mirror of
https://github.com/Sarsoo/csbindgen.git
synced 2024-12-24 07:26:26 +00:00
1883 lines
72 KiB
C
1883 lines
72 KiB
C
|
/* ******************************************************************
|
||
|
* huff0 huffman decoder,
|
||
|
* part of Finite State Entropy library
|
||
|
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
||
|
*
|
||
|
* You can contact the author at :
|
||
|
* - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
||
|
*
|
||
|
* This source code is licensed under both the BSD-style license (found in the
|
||
|
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
|
||
|
* in the COPYING file in the root directory of this source tree).
|
||
|
* You may select, at your option, one of the above-listed licenses.
|
||
|
****************************************************************** */
|
||
|
|
||
|
/* **************************************************************
|
||
|
* Dependencies
|
||
|
****************************************************************/
|
||
|
#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset */
|
||
|
#include "../common/compiler.h"
|
||
|
#include "../common/bitstream.h" /* BIT_* */
|
||
|
#include "../common/fse.h" /* to compress headers */
|
||
|
#include "../common/huf.h"
|
||
|
#include "../common/error_private.h"
|
||
|
#include "../common/zstd_internal.h"
|
||
|
#include "../common/bits.h" /* ZSTD_highbit32, ZSTD_countTrailingZeros64 */
|
||
|
|
||
|
/* **************************************************************
|
||
|
* Constants
|
||
|
****************************************************************/
|
||
|
|
||
|
#define HUF_DECODER_FAST_TABLELOG 11
|
||
|
|
||
|
/* **************************************************************
|
||
|
* Macros
|
||
|
****************************************************************/
|
||
|
|
||
|
/* These two optional macros force the use one way or another of the two
|
||
|
* Huffman decompression implementations. You can't force in both directions
|
||
|
* at the same time.
|
||
|
*/
|
||
|
#if defined(HUF_FORCE_DECOMPRESS_X1) && \
|
||
|
defined(HUF_FORCE_DECOMPRESS_X2)
|
||
|
#error "Cannot force the use of the X1 and X2 decoders at the same time!"
|
||
|
#endif
|
||
|
|
||
|
/* When DYNAMIC_BMI2 is enabled, fast decoders are only called when bmi2 is
|
||
|
* supported at runtime, so we can add the BMI2 target attribute.
|
||
|
* When it is disabled, we will still get BMI2 if it is enabled statically.
|
||
|
*/
|
||
|
#if DYNAMIC_BMI2
|
||
|
# define HUF_FAST_BMI2_ATTRS BMI2_TARGET_ATTRIBUTE
|
||
|
#else
|
||
|
# define HUF_FAST_BMI2_ATTRS
|
||
|
#endif
|
||
|
|
||
|
#ifdef __cplusplus
|
||
|
# define HUF_EXTERN_C extern "C"
|
||
|
#else
|
||
|
# define HUF_EXTERN_C
|
||
|
#endif
|
||
|
#define HUF_ASM_DECL HUF_EXTERN_C
|
||
|
|
||
|
#if DYNAMIC_BMI2
|
||
|
# define HUF_NEED_BMI2_FUNCTION 1
|
||
|
#else
|
||
|
# define HUF_NEED_BMI2_FUNCTION 0
|
||
|
#endif
|
||
|
|
||
|
/* **************************************************************
|
||
|
* Error Management
|
||
|
****************************************************************/
|
||
|
#define HUF_isError ERR_isError
|
||
|
|
||
|
|
||
|
/* **************************************************************
|
||
|
* Byte alignment for workSpace management
|
||
|
****************************************************************/
|
||
|
#define HUF_ALIGN(x, a) HUF_ALIGN_MASK((x), (a) - 1)
|
||
|
#define HUF_ALIGN_MASK(x, mask) (((x) + (mask)) & ~(mask))
|
||
|
|
||
|
|
||
|
/* **************************************************************
|
||
|
* BMI2 Variant Wrappers
|
||
|
****************************************************************/
|
||
|
typedef size_t (*HUF_DecompressUsingDTableFn)(void *dst, size_t dstSize,
|
||
|
const void *cSrc,
|
||
|
size_t cSrcSize,
|
||
|
const HUF_DTable *DTable);
|
||
|
|
||
|
#if DYNAMIC_BMI2
|
||
|
|
||
|
#define HUF_DGEN(fn) \
|
||
|
\
|
||
|
static size_t fn##_default( \
|
||
|
void* dst, size_t dstSize, \
|
||
|
const void* cSrc, size_t cSrcSize, \
|
||
|
const HUF_DTable* DTable) \
|
||
|
{ \
|
||
|
return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
|
||
|
} \
|
||
|
\
|
||
|
static BMI2_TARGET_ATTRIBUTE size_t fn##_bmi2( \
|
||
|
void* dst, size_t dstSize, \
|
||
|
const void* cSrc, size_t cSrcSize, \
|
||
|
const HUF_DTable* DTable) \
|
||
|
{ \
|
||
|
return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
|
||
|
} \
|
||
|
\
|
||
|
static size_t fn(void* dst, size_t dstSize, void const* cSrc, \
|
||
|
size_t cSrcSize, HUF_DTable const* DTable, int flags) \
|
||
|
{ \
|
||
|
if (flags & HUF_flags_bmi2) { \
|
||
|
return fn##_bmi2(dst, dstSize, cSrc, cSrcSize, DTable); \
|
||
|
} \
|
||
|
return fn##_default(dst, dstSize, cSrc, cSrcSize, DTable); \
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
|
||
|
#define HUF_DGEN(fn) \
|
||
|
static size_t fn(void* dst, size_t dstSize, void const* cSrc, \
|
||
|
size_t cSrcSize, HUF_DTable const* DTable, int flags) \
|
||
|
{ \
|
||
|
(void)flags; \
|
||
|
return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/*-***************************/
|
||
|
/* generic DTableDesc */
|
||
|
/*-***************************/
|
||
|
typedef struct { BYTE maxTableLog; BYTE tableType; BYTE tableLog; BYTE reserved; } DTableDesc;
|
||
|
|
||
|
static DTableDesc HUF_getDTableDesc(const HUF_DTable* table)
|
||
|
{
|
||
|
DTableDesc dtd;
|
||
|
ZSTD_memcpy(&dtd, table, sizeof(dtd));
|
||
|
return dtd;
|
||
|
}
|
||
|
|
||
|
static size_t HUF_initFastDStream(BYTE const* ip) {
|
||
|
BYTE const lastByte = ip[7];
|
||
|
size_t const bitsConsumed = lastByte ? 8 - ZSTD_highbit32(lastByte) : 0;
|
||
|
size_t const value = MEM_readLEST(ip) | 1;
|
||
|
assert(bitsConsumed <= 8);
|
||
|
assert(sizeof(size_t) == 8);
|
||
|
return value << bitsConsumed;
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* The input/output arguments to the Huffman fast decoding loop:
|
||
|
*
|
||
|
* ip [in/out] - The input pointers, must be updated to reflect what is consumed.
|
||
|
* op [in/out] - The output pointers, must be updated to reflect what is written.
|
||
|
* bits [in/out] - The bitstream containers, must be updated to reflect the current state.
|
||
|
* dt [in] - The decoding table.
|
||
|
* ilimit [in] - The input limit, stop when any input pointer is below ilimit.
|
||
|
* oend [in] - The end of the output stream. op[3] must not cross oend.
|
||
|
* iend [in] - The end of each input stream. ip[i] may cross iend[i],
|
||
|
* as long as it is above ilimit, but that indicates corruption.
|
||
|
*/
|
||
|
typedef struct {
|
||
|
BYTE const* ip[4];
|
||
|
BYTE* op[4];
|
||
|
U64 bits[4];
|
||
|
void const* dt;
|
||
|
BYTE const* ilimit;
|
||
|
BYTE* oend;
|
||
|
BYTE const* iend[4];
|
||
|
} HUF_DecompressFastArgs;
|
||
|
|
||
|
typedef void (*HUF_DecompressFastLoopFn)(HUF_DecompressFastArgs*);
|
||
|
|
||
|
/**
|
||
|
* Initializes args for the fast decoding loop.
|
||
|
* @returns 1 on success
|
||
|
* 0 if the fallback implementation should be used.
|
||
|
* Or an error code on failure.
|
||
|
*/
|
||
|
static size_t HUF_DecompressFastArgs_init(HUF_DecompressFastArgs* args, void* dst, size_t dstSize, void const* src, size_t srcSize, const HUF_DTable* DTable)
|
||
|
{
|
||
|
void const* dt = DTable + 1;
|
||
|
U32 const dtLog = HUF_getDTableDesc(DTable).tableLog;
|
||
|
|
||
|
const BYTE* const ilimit = (const BYTE*)src + 6 + 8;
|
||
|
|
||
|
BYTE* const oend = (BYTE*)dst + dstSize;
|
||
|
|
||
|
/* The fast decoding loop assumes 64-bit little-endian.
|
||
|
* This condition is false on x32.
|
||
|
*/
|
||
|
if (!MEM_isLittleEndian() || MEM_32bits())
|
||
|
return 0;
|
||
|
|
||
|
/* strict minimum : jump table + 1 byte per stream */
|
||
|
if (srcSize < 10)
|
||
|
return ERROR(corruption_detected);
|
||
|
|
||
|
/* Must have at least 8 bytes per stream because we don't handle initializing smaller bit containers.
