIZE_LOG <= ZSTD_LDM_BUCKETSIZELOG_MAX);
DEBUGLOG(4, "ZSTD_ldm_adjustParameters");
if (!params->bucketSizeLog) params->bucketSizeLog = LDM_BUCKET_SIZE_LOG;
if (!params->minMatchLength) params->minMatchLength = LDM_MIN_MATCH_LENGTH;
if (params->hashLog == 0) {
params->hashLog = MAX(ZSTD_HASHLOG_MIN, params->windowLog - LDM_HASH_RLOG);
assert(params->hashLog <= ZSTD_HASHLOG_MAX);
}
if (params->hashRateLog == 0) {
params->hashRateLog = params->windowLog < params->hashLog
? 0
: params->windowLog - params->hashLog;
}
params->bucketSizeLog = MIN(params->bucketSizeLog, params->hashLog);
}
size_t ZSTD_ldm_getTableSize(ldmParams_t params)
{
size_t const ldmHSize = ((size_t)1) << params.hashLog;
size_t const ldmBucketSizeLog = MIN(params.bucketSizeLog, params.hashLog);
size_t const ldmBucketSize = ((size_t)1) << (params.hashLog - ldmBucketSizeLog);
size_t const totalSize = ZSTD_cwksp_alloc_size(ldmBucketSize)
+ ZSTD_cwksp_alloc_size(ldmHSize * sizeof(ldmEntry_t));
return params.enableLdm == ZSTD_ps_enable ? totalSize : 0;
}
size_t ZSTD_ldm_getMaxNbSeq(ldmParams_t params, size_t maxChunkSize)
{
return params.enableLdm == ZSTD_ps_enable ? (maxChunkSize / params.minMatchLength) : 0;
}
/** ZSTD_ldm_getBucket() :
* Returns a pointer to the start of the bucket associated with hash. */
static ldmEntry_t* ZSTD_ldm_getBucket(
ldmState_t* ldmState, size_t hash, ldmParams_t const ldmParams)
{
return ldmState->hashTable + (hash << ldmParams.bucketSizeLog);
}
/** ZSTD_ldm_insertEntry() :
* Insert the entry with corresponding hash into the hash table */
static void ZSTD_ldm_insertEntry(ldmState_t* ldmState,
size_t const hash, const ldmEntry_t entry,
ldmParams_t const ldmParams)
{
BYTE* const pOffset = ldmState->bucketOffsets + hash;
unsigned const offset = *pOffset;
*(ZSTD_ldm_getBucket(ldmState, hash, ldmParams) + offset) = entry;
*pOffset = (BYTE)((offset + 1) & ((1u << ldmParams.bucketSizeLog) - 1));
}
/** ZSTD_ldm_countBackwardsMatch() :
* Returns the number of bytes that match backwards before pIn and pMatch.
*
* We count only bytes where pMatch >= pBase and pIn >= pAnchor. */
static size_t ZSTD_ldm_countBackwardsMatch(
const BYTE* pIn, const BYTE* pAnchor,
const BYTE* pMatch, const BYTE* pMatchBase)
{
size_t matchLength = 0;
while (pIn > pAnchor && pMatch > pMatchBase && pIn[-1] == pMatch[-1]) {
pIn--;
pMatch--;
matchLength++;
}
return matchLength;
}
/** ZSTD_ldm_countBackwardsMatch_2segments() :
* Returns the number of bytes that match backwards from pMatch,
* even with the backwards match spanning 2 different segments.
*
* On reaching `pMatchBase`, start counting from mEnd */
static size_t ZSTD_ldm_countBackwardsMatch_2segments(
const BYTE* pIn, const BYTE* pAnchor,
const BYTE* pMatch, const BYTE* pMatchBase,
const BYTE* pExtDictStart, const BYTE* pExtDictEnd)
{
size_t matchLength = ZSTD_ldm_countBackwardsMatch(pIn, pAnchor, pMatch, pMatchBase);
if (pMatch - matchLength != pMatchBase || pMatchBase == pExtDictStart) {
/* If backwards match is entirely in the extDict or prefix, immediately return */
return matchLength;
}
DEBUGLOG(7, "ZSTD_ldm_countBackwardsMatch_2segments: found 2-parts backwards match (length in prefix==%zu)", matchLength);
matchLength += ZSTD_ldm_countBackwardsMatch(pIn - matchLength, pAnchor, pExtDictEnd, pExtDictStart);
DEBUGLOG(7, "final backwards match length = %zu", matchLength);
return matchLength;
}
/** ZSTD_ldm_fillFastTables() :
*
* Fills the relevant tables for the ZSTD_fast and ZSTD_dfast strategies.
* This is similar to ZSTD_loadDictionaryContent.
*
* The tables for the other strategies are filled within their
* block compressors. */
static size_t ZSTD_ldm_fillFastTables(ZSTD_matchState_t* ms,
void const* end)
{
const BYTE* const iend = (const BYTE*)end;
switch(ms->cParams.strategy)
{
case ZSTD_fast:
ZSTD_fillHashTable(ms, iend, ZSTD_dtlm_fast, ZSTD_tfp_forCCtx);
break;
case ZSTD_dfast:
ZSTD_fillDoubleHashTable(ms, iend, ZSTD_dtlm_fast, ZSTD_tfp_forCCtx);
break;
case ZSTD_greedy:
case ZSTD_lazy:
case ZSTD_lazy2:
case ZSTD_btlazy2:
case ZSTD_btopt:
case ZSTD_btultra:
case ZSTD_btultra2:
break;
default:
assert(0); /* not possible : not a valid strategy id */
}
return 0;
}
void ZSTD_ldm_fillHashTable(
ldmState_t* ldmState, const BYTE* ip,
const BYTE* iend, ldmParams_t const* params)
{
U32 const minMatchLength = params->minMatchLength;
U32 const hBits = params->hashLog - params->bucketSizeLog;
BYTE const* const base = ldmState->window.base;
BYTE const* const istart = ip;
ldmRollingHashState_t hashState;
size_t* const splits = ldmState->splitIndices;
unsigned numSplits;
DEBUGLOG(5, "ZSTD_ldm_fillHashTable");
ZSTD_ldm_gear_init(&hashState, params);
while (ip < iend) {
size_t hashed;
unsigned n;
numSplits = 0;
hashed = ZSTD_ldm_gear_feed(&hashState, ip, iend - ip, splits, &numSplits);
for (n = 0; n < numSplits; n++) {
if (ip + splits[n] >= istart + minMatchLength) {
BYTE const* const split = ip + splits[n] - minMatchLength;
U64 const xxhash = XXH64(split, minMatchLength, 0);
U32 const hash = (U32)(xxhash & (((U32)1 << hBits) - 1));
ldmEntry_t entry;
entry.offset = (U32)(split - base);
entry.checksum = (U32)(xxhash >> 32);
ZSTD_ldm_insertEntry(ldmState, hash, entry, *params);
}
}
ip += hashed;
}
}
/** ZSTD_ldm_limitTableUpdate() :
*
* Sets cctx->nextToUpdate to a position corresponding closer to anchor
* if it is far way
* (after a long match, only update tables a limited amount). */
static void ZSTD_ldm_limitTableUpdate(ZSTD_matchState_t* ms, const BYTE* anchor)
{
U32 const curr = (U32)(anchor - ms->window.base);
if (curr > ms->nextToUpdate + 1024) {
ms->nextToUpdate =
curr - MIN(512, curr - ms->nextToUpdate - 1024);
}
}
static size_t ZSTD_ldm_generateSequences_internal(
ldmState_t* ldmState, rawSeqStore_t* rawSeqStore,
ldmParams_t const* params, void const* src, size_t srcSize)
{
/* LDM parameters */
int const extDict = ZSTD_window_hasExtDict(ldmState->window);
U32 const minMatchLength = params->minMatchLength;
U32 const entsPerBucket = 1U << params->bucketSizeLog;
U32 const hBits = params->hashLog - params->bucketSizeLog;
/* Prefix and extDict parameters */
U32 const dictLimit = ldmState->window.dictLimit;
U32 const lowestIndex = extDict ? ldmState->window.lowLimit : dictLimit;
BYTE const* const base = ldmState->window.base;
BYTE const* const dictBase = extDict ? ldmState->window.dictBase : NULL;
BYTE const* const dictStart = extDict ? dictBase + lowestIndex : NULL;
BYTE const* const dictEnd = extDict ? dictBase + dictLimit : NULL;
BYTE const* const lowPrefixPtr = base + dictLimit;
/* Input bounds */
BYTE const* const istart = (BYTE const*)src;
BYTE const* const iend = istart + srcSize;
BYTE const* const ilimit = iend - HASH_READ_SIZE;
/* Input positions */
BYTE const* anchor = istart;
BYTE const* ip = istart;
/* Rolling hash state */
ldmRollingHashState_t hashState;
/* Arrays for staged-processing */
size_t* const splits = ldmState->splitIndices;
ldmMatchCandidate_t* const candidates = ldmState->matchCandidates;
unsigned numSplits;
if (srcSize < minMatchLength)
return iend - anchor;
/* Initialize the rolling hash state with the first minMatchLength bytes */
ZSTD_ldm_gear_init(&hashState, params);
ZSTD_ldm_gear_reset(&hashState, ip, minMatchLength);
ip += minMatchLength;
while (ip < ilimit) {
size_t hashed;
unsigned n;
numSplits = 0;
hashed = ZSTD_ldm_gear_feed(&hashState, ip, ilimit - ip,
splits, &numSplits);
for (n = 0; n < numSplits; n++) {
BYTE const* const split = ip + splits[n] - minMatchLength;
U64 const xxhash = XXH64(split, minMatchLength, 0);
U32 const hash = (U32)(xxhash & (((U32)1 << hBits) - 1));
candidates[n].split = split;
candidates[n].hash = hash;
candidates[n].checksum = (U32)(xxhash >> 32);
candidates[n].bucket = ZSTD_ldm_getBucket(ldmState, hash, *params);
PREFETCH_L1(candidates[n].bucket);
}
for (n = 0; n < numSplits; n++) {
size_t forwardMatchLength = 0, backwardMatchLength = 0,
bestMatchLength = 0, mLength;
U32 offset;
BYTE const* const split = candidates[n].split;
U32 const checksum = candidates[n].checksum;
U32 const hash = candidates[n].hash;
ldmEntry_t* const bucket = candidates[n].bucket;
ldmEntry_t const* cur;
ldmEntry_t const* bestEntry = NULL;
ldmEntry_t newEntry;
newEntry.offset = (U32)(split - base);
newEntry.checksum = checksum;
/* If a split point would generate a sequence overlapping with
* the previous one, we merely register it in the hash table and
* move on */
if (split < anchor) {
ZSTD_ldm_insertEntry(ldmState, hash, newEntry, *params);
continue;
}
for (cur = bucket; cur < bucket + entsPerBucket; cur++) {
size_t curForwardMatchLength, curBackwardMatchLength,
curTotalMatchLength;
if (cur->checksum != checksum || cur->offset <= lowestIndex) {
continue;
}
if (extDict) {
BYTE const* const curMatchBase =
cur->offset < dictLimit ? dictBase : base;
BYTE const* const pMatch = curMatchBase + cur->offset;
BYTE const* const matchEnd =
cur->offset < dictLimit ? dictEnd : iend;
BYTE const* const lowMatchPtr =
cur->offset < dictLimit ? dictStart : lowPrefixPtr;
curForwardMatchLength =
ZSTD_count_2segments(split, pMatch, iend, matchEnd, lowPrefixPtr);
if (curForwardMatchLength < minMatchLength) {
continue;
}
curBackwardMatchLength = ZSTD_ldm_countBackwardsMatch_2segments(
split, anchor, pMatch, lowMatchPtr, dictStart, dictEnd);
} else { /* !extDict */
BYTE const* const pMatch = base + cur->offset;
curForwardMatchLength = ZSTD_count(split, pMatch, iend);
if (curForwardMatchLength < minMatchLength) {
continue;
}
curBackwardMatchLength =
ZSTD_ldm_countBackwardsMatch(split, anchor, pMatch, lowPrefixPtr);
}
curTotalMatchLength = curForwardMatchLength + curBackwardMatchLength;
if (curTotalMatchLength > bestMatchLength) {
bestMatchLength = curTotalMatchLength;
forwardMatchLength = curForwardMatchLength;
backwardMatchLength = curBackwardMatchLength;
bestEntry = cur;
}
}
/* No match found -- insert an entry into the hash table
* and process the next candidate match */
if (bestEntry == NULL) {
ZSTD_ldm_insertEntry(ldmState, hash, newEntry, *params);
continue;
}
/* Match found */
offset = (U32)(split - base) - bestEntry->offset;
mLength = forwardMatchLength + backwardMatchLength;
{
rawSeq* const seq = rawSeqStore->seq + rawSeqStore->size;
/* Out of sequence storage */
if (rawSeqStore->size == rawSeqStore->capacity)
return ERROR(dstSize_tooSmall);
seq->litLength = (U32)(split - backwardMatchLength - anchor);
seq->matchLength = (U32)mLength;
seq->offset = offset;
rawSeqStore->size++;
}
/* Insert the current entry into the hash table --- it must be
* done after the previous block to avoid clobbering bestEntry */
ZSTD_ldm_insertEntry(ldmState, hash, newEntry, *params);
anchor = split + forwardMatchLength;
/* If we find a match that ends after the data that we've hashed
* then we have a repeating, overlapping, pattern. E.g. all zeros.
* If one repetition of the pattern matches our `stopMask` then all
* repetitions will. We don't need to insert them all into out table,
* only the first one. So skip over overlapping matches.
* This is a major speed boost (20x) for compressing a single byte
* repeated, when that byte ends up in the table.
*/
if (anchor > ip + hashed) {
ZSTD_ldm_gear_reset(&hashState, anchor - minMatchLength, minMatchLength);
/* Continue the outer loop at anchor (ip + hashed == anchor). */
ip = anchor - hashed;
break;
}
}
ip += hashed;
}
return iend - anchor;
}
/*! ZSTD_ldm_reduceTable() :
* reduce table indexes by `reducerValue` */
static void ZSTD_ldm_reduceTable(ldmEntry_t* const table, U32 const size,
U32 const reducerValue)
{
U32 u;
for (u = 0; u < size; u++) {
if (table[u].offset < reducerValue) table[u].offset = 0;
else table[u].offset -= reducerValue;
}
}
size_t ZSTD_ldm_generateSequences(
ldmState_t* ldmState, rawSeqStore_t* sequences,
ldmParams_t const* params, void const* src, size_t srcSize)
{
U32 const maxDist = 1U << params->windowLog;
BYTE const* const istart = (BYTE const*)src;
BYTE const* const iend = istart + srcSize;
size_t const kMaxChunkSize = 1 << 20;
size_t const nbChunks = (srcSize / kMaxChunkSize) + ((srcSize % kMaxChunkSize) != 0);
size_t chunk;
size_t leftoverSize = 0;
assert(ZSTD_CHUNKSIZE_MAX >= kMaxChunkSize);
/* Check that ZSTD_window_update() has been called for this chunk prior
* to passing it to this function.
*/
assert(ldmState->window.nextSrc >= (BYTE const*)src + srcSize);
/* The input could be very large (in zstdmt), so it must be broken up into
* chunks to enforce the maximum distance and handle overflow correction.
*/
assert(sequences->pos <= sequences->size);
assert(sequences->size <= sequences->capacity);
for (chunk = 0; chunk < nbChunks && sequences->size < sequences->capacity; ++chunk) {
BYTE const* const chunkStart = istart + chunk * kMaxChunkSize;
size_t const remaining = (size_t)(iend - chunkStart);
BYTE const *const chunkEnd =
(remaining < kMaxChunkSize) ? iend : chunkStart + kMaxChunkSize;
size_t const chunkSize = chunkEnd - chunkStart;
size_t newLeftoverSize;
size_t const prevSize = sequences->size;
assert(chunkStart < iend);
/* 1. Perform overflow correction if necessary. */
if (ZSTD_window_needOverflowCorrection(ldmState->window, 0, maxDist, ldmState->loadedDictEnd, chunkStart, chunkEnd)) {
U32 const ldmHSize = 1U << params->hashLog;
U32 const correction = ZSTD_window_correctOverflow(
&ldmState->window, /* cycleLog */ 0, maxDist, chunkStart);
ZSTD_ldm_reduceTable(ldmState->hashTable, ldmHSize, correction);
/* invalidate dictionaries on overflow correction */
ldmState->loadedDictEnd = 0;
}
/* 2. We enforce the maximum offset allowed.
*
* kMaxChunkSize should be small enough that we don't lose too much of
* the window through early invalidation.
* TODO: * Test the chunk size.
* * Try invalidation after the sequence generation and test the
* offset against maxDist directly.
*
* NOTE: Because of dictionaries + sequence splitting we MUST make sure
* that any offset used is valid at the END of the sequence, since it may
* be split into two sequences. This condition holds when using
* ZSTD_window_enforceMaxDist(), but if we move to checking offsets
* against maxDist directly, we'll have to carefully handle that case.
*/
ZSTD_window_enforceMaxDist(&ldmState->window, chunkEnd, maxDist, &ldmState->loadedDictEnd, NULL);
/* 3. Generate the sequences for the chunk, and get newLeftoverSize. */
newLeftoverSize = ZSTD_ldm_generateSequences_internal(
ldmState, sequences, params, chunkStart, chunkSize);
if (ZSTD_isError(newLeftoverSize))
return newLeftoverSize;
/* 4. We add the leftover literals from previous iterations to the first
* newly generated sequence, or add the `newLeftoverSize` if none are
* generated.
*/
/* Prepend the leftover literals from the last call */
if (prevSize < sequences->size) {
sequences->seq[prevSize].litLength += (U32)leftoverSize;
leftoverSize = newLeftoverSize;
} else {
assert(newLeftoverSize == chunkSize);
leftoverSize += chunkSize;
}
}
return 0;
}
void
ZSTD_ldm_skipSequences(rawSeqStore_t* rawSeqStore, size_t srcSize, U32 const minMatch)
{
while (srcSize > 0 && rawSeqStore->pos < rawSeqStore->size) {
rawSeq* seq = rawSeqStore->seq + rawSeqStore->pos;
if (srcSize <= seq->litLength) {
/* Skip past srcSize literals */
seq->litLength -= (U32)srcSize;
return;
}
srcSize -= seq->litLength;
seq->litLength = 0;
if (srcSize < seq->matchLength) {
/* Skip past the first srcSize of the match */
seq->matchLength -= (U32)srcSize;
if (seq->matchLength < minMatch) {
/* The match is too short, omit it */
if (rawSeqStore->pos + 1 < rawSeqStore->size) {
seq[1].litLength += seq[0].matchLength;
}
rawSeqStore->pos++;
}
return;
}
srcSize -= seq->matchLength;
seq->matchLength = 0;
rawSeqStore->pos++;
}
}
/**
* If the sequence length is longer than remaining then the sequence is split
* between this block and the next.
*
* Returns the current sequence to handle, or if the rest of the block should
* be literals, it returns a sequence with offset == 0.
*/
static rawSeq maybeSplitSequence(rawSeqStore_t* rawSeqStore,
U32 const remaining, U32 const minMatch)
{
rawSeq sequence = rawSeqStore->seq[rawSeqStore->pos];
assert(sequence.offset > 0);
/* Likely: No partial sequence */
if (remaining >= sequence.litLength + sequence.matchLength) {
rawSeqStore->pos++;
return sequence;
}
/* Cut the sequence short (offset == 0 ==> rest is literals). */
if (remaining <= sequence.litLength) {
sequence.offset = 0;
} else if (remaining < sequence.litLength + sequence.matchLength) {
sequence.matchLength = remaining - sequence.litLength;
if (sequence.matchLength < minMatch) {
sequence.offset = 0;
}
}
/* Skip past `remaining` bytes for the future sequences. */
ZSTD_ldm_skipSequences(rawSeqStore, remaining, minMatch);
return sequence;
}
void ZSTD_ldm_skipRawSeqStoreBytes(rawSeqStore_t* rawSeqStore, size_t nbBytes) {
U32 currPos = (U32)(rawSeqStore->posInSequence + nbBytes);
while (currPos && rawSeqStore->pos < rawSeqStore->size) {
rawSeq currSeq = rawSeqStore->seq[rawSeqStore->pos];
if (currPos >= currSeq.litLength + currSeq.matchLength) {
currPos -= currSeq.litLength + currSeq.matchLength;
rawSeqStore->pos++;
} else {
rawSeqStore->posInSequence = currPos;
break;
}
}
if (currPos == 0 || rawSeqStore->pos == rawSeqStore->size) {
rawSeqStore->posInSequence = 0;
}
}
size_t ZSTD_ldm_blockCompress(rawSeqStore_t* rawSeqStore,
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_paramSwitch_e useRowMatchFinder,
void const* src, size_t srcSize)
{
const ZSTD_compressionParameters* const cParams = &ms->cParams;
unsigned const minMatch = cParams->minMatch;
ZSTD_blockCompressor const blockCompressor =
ZSTD_selectBlockCompressor(cParams->strategy, useRowMatchFinder, ZSTD_matchState_dictMode(ms));
/* Input bounds */
BYTE const* const istart = (BYTE const*)src;
BYTE const* const iend = istart + srcSize;
/* Input positions */
BYTE const* ip = istart;
DEBUGLOG(5, "ZSTD_ldm_blockCompress: srcSize=%zu", srcSize);
/* If using opt parser, use LDMs only as candidates rather than always accepting them */
if (cParams->strategy >= ZSTD_btopt) {
size_t lastLLSize;
ms->ldmSeqStore = rawSeqStore;
lastLLSize = blockCompressor(ms, seqStore, rep, src, srcSize);
ZSTD_ldm_skipRawSeqStoreBytes(rawSeqStore, srcSize);
return lastLLSize;
}
assert(rawSeqStore->pos <= rawSeqStore->size);
assert(rawSeqStore->size <= rawSeqStore->capacity);
/* Loop through each sequence and apply the block compressor to the literals */
while (rawSeqStore->pos < rawSeqStore->size && ip < iend) {
/* maybeSplitSequence updates rawSeqStore->pos */
rawSeq const sequence = maybeSplitSequence(rawSeqStore,
(U32)(iend - ip), minMatch);
int i;
/* End signal */
if (sequence.offset == 0)
break;
assert(ip + sequence.litLength + sequence.matchLength <= iend);
/* Fill tables for block compressor */
ZSTD_ldm_limitTableUpdate(ms, ip);
ZSTD_ldm_fillFastTables(ms, ip);
/* Run the block compressor */
DEBUGLOG(5, "pos %u : calling block compressor on segment of size %u", (unsigned)(ip-istart), sequence.litLength);
{
size_t const newLitLength =
blockCompressor(ms, seqStore, rep, ip, sequence.litLength);
ip += sequence.litLength;
/* Update the repcodes */
for (i = ZSTD_REP_NUM - 1; i > 0; i--)
rep[i] = rep[i-1];
rep[0] = sequence.offset;
/* Store the sequence */
ZSTD_storeSeq(seqStore, newLitLength, ip - newLitLength, iend,
OFFSET_TO_OFFBASE(sequence.offset),
sequence.matchLength);
ip += sequence.matchLength;
}
}
/* Fill the tables for the block compressor */
ZSTD_ldm_limitTableUpdate(ms, ip);
ZSTD_ldm_fillFastTables(ms, ip);
/* Compress the last literals */
return blockCompressor(ms, seqStore, rep, ip, iend - ip);
}

View File

@ -1,117 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_LDM_H
#define ZSTD_LDM_H
#if defined (__cplusplus)
extern "C" {
#endif
#include "zstd_compress_internal.h" /* ldmParams_t, U32 */
#include "../zstd.h" /* ZSTD_CCtx, size_t */
/*-*************************************
* Long distance matching
***************************************/
#define ZSTD_LDM_DEFAULT_WINDOW_LOG ZSTD_WINDOWLOG_LIMIT_DEFAULT
void ZSTD_ldm_fillHashTable(
ldmState_t* state, const BYTE* ip,
const BYTE* iend, ldmParams_t const* params);
/**
* ZSTD_ldm_generateSequences():
*
* Generates the sequences using the long distance match finder.
* Generates long range matching sequences in `sequences`, which parse a prefix
* of the source. `sequences` must be large enough to store every sequence,
* which can be checked with `ZSTD_ldm_getMaxNbSeq()`.
* @returns 0 or an error code.
*
* NOTE: The user must have called ZSTD_window_update() for all of the input
* they have, even if they pass it to ZSTD_ldm_generateSequences() in chunks.
* NOTE: This function returns an error if it runs out of space to store
* sequences.
*/
size_t ZSTD_ldm_generateSequences(
ldmState_t* ldms, rawSeqStore_t* sequences,
ldmParams_t const* params, void const* src, size_t srcSize);
/**
* ZSTD_ldm_blockCompress():
*
* Compresses a block using the predefined sequences, along with a secondary
* block compressor. The literals section of every sequence is passed to the
* secondary block compressor, and those sequences are interspersed with the
* predefined sequences. Returns the length of the last literals.
* Updates `rawSeqStore.pos` to indicate how many sequences have been consumed.
* `rawSeqStore.seq` may also be updated to split the last sequence between two
* blocks.
* @return The length of the last literals.
*
* NOTE: The source must be at most the maximum block size, but the predefined
* sequences can be any size, and may be longer than the block. In the case that
* they are longer than the block, the last sequences may need to be split into
* two. We handle that case correctly, and update `rawSeqStore` appropriately.
* NOTE: This function does not return any errors.
*/
size_t ZSTD_ldm_blockCompress(rawSeqStore_t* rawSeqStore,
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_paramSwitch_e useRowMatchFinder,
void const* src, size_t srcSize);
/**
* ZSTD_ldm_skipSequences():
*
* Skip past `srcSize` bytes worth of sequences in `rawSeqStore`.
* Avoids emitting matches less than `minMatch` bytes.
* Must be called for data that is not passed to ZSTD_ldm_blockCompress().
*/
void ZSTD_ldm_skipSequences(rawSeqStore_t* rawSeqStore, size_t srcSize,
U32 const minMatch);
/* ZSTD_ldm_skipRawSeqStoreBytes():
* Moves forward in rawSeqStore by nbBytes, updating fields 'pos' and 'posInSequence'.
* Not to be used in conjunction with ZSTD_ldm_skipSequences().
* Must be called for data with is not passed to ZSTD_ldm_blockCompress().
*/
void ZSTD_ldm_skipRawSeqStoreBytes(rawSeqStore_t* rawSeqStore, size_t nbBytes);
/** ZSTD_ldm_getTableSize() :
* Estimate the space needed for long distance matching tables or 0 if LDM is
* disabled.
*/
size_t ZSTD_ldm_getTableSize(ldmParams_t params);
/** ZSTD_ldm_getSeqSpace() :
* Return an upper bound on the number of sequences that can be produced by
* the long distance matcher, or 0 if LDM is disabled.
*/
size_t ZSTD_ldm_getMaxNbSeq(ldmParams_t params, size_t maxChunkSize);
/** ZSTD_ldm_adjustParameters() :
* If the params->hashRateLog is not set, set it to its default value based on
* windowLog and params->hashLog.
*
* Ensures that params->bucketSizeLog is <= params->hashLog (setting it to
* params->hashLog if it is not).
*
* Ensures that the minMatchLength >= targetLength during optimal parsing.
*/
void ZSTD_ldm_adjustParameters(ldmParams_t* params,
ZSTD_compressionParameters const* cParams);
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_FAST_H */

View File

@ -1,106 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_LDM_GEARTAB_H
#define ZSTD_LDM_GEARTAB_H
#include "../common/compiler.h" /* UNUSED_ATTR */
#include "../common/mem.h" /* U64 */
static UNUSED_ATTR const U64 ZSTD_ldm_gearTab[256] = {
0xf5b8f72c5f77775c, 0x84935f266b7ac412, 0xb647ada9ca730ccc,
0xb065bb4b114fb1de, 0x34584e7e8c3a9fd0, 0x4e97e17c6ae26b05,
0x3a03d743bc99a604, 0xcecd042422c4044f, 0x76de76c58524259e,
0x9c8528f65badeaca, 0x86563706e2097529, 0x2902475fa375d889,
0xafb32a9739a5ebe6, 0xce2714da3883e639, 0x21eaf821722e69e,
0x37b628620b628, 0x49a8d455d88caf5, 0x8556d711e6958140,
0x4f7ae74fc605c1f, 0x829f0c3468bd3a20, 0x4ffdc885c625179e,
0x8473de048a3daf1b, 0x51008822b05646b2, 0x69d75d12b2d1cc5f,
0x8c9d4a19159154bc, 0xc3cc10f4abbd4003, 0xd06ddc1cecb97391,
0xbe48e6e7ed80302e, 0x3481db31cee03547, 0xacc3f67cdaa1d210,
0x65cb771d8c7f96cc, 0x8eb27177055723dd, 0xc789950d44cd94be,
0x934feadc3700b12b, 0x5e485f11edbdf182, 0x1e2e2a46fd64767a,
0x2969ca71d82efa7c, 0x9d46e9935ebbba2e, 0xe056b67e05e6822b,
0x94d73f55739d03a0, 0xcd7010bdb69b5a03, 0x455ef9fcd79b82f4,
0x869cb54a8749c161, 0x38d1a4fa6185d225, 0xb475166f94bbe9bb,
0xa4143548720959f1, 0x7aed4780ba6b26ba, 0xd0ce264439e02312,
0x84366d746078d508, 0xa8ce973c72ed17be, 0x21c323a29a430b01,
0x9962d617e3af80ee, 0xab0ce91d9c8cf75b, 0x530e8ee6d19a4dbc,
0x2ef68c0cf53f5d72, 0xc03a681640a85506, 0x496e4e9f9c310967,
0x78580472b59b14a0, 0x273824c23b388577, 0x66bf923ad45cb553,
0x47ae1a5a2492ba86, 0x35e304569e229659, 0x4765182a46870b6f,
0x6cbab625e9099412, 0xddac9a2e598522c1, 0x7172086e666624f2,
0xdf5003ca503b7837, 0x88c0c1db78563d09, 0x58d51865acfc289d,
0x177671aec65224f1, 0xfb79d8a241e967d7, 0x2be1e101cad9a49a,
0x6625682f6e29186b, 0x399553457ac06e50, 0x35dffb4c23abb74,
0x429db2591f54aade, 0xc52802a8037d1009, 0x6acb27381f0b25f3,
0xf45e2551ee4f823b, 0x8b0ea2d99580c2f7, 0x3bed519cbcb4e1e1,
0xff452823dbb010a, 0x9d42ed614f3dd267, 0x5b9313c06257c57b,
0xa114b8008b5e1442, 0xc1fe311c11c13d4b, 0x66e8763ea34c5568,
0x8b982af1c262f05d, 0xee8876faaa75fbb7, 0x8a62a4d0d172bb2a,
0xc13d94a3b7449a97, 0x6dbbba9dc15d037c, 0xc786101f1d92e0f1,
0xd78681a907a0b79b, 0xf61aaf2962c9abb9, 0x2cfd16fcd3cb7ad9,
0x868c5b6744624d21, 0x25e650899c74ddd7, 0xba042af4a7c37463,
0x4eb1a539465a3eca, 0xbe09dbf03b05d5ca, 0x774e5a362b5472ba,
0x47a1221229d183cd, 0x504b0ca18ef5a2df, 0xdffbdfbde2456eb9,
0x46cd2b2fbee34634, 0xf2aef8fe819d98c3, 0x357f5276d4599d61,
0x24a5483879c453e3, 0x88026889192b4b9, 0x28da96671782dbec,
0x4ef37c40588e9aaa, 0x8837b90651bc9fb3, 0xc164f741d3f0e5d6,
0xbc135a0a704b70ba, 0x69cd868f7622ada, 0xbc37ba89e0b9c0ab,
0x47c14a01323552f6, 0x4f00794bacee98bb, 0x7107de7d637a69d5,
0x88af793bb6f2255e, 0xf3c6466b8799b598, 0xc288c616aa7f3b59,
0x81ca63cf42fca3fd, 0x88d85ace36a2674b, 0xd056bd3792389e7,
0xe55c396c4e9dd32d, 0xbefb504571e6c0a6, 0x96ab32115e91e8cc,
0xbf8acb18de8f38d1, 0x66dae58801672606, 0x833b6017872317fb,
0xb87c16f2d1c92864, 0xdb766a74e58b669c, 0x89659f85c61417be,
0xc8daad856011ea0c, 0x76a4b565b6fe7eae, 0xa469d085f6237312,
0xaaf0365683a3e96c, 0x4dbb746f8424f7b8, 0x638755af4e4acc1,
0x3d7807f5bde64486, 0x17be6d8f5bbb7639, 0x903f0cd44dc35dc,
0x67b672eafdf1196c, 0xa676ff93ed4c82f1, 0x521d1004c5053d9d,
0x37ba9ad09ccc9202, 0x84e54d297aacfb51, 0xa0b4b776a143445,
0x820d471e20b348e, 0x1874383cb83d46dc, 0x97edeec7a1efe11c,
0xb330e50b1bdc42aa, 0x1dd91955ce70e032, 0xa514cdb88f2939d5,
0x2791233fd90db9d3, 0x7b670a4cc50f7a9b, 0x77c07d2a05c6dfa5,
0xe3778b6646d0a6fa, 0xb39c8eda47b56749, 0x933ed448addbef28,
0xaf846af6ab7d0bf4, 0xe5af208eb666e49, 0x5e6622f73534cd6a,
0x297daeca42ef5b6e, 0x862daef3d35539a6, 0xe68722498f8e1ea9,
0x981c53093dc0d572, 0xfa09b0bfbf86fbf5, 0x30b1e96166219f15,
0x70e7d466bdc4fb83, 0x5a66736e35f2a8e9, 0xcddb59d2b7c1baef,
0xd6c7d247d26d8996, 0xea4e39eac8de1ba3, 0x539c8bb19fa3aff2,
0x9f90e4c5fd508d8, 0xa34e5956fbaf3385, 0x2e2f8e151d3ef375,
0x173691e9b83faec1, 0xb85a8d56bf016379, 0x8382381267408ae3,
0xb90f901bbdc0096d, 0x7c6ad32933bcec65, 0x76bb5e2f2c8ad595,
0x390f851a6cf46d28, 0xc3e6064da1c2da72, 0xc52a0c101cfa5389,
0xd78eaf84a3fbc530, 0x3781b9e2288b997e, 0x73c2f6dea83d05c4,
0x4228e364c5b5ed7, 0x9d7a3edf0da43911, 0x8edcfeda24686756,
0x5e7667a7b7a9b3a1, 0x4c4f389fa143791d, 0xb08bc1023da7cddc,
0x7ab4be3ae529b1cc, 0x754e6132dbe74ff9, 0x71635442a839df45,
0x2f6fb1643fbe52de, 0x961e0a42cf7a8177, 0xf3b45d83d89ef2ea,
0xee3de4cf4a6e3e9b, 0xcd6848542c3295e7, 0xe4cee1664c78662f,
0x9947548b474c68c4, 0x25d73777a5ed8b0b, 0xc915b1d636b7fc,
0x21c2ba75d9b0d2da, 0x5f6b5dcf608a64a1, 0xdcf333255ff9570c,
0x633b922418ced4ee, 0xc136dde0b004b34a, 0x58cc83b05d4b2f5a,
0x5eb424dda28e42d2, 0x62df47369739cd98, 0xb4e0b42485e4ce17,
0x16e1f0c1f9a8d1e7, 0x8ec3916707560ebf, 0x62ba6e2df2cc9db3,
0xcbf9f4ff77d83a16, 0x78d9d7d07d2bbcc4, 0xef554ce1e02c41f4,
0x8d7581127eccf94d, 0xa9b53336cb3c8a05, 0x38c42c0bf45c4f91,
0x640893cdf4488863, 0x80ec34bc575ea568, 0x39f324f5b48eaa40,
0xe9d9ed1f8eff527f, 0x9224fc058cc5a214, 0xbaba00b04cfe7741,
0x309a9f120fcf52af, 0xa558f3ec65626212, 0x424bec8b7adabe2f,
0x41622513a6aea433, 0xb88da2d5324ca798, 0xd287733b245528a4,
0x9a44697e6d68aec3, 0x7b1093be2f49bb28, 0x50bbec632e3d8aad,
0x6cd90723e1ea8283, 0x897b9e7431b02bf3, 0x219efdcb338a7047,
0x3b0311f0a27c0656, 0xdb17bf91c0db96e7, 0x8cd4fd6b4e85a5b2,
0xfab071054ba6409d, 0x40d6fe831fa9dfd9, 0xaf358debad7d791e,
0xeb8d0e25a65e3e58, 0xbbcbd3df14e08580, 0xcf751f27ecdab2b,
0x2b4da14f2613d8f4
};
#endif /* ZSTD_LDM_GEARTAB_H */