|
||
|
* If table log is not correct at this point, fallback to the old decoder.
|
||
|
* On small inputs we don't have enough data to trigger the fast loop, so use the old decoder.
|
||
|
*/
|
||
|
if (dtLog != HUF_DECODER_FAST_TABLELOG)
|
||
|
return 0;
|
||
|
|
||
|
/* Read the jump table. */
|
||
|
{
|
||
|
const BYTE* const istart = (const BYTE*)src;
|
||
|
size_t const length1 = MEM_readLE16(istart);
|
||
|
size_t const length2 = MEM_readLE16(istart+2);
|
||
|
size_t const length3 = MEM_readLE16(istart+4);
|
||
|
size_t const length4 = srcSize - (length1 + length2 + length3 + 6);
|
||
|
args->iend[0] = istart + 6; /* jumpTable */
|
||
|
args->iend[1] = args->iend[0] + length1;
|
||
|
args->iend[2] = args->iend[1] + length2;
|
||
|
args->iend[3] = args->iend[2] + length3;
|
||
|
|
||
|
/* HUF_initFastDStream() requires this, and this small of an input
|
||
|
* won't benefit from the ASM loop anyways.
|
||
|
* length1 must be >= 16 so that ip[0] >= ilimit before the loop
|
||
|
* starts.
|
||
|
*/
|
||
|
if (length1 < 16 || length2 < 8 || length3 < 8 || length4 < 8)
|
||
|
return 0;
|
||
|
if (length4 > srcSize) return ERROR(corruption_detected); /* overflow */
|
||
|
}
|
||
|
/* ip[] contains the position that is currently loaded into bits[]. */
|
||
|
args->ip[0] = args->iend[1] - sizeof(U64);
|
||
|
args->ip[1] = args->iend[2] - sizeof(U64);
|
||
|
args->ip[2] = args->iend[3] - sizeof(U64);
|
||
|
args->ip[3] = (BYTE const*)src + srcSize - sizeof(U64);
|
||
|
|
||
|
/* op[] contains the output pointers. */
|
||
|
args->op[0] = (BYTE*)dst;
|
||
|
args->op[1] = args->op[0] + (dstSize+3)/4;
|
||
|
args->op[2] = args->op[1] + (dstSize+3)/4;
|
||
|
args->op[3] = args->op[2] + (dstSize+3)/4;
|
||
|
|
||
|
/* No point to call the ASM loop for tiny outputs. */
|
||
|
if (args->op[3] >= oend)
|
||
|
return 0;
|
||
|
|
||
|
/* bits[] is the bit container.
|
||
|
* It is read from the MSB down to the LSB.
|
||
|
* It is shifted left as it is read, and zeros are
|
||
|
* shifted in. After the lowest valid bit a 1 is
|
||
|
* set, so that CountTrailingZeros(bits[]) can be used
|
||
|
* to count how many bits we've consumed.
|
||
|
*/
|
||
|
args->bits[0] = HUF_initFastDStream(args->ip[0]);
|
||
|
args->bits[1] = HUF_initFastDStream(args->ip[1]);
|
||
|
args->bits[2] = HUF_initFastDStream(args->ip[2]);
|
||
|
args->bits[3] = HUF_initFastDStream(args->ip[3]);
|
||
|
|
||
|
/* If ip[] >= ilimit, it is guaranteed to be safe to
|
||
|
* reload bits[]. It may be beyond its section, but is
|
||
|
* guaranteed to be valid (>= istart).
|
||
|
*/
|
||
|
args->ilimit = ilimit;
|
||
|
|
||
|
args->oend = oend;
|
||
|
args->dt = dt;
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static size_t HUF_initRemainingDStream(BIT_DStream_t* bit, HUF_DecompressFastArgs const* args, int stream, BYTE* segmentEnd)
|
||
|
{
|
||
|
/* Validate that we haven't overwritten. */
|
||
|
if (args->op[stream] > segmentEnd)
|
||
|
return ERROR(corruption_detected);
|
||
|
/* Validate that we haven't read beyond iend[].
|
||
|
* Note that ip[] may be < iend[] because the MSB is
|
||
|
* the next bit to read, and we may have consumed 100%
|
||
|
* of the stream, so down to iend[i] - 8 is valid.
|
||
|
*/
|
||
|
if (args->ip[stream] < args->iend[stream] - 8)
|
||
|
return ERROR(corruption_detected);
|
||
|
|
||
|
/* Construct the BIT_DStream_t. */
|
||
|
assert(sizeof(size_t) == 8);
|
||
|
bit->bitContainer = MEM_readLEST(args->ip[stream]);
|
||
|
bit->bitsConsumed = ZSTD_countTrailingZeros64(args->bits[stream]);
|
||
|
bit->start = (const char*)args->iend[0];
|
||
|
bit->limitPtr = bit->start + sizeof(size_t);
|
||
|
bit->ptr = (const char*)args->ip[stream];
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
#ifndef HUF_FORCE_DECOMPRESS_X2
|
||
|
|
||
|
/*-***************************/
|
||
|
/* single-symbol decoding */
|
||
|
/*-***************************/
|
||
|
typedef struct { BYTE nbBits; BYTE byte; } HUF_DEltX1; /* single-symbol decoding */
|
||
|
|
||
|
/**
|
||
|
* Packs 4 HUF_DEltX1 structs into a U64. This is used to lay down 4 entries at
|
||
|
* a time.
|
||
|
*/
|
||
|
static U64 HUF_DEltX1_set4(BYTE symbol, BYTE nbBits) {
|
||
|
U64 D4;
|
||
|
if (MEM_isLittleEndian()) {
|
||
|
D4 = (U64)((symbol << 8) + nbBits);
|
||
|
} else {
|
||
|
D4 = (U64)(symbol + (nbBits << 8));
|
||
|
}
|
||
|
assert(D4 < (1U << 16));
|
||
|
D4 *= 0x0001000100010001ULL;
|
||
|
return D4;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Increase the tableLog to targetTableLog and rescales the stats.
|
||
|
* If tableLog > targetTableLog this is a no-op.
|
||
|
* @returns New tableLog
|
||
|
*/
|
||
|
static U32 HUF_rescaleStats(BYTE* huffWeight, U32* rankVal, U32 nbSymbols, U32 tableLog, U32 targetTableLog)
|
||
|
{
|
||
|
if (tableLog > targetTableLog)
|
||
|
return tableLog;
|
||
|
if (tableLog < targetTableLog) {
|
||
|
U32 const scale = targetTableLog - tableLog;
|
||
|
U32 s;
|
||
|
/* Increase the weight for all non-zero probability symbols by scale. */
|
||
|
for (s = 0; s < nbSymbols; ++s) {
|
||
|
huffWeight[s] += (BYTE)((huffWeight[s] == 0) ? 0 : scale);
|
||
|
}
|
||
|
/* Update rankVal to reflect the new weights.
|
||
|
* All weights except 0 get moved to weight + scale.
|
||
|
* Weights [1, scale] are empty.
|
||
|
*/
|
||
|
for (s = targetTableLog; s > scale; --s) {
|
||
|
rankVal[s] = rankVal[s - scale];
|
||
|
}
|
||
|
for (s = scale; s > 0; --s) {
|
||
|
rankVal[s] = 0;
|
||
|
}
|
||
|
}
|
||
|
return targetTableLog;
|
||
|
}
|
||
|
|
||
|
typedef struct {
|
||
|
U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1];
|
||
|
U32 rankStart[HUF_TABLELOG_ABSOLUTEMAX + 1];
|
||
|
U32 statsWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
|
||
|
BYTE symbols[HUF_SYMBOLVALUE_MAX + 1];
|
||
|
BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1];
|
||
|
} HUF_ReadDTableX1_Workspace;
|
||
|
|
||
|
size_t HUF_readDTableX1_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int flags)
|
||
|
{
|
||
|
U32 tableLog = 0;
|
||
|
U32 nbSymbols = 0;
|
||
|
size_t iSize;
|
||
|
void* const dtPtr = DTable + 1;
|
||
|
HUF_DEltX1* const dt = (HUF_DEltX1*)dtPtr;
|
||
|
HUF_ReadDTableX1_Workspace* wksp = (HUF_ReadDTableX1_Workspace*)workSpace;
|
||
|
|
||
|
DEBUG_STATIC_ASSERT(HUF_DECOMPRESS_WORKSPACE_SIZE >= sizeof(*wksp));
|
||
|
if (sizeof(*wksp) > wkspSize) return ERROR(tableLog_tooLarge);
|
||
|
|
||
|
DEBUG_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable));
|
||
|
/* ZSTD_memset(huffWeight, 0, sizeof(huffWeight)); */ /* is not necessary, even though some analyzer complain ... */
|
||
|
|
||
|
iSize = HUF_readStats_wksp(wksp->huffWeight, HUF_SYMBOLVALUE_MAX + 1, wksp->rankVal, &nbSymbols, &tableLog, src, srcSize, wksp->statsWksp, sizeof(wksp->statsWksp), flags);
|
||
|
if (HUF_isError(iSize)) return iSize;
|
||
|
|
||
|
|
||
|
/* Table header */
|
||
|
{ DTableDesc dtd = HUF_getDTableDesc(DTable);
|
||
|
U32 const maxTableLog = dtd.maxTableLog + 1;
|
||
|
U32 const targetTableLog = MIN(maxTableLog, HUF_DECODER_FAST_TABLELOG);
|
||
|
tableLog = HUF_rescaleStats(wksp->huffWeight, wksp->rankVal, nbSymbols, tableLog, targetTableLog);
|
||
|
if (tableLog > (U32)(dtd.maxTableLog+1)) return ERROR(tableLog_tooLarge); /* DTable too small, Huffman tree cannot fit in */
|
||
|
dtd.tableType = 0;
|
||
|
dtd.tableLog = (BYTE)tableLog;
|
||
|
ZSTD_memcpy(DTable, &dtd, sizeof(dtd));
|
||
|
}
|
||
|
|
||
|
/* Compute symbols and rankStart given rankVal:
|
||
|
*
|
||
|
* rankVal already contains the number of values of each weight.