File diff suppressed because it is too large Load Diff

View File

@ -1,56 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_OPT_H
#define ZSTD_OPT_H
#if defined (__cplusplus)
extern "C" {
#endif
#include "zstd_compress_internal.h"
/* used in ZSTD_loadDictionaryContent() */
void ZSTD_updateTree(ZSTD_matchState_t* ms, const BYTE* ip, const BYTE* iend);
size_t ZSTD_compressBlock_btopt(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_btultra(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_btultra2(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_btopt_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_btultra_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_btopt_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_btultra_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
/* note : no btultra2 variant for extDict nor dictMatchState,
* because btultra2 is not meant to work with dictionaries
* and is only specific for the first block (no prefix) */
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_OPT_H */

File diff suppressed because it is too large Load Diff

View File

@ -1,113 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTDMT_COMPRESS_H
#define ZSTDMT_COMPRESS_H
#if defined (__cplusplus)
extern "C" {
#endif
/* Note : This is an internal API.
* These APIs used to be exposed with ZSTDLIB_API,
* because it used to be the only way to invoke MT compression.
* Now, you must use ZSTD_compress2 and ZSTD_compressStream2() instead.
*
* This API requires ZSTD_MULTITHREAD to be defined during compilation,
* otherwise ZSTDMT_createCCtx*() will fail.
*/
/* === Dependencies === */
#include "../common/zstd_deps.h" /* size_t */
#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_parameters */
#include "../zstd.h" /* ZSTD_inBuffer, ZSTD_outBuffer, ZSTDLIB_API */
/* === Constants === */
#ifndef ZSTDMT_NBWORKERS_MAX /* a different value can be selected at compile time */
# define ZSTDMT_NBWORKERS_MAX ((sizeof(void*)==4) /*32-bit*/ ? 64 : 256)
#endif
#ifndef ZSTDMT_JOBSIZE_MIN /* a different value can be selected at compile time */
# define ZSTDMT_JOBSIZE_MIN (512 KB)
#endif
#define ZSTDMT_JOBLOG_MAX (MEM_32bits() ? 29 : 30)
#define ZSTDMT_JOBSIZE_MAX (MEM_32bits() ? (512 MB) : (1024 MB))
/* ========================================================
* === Private interface, for use by ZSTD_compress.c ===
* === Not exposed in libzstd. Never invoke directly ===
* ======================================================== */
/* === Memory management === */
typedef struct ZSTDMT_CCtx_s ZSTDMT_CCtx;
/* Requires ZSTD_MULTITHREAD to be defined during compilation, otherwise it will return NULL. */
ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbWorkers,
ZSTD_customMem cMem,
ZSTD_threadPool *pool);
size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx);
size_t ZSTDMT_sizeof_CCtx(ZSTDMT_CCtx* mtctx);
/* === Streaming functions === */
size_t ZSTDMT_nextInputSizeHint(const ZSTDMT_CCtx* mtctx);
/*! ZSTDMT_initCStream_internal() :
* Private use only. Init streaming operation.
* expects params to be valid.
* must receive dict, or cdict, or none, but not both.
* mtctx can be freshly constructed or reused from a prior compression.
* If mtctx is reused, memory allocations from the prior compression may not be freed,
* even if they are not needed for the current compression.
* @return : 0, or an error code */
size_t ZSTDMT_initCStream_internal(ZSTDMT_CCtx* mtctx,
const void* dict, size_t dictSize, ZSTD_dictContentType_e dictContentType,
const ZSTD_CDict* cdict,
ZSTD_CCtx_params params, unsigned long long pledgedSrcSize);
/*! ZSTDMT_compressStream_generic() :
* Combines ZSTDMT_compressStream() with optional ZSTDMT_flushStream() or ZSTDMT_endStream()
* depending on flush directive.
* @return : minimum amount of data still to be flushed
* 0 if fully flushed
* or an error code
* note : needs to be init using any ZSTD_initCStream*() variant */
size_t ZSTDMT_compressStream_generic(ZSTDMT_CCtx* mtctx,
ZSTD_outBuffer* output,
ZSTD_inBuffer* input,
ZSTD_EndDirective endOp);
/*! ZSTDMT_toFlushNow()
* Tell how many bytes are ready to be flushed immediately.
* Probe the oldest active job (not yet entirely flushed) and check its output buffer.
* If return 0, it means there is no active job,
* or, it means oldest job is still active, but everything produced has been flushed so far,
* therefore flushing is limited by speed of oldest job. */
size_t ZSTDMT_toFlushNow(ZSTDMT_CCtx* mtctx);
/*! ZSTDMT_updateCParams_whileCompressing() :
* Updates only a selected set of compression parameters, to remain compatible with current frame.
* New parameters will be applied to next compression job. */
void ZSTDMT_updateCParams_whileCompressing(ZSTDMT_CCtx* mtctx, const ZSTD_CCtx_params* cctxParams);
/*! ZSTDMT_getFrameProgression():
* tells how much data has been consumed (input) and produced (output) for current frame.
* able to count progression inside worker threads.
*/
ZSTD_frameProgression ZSTDMT_getFrameProgression(ZSTDMT_CCtx* mtctx);
#if defined (__cplusplus)
}
#endif
#endif /* ZSTDMT_COMPRESS_H */

File diff suppressed because it is too large Load Diff

View File

@ -1,576 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#include "../common/portability_macros.h"
/* Stack marking
* ref: https://wiki.gentoo.org/wiki/Hardened/GNU_stack_quickstart
*/
#if defined(__ELF__) && defined(__GNUC__)
.section .note.GNU-stack,"",%progbits
#endif
#if ZSTD_ENABLE_ASM_X86_64_BMI2
/* Calling convention:
*
* %rdi contains the first argument: HUF_DecompressAsmArgs*.
* %rbp isn't maintained (no frame pointer).
* %rsp contains the stack pointer that grows down.
* No red-zone is assumed, only addresses >= %rsp are used.
* All register contents are preserved.
*
* TODO: Support Windows calling convention.
*/
ZSTD_HIDE_ASM_FUNCTION(HUF_decompress4X1_usingDTable_internal_fast_asm_loop)
ZSTD_HIDE_ASM_FUNCTION(HUF_decompress4X2_usingDTable_internal_fast_asm_loop)
ZSTD_HIDE_ASM_FUNCTION(_HUF_decompress4X2_usingDTable_internal_fast_asm_loop)
ZSTD_HIDE_ASM_FUNCTION(_HUF_decompress4X1_usingDTable_internal_fast_asm_loop)
.global HUF_decompress4X1_usingDTable_internal_fast_asm_loop
.global HUF_decompress4X2_usingDTable_internal_fast_asm_loop
.global _HUF_decompress4X1_usingDTable_internal_fast_asm_loop
.global _HUF_decompress4X2_usingDTable_internal_fast_asm_loop
.text
/* Sets up register mappings for clarity.
* op[], bits[], dtable & ip[0] each get their own register.
* ip[1,2,3] & olimit alias var[].
* %rax is a scratch register.
*/
#define op0 rsi
#define op1 rbx
#define op2 rcx
#define op3 rdi
#define ip0 r8
#define ip1 r9
#define ip2 r10
#define ip3 r11
#define bits0 rbp
#define bits1 rdx
#define bits2 r12
#define bits3 r13
#define dtable r14
#define olimit r15
/* var[] aliases ip[1,2,3] & olimit
* ip[1,2,3] are saved every iteration.
* olimit is only used in compute_olimit.
*/
#define var0 r15
#define var1 r9
#define var2 r10
#define var3 r11
/* 32-bit var registers */
#define vard0 r15d
#define vard1 r9d
#define vard2 r10d
#define vard3 r11d
/* Calls X(N) for each stream 0, 1, 2, 3. */
#define FOR_EACH_STREAM(X) \
X(0); \
X(1); \
X(2); \
X(3)
/* Calls X(N, idx) for each stream 0, 1, 2, 3. */
#define FOR_EACH_STREAM_WITH_INDEX(X, idx) \
X(0, idx); \
X(1, idx); \
X(2, idx); \
X(3, idx)
/* Define both _HUF_* & HUF_* symbols because MacOS
* C symbols are prefixed with '_' & Linux symbols aren't.
*/
_HUF_decompress4X1_usingDTable_internal_fast_asm_loop:
HUF_decompress4X1_usingDTable_internal_fast_asm_loop:
ZSTD_CET_ENDBRANCH
/* Save all registers - even if they are callee saved for simplicity. */
push %rax
push %rbx
push %rcx
push %rdx
push %rbp
push %rsi
push %rdi
push %r8
push %r9
push %r10
push %r11
push %r12
push %r13
push %r14
push %r15
/* Read HUF_DecompressAsmArgs* args from %rax */
movq %rdi, %rax
movq 0(%rax), %ip0
movq 8(%rax), %ip1
movq 16(%rax), %ip2
movq 24(%rax), %ip3
movq 32(%rax), %op0
movq 40(%rax), %op1
movq 48(%rax), %op2
movq 56(%rax), %op3
movq 64(%rax), %bits0
movq 72(%rax), %bits1
movq 80(%rax), %bits2
movq 88(%rax), %bits3
movq 96(%rax), %dtable
push %rax /* argument */
push 104(%rax) /* ilimit */
push 112(%rax) /* oend */
push %olimit /* olimit space */
subq $24, %rsp
.L_4X1_compute_olimit:
/* Computes how many iterations we can do safely
* %r15, %rax may be clobbered
* rbx, rdx must be saved
* op3 & ip0 mustn't be clobbered
*/
movq %rbx, 0(%rsp)
movq %rdx, 8(%rsp)
movq 32(%rsp), %rax /* rax = oend */
subq %op3, %rax /* rax = oend - op3 */
/* r15 = (oend - op3) / 5 */
movabsq $-3689348814741910323, %rdx
mulq %rdx
movq %rdx, %r15
shrq $2, %r15
movq %ip0, %rax /* rax = ip0 */
movq 40(%rsp), %rdx /* rdx = ilimit */
subq %rdx, %rax /* rax = ip0 - ilimit */
movq %rax, %rbx /* rbx = ip0 - ilimit */
/* rdx = (ip0 - ilimit) / 7 */
movabsq $2635249153387078803, %rdx
mulq %rdx
subq %rdx, %rbx
shrq %rbx
addq %rbx, %rdx
shrq $2, %rdx
/* r15 = min(%rdx, %r15) */
cmpq %rdx, %r15
cmova %rdx, %r15
/* r15 = r15 * 5 */
leaq (%r15, %r15, 4), %r15
/* olimit = op3 + r15 */
addq %op3, %olimit
movq 8(%rsp), %rdx
movq 0(%rsp), %rbx
/* If (op3 + 20 > olimit) */
movq %op3, %rax /* rax = op3 */
addq $20, %rax /* rax = op3 + 20 */
cmpq %rax, %olimit /* op3 + 20 > olimit */
jb .L_4X1_exit
/* If (ip1 < ip0) go to exit */
cmpq %ip0, %ip1
jb .L_4X1_exit
/* If (ip2 < ip1) go to exit */
cmpq %ip1, %ip2
jb .L_4X1_exit
/* If (ip3 < ip2) go to exit */
cmpq %ip2, %ip3
jb .L_4X1_exit
/* Reads top 11 bits from bits[n]
* Loads dt[bits[n]] into var[n]
*/
#define GET_NEXT_DELT(n) \
movq $53, %var##n; \
shrxq %var##n, %bits##n, %var##n; \
movzwl (%dtable,%var##n,2),%vard##n
/* var[n] must contain the DTable entry computed with GET_NEXT_DELT
* Moves var[n] to %rax
* bits[n] <<= var[n] & 63
* op[n][idx] = %rax >> 8
* %ah is a way to access bits [8, 16) of %rax
*/
#define DECODE_FROM_DELT(n, idx) \
movq %var##n, %rax; \
shlxq %var##n, %bits##n, %bits##n; \
movb %ah, idx(%op##n)
/* Assumes GET_NEXT_DELT has been called.
* Calls DECODE_FROM_DELT then GET_NEXT_DELT
*/
#define DECODE_AND_GET_NEXT(n, idx) \
DECODE_FROM_DELT(n, idx); \
GET_NEXT_DELT(n) \
/* // ctz & nbBytes is stored in bits[n]
* // nbBits is stored in %rax
* ctz = CTZ[bits[n]]
* nbBits = ctz & 7
* nbBytes = ctz >> 3
* op[n] += 5
* ip[n] -= nbBytes
* // Note: x86-64 is little-endian ==> no bswap
* bits[n] = MEM_readST(ip[n]) | 1
* bits[n] <<= nbBits
*/
#define RELOAD_BITS(n) \
bsfq %bits##n, %bits##n; \
movq %bits##n, %rax; \
andq $7, %rax; \
shrq $3, %bits##n; \
leaq 5(%op##n), %op##n; \
subq %bits##n, %ip##n; \
movq (%ip##n), %bits##n; \
orq $1, %bits##n; \
shlx %rax, %bits##n, %bits##n
/* Store clobbered variables on the stack */
movq %olimit, 24(%rsp)
movq %ip1, 0(%rsp)
movq %ip2, 8(%rsp)
movq %ip3, 16(%rsp)
/* Call GET_NEXT_DELT for each stream */
FOR_EACH_STREAM(GET_NEXT_DELT)
.p2align 6
.L_4X1_loop_body:
/* Decode 5 symbols in each of the 4 streams (20 total)
* Must have called GET_NEXT_DELT for each stream
*/
FOR_EACH_STREAM_WITH_INDEX(DECODE_AND_GET_NEXT, 0)
FOR_EACH_STREAM_WITH_INDEX(DECODE_AND_GET_NEXT, 1)
FOR_EACH_STREAM_WITH_INDEX(DECODE_AND_GET_NEXT, 2)
FOR_EACH_STREAM_WITH_INDEX(DECODE_AND_GET_NEXT, 3)
FOR_EACH_STREAM_WITH_INDEX(DECODE_FROM_DELT, 4)
/* Load ip[1,2,3] from stack (var[] aliases them)
* ip[] is needed for RELOAD_BITS
* Each will be stored back to the stack after RELOAD
*/
movq 0(%rsp), %ip1
movq 8(%rsp), %ip2
movq 16(%rsp), %ip3
/* Reload each stream & fetch the next table entry
* to prepare for the next iteration
*/
RELOAD_BITS(0)
GET_NEXT_DELT(0)
RELOAD_BITS(1)
movq %ip1, 0(%rsp)
GET_NEXT_DELT(1)
RELOAD_BITS(2)
movq %ip2, 8(%rsp)
GET_NEXT_DELT(2)
RELOAD_BITS(3)
movq %ip3, 16(%rsp)
GET_NEXT_DELT(3)
/* If op3 < olimit: continue the loop */
cmp %op3, 24(%rsp)
ja .L_4X1_loop_body
/* Reload ip[1,2,3] from stack */
movq 0(%rsp), %ip1
movq 8(%rsp), %ip2
movq 16(%rsp), %ip3
/* Re-compute olimit */
jmp .L_4X1_compute_olimit
#undef GET_NEXT_DELT
#undef DECODE_FROM_DELT
#undef DECODE
#undef RELOAD_BITS
.L_4X1_exit:
addq $24, %rsp
/* Restore stack (oend & olimit) */
pop %rax /* olimit */
pop %rax /* oend */
pop %rax /* ilimit */
pop %rax /* arg */
/* Save ip / op / bits */
movq %ip0, 0(%rax)
movq %ip1, 8(%rax)
movq %ip2, 16(%rax)
movq %ip3, 24(%rax)
movq %op0, 32(%rax)
movq %op1, 40(%rax)
movq %op2, 48(%rax)
movq %op3, 56(%rax)
movq %bits0, 64(%rax)
movq %bits1, 72(%rax)
movq %bits2, 80(%rax)
movq %bits3, 88(%rax)
/* Restore registers */
pop %r15
pop %r14
pop %r13
pop %r12
pop %r11
pop %r10
pop %r9
pop %r8
pop %rdi
pop %rsi
pop %rbp
pop %rdx
pop %rcx
pop %rbx
pop %rax
ret
_HUF_decompress4X2_usingDTable_internal_fast_asm_loop:
HUF_decompress4X2_usingDTable_internal_fast_asm_loop:
ZSTD_CET_ENDBRANCH
/* Save all registers - even if they are callee saved for simplicity. */
push %rax
push %rbx
push %rcx
push %rdx
push %rbp
push %rsi
push %rdi
push %r8
push %r9
push %r10
push %r11
push %r12
push %r13
push %r14
push %r15
movq %rdi, %rax
movq 0(%rax), %ip0
movq 8(%rax), %ip1
movq 16(%rax), %ip2
movq 24(%rax), %ip3
movq 32(%rax), %op0
movq 40(%rax), %op1
movq 48(%rax), %op2
movq 56(%rax), %op3
movq 64(%rax), %bits0
movq 72(%rax), %bits1
movq 80(%rax), %bits2
movq 88(%rax), %bits3
movq 96(%rax), %dtable
push %rax /* argument */
push %rax /* olimit */
push 104(%rax) /* ilimit */
movq 112(%rax), %rax
push %rax /* oend3 */
movq %op3, %rax
push %rax /* oend2 */
movq %op2, %rax
push %rax /* oend1 */
movq %op1, %rax
push %rax /* oend0 */
/* Scratch space */
subq $8, %rsp
.L_4X2_compute_olimit:
/* Computes how many iterations we can do safely
* %r15, %rax may be clobbered
* rdx must be saved
* op[1,2,3,4] & ip0 mustn't be clobbered
*/
movq %rdx, 0(%rsp)
/* We can consume up to 7 input bytes each iteration. */
movq %ip0, %rax /* rax = ip0 */
movq 40(%rsp), %rdx /* rdx = ilimit */
subq %rdx, %rax /* rax = ip0 - ilimit */
movq %rax, %r15 /* r15 = ip0 - ilimit */
/* rdx = rax / 7 */
movabsq $2635249153387078803, %rdx
mulq %rdx
subq %rdx, %r15
shrq %r15
addq %r15, %rdx
shrq $2, %rdx
/* r15 = (ip0 - ilimit) / 7 */
movq %rdx, %r15
/* r15 = min(r15, min(oend0 - op0, oend1 - op1, oend2 - op2, oend3 - op3) / 10) */
movq 8(%rsp), %rax /* rax = oend0 */
subq %op0, %rax /* rax = oend0 - op0 */
movq 16(%rsp), %rdx /* rdx = oend1 */
subq %op1, %rdx /* rdx = oend1 - op1 */
cmpq %rax, %rdx
cmova %rax, %rdx /* rdx = min(%rdx, %rax) */
movq 24(%rsp), %rax /* rax = oend2 */
subq %op2, %rax /* rax = oend2 - op2 */
cmpq %rax, %rdx
cmova %rax, %rdx /* rdx = min(%rdx, %rax) */
movq 32(%rsp), %rax /* rax = oend3 */
subq %op3, %rax /* rax = oend3 - op3 */
cmpq %rax, %rdx
cmova %rax, %rdx /* rdx = min(%rdx, %rax) */
movabsq $-3689348814741910323, %rax
mulq %rdx
shrq $3, %rdx /* rdx = rdx / 10 */
/* r15 = min(%rdx, %r15) */
cmpq %rdx, %r15
cmova %rdx, %r15
/* olimit = op3 + 5 * r15 */
movq %r15, %rax
leaq (%op3, %rax, 4), %olimit
addq %rax, %olimit
movq 0(%rsp), %rdx
/* If (op3 + 10 > olimit) */
movq %op3, %rax /* rax = op3 */
addq $10, %rax /* rax = op3 + 10 */
cmpq %rax, %olimit /* op3 + 10 > olimit */
jb .L_4X2_exit
/* If (ip1 < ip0) go to exit */
cmpq %ip0, %ip1
jb .L_4X2_exit
/* If (ip2 < ip1) go to exit */
cmpq %ip1, %ip2
jb .L_4X2_exit
/* If (ip3 < ip2) go to exit */
cmpq %ip2, %ip3
jb .L_4X2_exit
#define DECODE(n, idx) \
movq %bits##n, %rax; \
shrq $53, %rax; \
movzwl 0(%dtable,%rax,4),%r8d; \
movzbl 2(%dtable,%rax,4),%r15d; \
movzbl 3(%dtable,%rax,4),%eax; \
movw %r8w, (%op##n); \
shlxq %r15, %bits##n, %bits##n; \
addq %rax, %op##n
#define RELOAD_BITS(n) \
bsfq %bits##n, %bits##n; \
movq %bits##n, %rax; \
shrq $3, %bits##n; \
andq $7, %rax; \
subq %bits##n, %ip##n; \
movq (%ip##n), %bits##n; \
orq $1, %bits##n; \
shlxq %rax, %bits##n, %bits##n
movq %olimit, 48(%rsp)
.p2align 6
.L_4X2_loop_body:
/* We clobber r8, so store it on the stack */
movq %r8, 0(%rsp)
/* Decode 5 symbols from each of the 4 streams (20 symbols total). */
FOR_EACH_STREAM_WITH_INDEX(DECODE, 0)
FOR_EACH_STREAM_WITH_INDEX(DECODE, 1)
FOR_EACH_STREAM_WITH_INDEX(DECODE, 2)
FOR_EACH_STREAM_WITH_INDEX(DECODE, 3)
FOR_EACH_STREAM_WITH_INDEX(DECODE, 4)
/* Reload r8 */
movq 0(%rsp), %r8
FOR_EACH_STREAM(RELOAD_BITS)
cmp %op3, 48(%rsp)
ja .L_4X2_loop_body
jmp .L_4X2_compute_olimit
#undef DECODE
#undef RELOAD_BITS
.L_4X2_exit:
addq $8, %rsp
/* Restore stack (oend & olimit) */
pop %rax /* oend0 */
pop %rax /* oend1 */
pop %rax /* oend2 */
pop %rax /* oend3 */
pop %rax /* ilimit */
pop %rax /* olimit */
pop %rax /* arg */
/* Save ip / op / bits */
movq %ip0, 0(%rax)
movq %ip1, 8(%rax)
movq %ip2, 16(%rax)
movq %ip3, 24(%rax)
movq %op0, 32(%rax)
movq %op1, 40(%rax)
movq %op2, 48(%rax)
movq %op3, 56(%rax)
movq %bits0, 64(%rax)
movq %bits1, 72(%rax)
movq %bits2, 80(%rax)
movq %bits3, 88(%rax)
/* Restore registers */
pop %r15
pop %r14
pop %r13
pop %r12
pop %r11
pop %r10
pop %r9
pop %r8
pop %rdi
pop %rsi
pop %rbp
pop %rdx
pop %rcx
pop %rbx
pop %rax
ret
#endif

View File

@ -1,244 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* zstd_ddict.c :
* concentrates all logic that needs to know the internals of ZSTD_DDict object */
/*-*******************************************************
* Dependencies
*********************************************************/
#include "../common/allocations.h" /* ZSTD_customMalloc, ZSTD_customFree */
#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memmove, ZSTD_memset */
#include "../common/cpu.h" /* bmi2 */
#include "../common/mem.h" /* low level memory routines */
#define FSE_STATIC_LINKING_ONLY
#include "../common/fse.h"
#include "../common/huf.h"
#include "zstd_decompress_internal.h"
#include "zstd_ddict.h"
#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1)
# include "../legacy/zstd_legacy.h"
#endif
/*-*******************************************************
* Types
*********************************************************/
struct ZSTD_DDict_s {
void* dictBuffer;
const void* dictContent;
size_t dictSize;
ZSTD_entropyDTables_t entropy;
U32 dictID;
U32 entropyPresent;
ZSTD_customMem cMem;
}; /* typedef'd to ZSTD_DDict within "zstd.h" */
const void* ZSTD_DDict_dictContent(const ZSTD_DDict* ddict)
{
assert(ddict != NULL);
return ddict->dictContent;
}
size_t ZSTD_DDict_dictSize(const ZSTD_DDict* ddict)
{
assert(ddict != NULL);
return ddict->dictSize;
}
void ZSTD_copyDDictParameters(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict)
{
DEBUGLOG(4, "ZSTD_copyDDictParameters");
assert(dctx != NULL);
assert(ddict != NULL);
dctx->dictID = ddict->dictID;
dctx->prefixStart = ddict->dictContent;
dctx->virtualStart = ddict->dictContent;
dctx->dictEnd = (const BYTE*)ddict->dictContent + ddict->dictSize;
dctx->previousDstEnd = dctx->dictEnd;
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
dctx->dictContentBeginForFuzzing = dctx->prefixStart;
dctx->dictContentEndForFuzzing = dctx->previousDstEnd;
#endif
if (ddict->entropyPresent) {
dctx->litEntropy = 1;
dctx->fseEntropy = 1;
dctx->LLTptr = ddict->entropy.LLTable;
dctx->MLTptr = ddict->entropy.MLTable;
dctx->OFTptr = ddict->entropy.OFTable;
dctx->HUFptr = ddict->entropy.hufTable;
dctx->entropy.rep[0] = ddict->entropy.rep[0];
dctx->entropy.rep[1] = ddict->entropy.rep[1];
dctx->entropy.rep[2] = ddict->entropy.rep[2];
} else {
dctx->litEntropy = 0;
dctx->fseEntropy = 0;
}
}
static size_t
ZSTD_loadEntropy_intoDDict(ZSTD_DDict* ddict,
ZSTD_dictContentType_e dictContentType)
{
ddict->dictID = 0;
ddict->entropyPresent = 0;
if (dictContentType == ZSTD_dct_rawContent) return 0;
if (ddict->dictSize < 8) {
if (dictContentType == ZSTD_dct_fullDict)
return ERROR(dictionary_corrupted); /* only accept specified dictionaries */
return 0; /* pure content mode */
}
{ U32 const magic = MEM_readLE32(ddict->dictContent);
if (magic != ZSTD_MAGIC_DICTIONARY) {
if (dictContentType == ZSTD_dct_fullDict)
return ERROR(dictionary_corrupted); /* only accept specified dictionaries */
return 0; /* pure content mode */
}
}
ddict->dictID = MEM_readLE32((const char*)ddict->dictContent + ZSTD_FRAMEIDSIZE);
/* load entropy tables */
RETURN_ERROR_IF(ZSTD_isError(ZSTD_loadDEntropy(
&ddict->entropy, ddict->dictContent, ddict->dictSize)),
dictionary_corrupted, "");
ddict->entropyPresent = 1;
return 0;
}
static size_t ZSTD_initDDict_internal(ZSTD_DDict* ddict,
const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType)
{
if ((dictLoadMethod == ZSTD_dlm_byRef) || (!dict) || (!dictSize)) {
ddict->dictBuffer = NULL;
ddict->dictContent = dict;
if (!dict) dictSize = 0;
} else {
void* const internalBuffer = ZSTD_customMalloc(dictSize, ddict->cMem);
ddict->dictBuffer = internalBuffer;
ddict->dictContent = internalBuffer;
if (!internalBuffer) return ERROR(memory_allocation);
ZSTD_memcpy(internalBuffer, dict, dictSize);
}
ddict->dictSize = dictSize;
ddict->entropy.hufTable[0] = (HUF_DTable)((ZSTD_HUFFDTABLE_CAPACITY_LOG)*0x1000001); /* cover both little and big endian */
/* parse dictionary content */
FORWARD_IF_ERROR( ZSTD_loadEntropy_intoDDict(ddict, dictContentType) , "");
return 0;
}
ZSTD_DDict* ZSTD_createDDict_advanced(const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType,
ZSTD_customMem customMem)
{
if ((!customMem.customAlloc) ^ (!customMem.customFree)) return NULL;
{ ZSTD_DDict* const ddict = (ZSTD_DDict*) ZSTD_customMalloc(sizeof(ZSTD_DDict), customMem);
if (ddict == NULL) return NULL;
ddict->cMem = customMem;
{ size_t const initResult = ZSTD_initDDict_internal(ddict,
dict, dictSize,
dictLoadMethod, dictContentType);
if (ZSTD_isError(initResult)) {
ZSTD_freeDDict(ddict);
return NULL;
} }
return ddict;
}
}
/*! ZSTD_createDDict() :
* Create a digested dictionary, to start decompression without startup delay.
* `dict` content is copied inside DDict.
* Consequently, `dict` can be released after `ZSTD_DDict` creation */
ZSTD_DDict* ZSTD_createDDict(const void* dict, size_t dictSize)
{
ZSTD_customMem const allocator = { NULL, NULL, NULL };
return ZSTD_createDDict_advanced(dict, dictSize, ZSTD_dlm_byCopy, ZSTD_dct_auto, allocator);
}
/*! ZSTD_createDDict_byReference() :
* Create a digested dictionary, to start decompression without startup delay.
* Dictionary content is simply referenced, it will be accessed during decompression.
* Warning : dictBuffer must outlive DDict (DDict must be freed before dictBuffer) */
ZSTD_DDict* ZSTD_createDDict_byReference(const void* dictBuffer, size_t dictSize)
{
ZSTD_customMem const allocator = { NULL, NULL, NULL };
return ZSTD_createDDict_advanced(dictBuffer, dictSize, ZSTD_dlm_byRef, ZSTD_dct_auto, allocator);
}
const ZSTD_DDict* ZSTD_initStaticDDict(
void* sBuffer, size_t sBufferSize,
const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType)
{
size_t const neededSpace = sizeof(ZSTD_DDict)
+ (dictLoadMethod == ZSTD_dlm_byRef ? 0 : dictSize);
ZSTD_DDict* const ddict = (ZSTD_DDict*)sBuffer;
assert(sBuffer != NULL);
assert(dict != NULL);
if ((size_t)sBuffer & 7) return NULL; /* 8-aligned */
if (sBufferSize < neededSpace) return NULL;
if (dictLoadMethod == ZSTD_dlm_byCopy) {
ZSTD_memcpy(ddict+1, dict, dictSize); /* local copy */
dict = ddict+1;
}
if (ZSTD_isError( ZSTD_initDDict_internal(ddict,
dict, dictSize,
ZSTD_dlm_byRef, dictContentType) ))
return NULL;
return ddict;
}
size_t ZSTD_freeDDict(ZSTD_DDict* ddict)
{
if (ddict==NULL) return 0; /* support free on NULL */
{ ZSTD_customMem const cMem = ddict->cMem;
ZSTD_customFree(ddict->dictBuffer, cMem);
ZSTD_customFree(ddict, cMem);
return 0;
}
}
/*! ZSTD_estimateDDictSize() :
* Estimate amount of memory that will be needed to create a dictionary for decompression.
* Note : dictionary created by reference using ZSTD_dlm_byRef are smaller */
size_t ZSTD_estimateDDictSize(size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod)
{
return sizeof(ZSTD_DDict) + (dictLoadMethod == ZSTD_dlm_byRef ? 0 : dictSize);
}
size_t ZSTD_sizeof_DDict(const ZSTD_DDict* ddict)
{
if (ddict==NULL) return 0; /* support sizeof on NULL */
return sizeof(*ddict) + (ddict->dictBuffer ? ddict->dictSize : 0) ;
}
/*! ZSTD_getDictID_fromDDict() :
* Provides the dictID of the dictionary loaded into `ddict`.
* If @return == 0, the dictionary is not conformant to Zstandard specification, or empty.
* Non-conformant dictionaries can still be loaded, but as content-only dictionaries. */
unsigned ZSTD_getDictID_fromDDict(const ZSTD_DDict* ddict)
{
if (ddict==NULL) return 0;
return ddict->dictID;
}

View File

@ -1,44 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_DDICT_H
#define ZSTD_DDICT_H
/*-*******************************************************
* Dependencies
*********************************************************/
#include "../common/zstd_deps.h" /* size_t */
#include "../zstd.h" /* ZSTD_DDict, and several public functions */
/*-*******************************************************
* Interface
*********************************************************/
/* note: several prototypes are already published in `zstd.h` :
* ZSTD_createDDict()
* ZSTD_createDDict_byReference()
* ZSTD_createDDict_advanced()
* ZSTD_freeDDict()
* ZSTD_initStaticDDict()
* ZSTD_sizeof_DDict()
* ZSTD_estimateDDictSize()
* ZSTD_getDictID_fromDict()
*/
const void* ZSTD_DDict_dictContent(const ZSTD_DDict* ddict);
size_t ZSTD_DDict_dictSize(const ZSTD_DDict* ddict);
void ZSTD_copyDDictParameters(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict);
#endif /* ZSTD_DDICT_H */

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,68 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_DEC_BLOCK_H
#define ZSTD_DEC_BLOCK_H
/*-*******************************************************
* Dependencies
*********************************************************/
#include "../common/zstd_deps.h" /* size_t */
#include "../zstd.h" /* DCtx, and some public functions */
#include "../common/zstd_internal.h" /* blockProperties_t, and some public functions */
#include "zstd_decompress_internal.h" /* ZSTD_seqSymbol */
/* === Prototypes === */
/* note: prototypes already published within `zstd.h` :
* ZSTD_decompressBlock()
*/
/* note: prototypes already published within `zstd_internal.h` :
* ZSTD_getcBlockSize()
* ZSTD_decodeSeqHeaders()
*/
/* Streaming state is used to inform allocation of the literal buffer */
typedef enum {
not_streaming = 0,
is_streaming = 1
} streaming_operation;
/* ZSTD_decompressBlock_internal() :
* decompress block, starting at `src`,
* into destination buffer `dst`.
* @return : decompressed block size,
* or an error code (which can be tested using ZSTD_isError())
*/
size_t ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize, const int frame, const streaming_operation streaming);
/* ZSTD_buildFSETable() :
* generate FSE decoding table for one symbol (ll, ml or off)
* this function must be called with valid parameters only
* (dt is large enough, normalizedCounter distribution total is a power of 2, max is within range, etc.)
* in which case it cannot fail.
* The workspace must be 4-byte aligned and at least ZSTD_BUILD_FSE_TABLE_WKSP_SIZE bytes, which is
* defined in zstd_decompress_internal.h.
* Internal use only.
*/
void ZSTD_buildFSETable(ZSTD_seqSymbol* dt,
const short* normalizedCounter, unsigned maxSymbolValue,
const U32* baseValue, const U8* nbAdditionalBits,
unsigned tableLog, void* wksp, size_t wkspSize,
int bmi2);
#endif /* ZSTD_DEC_BLOCK_H */