|
||
|
*
|
||
|
* symbols contains the symbols ordered by weight. First are the rankVal[0]
|
||
|
* weight 0 symbols, followed by the rankVal[1] weight 1 symbols, and so on.
|
||
|
* symbols[0] is filled (but unused) to avoid a branch.
|
||
|
*
|
||
|
* rankStart contains the offset where each rank belongs in the DTable.
|
||
|
* rankStart[0] is not filled because there are no entries in the table for
|
||
|
* weight 0.
|
||
|
*/
|
||
|
{ int n;
|
||
|
U32 nextRankStart = 0;
|
||
|
int const unroll = 4;
|
||
|
int const nLimit = (int)nbSymbols - unroll + 1;
|
||
|
for (n=0; n<(int)tableLog+1; n++) {
|
||
|
U32 const curr = nextRankStart;
|
||
|
nextRankStart += wksp->rankVal[n];
|
||
|
wksp->rankStart[n] = curr;
|
||
|
}
|
||
|
for (n=0; n < nLimit; n += unroll) {
|
||
|
int u;
|
||
|
for (u=0; u < unroll; ++u) {
|
||
|
size_t const w = wksp->huffWeight[n+u];
|
||
|
wksp->symbols[wksp->rankStart[w]++] = (BYTE)(n+u);
|
||
|
}
|
||
|
}
|
||
|
for (; n < (int)nbSymbols; ++n) {
|
||
|
size_t const w = wksp->huffWeight[n];
|
||
|
wksp->symbols[wksp->rankStart[w]++] = (BYTE)n;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* fill DTable
|
||
|
* We fill all entries of each weight in order.
|
||
|
* That way length is a constant for each iteration of the outer loop.
|
||
|
* We can switch based on the length to a different inner loop which is
|
||
|
* optimized for that particular case.
|
||
|
*/
|
||
|
{ U32 w;
|
||
|
int symbol = wksp->rankVal[0];
|
||
|
int rankStart = 0;
|
||
|
for (w=1; w<tableLog+1; ++w) {
|
||
|
int const symbolCount = wksp->rankVal[w];
|
||
|
int const length = (1 << w) >> 1;
|
||
|
int uStart = rankStart;
|
||
|
BYTE const nbBits = (BYTE)(tableLog + 1 - w);
|
||
|
int s;
|
||
|
int u;
|
||
|
switch (length) {
|
||
|
case 1:
|
||
|
for (s=0; s<symbolCount; ++s) {
|
||
|
HUF_DEltX1 D;
|
||
|
D.byte = wksp->symbols[symbol + s];
|
||
|
D.nbBits = nbBits;
|
||
|
dt[uStart] = D;
|
||
|
uStart += 1;
|
||
|
}
|
||
|
break;
|
||
|
case 2:
|
||
|
for (s=0; s<symbolCount; ++s) {
|
||
|
HUF_DEltX1 D;
|
||
|
D.byte = wksp->symbols[symbol + s];
|
||
|
D.nbBits = nbBits;
|
||
|
dt[uStart+0] = D;
|
||
|
dt[uStart+1] = D;
|
||
|
uStart += 2;
|
||
|
}
|
||
|
break;
|
||
|
case 4:
|
||
|
for (s=0; s<symbolCount; ++s) {
|
||
|
U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
|
||
|
MEM_write64(dt + uStart, D4);
|
||
|
uStart += 4;
|
||
|
}
|
||
|
break;
|
||
|
case 8:
|
||
|
for (s=0; s<symbolCount; ++s) {
|
||
|
U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
|
||
|
MEM_write64(dt + uStart, D4);
|
||
|
MEM_write64(dt + uStart + 4, D4);
|
||
|
uStart += 8;
|
||
|
}
|
||
|
break;
|
||
|
default:
|
||
|
for (s=0; s<symbolCount; ++s) {
|
||
|
U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
|
||
|
for (u=0; u < length; u += 16) {
|
||
|
MEM_write64(dt + uStart + u + 0, D4);
|
||
|
MEM_write64(dt + uStart + u + 4, D4);
|
||
|
MEM_write64(dt + uStart + u + 8, D4);
|
||
|
MEM_write64(dt + uStart + u + 12, D4);
|
||
|
}
|
||
|
assert(u == length);
|
||
|
uStart += length;
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
symbol += symbolCount;
|
||
|
rankStart += symbolCount * length;
|
||
|
}
|
||
|
}
|
||
|
return iSize;
|
||
|
}
|
||
|
|
||
|
FORCE_INLINE_TEMPLATE BYTE
|
||
|
HUF_decodeSymbolX1(BIT_DStream_t* Dstream, const HUF_DEltX1* dt, const U32 dtLog)
|
||
|
{
|
||
|
size_t const val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
|
||
|
BYTE const c = dt[val].byte;
|
||
|
BIT_skipBits(Dstream, dt[val].nbBits);
|
||
|
return c;
|
||
|
}
|
||
|
|
||
|
#define HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) \
|
||
|
*ptr++ = HUF_decodeSymbolX1(DStreamPtr, dt, dtLog)
|
||
|
|
||
|
#define HUF_DECODE_SYMBOLX1_1(ptr, DStreamPtr) \
|
||
|
if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
|
||
|
HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr)
|
||
|
|
||
|
#define HUF_DECODE_SYMBOLX1_2(ptr, DStreamPtr) \
|
||
|
if (MEM_64bits()) \
|
||
|
HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr)
|
||
|
|
||
|
HINT_INLINE size_t
|
||
|
HUF_decodeStreamX1(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX1* const dt, const U32 dtLog)
|
||
|
{
|
||
|
BYTE* const pStart = p;
|
||
|
|
||
|
/* up to 4 symbols at a time */
|
||
|
if ((pEnd - p) > 3) {
|
||
|
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-3)) {
|
||
|
HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
|
||
|
HUF_DECODE_SYMBOLX1_1(p, bitDPtr);
|
||
|
HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
|
||
|
HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
|
||
|
}
|
||
|
} else {
|
||
|
BIT_reloadDStream(bitDPtr);
|
||
|
}
|
||
|
|
||
|
/* [0-3] symbols remaining */
|
||
|
if (MEM_32bits())
|
||
|
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd))
|
||
|
HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
|
||
|
|
||
|
/* no more data to retrieve from bitstream, no need to reload */
|
||
|
while (p < pEnd)
|
||
|
HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
|
||
|
|
||
|
return (size_t)(pEnd-pStart);
|
||
|
}
|
||
|
|
||
|
FORCE_INLINE_TEMPLATE size_t
|
||
|
HUF_decompress1X1_usingDTable_internal_body(
|
||
|
void* dst, size_t dstSize,
|
||
|
const void* cSrc, size_t cSrcSize,
|
||
|
const HUF_DTable* DTable)
|
||
|
{
|
||
|
BYTE* op = (BYTE*)dst;
|
||
|
BYTE* const oend = op + dstSize;
|
||
|
const void* dtPtr = DTable + 1;
|
||
|
const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;
|
||
|
BIT_DStream_t bitD;
|
||
|
DTableDesc const dtd = HUF_getDTableDesc(DTable);
|
||
|
U32 const dtLog = dtd.tableLog;
|
||
|
|
||
|
CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );
|
||
|
|
||
|
HUF_decodeStreamX1(op, &bitD, oend, dt, dtLog);
|
||
|
|
||
|
if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
|
||
|
|
||
|
return dstSize;
|
||
|
}
|
||
|
|
||
|
/* HUF_decompress4X1_usingDTable_internal_body():
|
||
|
* Conditions :
|
||
|
* @dstSize >= 6
|
||
|
*/
|
||
|
FORCE_INLINE_TEMPLATE size_t
|
||
|
HUF_decompress4X1_usingDTable_internal_body(
|
||
|
void* dst, size_t dstSize,
|
||
|
const void* cSrc, size_t cSrcSize,
|
||
|
const HUF_DTable* DTable)
|
||
|
{
|
||
|
/* Check */
|
||
|
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
|
||
|
|
||
|
{ const BYTE* const istart = (const BYTE*) cSrc;
|
||
|
BYTE* const ostart = (BYTE*) dst;
|
||
|
BYTE* const oend = ostart + dstSize;
|
||
|
BYTE* const olimit = oend - 3;
|
||
|
const void* const dtPtr = DTable + 1;
|
||
|
const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;
|
||
|
|
||
|
/* Init */