View File

@ -1,238 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* zstd_decompress_internal:
* objects and definitions shared within lib/decompress modules */
#ifndef ZSTD_DECOMPRESS_INTERNAL_H
#define ZSTD_DECOMPRESS_INTERNAL_H
/*-*******************************************************
* Dependencies
*********************************************************/
#include "../common/mem.h" /* BYTE, U16, U32 */
#include "../common/zstd_internal.h" /* constants : MaxLL, MaxML, MaxOff, LLFSELog, etc. */
/*-*******************************************************
* Constants
*********************************************************/
static UNUSED_ATTR const U32 LL_base[MaxLL+1] = {
0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15,
16, 18, 20, 22, 24, 28, 32, 40,
48, 64, 0x80, 0x100, 0x200, 0x400, 0x800, 0x1000,
0x2000, 0x4000, 0x8000, 0x10000 };
static UNUSED_ATTR const U32 OF_base[MaxOff+1] = {
0, 1, 1, 5, 0xD, 0x1D, 0x3D, 0x7D,
0xFD, 0x1FD, 0x3FD, 0x7FD, 0xFFD, 0x1FFD, 0x3FFD, 0x7FFD,
0xFFFD, 0x1FFFD, 0x3FFFD, 0x7FFFD, 0xFFFFD, 0x1FFFFD, 0x3FFFFD, 0x7FFFFD,
0xFFFFFD, 0x1FFFFFD, 0x3FFFFFD, 0x7FFFFFD, 0xFFFFFFD, 0x1FFFFFFD, 0x3FFFFFFD, 0x7FFFFFFD };
static UNUSED_ATTR const U8 OF_bits[MaxOff+1] = {
0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31 };
static UNUSED_ATTR const U32 ML_base[MaxML+1] = {
3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34,
35, 37, 39, 41, 43, 47, 51, 59,
67, 83, 99, 0x83, 0x103, 0x203, 0x403, 0x803,
0x1003, 0x2003, 0x4003, 0x8003, 0x10003 };
/*-*******************************************************
* Decompression types
*********************************************************/
typedef struct {
U32 fastMode;
U32 tableLog;
} ZSTD_seqSymbol_header;
typedef struct {
U16 nextState;
BYTE nbAdditionalBits;
BYTE nbBits;
U32 baseValue;
} ZSTD_seqSymbol;
#define SEQSYMBOL_TABLE_SIZE(log) (1 + (1 << (log)))
#define ZSTD_BUILD_FSE_TABLE_WKSP_SIZE (sizeof(S16) * (MaxSeq + 1) + (1u << MaxFSELog) + sizeof(U64))
#define ZSTD_BUILD_FSE_TABLE_WKSP_SIZE_U32 ((ZSTD_BUILD_FSE_TABLE_WKSP_SIZE + sizeof(U32) - 1) / sizeof(U32))
#define ZSTD_HUFFDTABLE_CAPACITY_LOG 12
typedef struct {
ZSTD_seqSymbol LLTable[SEQSYMBOL_TABLE_SIZE(LLFSELog)]; /* Note : Space reserved for FSE Tables */
ZSTD_seqSymbol OFTable[SEQSYMBOL_TABLE_SIZE(OffFSELog)]; /* is also used as temporary workspace while building hufTable during DDict creation */
ZSTD_seqSymbol MLTable[SEQSYMBOL_TABLE_SIZE(MLFSELog)]; /* and therefore must be at least HUF_DECOMPRESS_WORKSPACE_SIZE large */
HUF_DTable hufTable[HUF_DTABLE_SIZE(ZSTD_HUFFDTABLE_CAPACITY_LOG)]; /* can accommodate HUF_decompress4X */
U32 rep[ZSTD_REP_NUM];
U32 workspace[ZSTD_BUILD_FSE_TABLE_WKSP_SIZE_U32];
} ZSTD_entropyDTables_t;
typedef enum { ZSTDds_getFrameHeaderSize, ZSTDds_decodeFrameHeader,
ZSTDds_decodeBlockHeader, ZSTDds_decompressBlock,
ZSTDds_decompressLastBlock, ZSTDds_checkChecksum,
ZSTDds_decodeSkippableHeader, ZSTDds_skipFrame } ZSTD_dStage;
typedef enum { zdss_init=0, zdss_loadHeader,
zdss_read, zdss_load, zdss_flush } ZSTD_dStreamStage;
typedef enum {
ZSTD_use_indefinitely = -1, /* Use the dictionary indefinitely */
ZSTD_dont_use = 0, /* Do not use the dictionary (if one exists free it) */
ZSTD_use_once = 1 /* Use the dictionary once and set to ZSTD_dont_use */
} ZSTD_dictUses_e;
/* Hashset for storing references to multiple ZSTD_DDict within ZSTD_DCtx */
typedef struct {
const ZSTD_DDict** ddictPtrTable;
size_t ddictPtrTableSize;
size_t ddictPtrCount;
} ZSTD_DDictHashSet;
#ifndef ZSTD_DECODER_INTERNAL_BUFFER
# define ZSTD_DECODER_INTERNAL_BUFFER (1 << 16)
#endif
#define ZSTD_LBMIN 64
#define ZSTD_LBMAX (128 << 10)
/* extra buffer, compensates when dst is not large enough to store litBuffer */
#define ZSTD_LITBUFFEREXTRASIZE BOUNDED(ZSTD_LBMIN, ZSTD_DECODER_INTERNAL_BUFFER, ZSTD_LBMAX)
typedef enum {
ZSTD_not_in_dst = 0, /* Stored entirely within litExtraBuffer */
ZSTD_in_dst = 1, /* Stored entirely within dst (in memory after current output write) */
ZSTD_split = 2 /* Split between litExtraBuffer and dst */
} ZSTD_litLocation_e;
struct ZSTD_DCtx_s
{
const ZSTD_seqSymbol* LLTptr;
const ZSTD_seqSymbol* MLTptr;
const ZSTD_seqSymbol* OFTptr;
const HUF_DTable* HUFptr;
ZSTD_entropyDTables_t entropy;
U32 workspace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32]; /* space needed when building huffman tables */
const void* previousDstEnd; /* detect continuity */
const void* prefixStart; /* start of current segment */
const void* virtualStart; /* virtual start of previous segment if it was just before current one */
const void* dictEnd; /* end of previous segment */
size_t expected;
ZSTD_frameHeader fParams;
U64 processedCSize;
U64 decodedSize;
blockType_e bType; /* used in ZSTD_decompressContinue(), store blockType between block header decoding and block decompression stages */
ZSTD_dStage stage;
U32 litEntropy;
U32 fseEntropy;
XXH64_state_t xxhState;
size_t headerSize;
ZSTD_format_e format;
ZSTD_forceIgnoreChecksum_e forceIgnoreChecksum; /* User specified: if == 1, will ignore checksums in compressed frame. Default == 0 */
U32 validateChecksum; /* if == 1, will validate checksum. Is == 1 if (fParams.checksumFlag == 1) and (forceIgnoreChecksum == 0). */
const BYTE* litPtr;
ZSTD_customMem customMem;
size_t litSize;
size_t rleSize;
size_t staticSize;
#if DYNAMIC_BMI2 != 0
int bmi2; /* == 1 if the CPU supports BMI2 and 0 otherwise. CPU support is determined dynamically once per context lifetime. */
#endif
/* dictionary */
ZSTD_DDict* ddictLocal;
const ZSTD_DDict* ddict; /* set by ZSTD_initDStream_usingDDict(), or ZSTD_DCtx_refDDict() */
U32 dictID;
int ddictIsCold; /* if == 1 : dictionary is "new" for working context, and presumed "cold" (not in cpu cache) */
ZSTD_dictUses_e dictUses;
ZSTD_DDictHashSet* ddictSet; /* Hash set for multiple ddicts */
ZSTD_refMultipleDDicts_e refMultipleDDicts; /* User specified: if == 1, will allow references to multiple DDicts. Default == 0 (disabled) */
int disableHufAsm;
/* streaming */
ZSTD_dStreamStage streamStage;
char* inBuff;
size_t inBuffSize;
size_t inPos;
size_t maxWindowSize;
char* outBuff;
size_t outBuffSize;
size_t outStart;
size_t outEnd;
size_t lhSize;
#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1)
void* legacyContext;
U32 previousLegacyVersion;
U32 legacyVersion;
#endif
U32 hostageByte;
int noForwardProgress;
ZSTD_bufferMode_e outBufferMode;
ZSTD_outBuffer expectedOutBuffer;
/* workspace */
BYTE* litBuffer;
const BYTE* litBufferEnd;
ZSTD_litLocation_e litBufferLocation;
BYTE litExtraBuffer[ZSTD_LITBUFFEREXTRASIZE + WILDCOPY_OVERLENGTH]; /* literal buffer can be split between storage within dst and within this scratch buffer */
BYTE headerBuffer[ZSTD_FRAMEHEADERSIZE_MAX];
size_t oversizedDuration;
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
void const* dictContentBeginForFuzzing;
void const* dictContentEndForFuzzing;
#endif
/* Tracing */
#if ZSTD_TRACE
ZSTD_TraceCtx traceCtx;
#endif
}; /* typedef'd to ZSTD_DCtx within "zstd.h" */
MEM_STATIC int ZSTD_DCtx_get_bmi2(const struct ZSTD_DCtx_s *dctx) {
#if DYNAMIC_BMI2 != 0
return dctx->bmi2;
#else
(void)dctx;
return 0;
#endif
}
/*-*******************************************************
* Shared internal functions
*********************************************************/
/*! ZSTD_loadDEntropy() :
* dict : must point at beginning of a valid zstd dictionary.
* @return : size of dictionary header (size of magic number + dict ID + entropy tables) */
size_t ZSTD_loadDEntropy(ZSTD_entropyDTables_t* entropy,
const void* const dict, size_t const dictSize);
/*! ZSTD_checkContinuity() :
* check if next `dst` follows previous position, where decompression ended.
* If yes, do nothing (continue on current segment).
* If not, classify previous segment as "external dictionary", and start a new segment.
* This function cannot fail. */
void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst, size_t dstSize);
#endif /* ZSTD_DECOMPRESS_INTERNAL_H */

File diff suppressed because it is too large Load Diff

View File

@ -1,158 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZDICT_STATIC_LINKING_ONLY
# define ZDICT_STATIC_LINKING_ONLY
#endif
#include <stdio.h> /* fprintf */
#include <stdlib.h> /* malloc, free, qsort */
#include <string.h> /* memset */
#include <time.h> /* clock */
#include "../common/mem.h" /* read */
#include "../common/pool.h"
#include "../common/threading.h"
#include "../common/zstd_internal.h" /* includes zstd.h */
#include "../zdict.h"
/**
* COVER_best_t is used for two purposes:
* 1. Synchronizing threads.
* 2. Saving the best parameters and dictionary.
*
* All of the methods except COVER_best_init() are thread safe if zstd is
* compiled with multithreaded support.
*/
typedef struct COVER_best_s {
ZSTD_pthread_mutex_t mutex;
ZSTD_pthread_cond_t cond;
size_t liveJobs;
void *dict;
size_t dictSize;
ZDICT_cover_params_t parameters;
size_t compressedSize;
} COVER_best_t;
/**
* A segment is a range in the source as well as the score of the segment.
*/
typedef struct {
U32 begin;
U32 end;
U32 score;
} COVER_segment_t;
/**
*Number of epochs and size of each epoch.
*/
typedef struct {
U32 num;
U32 size;
} COVER_epoch_info_t;
/**
* Struct used for the dictionary selection function.
*/
typedef struct COVER_dictSelection {
BYTE* dictContent;
size_t dictSize;
size_t totalCompressedSize;
} COVER_dictSelection_t;
/**
* Computes the number of epochs and the size of each epoch.
* We will make sure that each epoch gets at least 10 * k bytes.
*
* The COVER algorithms divide the data up into epochs of equal size and
* select one segment from each epoch.
*
* @param maxDictSize The maximum allowed dictionary size.
* @param nbDmers The number of dmers we are training on.
* @param k The parameter k (segment size).
* @param passes The target number of passes over the dmer corpus.
* More passes means a better dictionary.
*/
COVER_epoch_info_t COVER_computeEpochs(U32 maxDictSize, U32 nbDmers,
U32 k, U32 passes);
/**
* Warns the user when their corpus is too small.
*/
void COVER_warnOnSmallCorpus(size_t maxDictSize, size_t nbDmers, int displayLevel);
/**
* Checks total compressed size of a dictionary
*/
size_t COVER_checkTotalCompressedSize(const ZDICT_cover_params_t parameters,
const size_t *samplesSizes, const BYTE *samples,
size_t *offsets,
size_t nbTrainSamples, size_t nbSamples,
BYTE *const dict, size_t dictBufferCapacity);
/**
* Returns the sum of the sample sizes.
*/
size_t COVER_sum(const size_t *samplesSizes, unsigned nbSamples) ;
/**
* Initialize the `COVER_best_t`.
*/
void COVER_best_init(COVER_best_t *best);
/**
* Wait until liveJobs == 0.
*/
void COVER_best_wait(COVER_best_t *best);
/**
* Call COVER_best_wait() and then destroy the COVER_best_t.
*/
void COVER_best_destroy(COVER_best_t *best);
/**
* Called when a thread is about to be launched.
* Increments liveJobs.
*/
void COVER_best_start(COVER_best_t *best);
/**
* Called when a thread finishes executing, both on error or success.
* Decrements liveJobs and signals any waiting threads if liveJobs == 0.
* If this dictionary is the best so far save it and its parameters.
*/
void COVER_best_finish(COVER_best_t *best, ZDICT_cover_params_t parameters,
COVER_dictSelection_t selection);
/**
* Error function for COVER_selectDict function. Checks if the return
* value is an error.
*/
unsigned COVER_dictSelectionIsError(COVER_dictSelection_t selection);
/**
* Error function for COVER_selectDict function. Returns a struct where
* return.totalCompressedSize is a ZSTD error.
*/
COVER_dictSelection_t COVER_dictSelectionError(size_t error);
/**
* Always call after selectDict is called to free up used memory from
* newly created dictionary.
*/
void COVER_dictSelectionFree(COVER_dictSelection_t selection);
/**
* Called to finalize the dictionary and select one based on whether or not
* the shrink-dict flag was enabled. If enabled the dictionary used is the
* smallest dictionary within a specified regression of the compressed size
* from the largest dictionary.
*/
COVER_dictSelection_t COVER_selectDict(BYTE* customDictContent, size_t dictBufferCapacity,
size_t dictContentSize, const BYTE* samplesBuffer, const size_t* samplesSizes, unsigned nbFinalizeSamples,
size_t nbCheckSamples, size_t nbSamples, ZDICT_cover_params_t params, size_t* offsets, size_t totalCompressedSize);

File diff suppressed because it is too large Load Diff

View File

@ -1,67 +0,0 @@
/*
* divsufsort.h for libdivsufsort-lite
* Copyright (c) 2003-2008 Yuta Mori All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following
* conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef _DIVSUFSORT_H
#define _DIVSUFSORT_H 1
#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */
/*- Prototypes -*/
/**
* Constructs the suffix array of a given string.
* @param T [0..n-1] The input string.
* @param SA [0..n-1] The output array of suffixes.
* @param n The length of the given string.
* @param openMP enables OpenMP optimization.
* @return 0 if no error occurred, -1 or -2 otherwise.
*/
int
divsufsort(const unsigned char *T, int *SA, int n, int openMP);
/**
* Constructs the burrows-wheeler transformed string of a given string.
* @param T [0..n-1] The input string.
* @param U [0..n-1] The output string. (can be T)
* @param A [0..n-1] The temporary array. (can be NULL)
* @param n The length of the given string.
* @param num_indexes The length of secondary indexes array. (can be NULL)
* @param indexes The secondary indexes array. (can be NULL)
* @param openMP enables OpenMP optimization.
* @return The primary index if no error occurred, -1 or -2 otherwise.
*/
int
divbwt(const unsigned char *T, unsigned char *U, int *A, int n, unsigned char * num_indexes, int * indexes, int openMP);
#ifdef __cplusplus
} /* extern "C" */
#endif /* __cplusplus */
#endif /* _DIVSUFSORT_H */