|
||
|
BIT_DStream_t bitD1;
|
||
|
BIT_DStream_t bitD2;
|
||
|
BIT_DStream_t bitD3;
|
||
|
BIT_DStream_t bitD4;
|
||
|
size_t const length1 = MEM_readLE16(istart);
|
||
|
size_t const length2 = MEM_readLE16(istart+2);
|
||
|
size_t const length3 = MEM_readLE16(istart+4);
|
||
|
size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
|
||
|
const BYTE* const istart1 = istart + 6; /* jumpTable */
|
||
|
const BYTE* const istart2 = istart1 + length1;
|
||
|
const BYTE* const istart3 = istart2 + length2;
|
||
|
const BYTE* const istart4 = istart3 + length3;
|
||
|
const size_t segmentSize = (dstSize+3) / 4;
|
||
|
BYTE* const opStart2 = ostart + segmentSize;
|
||
|
BYTE* const opStart3 = opStart2 + segmentSize;
|
||
|
BYTE* const opStart4 = opStart3 + segmentSize;
|
||
|
BYTE* op1 = ostart;
|
||
|
BYTE* op2 = opStart2;
|
||
|
BYTE* op3 = opStart3;
|
||
|
BYTE* op4 = opStart4;
|
||
|
DTableDesc const dtd = HUF_getDTableDesc(DTable);
|
||
|
U32 const dtLog = dtd.tableLog;
|
||
|
U32 endSignal = 1;
|
||
|
|
||
|
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
|
||
|
if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */
|
||
|
if (dstSize < 6) return ERROR(corruption_detected); /* stream 4-split doesn't work */
|
||
|
CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
|
||
|
CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
|
||
|
CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
|
||
|
CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );
|
||
|
|
||
|
/* up to 16 symbols per loop (4 symbols per stream) in 64-bit mode */
|
||
|
if ((size_t)(oend - op4) >= sizeof(size_t)) {
|
||
|
for ( ; (endSignal) & (op4 < olimit) ; ) {
|
||
|
HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
|
||
|
HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
|
||
|
HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
|
||
|
HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
|
||
|
HUF_DECODE_SYMBOLX1_1(op1, &bitD1);
|
||
|
HUF_DECODE_SYMBOLX1_1(op2, &bitD2);
|
||
|
HUF_DECODE_SYMBOLX1_1(op3, &bitD3);
|
||
|
HUF_DECODE_SYMBOLX1_1(op4, &bitD4);
|
||
|
HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
|
||
|
HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
|
||
|
HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
|
||
|
HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
|
||
|
HUF_DECODE_SYMBOLX1_0(op1, &bitD1);
|
||
|
HUF_DECODE_SYMBOLX1_0(op2, &bitD2);
|
||
|
HUF_DECODE_SYMBOLX1_0(op3, &bitD3);
|
||
|
HUF_DECODE_SYMBOLX1_0(op4, &bitD4);
|
||
|
endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished;
|
||
|
endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished;
|
||
|
endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished;
|
||
|
endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* check corruption */
|
||
|
/* note : should not be necessary : op# advance in lock step, and we control op4.
|
||
|
* but curiously, binary generated by gcc 7.2 & 7.3 with -mbmi2 runs faster when >=1 test is present */
|
||
|
if (op1 > opStart2) return ERROR(corruption_detected);
|
||
|
if (op2 > opStart3) return ERROR(corruption_detected);
|
||
|
if (op3 > opStart4) return ERROR(corruption_detected);
|
||
|
/* note : op4 supposed already verified within main loop */
|
||
|
|
||
|
/* finish bitStreams one by one */
|
||
|
HUF_decodeStreamX1(op1, &bitD1, opStart2, dt, dtLog);
|
||
|
HUF_decodeStreamX1(op2, &bitD2, opStart3, dt, dtLog);
|
||
|
HUF_decodeStreamX1(op3, &bitD3, opStart4, dt, dtLog);
|
||
|
HUF_decodeStreamX1(op4, &bitD4, oend, dt, dtLog);
|
||
|
|
||
|
/* check */
|
||
|
{ U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
|
||
|
if (!endCheck) return ERROR(corruption_detected); }
|
||
|
|
||
|
/* decoded size */
|
||
|
return dstSize;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#if HUF_NEED_BMI2_FUNCTION
|
||
|
static BMI2_TARGET_ATTRIBUTE
|
||
|
size_t HUF_decompress4X1_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc,
|
||
|
size_t cSrcSize, HUF_DTable const* DTable) {
|
||
|
return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static
|
||
|
size_t HUF_decompress4X1_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc,
|
||
|
size_t cSrcSize, HUF_DTable const* DTable) {
|
||
|
return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
|
||
|
}
|
||
|
|
||
|
#if ZSTD_ENABLE_ASM_X86_64_BMI2
|
||
|
|
||
|
HUF_ASM_DECL void HUF_decompress4X1_usingDTable_internal_fast_asm_loop(HUF_DecompressFastArgs* args) ZSTDLIB_HIDDEN;
|
||
|
|
||
|
#endif
|
||
|
|
||
|
static HUF_FAST_BMI2_ATTRS
|
||
|
void HUF_decompress4X1_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs* args)
|
||
|
{
|
||
|
U64 bits[4];
|
||
|
BYTE const* ip[4];
|
||
|
BYTE* op[4];
|
||
|
U16 const* const dtable = (U16 const*)args->dt;
|
||
|
BYTE* const oend = args->oend;
|
||
|
BYTE const* const ilimit = args->ilimit;
|
||
|
|
||
|
/* Copy the arguments to local variables */
|
||
|
ZSTD_memcpy(&bits, &args->bits, sizeof(bits));
|
||
|
ZSTD_memcpy((void*)(&ip), &args->ip, sizeof(ip));
|
||
|
ZSTD_memcpy(&op, &args->op, sizeof(op));
|
||
|
|
||
|
assert(MEM_isLittleEndian());
|
||
|
assert(!MEM_32bits());
|
||
|
|
||
|
for (;;) {
|
||
|
BYTE* olimit;
|
||
|
int stream;
|
||
|
int symbol;
|
||
|
|
||
|
/* Assert loop preconditions */
|
||
|
#ifndef NDEBUG
|
||
|
for (stream = 0; stream < 4; ++stream) {
|
||
|
assert(op[stream] <= (stream == 3 ? oend : op[stream + 1]));
|
||
|
assert(ip[stream] >= ilimit);
|
||
|
}
|
||
|
#endif
|
||
|
/* Compute olimit */
|
||
|
{
|
||
|
/* Each iteration produces 5 output symbols per stream */
|
||
|
size_t const oiters = (size_t)(oend - op[3]) / 5;
|
||
|
/* Each iteration consumes up to 11 bits * 5 = 55 bits < 7 bytes
|
||
|
* per stream.
|
||
|
*/
|
||
|
size_t const iiters = (size_t)(ip[0] - ilimit) / 7;
|
||
|
/* We can safely run iters iterations before running bounds checks */
|
||
|
size_t const iters = MIN(oiters, iiters);
|
||
|
size_t const symbols = iters * 5;
|
||
|
|
||
|
/* We can simply check that op[3] < olimit, instead of checking all
|
||
|
* of our bounds, since we can't hit the other bounds until we've run
|
||
|
* iters iterations, which only happens when op[3] == olimit.
|
||
|
*/
|
||
|
olimit = op[3] + symbols;
|
||
|
|
||
|
/* Exit fast decoding loop once we get close to the end. */
|
||
|
if (op[3] + 20 > olimit)
|
||
|
break;
|
||
|
|
||
|
/* Exit the decoding loop if any input pointer has crossed the
|
||
|
* previous one. This indicates corruption, and a precondition
|
||
|
* to our loop is that ip[i] >= ip[0].
|
||
|
*/
|
||
|
for (stream = 1; stream < 4; ++stream) {
|
||
|
if (ip[stream] < ip[stream - 1])
|
||
|
goto _out;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
for (stream = 1; stream < 4; ++stream) {
|
||
|
assert(ip[stream] >= ip[stream - 1]);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
do {
|
||
|
/* Decode 5 symbols in each of the 4 streams */
|
||
|
for (symbol = 0; symbol < 5; ++symbol) {
|
||
|
for (stream = 0; stream < 4; ++stream) {
|
||
|
int const index = (int)(bits[stream] >> 53);
|
||
|
int const entry = (int)dtable[index];
|
||
|
bits[stream] <<= (entry & 63);
|
||
|
op[stream][symbol] = (BYTE)((entry >> 8) & 0xFF);
|
||
|
}
|
||
|
}
|
||
|
/* Reload the bitstreams */
|
||
|
for (stream = 0; stream < 4; ++stream) {
|
||
|
int const ctz = ZSTD_countTrailingZeros64(bits[stream]);
|
||
|
int const nbBits = ctz & 7;
|
||
|
int const nbBytes = ctz >> 3;
|
||
|
op[stream] += 5;
|
||
|
ip[stream] -= nbBytes;
|
||
|
bits[stream] = MEM_read64(ip[stream]) | 1;
|
||
|
bits[stream] <<= nbBits;
|
||
|
}
|
||
|
} while (op[3] < olimit);
|
||
|
}
|
||
|
|
||
|
_out:
|
||
|
|
||
|
/* Save the final values of each of the state variables back to args. */
|
||
|
ZSTD_memcpy(&args->bits, &bits, sizeof(bits));
|
||
|
ZSTD_memcpy((void*)(&args->ip), &ip, sizeof(ip));
|
||
|
ZSTD_memcpy(&args->op, &op, sizeof(op));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @returns @p dstSize on success (>= 6)
|
||
|
* 0 if the fallback implementation should be used
|
||
|
* An error if an error occurred
|
||
|
*/
|
||
|
static HUF_FAST_BMI2_ATTRS
|
||
|
size_t
|
||
|
HUF_decompress4X1_usingDTable_internal_fast(
|
||
|
void* dst, size_t dstSize,
|
||
|
const void* cSrc, size_t cSrcSize,
|
||
|
const HUF_DTable* DTable,
|
||
|
HUF_DecompressFastLoopFn loopFn)
|
||
|
{
|
||
|
void const* dt = DTable + 1;
|
||
|
const BYTE* const iend = (const BYTE*)cSrc + 6;
|
||
|
BYTE* const oend = (BYTE*)dst + dstSize;
|
||
|
HUF_DecompressFastArgs args;
|
||
|
{ size_t const ret = HUF_DecompressFastArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable);
|
||
|
FORWARD_IF_ERROR(ret, "Failed to init fast loop args");
|
||
|
if (ret == 0)
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
assert(args.ip[0] >= args.ilimit);
|
||
|
loopFn(&args);
|
||
|
|
||
|
/* Our loop guarantees that ip[] >= ilimit and that we haven't
|
||
|
* overwritten any op[].
|
||
|
*/
|
||
|
assert(args.ip[0] >= iend);
|
||
|
assert(args.ip[1] >= iend);
|
||
|
assert(args.ip[2] >= iend);
|
||
|
assert(args.ip[3] >= iend);
|
||
|
assert(args.op[3] <= oend);
|
||
|
(void)iend;
|
||
|
|
||
|
/* finish bit streams one by one. */
|
||
|
{ size_t const segmentSize = (dstSize+3) / 4;
|
||
|
BYTE* segmentEnd = (BYTE*)dst;
|
||
|
int i;
|
||
|
for (i = 0; i < 4; ++i) {
|
||
|
BIT_DStream_t bit;
|
||
|
if (segmentSize <= (size_t)(oend - segmentEnd))
|
||
|
segmentEnd += segmentSize;
|
||
|
else
|
||
|
segmentEnd = oend;
|
||
|
FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption");
|
||
|
/* Decompress and validate that we've produced exactly the expected length. */
|
||
|
args.op[i] += HUF_decodeStreamX1(args.op[i], &bit, segmentEnd, (HUF_DEltX1 const*)dt, HUF_DECODER_FAST_TABLELOG);
|
||
|
if (args.op[i] != segmentEnd) return ERROR(corruption_detected);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* decoded size */
|
||
|
assert(dstSize != 0);
|
||
|
return dstSize;
|
||
|
}
|
||
|
|
||
|
HUF_DGEN(HUF_decompress1X1_usingDTable_internal)
|
||
|
|
||
|
static size_t HUF_decompress4X1_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc,
|
||
|
size_t cSrcSize, HUF_DTable const* DTable, int flags)
|
||
|
{
|
||
|
HUF_DecompressUsingDTableFn fallbackFn = HUF_decompress4X1_usingDTable_internal_default;
|
||
|
HUF_DecompressFastLoopFn loopFn = HUF_decompress4X1_usingDTable_internal_fast_c_loop;
|
||
|
|
||
|
#if DYNAMIC_BMI2
|
||
|
if (flags & HUF_flags_bmi2) {
|
||
|
fallbackFn = HUF_decompress4X1_usingDTable_internal_bmi2;
|
||
|
# if ZSTD_ENABLE_ASM_X86_64_BMI2
|
||
|
if (!(flags & HUF_flags_disableAsm)) {
|
||
|
loopFn = HUF_decompress4X1_usingDTable_internal_fast_asm_loop;
|
||
|
}
|
||
|
# endif
|
||
|
} else {
|
||
|
return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__)
|
||
|
if (!(flags & HUF_flags_disableAsm)) {
|
||
|
loopFn = HUF_decompress4X1_usingDTable_internal_fast_asm_loop;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
if (!(flags & HUF_flags_disableFast)) {
|
||
|
size_t const ret = HUF_decompress4X1_usingDTable_internal_fast(dst, dstSize, cSrc, cSrcSize, DTable, loopFn);
|
||
|
if (ret != 0)
|
||
|
return ret;
|
||
|
}
|
||
|
return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable);
|
||
|
}
|
||
|
|
||
|
static size_t HUF_decompress4X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
|
||
|
const void* cSrc, size_t cSrcSize,
|
||
|
void* workSpace, size_t wkspSize, int flags)
|
||
|
{
|
||
|
const BYTE* ip = (const BYTE*) cSrc;
|
||
|
|
||
|
size_t const hSize = HUF_readDTableX1_wksp(dctx, cSrc, cSrcSize, workSpace, wkspSize, flags);
|
||
|
if (HUF_isError(hSize)) return hSize;
|
||
|
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
|
||
|
ip += hSize; cSrcSize -= hSize;
|
||
|
|
||
|
return HUF_decompress4X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags);
|
||
|
}
|
||
|
|
||
|
#endif /* HUF_FORCE_DECOMPRESS_X2 */
|
||
|
|
||
|
|
||
|
#ifndef HUF_FORCE_DECOMPRESS_X1
|
||
|
|
||
|
/* *************************/
|
||
|
/* double-symbols decoding */
|
||
|
/* *************************/
|
||
|
|
||
|
typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX2; /* double-symbols decoding */
|
||
|
typedef struct { BYTE symbol; } sortedSymbol_t;
|
||
|
typedef U32 rankValCol_t[HUF_TABLELOG_MAX + 1];
|
||
|
typedef rankValCol_t rankVal_t[HUF_TABLELOG_MAX];
|
||
|
|
||
|
/**
|
||
|
* Constructs a HUF_DEltX2 in a U32.
|
||
|
*/
|
||
|
static U32 HUF_buildDEltX2U32(U32 symbol, U32 nbBits, U32 baseSeq, int level)
|
||
|
{
|
||
|
U32 seq;
|
||
|
DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, sequence) == 0);
|
||
|
DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, nbBits) == 2);
|
||
|
DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, length) == 3);
|
||
|
DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U32));
|
||
|
if (MEM_isLittleEndian()) {
|
||
|
seq = level == 1 ? symbol : (baseSeq + (symbol << 8));
|
||
|
return seq + (nbBits << 16) + ((U32)level << 24);
|
||
|
} else {
|
||
|
seq = level == 1 ? (symbol << 8) : ((baseSeq << 8) + symbol);
|
||
|
return (seq << 16) + (nbBits << 8) + (U32)level;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Constructs a HUF_DEltX2.
|
||
|
*/
|
||
|
static HUF_DEltX2 HUF_buildDEltX2(U32 symbol, U32 nbBits, U32 baseSeq, int level)
|
||
|
{
|
||
|
HUF_DEltX2 DElt;
|
||
|
U32 const val = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level);
|
||
|
DEBUG_STATIC_ASSERT(sizeof(DElt) == sizeof(val));
|
||
|
ZSTD_memcpy(&DElt, &val, sizeof(val));
|
||
|
return DElt;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Constructs 2 HUF_DEltX2s and packs them into a U64.
|
||
|
*/
|
||
|
static U64 HUF_buildDEltX2U64(U32 symbol, U32 nbBits, U16 baseSeq, int level)
|
||
|
{
|
||
|
U32 DElt = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level);
|
||
|
return (U64)DElt + ((U64)DElt << 32);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Fills the DTable rank with all the symbols from [begin, end) that are each
|
||
|
* nbBits long.
|
||
|
*
|
||
|
* @param DTableRank The start of the rank in the DTable.
|
||
|
* @param begin The first symbol to fill (inclusive).
|
||
|
* @param end The last symbol to fill (exclusive).
|
||
|
* @param nbBits Each symbol is nbBits long.
|
||
|
* @param tableLog The table log.
|
||
|
* @param baseSeq If level == 1 { 0 } else { the first level symbol }
|
||
|
* @param level The level in the table. Must be 1 or 2.