View File

@ -1,766 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*-*************************************
* Dependencies
***************************************/
#include <stdio.h> /* fprintf */
#include <stdlib.h> /* malloc, free, qsort */
#include <string.h> /* memset */
#include <time.h> /* clock */
#ifndef ZDICT_STATIC_LINKING_ONLY
# define ZDICT_STATIC_LINKING_ONLY
#endif
#include "../common/mem.h" /* read */
#include "../common/pool.h"
#include "../common/threading.h"
#include "../common/zstd_internal.h" /* includes zstd.h */
#include "../compress/zstd_compress_internal.h" /* ZSTD_hash*() */
#include "../zdict.h"
#include "cover.h"
/*-*************************************
* Constants
***************************************/
/**
* There are 32bit indexes used to ref samples, so limit samples size to 4GB
* on 64bit builds.
* For 32bit builds we choose 1 GB.
* Most 32bit platforms have 2GB user-mode addressable space and we allocate a large
* contiguous buffer, so 1GB is already a high limit.
*/
#define FASTCOVER_MAX_SAMPLES_SIZE (sizeof(size_t) == 8 ? ((unsigned)-1) : ((unsigned)1 GB))
#define FASTCOVER_MAX_F 31
#define FASTCOVER_MAX_ACCEL 10
#define FASTCOVER_DEFAULT_SPLITPOINT 0.75
#define DEFAULT_F 20
#define DEFAULT_ACCEL 1
/*-*************************************
* Console display
***************************************/
#ifndef LOCALDISPLAYLEVEL
static int g_displayLevel = 0;
#endif
#undef DISPLAY
#define DISPLAY(...) \
{ \
fprintf(stderr, __VA_ARGS__); \
fflush(stderr); \
}
#undef LOCALDISPLAYLEVEL
#define LOCALDISPLAYLEVEL(displayLevel, l, ...) \
if (displayLevel >= l) { \
DISPLAY(__VA_ARGS__); \
} /* 0 : no display; 1: errors; 2: default; 3: details; 4: debug */
#undef DISPLAYLEVEL
#define DISPLAYLEVEL(l, ...) LOCALDISPLAYLEVEL(g_displayLevel, l, __VA_ARGS__)
#ifndef LOCALDISPLAYUPDATE
static const clock_t g_refreshRate = CLOCKS_PER_SEC * 15 / 100;
static clock_t g_time = 0;
#endif
#undef LOCALDISPLAYUPDATE
#define LOCALDISPLAYUPDATE(displayLevel, l, ...) \
if (displayLevel >= l) { \
if ((clock() - g_time > g_refreshRate) || (displayLevel >= 4)) { \
g_time = clock(); \
DISPLAY(__VA_ARGS__); \
} \
}
#undef DISPLAYUPDATE
#define DISPLAYUPDATE(l, ...) LOCALDISPLAYUPDATE(g_displayLevel, l, __VA_ARGS__)
/*-*************************************
* Hash Functions
***************************************/
/**
* Hash the d-byte value pointed to by p and mod 2^f into the frequency vector
*/
static size_t FASTCOVER_hashPtrToIndex(const void* p, U32 f, unsigned d) {
if (d == 6) {
return ZSTD_hash6Ptr(p, f);
}
return ZSTD_hash8Ptr(p, f);
}
/*-*************************************
* Acceleration
***************************************/
typedef struct {
unsigned finalize; /* Percentage of training samples used for ZDICT_finalizeDictionary */
unsigned skip; /* Number of dmer skipped between each dmer counted in computeFrequency */
} FASTCOVER_accel_t;
static const FASTCOVER_accel_t FASTCOVER_defaultAccelParameters[FASTCOVER_MAX_ACCEL+1] = {
{ 100, 0 }, /* accel = 0, should not happen because accel = 0 defaults to accel = 1 */
{ 100, 0 }, /* accel = 1 */
{ 50, 1 }, /* accel = 2 */
{ 34, 2 }, /* accel = 3 */
{ 25, 3 }, /* accel = 4 */
{ 20, 4 }, /* accel = 5 */
{ 17, 5 }, /* accel = 6 */
{ 14, 6 }, /* accel = 7 */
{ 13, 7 }, /* accel = 8 */
{ 11, 8 }, /* accel = 9 */
{ 10, 9 }, /* accel = 10 */
};
/*-*************************************
* Context
***************************************/
typedef struct {
const BYTE *samples;
size_t *offsets;
const size_t *samplesSizes;
size_t nbSamples;
size_t nbTrainSamples;
size_t nbTestSamples;
size_t nbDmers;
U32 *freqs;
unsigned d;
unsigned f;
FASTCOVER_accel_t accelParams;
} FASTCOVER_ctx_t;
/*-*************************************
* Helper functions
***************************************/
/**
* Selects the best segment in an epoch.
* Segments of are scored according to the function:
*
* Let F(d) be the frequency of all dmers with hash value d.
* Let S_i be hash value of the dmer at position i of segment S which has length k.
*
* Score(S) = F(S_1) + F(S_2) + ... + F(S_{k-d+1})
*
* Once the dmer with hash value d is in the dictionary we set F(d) = 0.
*/
static COVER_segment_t FASTCOVER_selectSegment(const FASTCOVER_ctx_t *ctx,
U32 *freqs, U32 begin, U32 end,
ZDICT_cover_params_t parameters,
U16* segmentFreqs) {
/* Constants */
const U32 k = parameters.k;
const U32 d = parameters.d;
const U32 f = ctx->f;
const U32 dmersInK = k - d + 1;
/* Try each segment (activeSegment) and save the best (bestSegment) */
COVER_segment_t bestSegment = {0, 0, 0};
COVER_segment_t activeSegment;
/* Reset the activeDmers in the segment */
/* The activeSegment starts at the beginning of the epoch. */
activeSegment.begin = begin;
activeSegment.end = begin;
activeSegment.score = 0;
/* Slide the activeSegment through the whole epoch.
* Save the best segment in bestSegment.
*/
while (activeSegment.end < end) {
/* Get hash value of current dmer */
const size_t idx = FASTCOVER_hashPtrToIndex(ctx->samples + activeSegment.end, f, d);
/* Add frequency of this index to score if this is the first occurrence of index in active segment */
if (segmentFreqs[idx] == 0) {
activeSegment.score += freqs[idx];
}
/* Increment end of segment and segmentFreqs*/
activeSegment.end += 1;
segmentFreqs[idx] += 1;
/* If the window is now too large, drop the first position */
if (activeSegment.end - activeSegment.begin == dmersInK + 1) {
/* Get hash value of the dmer to be eliminated from active segment */
const size_t delIndex = FASTCOVER_hashPtrToIndex(ctx->samples + activeSegment.begin, f, d);
segmentFreqs[delIndex] -= 1;
/* Subtract frequency of this index from score if this is the last occurrence of this index in active segment */
if (segmentFreqs[delIndex] == 0) {
activeSegment.score -= freqs[delIndex];
}
/* Increment start of segment */
activeSegment.begin += 1;
}
/* If this segment is the best so far save it */
if (activeSegment.score > bestSegment.score) {
bestSegment = activeSegment;
}
}
/* Zero out rest of segmentFreqs array */
while (activeSegment.begin < end) {
const size_t delIndex = FASTCOVER_hashPtrToIndex(ctx->samples + activeSegment.begin, f, d);
segmentFreqs[delIndex] -= 1;
activeSegment.begin += 1;
}
{
/* Zero the frequency of hash value of each dmer covered by the chosen segment. */
U32 pos;
for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
const size_t i = FASTCOVER_hashPtrToIndex(ctx->samples + pos, f, d);
freqs[i] = 0;
}
}
return bestSegment;
}
static int FASTCOVER_checkParameters(ZDICT_cover_params_t parameters,
size_t maxDictSize, unsigned f,
unsigned accel) {
/* k, d, and f are required parameters */
if (parameters.d == 0 || parameters.k == 0) {
return 0;
}
/* d has to be 6 or 8 */
if (parameters.d != 6 && parameters.d != 8) {
return 0;
}
/* k <= maxDictSize */
if (parameters.k > maxDictSize) {
return 0;
}
/* d <= k */
if (parameters.d > parameters.k) {
return 0;
}
/* 0 < f <= FASTCOVER_MAX_F*/
if (f > FASTCOVER_MAX_F || f == 0) {
return 0;
}
/* 0 < splitPoint <= 1 */
if (parameters.splitPoint <= 0 || parameters.splitPoint > 1) {
return 0;
}
/* 0 < accel <= 10 */
if (accel > 10 || accel == 0) {
return 0;
}
return 1;
}
/**
* Clean up a context initialized with `FASTCOVER_ctx_init()`.
*/
static void
FASTCOVER_ctx_destroy(FASTCOVER_ctx_t* ctx)
{
if (!ctx) return;
free(ctx->freqs);
ctx->freqs = NULL;
free(ctx->offsets);
ctx->offsets = NULL;
}
/**
* Calculate for frequency of hash value of each dmer in ctx->samples
*/
static void
FASTCOVER_computeFrequency(U32* freqs, const FASTCOVER_ctx_t* ctx)
{
const unsigned f = ctx->f;
const unsigned d = ctx->d;
const unsigned skip = ctx->accelParams.skip;
const unsigned readLength = MAX(d, 8);
size_t i;
assert(ctx->nbTrainSamples >= 5);
assert(ctx->nbTrainSamples <= ctx->nbSamples);
for (i = 0; i < ctx->nbTrainSamples; i++) {
size_t start = ctx->offsets[i]; /* start of current dmer */
size_t const currSampleEnd = ctx->offsets[i+1];
while (start + readLength <= currSampleEnd) {
const size_t dmerIndex = FASTCOVER_hashPtrToIndex(ctx->samples + start, f, d);
freqs[dmerIndex]++;
start = start + skip + 1;
}
}
}
/**
* Prepare a context for dictionary building.
* The context is only dependent on the parameter `d` and can be used multiple
* times.
* Returns 0 on success or error code on error.
* The context must be destroyed with `FASTCOVER_ctx_destroy()`.
*/
static size_t
FASTCOVER_ctx_init(FASTCOVER_ctx_t* ctx,
const void* samplesBuffer,
const size_t* samplesSizes, unsigned nbSamples,
unsigned d, double splitPoint, unsigned f,
FASTCOVER_accel_t accelParams)
{
const BYTE* const samples = (const BYTE*)samplesBuffer;
const size_t totalSamplesSize = COVER_sum(samplesSizes, nbSamples);
/* Split samples into testing and training sets */
const unsigned nbTrainSamples = splitPoint < 1.0 ? (unsigned)((double)nbSamples * splitPoint) : nbSamples;
const unsigned nbTestSamples = splitPoint < 1.0 ? nbSamples - nbTrainSamples : nbSamples;
const size_t trainingSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes, nbTrainSamples) : totalSamplesSize;
const size_t testSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes + nbTrainSamples, nbTestSamples) : totalSamplesSize;
/* Checks */
if (totalSamplesSize < MAX(d, sizeof(U64)) ||
totalSamplesSize >= (size_t)FASTCOVER_MAX_SAMPLES_SIZE) {
DISPLAYLEVEL(1, "Total samples size is too large (%u MB), maximum size is %u MB\n",
(unsigned)(totalSamplesSize >> 20), (FASTCOVER_MAX_SAMPLES_SIZE >> 20));
return ERROR(srcSize_wrong);
}
/* Check if there are at least 5 training samples */
if (nbTrainSamples < 5) {
DISPLAYLEVEL(1, "Total number of training samples is %u and is invalid\n", nbTrainSamples);
return ERROR(srcSize_wrong);
}
/* Check if there's testing sample */
if (nbTestSamples < 1) {
DISPLAYLEVEL(1, "Total number of testing samples is %u and is invalid.\n", nbTestSamples);
return ERROR(srcSize_wrong);
}
/* Zero the context */
memset(ctx, 0, sizeof(*ctx));
DISPLAYLEVEL(2, "Training on %u samples of total size %u\n", nbTrainSamples,
(unsigned)trainingSamplesSize);
DISPLAYLEVEL(2, "Testing on %u samples of total size %u\n", nbTestSamples,
(unsigned)testSamplesSize);
ctx->samples = samples;
ctx->samplesSizes = samplesSizes;
ctx->nbSamples = nbSamples;
ctx->nbTrainSamples = nbTrainSamples;
ctx->nbTestSamples = nbTestSamples;
ctx->nbDmers = trainingSamplesSize - MAX(d, sizeof(U64)) + 1;
ctx->d = d;
ctx->f = f;
ctx->accelParams = accelParams;
/* The offsets of each file */
ctx->offsets = (size_t*)calloc((nbSamples + 1), sizeof(size_t));
if (ctx->offsets == NULL) {
DISPLAYLEVEL(1, "Failed to allocate scratch buffers \n");
FASTCOVER_ctx_destroy(ctx);
return ERROR(memory_allocation);
}
/* Fill offsets from the samplesSizes */
{ U32 i;
ctx->offsets[0] = 0;
assert(nbSamples >= 5);
for (i = 1; i <= nbSamples; ++i) {
ctx->offsets[i] = ctx->offsets[i - 1] + samplesSizes[i - 1];
}
}
/* Initialize frequency array of size 2^f */
ctx->freqs = (U32*)calloc(((U64)1 << f), sizeof(U32));
if (ctx->freqs == NULL) {
DISPLAYLEVEL(1, "Failed to allocate frequency table \n");
FASTCOVER_ctx_destroy(ctx);
return ERROR(memory_allocation);
}
DISPLAYLEVEL(2, "Computing frequencies\n");
FASTCOVER_computeFrequency(ctx->freqs, ctx);
return 0;
}
/**
* Given the prepared context build the dictionary.
*/
static size_t
FASTCOVER_buildDictionary(const FASTCOVER_ctx_t* ctx,
U32* freqs,
void* dictBuffer, size_t dictBufferCapacity,
ZDICT_cover_params_t parameters,
U16* segmentFreqs)
{
BYTE *const dict = (BYTE *)dictBuffer;
size_t tail = dictBufferCapacity;
/* Divide the data into epochs. We will select one segment from each epoch. */
const COVER_epoch_info_t epochs = COVER_computeEpochs(
(U32)dictBufferCapacity, (U32)ctx->nbDmers, parameters.k, 1);
const size_t maxZeroScoreRun = 10;
size_t zeroScoreRun = 0;
size_t epoch;
DISPLAYLEVEL(2, "Breaking content into %u epochs of size %u\n",
(U32)epochs.num, (U32)epochs.size);
/* Loop through the epochs until there are no more segments or the dictionary
* is full.
*/
for (epoch = 0; tail > 0; epoch = (epoch + 1) % epochs.num) {
const U32 epochBegin = (U32)(epoch * epochs.size);
const U32 epochEnd = epochBegin + epochs.size;
size_t segmentSize;
/* Select a segment */
COVER_segment_t segment = FASTCOVER_selectSegment(
ctx, freqs, epochBegin, epochEnd, parameters, segmentFreqs);
/* If the segment covers no dmers, then we are out of content.
* There may be new content in other epochs, for continue for some time.
*/
if (segment.score == 0) {
if (++zeroScoreRun >= maxZeroScoreRun) {
break;
}
continue;
}
zeroScoreRun = 0;
/* Trim the segment if necessary and if it is too small then we are done */
segmentSize = MIN(segment.end - segment.begin + parameters.d - 1, tail);
if (segmentSize < parameters.d) {
break;
}
/* We fill the dictionary from the back to allow the best segments to be
* referenced with the smallest offsets.
*/
tail -= segmentSize;
memcpy(dict + tail, ctx->samples + segment.begin, segmentSize);
DISPLAYUPDATE(
2, "\r%u%% ",
(unsigned)(((dictBufferCapacity - tail) * 100) / dictBufferCapacity));
}
DISPLAYLEVEL(2, "\r%79s\r", "");
return tail;
}
/**
* Parameters for FASTCOVER_tryParameters().
*/
typedef struct FASTCOVER_tryParameters_data_s {
const FASTCOVER_ctx_t* ctx;
COVER_best_t* best;
size_t dictBufferCapacity;
ZDICT_cover_params_t parameters;
} FASTCOVER_tryParameters_data_t;
/**
* Tries a set of parameters and updates the COVER_best_t with the results.
* This function is thread safe if zstd is compiled with multithreaded support.
* It takes its parameters as an *OWNING* opaque pointer to support threading.
*/
static void FASTCOVER_tryParameters(void* opaque)
{
/* Save parameters as local variables */
FASTCOVER_tryParameters_data_t *const data = (FASTCOVER_tryParameters_data_t*)opaque;
const FASTCOVER_ctx_t *const ctx = data->ctx;
const ZDICT_cover_params_t parameters = data->parameters;
size_t dictBufferCapacity = data->dictBufferCapacity;
size_t totalCompressedSize = ERROR(GENERIC);
/* Initialize array to keep track of frequency of dmer within activeSegment */
U16* segmentFreqs = (U16*)calloc(((U64)1 << ctx->f), sizeof(U16));
/* Allocate space for hash table, dict, and freqs */
BYTE *const dict = (BYTE*)malloc(dictBufferCapacity);
COVER_dictSelection_t selection = COVER_dictSelectionError(ERROR(GENERIC));
U32* freqs = (U32*) malloc(((U64)1 << ctx->f) * sizeof(U32));
if (!segmentFreqs || !dict || !freqs) {
DISPLAYLEVEL(1, "Failed to allocate buffers: out of memory\n");
goto _cleanup;
}
/* Copy the frequencies because we need to modify them */
memcpy(freqs, ctx->freqs, ((U64)1 << ctx->f) * sizeof(U32));
/* Build the dictionary */
{ const size_t tail = FASTCOVER_buildDictionary(ctx, freqs, dict, dictBufferCapacity,
parameters, segmentFreqs);
const unsigned nbFinalizeSamples = (unsigned)(ctx->nbTrainSamples * ctx->accelParams.finalize / 100);
selection = COVER_selectDict(dict + tail, dictBufferCapacity, dictBufferCapacity - tail,
ctx->samples, ctx->samplesSizes, nbFinalizeSamples, ctx->nbTrainSamples, ctx->nbSamples, parameters, ctx->offsets,
totalCompressedSize);
if (COVER_dictSelectionIsError(selection)) {
DISPLAYLEVEL(1, "Failed to select dictionary\n");
goto _cleanup;
}
}
_cleanup:
free(dict);
COVER_best_finish(data->best, parameters, selection);
free(data);
free(segmentFreqs);
COVER_dictSelectionFree(selection);
free(freqs);
}
static void
FASTCOVER_convertToCoverParams(ZDICT_fastCover_params_t fastCoverParams,
ZDICT_cover_params_t* coverParams)
{
coverParams->k = fastCoverParams.k;
coverParams->d = fastCoverParams.d;
coverParams->steps = fastCoverParams.steps;
coverParams->nbThreads = fastCoverParams.nbThreads;
coverParams->splitPoint = fastCoverParams.splitPoint;
coverParams->zParams = fastCoverParams.zParams;
coverParams->shrinkDict = fastCoverParams.shrinkDict;
}
static void
FASTCOVER_convertToFastCoverParams(ZDICT_cover_params_t coverParams,
ZDICT_fastCover_params_t* fastCoverParams,
unsigned f, unsigned accel)
{
fastCoverParams->k = coverParams.k;
fastCoverParams->d = coverParams.d;
fastCoverParams->steps = coverParams.steps;
fastCoverParams->nbThreads = coverParams.nbThreads;
fastCoverParams->splitPoint = coverParams.splitPoint;
fastCoverParams->f = f;
fastCoverParams->accel = accel;
fastCoverParams->zParams = coverParams.zParams;
fastCoverParams->shrinkDict = coverParams.shrinkDict;
}
ZDICTLIB_API size_t
ZDICT_trainFromBuffer_fastCover(void* dictBuffer, size_t dictBufferCapacity,
const void* samplesBuffer,
const size_t* samplesSizes, unsigned nbSamples,
ZDICT_fastCover_params_t parameters)
{
BYTE* const dict = (BYTE*)dictBuffer;
FASTCOVER_ctx_t ctx;
ZDICT_cover_params_t coverParams;
FASTCOVER_accel_t accelParams;
/* Initialize global data */
g_displayLevel = (int)parameters.zParams.notificationLevel;
/* Assign splitPoint and f if not provided */
parameters.splitPoint = 1.0;
parameters.f = parameters.f == 0 ? DEFAULT_F : parameters.f;
parameters.accel = parameters.accel == 0 ? DEFAULT_ACCEL : parameters.accel;
/* Convert to cover parameter */
memset(&coverParams, 0 , sizeof(coverParams));
FASTCOVER_convertToCoverParams(parameters, &coverParams);
/* Checks */
if (!FASTCOVER_checkParameters(coverParams, dictBufferCapacity, parameters.f,
parameters.accel)) {
DISPLAYLEVEL(1, "FASTCOVER parameters incorrect\n");
return ERROR(parameter_outOfBound);
}
if (nbSamples == 0) {
DISPLAYLEVEL(1, "FASTCOVER must have at least one input file\n");
return ERROR(srcSize_wrong);