|
||
|
*/
|
||
|
static void HUF_fillDTableX2ForWeight(
|
||
|
HUF_DEltX2* DTableRank,
|
||
|
sortedSymbol_t const* begin, sortedSymbol_t const* end,
|
||
|
U32 nbBits, U32 tableLog,
|
||
|
U16 baseSeq, int const level)
|
||
|
{
|
||
|
U32 const length = 1U << ((tableLog - nbBits) & 0x1F /* quiet static-analyzer */);
|
||
|
const sortedSymbol_t* ptr;
|
||
|
assert(level >= 1 && level <= 2);
|
||
|
switch (length) {
|
||
|
case 1:
|
||
|
for (ptr = begin; ptr != end; ++ptr) {
|
||
|
HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level);
|
||
|
*DTableRank++ = DElt;
|
||
|
}
|
||
|
break;
|
||
|
case 2:
|
||
|
for (ptr = begin; ptr != end; ++ptr) {
|
||
|
HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level);
|
||
|
DTableRank[0] = DElt;
|
||
|
DTableRank[1] = DElt;
|
||
|
DTableRank += 2;
|
||
|
}
|
||
|
break;
|
||
|
case 4:
|
||
|
for (ptr = begin; ptr != end; ++ptr) {
|
||
|
U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
|
||
|
ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
|
||
|
ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
|
||
|
DTableRank += 4;
|
||
|
}
|
||
|
break;
|
||
|
case 8:
|
||
|
for (ptr = begin; ptr != end; ++ptr) {
|
||
|
U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
|
||
|
ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
|
||
|
ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
|
||
|
ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2));
|
||
|
ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2));
|
||
|
DTableRank += 8;
|
||
|
}
|
||
|
break;
|
||
|
default:
|
||
|
for (ptr = begin; ptr != end; ++ptr) {
|
||
|
U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
|
||
|
HUF_DEltX2* const DTableRankEnd = DTableRank + length;
|
||
|
for (; DTableRank != DTableRankEnd; DTableRank += 8) {
|
||
|
ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
|
||
|
ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
|
||
|
ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2));
|
||
|
ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2));
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* HUF_fillDTableX2Level2() :
|
||
|
* `rankValOrigin` must be a table of at least (HUF_TABLELOG_MAX + 1) U32 */
|
||
|
static void HUF_fillDTableX2Level2(HUF_DEltX2* DTable, U32 targetLog, const U32 consumedBits,
|
||
|
const U32* rankVal, const int minWeight, const int maxWeight1,
|
||
|
const sortedSymbol_t* sortedSymbols, U32 const* rankStart,
|
||
|
U32 nbBitsBaseline, U16 baseSeq)
|
||
|
{
|
||
|
/* Fill skipped values (all positions up to rankVal[minWeight]).
|
||
|
* These are positions only get a single symbol because the combined weight
|
||
|
* is too large.
|
||
|
*/
|
||
|
if (minWeight>1) {
|
||
|
U32 const length = 1U << ((targetLog - consumedBits) & 0x1F /* quiet static-analyzer */);
|
||
|
U64 const DEltX2 = HUF_buildDEltX2U64(baseSeq, consumedBits, /* baseSeq */ 0, /* level */ 1);
|
||
|
int const skipSize = rankVal[minWeight];
|
||
|
assert(length > 1);
|
||
|
assert((U32)skipSize < length);
|
||
|
switch (length) {
|
||
|
case 2:
|
||
|
assert(skipSize == 1);
|
||
|
ZSTD_memcpy(DTable, &DEltX2, sizeof(DEltX2));
|
||
|
break;
|
||
|
case 4:
|
||
|
assert(skipSize <= 4);
|
||
|
ZSTD_memcpy(DTable + 0, &DEltX2, sizeof(DEltX2));
|
||
|
ZSTD_memcpy(DTable + 2, &DEltX2, sizeof(DEltX2));
|
||
|
break;
|
||
|
default:
|
||
|
{
|
||
|
int i;
|
||
|
for (i = 0; i < skipSize; i += 8) {
|
||
|
ZSTD_memcpy(DTable + i + 0, &DEltX2, sizeof(DEltX2));
|
||
|
ZSTD_memcpy(DTable + i + 2, &DEltX2, sizeof(DEltX2));
|
||
|
ZSTD_memcpy(DTable + i + 4, &DEltX2, sizeof(DEltX2));
|
||
|
ZSTD_memcpy(DTable + i + 6, &DEltX2, sizeof(DEltX2));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Fill each of the second level symbols by weight. */
|
||
|
{
|
||
|
int w;
|
||
|
for (w = minWeight; w < maxWeight1; ++w) {
|
||
|
int const begin = rankStart[w];
|
||
|
int const end = rankStart[w+1];
|
||
|
U32 const nbBits = nbBitsBaseline - w;
|
||
|
U32 const totalBits = nbBits + consumedBits;
|
||
|
HUF_fillDTableX2ForWeight(
|
||
|
DTable + rankVal[w],
|
||
|
sortedSymbols + begin, sortedSymbols + end,
|
||
|
totalBits, targetLog,
|
||
|
baseSeq, /* level */ 2);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void HUF_fillDTableX2(HUF_DEltX2* DTable, const U32 targetLog,
|
||
|
const sortedSymbol_t* sortedList,
|
||
|
const U32* rankStart, rankValCol_t* rankValOrigin, const U32 maxWeight,
|
||
|
const U32 nbBitsBaseline)
|
||
|
{
|
||
|
U32* const rankVal = rankValOrigin[0];
|
||
|
const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */
|
||
|
const U32 minBits = nbBitsBaseline - maxWeight;
|
||
|
int w;
|
||
|
int const wEnd = (int)maxWeight + 1;
|
||
|
|
||
|
/* Fill DTable in order of weight. */
|
||
|
for (w = 1; w < wEnd; ++w) {
|
||
|
int const begin = (int)rankStart[w];
|
||
|
int const end = (int)rankStart[w+1];
|
||
|
U32 const nbBits = nbBitsBaseline - w;
|
||
|
|
||
|
if (targetLog-nbBits >= minBits) {
|
||
|
/* Enough room for a second symbol. */
|
||
|
int start = rankVal[w];
|
||
|
U32 const length = 1U << ((targetLog - nbBits) & 0x1F /* quiet static-analyzer */);
|
||
|
int minWeight = nbBits + scaleLog;
|
||
|
int s;
|
||
|
if (minWeight < 1) minWeight = 1;
|
||
|
/* Fill the DTable for every symbol of weight w.
|
||
|
* These symbols get at least 1 second symbol.
|
||
|
*/
|
||
|
for (s = begin; s != end; ++s) {
|
||
|
HUF_fillDTableX2Level2(
|
||
|
DTable + start, targetLog, nbBits,
|
||
|
rankValOrigin[nbBits], minWeight, wEnd,
|
||
|
sortedList, rankStart,
|
||
|
nbBitsBaseline, sortedList[s].symbol);
|
||
|
start += length;
|
||
|
}
|
||
|
} else {
|
||
|
/* Only a single symbol. */
|
||
|
HUF_fillDTableX2ForWeight(
|
||
|
DTable + rankVal[w],
|
||
|
sortedList + begin, sortedList + end,
|
||
|
nbBits, targetLog,
|
||
|
/* baseSeq */ 0, /* level */ 1);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
typedef struct {
|
||
|
rankValCol_t rankVal[HUF_TABLELOG_MAX];
|
||
|
U32 rankStats[HUF_TABLELOG_MAX + 1];
|
||
|
U32 rankStart0[HUF_TABLELOG_MAX + 3];
|
||
|
sortedSymbol_t sortedSymbol[HUF_SYMBOLVALUE_MAX + 1];
|
||
|
BYTE weightList[HUF_SYMBOLVALUE_MAX + 1];
|
||
|
U32 calleeWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
|
||
|
} HUF_ReadDTableX2_Workspace;
|
||
|
|
||
|
size_t HUF_readDTableX2_wksp(HUF_DTable* DTable,
|
||
|
const void* src, size_t srcSize,
|
||
|
void* workSpace, size_t wkspSize, int flags)
|
||
|
{
|
||
|
U32 tableLog, maxW, nbSymbols;
|
||
|
DTableDesc dtd = HUF_getDTableDesc(DTable);
|
||
|
U32 maxTableLog = dtd.maxTableLog;
|
||
|
size_t iSize;
|
||
|
void* dtPtr = DTable+1; /* force compiler to avoid strict-aliasing */
|
||
|
HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr;
|
||
|
U32 *rankStart;
|
||
|
|
||
|
HUF_ReadDTableX2_Workspace* const wksp = (HUF_ReadDTableX2_Workspace*)workSpace;
|
||
|
|
||
|
if (sizeof(*wksp) > wkspSize) return ERROR(GENERIC);
|
||
|
|
||
|
rankStart = wksp->rankStart0 + 1;
|
||
|
ZSTD_memset(wksp->rankStats, 0, sizeof(wksp->rankStats));
|
||
|
ZSTD_memset(wksp->rankStart0, 0, sizeof(wksp->rankStart0));
|
||
|
|
||
|
DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(HUF_DTable)); /* if compiler fails here, assertion is wrong */
|
||
|
if (maxTableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
|
||
|
/* ZSTD_memset(weightList, 0, sizeof(weightList)); */ /* is not necessary, even though some analyzer complain ... */
|
||
|
|
||
|
iSize = HUF_readStats_wksp(wksp->weightList, HUF_SYMBOLVALUE_MAX + 1, wksp->rankStats, &nbSymbols, &tableLog, src, srcSize, wksp->calleeWksp, sizeof(wksp->calleeWksp), flags);
|
||
|
if (HUF_isError(iSize)) return iSize;
|
||
|
|
||
|
/* check result */
|
||
|
if (tableLog > maxTableLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */
|
||
|
if (tableLog <= HUF_DECODER_FAST_TABLELOG && maxTableLog > HUF_DECODER_FAST_TABLELOG) maxTableLog = HUF_DECODER_FAST_TABLELOG;
|
||
|
|
||
|
/* find maxWeight */
|
||
|
for (maxW = tableLog; wksp->rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */
|
||
|
|
||
|
/* Get start index of each weight */
|
||
|
{ U32 w, nextRankStart = 0;
|
||
|
for (w=1; w<maxW+1; w++) {
|
||
|
U32 curr = nextRankStart;
|
||
|
nextRankStart += wksp->rankStats[w];
|
||
|
rankStart[w] = curr;
|
||
|
}
|
||
|
rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/
|
||
|
rankStart[maxW+1] = nextRankStart;
|
||
|
}
|
||
|
|
||
|
/* sort symbols by weight */
|
||
|
{ U32 s;
|
||
|
for (s=0; s<nbSymbols; s++) {
|
||
|
U32 const w = wksp->weightList[s];
|
||
|
U32 const r = rankStart[w]++;
|
||
|
wksp->sortedSymbol[r].symbol = (BYTE)s;
|
||
|
}
|
||
|
rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */
|
||
|
}
|
||
|
|
||
|
/* Build rankVal */
|
||
|
{ U32* const rankVal0 = wksp->rankVal[0];
|
||
|
{ int const rescale = (maxTableLog-tableLog) - 1; /* tableLog <= maxTableLog */
|
||
|
U32 nextRankVal = 0;
|
||
|
U32 w;
|
||
|
for (w=1; w<maxW+1; w++) {
|
||
|
U32 curr = nextRankVal;
|
||
|
nextRankVal += wksp->rankStats[w] << (w+rescale);
|
||
|
rankVal0[w] = curr;
|
||
|
} }
|
||
|
{ U32 const minBits = tableLog+1 - maxW;
|
||
|
U32 consumed;
|
||
|
for (consumed = minBits; consumed < maxTableLog - minBits + 1; consumed++) {
|
||
|
U32* const rankValPtr = wksp->rankVal[consumed];
|
||
|
U32 w;
|
||
|
for (w = 1; w < maxW+1; w++) {
|
||
|
rankValPtr[w] = rankVal0[w] >> consumed;
|
||
|
} } } }
|
||
|
|
||
|
HUF_fillDTableX2(dt, maxTableLog,
|
||
|
wksp->sortedSymbol,
|
||
|
wksp->rankStart0, wksp->rankVal, maxW,
|
||
|
tableLog+1);
|
||
|
|
||
|
dtd.tableLog = (BYTE)maxTableLog;
|
||
|
dtd.tableType = 1;
|
||
|
ZSTD_memcpy(DTable, &dtd, sizeof(dtd));
|
||
|
return iSize;
|
||
|
}
|
||
|
|
||
|
|
||
|
FORCE_INLINE_TEMPLATE U32
|
||
|
HUF_decodeSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog)
|
||
|
{
|
||
|
size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
|
||
|
ZSTD_memcpy(op, &dt[val].sequence, 2);
|
||
|
BIT_skipBits(DStream, dt[val].nbBits);
|
||
|
return dt[val].length;
|
||
|
}
|
||
|
|
||
|
FORCE_INLINE_TEMPLATE U32
|
||
|
HUF_decodeLastSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog)
|
||
|
{
|
||
|
size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
|
||
|
ZSTD_memcpy(op, &dt[val].sequence, 1);
|
||
|
if (dt[val].length==1) {
|
||
|
BIT_skipBits(DStream, dt[val].nbBits);
|
||
|
} else {
|
||
|
if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) {
|
||
|
BIT_skipBits(DStream, dt[val].nbBits);
|
||
|
if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
|
||
|
/* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
|
||
|
DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8);
|
||
|
}
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
#define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
|
||
|
ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
|
||
|
|
||
|
#define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
|
||
|
if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
|
||
|
ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
|
||
|
|
||
|
#define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
|
||
|
if (MEM_64bits()) \
|
||
|
ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
|
||
|
|
||
|
HINT_INLINE size_t
|
||
|
HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd,
|
||
|
const HUF_DEltX2* const dt, const U32 dtLog)
|
||
|
{
|
||
|
BYTE* const pStart = p;
|
||
|
|
||
|
/* up to 8 symbols at a time */
|
||
|
if ((size_t)(pEnd - p) >= sizeof(bitDPtr->bitContainer)) {
|
||
|
if (dtLog <= 11 && MEM_64bits()) {
|
||
|
/* up to 10 symbols at a time */
|
||
|
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-9)) {
|
||
|
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
|
||
|
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
|
||
|
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
|
||
|
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
|
||
|
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
|
||
|
}
|
||
|
} else {
|
||
|
/* up to 8 symbols at a time */
|
||
|
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-(sizeof(bitDPtr->bitContainer)-1))) {
|
||
|
HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
|
||
|
HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
|
||
|
HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
|
||
|
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
BIT_reloadDStream(bitDPtr);
|
||
|
}
|
||
|
|
||
|
/* closer to end : up to 2 symbols at a time */
|
||
|
if ((size_t)(pEnd - p) >= 2) {
|
||
|
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p <= pEnd-2))
|
||
|
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
|
||
|
|
||
|
while (p <= pEnd-2)
|
||
|
HUF_DECODE_SYMBOLX2_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
|
||
|
}
|
||
|
|
||
|
if (p < pEnd)
|
||
|
p += HUF_decodeLastSymbolX2(p, bitDPtr, dt, dtLog);
|
||
|
|
||
|
return p-pStart;
|
||
|
}
|
||
|
|
||
|
FORCE_INLINE_TEMPLATE size_t
|
||
|
HUF_decompress1X2_usingDTable_internal_body(
|
||
|
void* dst, size_t dstSize,
|
||
|
const void* cSrc, size_t cSrcSize,
|
||
|
const HUF_DTable* DTable)
|
||
|
{
|
||
|
BIT_DStream_t bitD;
|
||
|
|
||
|
/* Init */
|
||
|
CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );
|
||
|
|
||
|
/* decode */
|
||
|
{ BYTE* const ostart = (BYTE*) dst;
|
||
|
BYTE* const oend = ostart + dstSize;
|
||
|
const void* const dtPtr = DTable+1; /* force compiler to not use strict-aliasing */
|
||
|
const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
|
||
|
DTableDesc const dtd = HUF_getDTableDesc(DTable);
|
||
|
HUF_decodeStreamX2(ostart, &bitD, oend, dt, dtd.tableLog);
|
||
|
}
|
||
|
|
||
|
/* check */
|
||
|
if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
|
||
|
|
||
|
/* decoded size */
|
||
|
return dstSize;
|
||
|
}
|
||
|
|
||
|
/* HUF_decompress4X2_usingDTable_internal_body():
|
||
|
* Conditions:
|
||
|
* @dstSize >= 6
|
||
|
*/
|
||
|
FORCE_INLINE_TEMPLATE size_t
|
||
|
HUF_decompress4X2_usingDTable_internal_body(
|
||
|
void* dst, size_t dstSize,
|
||
|
const void* cSrc, size_t cSrcSize,
|
||
|
const HUF_DTable* DTable)
|
||
|
{
|
||
|
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
|
||
|
|
||
|
{ const BYTE* const istart = (const BYTE*) cSrc;
|
||
|
BYTE* const ostart = (BYTE*) dst;
|
||
|
BYTE* const oend = ostart + dstSize;
|
||
|
BYTE* const olimit = oend - (sizeof(size_t)-1);
|
||
|
const void* const dtPtr = DTable+1;
|
||
|
const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
|
||
|
|
||
|
/* Init */
|
||
|
BIT_DStream_t bitD1;
|
||
|
BIT_DStream_t bitD2;
|
||
|
BIT_DStream_t bitD3;
|
||
|
BIT_DStream_t bitD4;
|
||
|
size_t const length1 = MEM_readLE16(istart);
|
||
|
size_t const length2 = MEM_readLE16(istart+2);
|
||
|
size_t const length3 = MEM_readLE16(istart+4);
|
||
|
size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
|
||
|
const BYTE* const istart1 = istart + 6; /* jumpTable */
|
||
|
const BYTE* const istart2 = istart1 + length1;
|
||
|
const BYTE* const istart3 = istart2 + length2;
|
||
|
const BYTE* const istart4 = istart3 + length3;
|
||
|
size_t const segmentSize = (dstSize+3) / 4;
|
||
|
BYTE* const opStart2 = ostart + segmentSize;
|
||
|
BYTE* const opStart3 = opStart2 + segmentSize;
|
||
|
BYTE* const opStart4 = opStart3 + segmentSize;
|
||
|
BYTE* op1 = ostart;
|
||
|
BYTE* op2 = opStart2;
|
||
|
BYTE* op3 = opStart3;
|
||
|
BYTE* op4 = opStart4;
|
||
|
U32 endSignal = 1;
|
||
|
DTableDesc const dtd = HUF_getDTableDesc(DTable);
|
||
|
U32 const dtLog = dtd.tableLog;
|
||
|
|
||
|
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
|
||
|
if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */
|
||
|
if (dstSize < 6) return ERROR(corruption_detected); /* stream 4-split doesn't work */
|
||
|
CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
|
||
|
CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
|
||
|
CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
|
||
|
CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );
|
||
|
|
||
|
/* 16-32 symbols per loop (4-8 symbols per stream) */
|
||
|
if ((size_t)(oend - op4) >= sizeof(size_t)) {
|
||
|
for ( ; (endSignal) & (op4 < olimit); ) {
|
||
|
#if defined(__clang__) && (defined(__x86_64__) || defined(__i386__))
|
||
|
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
|
||
|
HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
|
||
|
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
|
||
|
HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
|
||
|
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
|
||
|
HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
|
||
|
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
|
||
|
HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
|
||
|
endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished;
|
||
|
endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished;
|
||
|