}
if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
ZDICT_DICTSIZE_MIN);
return ERROR(dstSize_tooSmall);
}
/* Assign corresponding FASTCOVER_accel_t to accelParams*/
accelParams = FASTCOVER_defaultAccelParameters[parameters.accel];
/* Initialize context */
{
size_t const initVal = FASTCOVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples,
coverParams.d, parameters.splitPoint, parameters.f,
accelParams);
if (ZSTD_isError(initVal)) {
DISPLAYLEVEL(1, "Failed to initialize context\n");
return initVal;
}
}
COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.nbDmers, g_displayLevel);
/* Build the dictionary */
DISPLAYLEVEL(2, "Building dictionary\n");
{
/* Initialize array to keep track of frequency of dmer within activeSegment */
U16* segmentFreqs = (U16 *)calloc(((U64)1 << parameters.f), sizeof(U16));
const size_t tail = FASTCOVER_buildDictionary(&ctx, ctx.freqs, dictBuffer,
dictBufferCapacity, coverParams, segmentFreqs);
const unsigned nbFinalizeSamples = (unsigned)(ctx.nbTrainSamples * ctx.accelParams.finalize / 100);
const size_t dictionarySize = ZDICT_finalizeDictionary(
dict, dictBufferCapacity, dict + tail, dictBufferCapacity - tail,
samplesBuffer, samplesSizes, nbFinalizeSamples, coverParams.zParams);
if (!ZSTD_isError(dictionarySize)) {
DISPLAYLEVEL(2, "Constructed dictionary of size %u\n",
(unsigned)dictionarySize);
}
FASTCOVER_ctx_destroy(&ctx);
free(segmentFreqs);
return dictionarySize;
}
}
ZDICTLIB_API size_t
ZDICT_optimizeTrainFromBuffer_fastCover(
void* dictBuffer, size_t dictBufferCapacity,
const void* samplesBuffer,
const size_t* samplesSizes, unsigned nbSamples,
ZDICT_fastCover_params_t* parameters)
{
ZDICT_cover_params_t coverParams;
FASTCOVER_accel_t accelParams;
/* constants */
const unsigned nbThreads = parameters->nbThreads;
const double splitPoint =
parameters->splitPoint <= 0.0 ? FASTCOVER_DEFAULT_SPLITPOINT : parameters->splitPoint;
const unsigned kMinD = parameters->d == 0 ? 6 : parameters->d;
const unsigned kMaxD = parameters->d == 0 ? 8 : parameters->d;
const unsigned kMinK = parameters->k == 0 ? 50 : parameters->k;
const unsigned kMaxK = parameters->k == 0 ? 2000 : parameters->k;
const unsigned kSteps = parameters->steps == 0 ? 40 : parameters->steps;
const unsigned kStepSize = MAX((kMaxK - kMinK) / kSteps, 1);
const unsigned kIterations =
(1 + (kMaxD - kMinD) / 2) * (1 + (kMaxK - kMinK) / kStepSize);
const unsigned f = parameters->f == 0 ? DEFAULT_F : parameters->f;
const unsigned accel = parameters->accel == 0 ? DEFAULT_ACCEL : parameters->accel;
const unsigned shrinkDict = 0;
/* Local variables */
const int displayLevel = (int)parameters->zParams.notificationLevel;
unsigned iteration = 1;
unsigned d;
unsigned k;
COVER_best_t best;
POOL_ctx *pool = NULL;
int warned = 0;
/* Checks */
if (splitPoint <= 0 || splitPoint > 1) {
LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect splitPoint\n");
return ERROR(parameter_outOfBound);
}
if (accel == 0 || accel > FASTCOVER_MAX_ACCEL) {
LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect accel\n");
return ERROR(parameter_outOfBound);
}
if (kMinK < kMaxD || kMaxK < kMinK) {
LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect k\n");
return ERROR(parameter_outOfBound);
}
if (nbSamples == 0) {
LOCALDISPLAYLEVEL(displayLevel, 1, "FASTCOVER must have at least one input file\n");
return ERROR(srcSize_wrong);
}
if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
LOCALDISPLAYLEVEL(displayLevel, 1, "dictBufferCapacity must be at least %u\n",
ZDICT_DICTSIZE_MIN);
return ERROR(dstSize_tooSmall);
}
if (nbThreads > 1) {
pool = POOL_create(nbThreads, 1);
if (!pool) {
return ERROR(memory_allocation);
}
}
/* Initialization */
COVER_best_init(&best);
memset(&coverParams, 0 , sizeof(coverParams));
FASTCOVER_convertToCoverParams(*parameters, &coverParams);
accelParams = FASTCOVER_defaultAccelParameters[accel];
/* Turn down global display level to clean up display at level 2 and below */
g_displayLevel = displayLevel == 0 ? 0 : displayLevel - 1;
/* Loop through d first because each new value needs a new context */
LOCALDISPLAYLEVEL(displayLevel, 2, "Trying %u different sets of parameters\n",
kIterations);
for (d = kMinD; d <= kMaxD; d += 2) {
/* Initialize the context for this value of d */
FASTCOVER_ctx_t ctx;
LOCALDISPLAYLEVEL(displayLevel, 3, "d=%u\n", d);
{
size_t const initVal = FASTCOVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples, d, splitPoint, f, accelParams);
if (ZSTD_isError(initVal)) {
LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to initialize context\n");
COVER_best_destroy(&best);
POOL_free(pool);
return initVal;
}
}
if (!warned) {
COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.nbDmers, displayLevel);
warned = 1;
}
/* Loop through k reusing the same context */
for (k = kMinK; k <= kMaxK; k += kStepSize) {
/* Prepare the arguments */
FASTCOVER_tryParameters_data_t *data = (FASTCOVER_tryParameters_data_t *)malloc(
sizeof(FASTCOVER_tryParameters_data_t));
LOCALDISPLAYLEVEL(displayLevel, 3, "k=%u\n", k);
if (!data) {
LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to allocate parameters\n");
COVER_best_destroy(&best);
FASTCOVER_ctx_destroy(&ctx);
POOL_free(pool);
return ERROR(memory_allocation);
}
data->ctx = &ctx;
data->best = &best;
data->dictBufferCapacity = dictBufferCapacity;
data->parameters = coverParams;
data->parameters.k = k;
data->parameters.d = d;
data->parameters.splitPoint = splitPoint;
data->parameters.steps = kSteps;
data->parameters.shrinkDict = shrinkDict;
data->parameters.zParams.notificationLevel = (unsigned)g_displayLevel;
/* Check the parameters */
if (!FASTCOVER_checkParameters(data->parameters, dictBufferCapacity,
data->ctx->f, accel)) {
DISPLAYLEVEL(1, "FASTCOVER parameters incorrect\n");
free(data);
continue;
}
/* Call the function and pass ownership of data to it */
COVER_best_start(&best);
if (pool) {
POOL_add(pool, &FASTCOVER_tryParameters, data);
} else {
FASTCOVER_tryParameters(data);
}
/* Print status */
LOCALDISPLAYUPDATE(displayLevel, 2, "\r%u%% ",
(unsigned)((iteration * 100) / kIterations));
++iteration;
}
COVER_best_wait(&best);
FASTCOVER_ctx_destroy(&ctx);
}
LOCALDISPLAYLEVEL(displayLevel, 2, "\r%79s\r", "");
/* Fill the output buffer and parameters with output of the best parameters */
{
const size_t dictSize = best.dictSize;
if (ZSTD_isError(best.compressedSize)) {
const size_t compressedSize = best.compressedSize;
COVER_best_destroy(&best);
POOL_free(pool);
return compressedSize;
}
FASTCOVER_convertToFastCoverParams(best.parameters, parameters, f, accel);
memcpy(dictBuffer, best.dict, dictSize);
COVER_best_destroy(&best);
POOL_free(pool);
return dictSize;
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,474 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#if defined (__cplusplus)
extern "C" {
#endif
#ifndef ZSTD_ZDICT_H
#define ZSTD_ZDICT_H
/*====== Dependencies ======*/
#include <stddef.h> /* size_t */
/* ===== ZDICTLIB_API : control library symbols visibility ===== */
#ifndef ZDICTLIB_VISIBLE
/* Backwards compatibility with old macro name */
# ifdef ZDICTLIB_VISIBILITY
# define ZDICTLIB_VISIBLE ZDICTLIB_VISIBILITY
# elif defined(__GNUC__) && (__GNUC__ >= 4) && !defined(__MINGW32__)
# define ZDICTLIB_VISIBLE __attribute__ ((visibility ("default")))
# else
# define ZDICTLIB_VISIBLE
# endif
#endif
#ifndef ZDICTLIB_HIDDEN
# if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(__MINGW32__)
# define ZDICTLIB_HIDDEN __attribute__ ((visibility ("hidden")))
# else
# define ZDICTLIB_HIDDEN
# endif
#endif
#if defined(ZSTD_DLL_EXPORT) && (ZSTD_DLL_EXPORT==1)
# define ZDICTLIB_API __declspec(dllexport) ZDICTLIB_VISIBLE
#elif defined(ZSTD_DLL_IMPORT) && (ZSTD_DLL_IMPORT==1)
# define ZDICTLIB_API __declspec(dllimport) ZDICTLIB_VISIBLE /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/
#else
# define ZDICTLIB_API ZDICTLIB_VISIBLE
#endif
/*******************************************************************************
* Zstd dictionary builder
*
* FAQ
* ===
* Why should I use a dictionary?
* ------------------------------
*
* Zstd can use dictionaries to improve compression ratio of small data.
* Traditionally small files don't compress well because there is very little
* repetition in a single sample, since it is small. But, if you are compressing
* many similar files, like a bunch of JSON records that share the same
* structure, you can train a dictionary on ahead of time on some samples of
* these files. Then, zstd can use the dictionary to find repetitions that are
* present across samples. This can vastly improve compression ratio.
*
* When is a dictionary useful?
* ----------------------------
*
* Dictionaries are useful when compressing many small files that are similar.
* The larger a file is, the less benefit a dictionary will have. Generally,
* we don't expect dictionary compression to be effective past 100KB. And the
* smaller a file is, the more we would expect the dictionary to help.
*
* How do I use a dictionary?
* --------------------------
*
* Simply pass the dictionary to the zstd compressor with
* `ZSTD_CCtx_loadDictionary()`. The same dictionary must then be passed to
* the decompressor, using `ZSTD_DCtx_loadDictionary()`. There are other
* more advanced functions that allow selecting some options, see zstd.h for
* complete documentation.
*
* What is a zstd dictionary?
* --------------------------
*
* A zstd dictionary has two pieces: Its header, and its content. The header
* contains a magic number, the dictionary ID, and entropy tables. These
* entropy tables allow zstd to save on header costs in the compressed file,
* which really matters for small data. The content is just bytes, which are
* repeated content that is common across many samples.
*
* What is a raw content dictionary?
* ---------------------------------
*
* A raw content dictionary is just bytes. It doesn't have a zstd dictionary
* header, a dictionary ID, or entropy tables. Any buffer is a valid raw
* content dictionary.
*
* How do I train a dictionary?
* ----------------------------
*
* Gather samples from your use case. These samples should be similar to each
* other. If you have several use cases, you could try to train one dictionary
* per use case.
*
* Pass those samples to `ZDICT_trainFromBuffer()` and that will train your
* dictionary. There are a few advanced versions of this function, but this
* is a great starting point. If you want to further tune your dictionary
* you could try `ZDICT_optimizeTrainFromBuffer_cover()`. If that is too slow
* you can try `ZDICT_optimizeTrainFromBuffer_fastCover()`.
*
* If the dictionary training function fails, that is likely because you
* either passed too few samples, or a dictionary would not be effective
* for your data. Look at the messages that the dictionary trainer printed,
* if it doesn't say too few samples, then a dictionary would not be effective.
*
* How large should my dictionary be?
* ----------------------------------
*
* A reasonable dictionary size, the `dictBufferCapacity`, is about 100KB.
* The zstd CLI defaults to a 110KB dictionary. You likely don't need a
* dictionary larger than that. But, most use cases can get away with a
* smaller dictionary. The advanced dictionary builders can automatically
* shrink the dictionary for you, and select the smallest size that doesn't
* hurt compression ratio too much. See the `shrinkDict` parameter.
* A smaller dictionary can save memory, and potentially speed up
* compression.
*
* How many samples should I provide to the dictionary builder?
* ------------------------------------------------------------
*
* We generally recommend passing ~100x the size of the dictionary
* in samples. A few thousand should suffice. Having too few samples
* can hurt the dictionaries effectiveness. Having more samples will
* only improve the dictionaries effectiveness. But having too many
* samples can slow down the dictionary builder.
*
* How do I determine if a dictionary will be effective?
* -----------------------------------------------------
*
* Simply train a dictionary and try it out. You can use zstd's built in
* benchmarking tool to test the dictionary effectiveness.
*
* # Benchmark levels 1-3 without a dictionary
* zstd -b1e3 -r /path/to/my/files
* # Benchmark levels 1-3 with a dictionary
* zstd -b1e3 -r /path/to/my/files -D /path/to/my/dictionary
*
* When should I retrain a dictionary?
* -----------------------------------
*
* You should retrain a dictionary when its effectiveness drops. Dictionary
* effectiveness drops as the data you are compressing changes. Generally, we do
* expect dictionaries to "decay" over time, as your data changes, but the rate
* at which they decay depends on your use case. Internally, we regularly
* retrain dictionaries, and if the new dictionary performs significantly
* better than the old dictionary, we will ship the new dictionary.
*
* I have a raw content dictionary, how do I turn it into a zstd dictionary?
* -------------------------------------------------------------------------
*
* If you have a raw content dictionary, e.g. by manually constructing it, or
* using a third-party dictionary builder, you can turn it into a zstd
* dictionary by using `ZDICT_finalizeDictionary()`. You'll also have to
* provide some samples of the data. It will add the zstd header to the
* raw content, which contains a dictionary ID and entropy tables, which
* will improve compression ratio, and allow zstd to write the dictionary ID
* into the frame, if you so choose.
*
* Do I have to use zstd's dictionary builder?
* -------------------------------------------
*
* No! You can construct dictionary content however you please, it is just
* bytes. It will always be valid as a raw content dictionary. If you want
* a zstd dictionary, which can improve compression ratio, use
* `ZDICT_finalizeDictionary()`.
*
* What is the attack surface of a zstd dictionary?
* ------------------------------------------------
*
* Zstd is heavily fuzz tested, including loading fuzzed dictionaries, so
* zstd should never crash, or access out-of-bounds memory no matter what
* the dictionary is. However, if an attacker can control the dictionary
* during decompression, they can cause zstd to generate arbitrary bytes,
* just like if they controlled the compressed data.
*
******************************************************************************/
/*! ZDICT_trainFromBuffer():
* Train a dictionary from an array of samples.
* Redirect towards ZDICT_optimizeTrainFromBuffer_fastCover() single-threaded, with d=8, steps=4,
* f=20, and accel=1.
* Samples must be stored concatenated in a single flat buffer `samplesBuffer`,
* supplied with an array of sizes `samplesSizes`, providing the size of each sample, in order.
* The resulting dictionary will be saved into `dictBuffer`.
* @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
* or an error code, which can be tested with ZDICT_isError().
* Note: Dictionary training will fail if there are not enough samples to construct a
* dictionary, or if most of the samples are too small (< 8 bytes being the lower limit).
* If dictionary training fails, you should use zstd without a dictionary, as the dictionary
* would've been ineffective anyways. If you believe your samples would benefit from a dictionary
* please open an issue with details, and we can look into it.
* Note: ZDICT_trainFromBuffer()'s memory usage is about 6 MB.
* Tips: In general, a reasonable dictionary has a size of ~ 100 KB.
* It's possible to select smaller or larger size, just by specifying `dictBufferCapacity`.
* In general, it's recommended to provide a few thousands samples, though this can vary a lot.
* It's recommended that total size of all samples be about ~x100 times the target size of dictionary.
*/
ZDICTLIB_API size_t ZDICT_trainFromBuffer(void* dictBuffer, size_t dictBufferCapacity,
const void* samplesBuffer,
const size_t* samplesSizes, unsigned nbSamples);
typedef struct {
int compressionLevel; /**< optimize for a specific zstd compression level; 0 means default */
unsigned notificationLevel; /**< Write log to stderr; 0 = none (default); 1 = errors; 2 = progression; 3 = details; 4 = debug; */
unsigned dictID; /**< force dictID value; 0 means auto mode (32-bits random value)
* NOTE: The zstd format reserves some dictionary IDs for future use.
* You may use them in private settings, but be warned that they
* may be used by zstd in a public dictionary registry in the future.
* These dictionary IDs are:
* - low range : <= 32767
* - high range : >= (2^31)
*/
} ZDICT_params_t;
/*! ZDICT_finalizeDictionary():
* Given a custom content as a basis for dictionary, and a set of samples,
* finalize dictionary by adding headers and statistics according to the zstd
* dictionary format.
*
* Samples must be stored concatenated in a flat buffer `samplesBuffer`,
* supplied with an array of sizes `samplesSizes`, providing the size of each
* sample in order. The samples are used to construct the statistics, so they
* should be representative of what you will compress with this dictionary.
*
* The compression level can be set in `parameters`. You should pass the
* compression level you expect to use in production. The statistics for each
* compression level differ, so tuning the dictionary for the compression level
* can help quite a bit.
*
* You can set an explicit dictionary ID in `parameters`, or allow us to pick
* a random dictionary ID for you, but we can't guarantee no collisions.
*
* The dstDictBuffer and the dictContent may overlap, and the content will be
* appended to the end of the header. If the header + the content doesn't fit in
* maxDictSize the beginning of the content is truncated to make room, since it
* is presumed that the most profitable content is at the end of the dictionary,
* since that is the cheapest to reference.
*
* `maxDictSize` must be >= max(dictContentSize, ZSTD_DICTSIZE_MIN).
*
* @return: size of dictionary stored into `dstDictBuffer` (<= `maxDictSize`),
* or an error code, which can be tested by ZDICT_isError().
* Note: ZDICT_finalizeDictionary() will push notifications into stderr if
* instructed to, using notificationLevel>0.
* NOTE: This function currently may fail in several edge cases including:
* * Not enough samples
* * Samples are uncompressible
* * Samples are all exactly the same
*/
ZDICTLIB_API size_t ZDICT_finalizeDictionary(void* dstDictBuffer, size_t maxDictSize,
const void* dictContent, size_t dictContentSize,
const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
ZDICT_params_t parameters);
/*====== Helper functions ======*/
ZDICTLIB_API unsigned ZDICT_getDictID(const void* dictBuffer, size_t dictSize); /**< extracts dictID; @return zero if error (not a valid dictionary) */
ZDICTLIB_API size_t ZDICT_getDictHeaderSize(const void* dictBuffer, size_t dictSize); /* returns dict header size; returns a ZSTD error code on failure */
ZDICTLIB_API unsigned ZDICT_isError(size_t errorCode);
ZDICTLIB_API const char* ZDICT_getErrorName(size_t errorCode);
#endif /* ZSTD_ZDICT_H */
#if defined(ZDICT_STATIC_LINKING_ONLY) && !defined(ZSTD_ZDICT_H_STATIC)
#define ZSTD_ZDICT_H_STATIC
/* This can be overridden externally to hide static symbols. */
#ifndef ZDICTLIB_STATIC_API
# if defined(ZSTD_DLL_EXPORT) && (ZSTD_DLL_EXPORT==1)
# define ZDICTLIB_STATIC_API __declspec(dllexport) ZDICTLIB_VISIBLE
# elif defined(ZSTD_DLL_IMPORT) && (ZSTD_DLL_IMPORT==1)
# define ZDICTLIB_STATIC_API __declspec(dllimport) ZDICTLIB_VISIBLE
# else
# define ZDICTLIB_STATIC_API ZDICTLIB_VISIBLE
# endif
#endif
/* ====================================================================================
* The definitions in this section are considered experimental.
* They should never be used with a dynamic library, as they may change in the future.
* They are provided for advanced usages.
* Use them only in association with static linking.
* ==================================================================================== */
#define ZDICT_DICTSIZE_MIN 256
/* Deprecated: Remove in v1.6.0 */
#define ZDICT_CONTENTSIZE_MIN 128
/*! ZDICT_cover_params_t:
* k and d are the only required parameters.
* For others, value 0 means default.
*/
typedef struct {
unsigned k; /* Segment size : constraint: 0 < k : Reasonable range [16, 2048+] */
unsigned d; /* dmer size : constraint: 0 < d <= k : Reasonable range [6, 16] */
unsigned steps; /* Number of steps : Only used for optimization : 0 means default (40) : Higher means more parameters checked */
unsigned nbThreads; /* Number of threads : constraint: 0 < nbThreads : 1 means single-threaded : Only used for optimization : Ignored if ZSTD_MULTITHREAD is not defined */
double splitPoint; /* Percentage of samples used for training: Only used for optimization : the first nbSamples * splitPoint samples will be used to training, the last nbSamples * (1 - splitPoint) samples will be used for testing, 0 means default (1.0), 1.0 when all samples are used for both training and testing */
unsigned shrinkDict; /* Train dictionaries to shrink in size starting from the minimum size and selects the smallest dictionary that is shrinkDictMaxRegression% worse than the largest dictionary. 0 means no shrinking and 1 means shrinking */
unsigned shrinkDictMaxRegression; /* Sets shrinkDictMaxRegression so that a smaller dictionary can be at worse shrinkDictMaxRegression% worse than the max dict size dictionary. */
ZDICT_params_t zParams;
} ZDICT_cover_params_t;
typedef struct {
unsigned k; /* Segment size : constraint: 0 < k : Reasonable range [16, 2048+] */
unsigned d; /* dmer size : constraint: 0 < d <= k : Reasonable range [6, 16] */
unsigned f; /* log of size of frequency array : constraint: 0 < f <= 31 : 1 means default(20)*/
unsigned steps; /* Number of steps : Only used for optimization : 0 means default (40) : Higher means more parameters checked */
unsigned nbThreads; /* Number of threads : constraint: 0 < nbThreads : 1 means single-threaded : Only used for optimization : Ignored if ZSTD_MULTITHREAD is not defined */
double splitPoint; /* Percentage of samples used for training: Only used for optimization : the first nbSamples * splitPoint samples will be used to training, the last nbSamples * (1 - splitPoint) samples will be used for testing, 0 means default (0.75), 1.0 when all samples are used for both training and testing */
unsigned accel; /* Acceleration level: constraint: 0 < accel <= 10, higher means faster and less accurate, 0 means default(1) */
unsigned shrinkDict; /* Train dictionaries to shrink in size starting from the minimum size and selects the smallest dictionary that is shrinkDictMaxRegression% worse than the largest dictionary. 0 means no shrinking and 1 means shrinking */
unsigned shrinkDictMaxRegression; /* Sets shrinkDictMaxRegression so that a smaller dictionary can be at worse shrinkDictMaxRegression% worse than the max dict size dictionary. */
ZDICT_params_t zParams;
} ZDICT_fastCover_params_t;
/*! ZDICT_trainFromBuffer_cover():
* Train a dictionary from an array of samples using the COVER algorithm.
* Samples must be stored concatenated in a single flat buffer `samplesBuffer`,
* supplied with an array of sizes `samplesSizes`, providing the size of each sample, in order.
* The resulting dictionary will be saved into `dictBuffer`.
* @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
* or an error code, which can be tested with ZDICT_isError().
* See ZDICT_trainFromBuffer() for details on failure modes.
* Note: ZDICT_trainFromBuffer_cover() requires about 9 bytes of memory for each input byte.
* Tips: In general, a reasonable dictionary has a size of ~ 100 KB.
* It's possible to select smaller or larger size, just by specifying `dictBufferCapacity`.
* In general, it's recommended to provide a few thousands samples, though this can vary a lot.
* It's recommended that total size of all samples be about ~x100 times the target size of dictionary.
*/
ZDICTLIB_STATIC_API size_t ZDICT_trainFromBuffer_cover(
void *dictBuffer, size_t dictBufferCapacity,
const void *samplesBuffer, const size_t *samplesSizes, unsigned nbSamples,
ZDICT_cover_params_t parameters);
/*! ZDICT_optimizeTrainFromBuffer_cover():
* The same requirements as above hold for all the parameters except `parameters`.
* This function tries many parameter combinations and picks the best parameters.
* `*parameters` is filled with the best parameters found,
* dictionary constructed with those parameters is stored in `dictBuffer`.
*
* All of the parameters d, k, steps are optional.
* If d is non-zero then we don't check multiple values of d, otherwise we check d = {6, 8}.
* if steps is zero it defaults to its default value.
* If k is non-zero then we don't check multiple values of k, otherwise we check steps values in [50, 2000].
*
* @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
* or an error code, which can be tested with ZDICT_isError().
* On success `*parameters` contains the parameters selected.
* See ZDICT_trainFromBuffer() for details on failure modes.
* Note: ZDICT_optimizeTrainFromBuffer_cover() requires about 8 bytes of memory for each input byte and additionally another 5 bytes of memory for each byte of memory for each thread.
*/
ZDICTLIB_STATIC_API size_t ZDICT_optimizeTrainFromBuffer_cover(
void* dictBuffer, size_t dictBufferCapacity,
const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
ZDICT_cover_params_t* parameters);
/*! ZDICT_trainFromBuffer_fastCover():
* Train a dictionary from an array of samples using a modified version of COVER algorithm.
* Samples must be stored concatenated in a single flat buffer `samplesBuffer`,
* supplied with an array of sizes `samplesSizes`, providing the size of each sample, in order.
* d and k are required.
* All other parameters are optional, will use default values if not provided
* The resulting dictionary will be saved into `dictBuffer`.
* @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
* or an error code, which can be tested with ZDICT_isError().
* See ZDICT_trainFromBuffer() for details on failure modes.
* Note: ZDICT_trainFromBuffer_fastCover() requires 6 * 2^f bytes of memory.
* Tips: In general, a reasonable dictionary has a size of ~ 100 KB.
* It's possible to select smaller or larger size, just by specifying `dictBufferCapacity`.
* In general, it's recommended to provide a few thousands samples, though this can vary a lot.
* It's recommended that total size of all samples be about ~x100 times the target size of dictionary.
*/
ZDICTLIB_STATIC_API size_t ZDICT_trainFromBuffer_fastCover(void *dictBuffer,
size_t dictBufferCapacity, const void *samplesBuffer,
const size_t *samplesSizes, unsigned nbSamples,
ZDICT_fastCover_params_t parameters);
/*! ZDICT_optimizeTrainFromBuffer_fastCover():
* The same requirements as above hold for all the parameters except `parameters`.
* This function tries many parameter combinations (specifically, k and d combinations)
* and picks the best parameters. `*parameters` is filled with the best parameters found,
* dictionary constructed with those parameters is stored in `dictBuffer`.
* All of the parameters d, k, steps, f, and accel are optional.
* If d is non-zero then we don't check multiple values of d, otherwise we check d = {6, 8}.
* if steps is zero it defaults to its default value.
* If k is non-zero then we don't check multiple values of k, otherwise we check steps values in [50, 2000].
* If f is zero, default value of 20 is used.
* If accel is zero, default value of 1 is used.
*
* @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
* or an error code, which can be tested with ZDICT_isError().
* On success `*parameters` contains the parameters selected.
* See ZDICT_trainFromBuffer() for details on failure modes.
* Note: ZDICT_optimizeTrainFromBuffer_fastCover() requires about 6 * 2^f bytes of memory for each thread.
*/
ZDICTLIB_STATIC_API size_t ZDICT_optimizeTrainFromBuffer_fastCover(void* dictBuffer,
size_t dictBufferCapacity, const void* samplesBuffer,
const size_t* samplesSizes, unsigned nbSamples,
ZDICT_fastCover_params_t* parameters);
typedef struct {
unsigned selectivityLevel; /* 0 means default; larger => select more => larger dictionary */
ZDICT_params_t zParams;
} ZDICT_legacy_params_t;
/*! ZDICT_trainFromBuffer_legacy():
* Train a dictionary from an array of samples.
* Samples must be stored concatenated in a single flat buffer `samplesBuffer`,
* supplied with an array of sizes `samplesSizes`, providing the size of each sample, in order.
* The resulting dictionary will be saved into `dictBuffer`.
* `parameters` is optional and can be provided with values set to 0 to mean "default".
* @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
* or an error code, which can be tested with ZDICT_isError().
* See ZDICT_trainFromBuffer() for details on failure modes.
* Tips: In general, a reasonable dictionary has a size of ~ 100 KB.
* It's possible to select smaller or larger size, just by specifying `dictBufferCapacity`.
* In general, it's recommended to provide a few thousands samples, though this can vary a lot.
* It's recommended that total size of all samples be about ~x100 times the target size of dictionary.
* Note: ZDICT_trainFromBuffer_legacy() will send notifications into stderr if instructed to, using notificationLevel>0.
*/
ZDICTLIB_STATIC_API size_t ZDICT_trainFromBuffer_legacy(
void* dictBuffer, size_t dictBufferCapacity,
const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
ZDICT_legacy_params_t parameters);
/* Deprecation warnings */
/* It is generally possible to disable deprecation warnings from compiler,
for example with -Wno-deprecated-declarations for gcc
or _CRT_SECURE_NO_WARNINGS in Visual.
Otherwise, it's also possible to manually define ZDICT_DISABLE_DEPRECATE_WARNINGS */
#ifdef ZDICT_DISABLE_DEPRECATE_WARNINGS
# define ZDICT_DEPRECATED(message) /* disable deprecation warnings */
#else
# define ZDICT_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
# if defined (__cplusplus) && (__cplusplus >= 201402) /* C++14 or greater */
# define ZDICT_DEPRECATED(message) [[deprecated(message)]]
# elif defined(__clang__) || (ZDICT_GCC_VERSION >= 405)
# define ZDICT_DEPRECATED(message) __attribute__((deprecated(message)))
# elif (ZDICT_GCC_VERSION >= 301)
# define ZDICT_DEPRECATED(message) __attribute__((deprecated))
# elif defined(_MSC_VER)
# define ZDICT_DEPRECATED(message) __declspec(deprecated(message))
# else
# pragma message("WARNING: You need to implement ZDICT_DEPRECATED for this compiler")
# define ZDICT_DEPRECATED(message)
# endif
#endif /* ZDICT_DISABLE_DEPRECATE_WARNINGS */
ZDICT_DEPRECATED("use ZDICT_finalizeDictionary() instead")
ZDICTLIB_STATIC_API
size_t ZDICT_addEntropyTablesFromBuffer(void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity,
const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples);
#endif /* ZSTD_ZDICT_H_STATIC */
#if defined (__cplusplus)
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1,114 +0,0 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_ERRORS_H_398273423
#define ZSTD_ERRORS_H_398273423
#if defined (__cplusplus)
extern "C" {
#endif
/*===== dependency =====*/
#include <stddef.h> /* size_t */
/* ===== ZSTDERRORLIB_API : control library symbols visibility ===== */
#ifndef ZSTDERRORLIB_VISIBLE
/* Backwards compatibility with old macro name */
# ifdef ZSTDERRORLIB_VISIBILITY
# define ZSTDERRORLIB_VISIBLE ZSTDERRORLIB_VISIBILITY
# elif defined(__GNUC__) && (__GNUC__ >= 4) && !defined(__MINGW32__)
# define ZSTDERRORLIB_VISIBLE __attribute__ ((visibility ("default")))
# else
# define ZSTDERRORLIB_VISIBLE
# endif
#endif
#ifndef ZSTDERRORLIB_HIDDEN
# if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(__MINGW32__)
# define ZSTDERRORLIB_HIDDEN __attribute__ ((visibility ("hidden")))
# else
# define ZSTDERRORLIB_HIDDEN
# endif
#endif
#if defined(ZSTD_DLL_EXPORT) && (ZSTD_DLL_EXPORT==1)
# define ZSTDERRORLIB_API __declspec(dllexport) ZSTDERRORLIB_VISIBLE
#elif defined(ZSTD_DLL_IMPORT) && (ZSTD_DLL_IMPORT==1)
# define ZSTDERRORLIB_API __declspec(dllimport) ZSTDERRORLIB_VISIBLE /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/
#else
# define ZSTDERRORLIB_API ZSTDERRORLIB_VISIBLE
#endif
/*-*********************************************
* Error codes list
*-*********************************************
* Error codes _values_ are pinned down since v1.3.1 only.
* Therefore, don't rely on values if you may link to any version < v1.3.1.
*
* Only values < 100 are considered stable.
*
* note 1 : this API shall be used with static linking only.
* dynamic linking is not yet officially supported.
* note 2 : Prefer relying on the enum than on its value whenever possible
* This is the only supported way to use the error list < v1.3.1
* note 3 : ZSTD_isError() is always correct, whatever the library version.
**********************************************/
typedef enum {
ZSTD_error_no_error = 0,
ZSTD_error_GENERIC = 1,
ZSTD_error_prefix_unknown = 10,
ZSTD_error_version_unsupported = 12,
ZSTD_error_frameParameter_unsupported = 14,
ZSTD_error_frameParameter_windowTooLarge = 16,
ZSTD_error_corruption_detected = 20,
ZSTD_error_checksum_wrong = 22,
ZSTD_error_literals_headerWrong = 24,
ZSTD_error_dictionary_corrupted = 30,
ZSTD_error_dictionary_wrong = 32,
ZSTD_error_dictionaryCreation_failed = 34,
ZSTD_error_parameter_unsupported = 40,
ZSTD_error_parameter_combination_unsupported = 41,
ZSTD_error_parameter_outOfBound = 42,
ZSTD_error_tableLog_tooLarge = 44,
ZSTD_error_maxSymbolValue_tooLarge = 46,
ZSTD_error_maxSymbolValue_tooSmall = 48,
ZSTD_error_stabilityCondition_notRespected = 50,
ZSTD_error_stage_wrong = 60,
ZSTD_error_init_missing = 62,
ZSTD_error_memory_allocation = 64,
ZSTD_error_workSpace_tooSmall= 66,
ZSTD_error_dstSize_tooSmall = 70,
ZSTD_error_srcSize_wrong = 72,
ZSTD_error_dstBuffer_null = 74,
ZSTD_error_noForwardProgress_destFull = 80,
ZSTD_error_noForwardProgress_inputEmpty = 82,
/* following error codes are __NOT STABLE__, they can be removed or changed in future versions */
ZSTD_error_frameIndex_tooLarge = 100,
ZSTD_error_seekableIO = 102,
ZSTD_error_dstBuffer_wrong = 104,
ZSTD_error_srcBuffer_wrong = 105,
ZSTD_error_sequenceProducer_failed = 106,
ZSTD_error_externalSequences_invalid = 107,
ZSTD_error_maxCode = 120 /* never EVER use this value directly, it can change in future versions! Use ZSTD_isError() instead */
} ZSTD_ErrorCode;
/*! ZSTD_getErrorCode() :
convert a `size_t` function result into a `ZSTD_ErrorCode` enum type,
which can be used to compare with enum list published above */
ZSTDERRORLIB_API ZSTD_ErrorCode ZSTD_getErrorCode(size_t functionResult);
ZSTDERRORLIB_API const char* ZSTD_getErrorString(ZSTD_ErrorCode code); /**< Same as ZSTD_getErrorName, but using a `ZSTD_ErrorCode` enum argument */
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_ERRORS_H_398273423 */