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
|
||
|
HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
|
||
|
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
|
||
|
HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
|
||
|
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
|
||
|
HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
|
||
|
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
|
||
|
HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
|
||
|
endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished;
|
||
|
endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished;
|
||
|
#else
|
||
|
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
|
||
|
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
|
||
|
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
|
||
|
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
|
||
|
HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
|
||
|
HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
|
||
|
HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
|
||
|
HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
|
||
|
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
|
||
|
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
|
||
|
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
|
||
|
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
|
||
|
HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
|
||
|
HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
|
||
|
HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
|
||
|
HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
|
||
|
endSignal = (U32)LIKELY((U32)
|
||
|
(BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished)
|
||
|
& (BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished)
|
||
|
& (BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished)
|
||
|
& (BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished));
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* check corruption */
|
||
|
if (op1 > opStart2) return ERROR(corruption_detected);
|
||
|
if (op2 > opStart3) return ERROR(corruption_detected);
|
||
|
if (op3 > opStart4) return ERROR(corruption_detected);
|
||
|
/* note : op4 already verified within main loop */
|
||
|
|
||
|
/* finish bitStreams one by one */
|
||
|
HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
|
||
|
HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
|
||
|
HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
|
||
|
HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog);
|
||
|
|
||
|
/* check */
|
||
|
{ U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
|
||
|
if (!endCheck) return ERROR(corruption_detected); }
|
||
|
|
||
|
/* decoded size */
|
||
|
return dstSize;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#if HUF_NEED_BMI2_FUNCTION
|
||
|
static BMI2_TARGET_ATTRIBUTE
|
||
|
size_t HUF_decompress4X2_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc,
|
||
|
size_t cSrcSize, HUF_DTable const* DTable) {
|
||
|
return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static
|
||
|
size_t HUF_decompress4X2_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc,
|
||
|
size_t cSrcSize, HUF_DTable const* DTable) {
|
||
|
return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
|
||
|
}
|
||
|
|
||
|
#if ZSTD_ENABLE_ASM_X86_64_BMI2
|
||
|
|
||
|
HUF_ASM_DECL void HUF_decompress4X2_usingDTable_internal_fast_asm_loop(HUF_DecompressFastArgs* args) ZSTDLIB_HIDDEN;
|
||
|
|
||
|
#endif
|
||
|
|
||
|
static HUF_FAST_BMI2_ATTRS
|
||
|
void HUF_decompress4X2_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs* args)
|
||
|
{
|
||
|
U64 bits[4];
|
||
|
BYTE const* ip[4];
|
||
|
BYTE* op[4];
|
||
|
BYTE* oend[4];
|
||
|
HUF_DEltX2 const* const dtable = (HUF_DEltX2 const*)args->dt;
|
||
|
BYTE const* const ilimit = args->ilimit;
|
||
|
|
||
|
/* Copy the arguments to local registers. */
|
||
|
ZSTD_memcpy(&bits, &args->bits, sizeof(bits));
|
||
|
ZSTD_memcpy((void*)(&ip), &args->ip, sizeof(ip));
|
||
|
ZSTD_memcpy(&op, &args->op, sizeof(op));
|
||
|
|
||
|
oend[0] = op[1];
|
||
|
oend[1] = op[2];
|
||
|
oend[2] = op[3];
|
||
|
oend[3] = args->oend;
|
||
|
|
||
|
assert(MEM_isLittleEndian());
|
||
|
assert(!MEM_32bits());
|
||
|
|
||
|
for (;;) {
|
||
|
BYTE* olimit;
|
||
|
int stream;
|
||
|
int symbol;
|
||
|
|
||
|
/* Assert loop preconditions */
|
||
|
#ifndef NDEBUG
|
||
|
for (stream = 0; stream < 4; ++stream) {
|
||
|
assert(op[stream] <= oend[stream]);
|
||
|
assert(ip[stream] >= ilimit);
|
||
|
}
|
||
|
#endif
|
||
|
/* Compute olimit */
|
||
|
{
|
||
|
/* Each loop does 5 table lookups for each of the 4 streams.
|
||
|
* Each table lookup consumes up to 11 bits of input, and produces
|
||
|
* up to 2 bytes of output.
|
||
|
*/
|
||
|
/* We can consume up to 7 bytes of input per iteration per stream.
|
||
|
* We also know that each input pointer is >= ip[0]. So we can run
|
||
|
* iters loops before running out of input.
|
||
|
*/
|
||
|
size_t iters = (size_t)(ip[0] - ilimit) / 7;
|
||
|
/* Each iteration can produce up to 10 bytes of output per stream.
|
||
|
* Each output stream my advance at different rates. So take the
|
||
|
* minimum number of safe iterations among all the output streams.
|
||
|
*/
|
||
|
for (stream = 0; stream < 4; ++stream) {
|
||
|
size_t const oiters = (size_t)(oend[stream] - op[stream]) / 10;
|
||
|
iters = MIN(iters, oiters);
|
||
|
}
|
||
|
|
||
|
/* Each iteration produces at least 5 output symbols. So until
|
||
|
* op[3] crosses olimit, we know we haven't executed iters
|
||
|
* iterations yet. This saves us maintaining an iters counter,
|
||
|
* at the expense of computing the remaining # of iterations
|
||
|
* more frequently.
|
||
|
*/
|
||
|
olimit = op[3] + (iters * 5);
|
||
|
|
||
|
/* Exit the fast decoding loop if we are too close to the end. */
|
||
|
if (op[3] + 10 > olimit)
|
||
|
break;
|
||
|
|
||
|
/* Exit the decoding loop if any input pointer has crossed the
|
||
|
* previous one. This indicates corruption, and a precondition
|
||
|
* to our loop is that ip[i] >= ip[0].
|
||
|
*/
|
||
|
for (stream = 1; stream < 4; ++stream) {
|
||
|
if (ip[stream] < ip[stream - 1])
|
||
|
goto _out;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
for (stream = 1; stream < 4; ++stream) {
|
||
|
assert(ip[stream] >= ip[stream - 1]);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
do {
|
||
|
/* Do 5 table lookups for each of the first 3 streams */
|
||
|
for (symbol = 0; symbol < 5; ++symbol) {
|
||
|
for (stream = 0; stream < 3; ++stream) {
|
||
|
int const index = (int)(bits[stream] >> 53);
|
||
|
HUF_DEltX2 const entry = dtable[index];
|
||
|
MEM_write16(op[stream], entry.sequence);
|
||
|
bits[stream] <<= (entry.nbBits);
|
||
|
op[stream] += (entry.length);
|
||
|
}
|
||
|
}
|
||
|
/* Do 1 table lookup from the final stream */
|
||
|
{
|
||
|
int const index = (int)(bits[3] >> 53);
|
||
|
HUF_DEltX2 const entry = dtable[index];
|
||
|
MEM_write16(op[3], entry.sequence);
|
||
|
bits[3] <<= (entry.nbBits);
|
||
|
op[3] += (entry.length);
|
||
|
}
|
||
|
/* Do 4 table lookups from the final stream & reload bitstreams */
|
||
|
for (stream = 0; stream < 4; ++stream) {
|
||
|
/* Do a table lookup from the final stream.
|
||
|
* This is interleaved with the reloading to reduce register
|
||
|
* pressure. This shouldn't be necessary, but compilers can
|
||
|
* struggle with codegen with high register pressure.
|
||
|
*/
|
||
|
{
|
||
|
int const index = (int)(bits[3] >> 53);
|
||
|
HUF_DEltX2 const entry = dtable[index];
|
||
|
MEM_write16(op[3], entry.sequence);
|
||
|
bits[3] <<= (entry.nbBits);
|
||
|
op[3] += (entry.length);
|
||
|
}
|
||
|
/* Reload the bistreams. The final bitstream must be reloaded
|
||
|
* after the 5th symbol was decoded.
|
||
|
*/
|
||
|
{
|
||
|
int const ctz = ZSTD_countTrailingZeros64(bits[stream]);
|
||
|
int const nbBits = ctz & 7;
|
||
|
int const nbBytes = ctz >> 3;
|
||
|
ip[stream] -= nbBytes;
|
||
|
bits[stream] = MEM_read64(ip[stream]) | 1;
|
||
|
bits[stream] <<= nbBits;
|
||
|
}
|
||
|
}
|
||
|
} while (op[3] < olimit);
|
||
|
}
|
||
|
|
||
|
_out:
|
||
|
|
||
|
/* Save the final values of each of the state variables back to args. */
|
||
|
ZSTD_memcpy(&args->bits, &bits, sizeof(bits));
|
||
|
ZSTD_memcpy((void*)(&args->ip), &ip, sizeof(ip));
|
||
|
ZSTD_memcpy(&args->op, &op, sizeof(op));
|
||
|
}
|
||
|
|
||
|
|
||
|
static HUF_FAST_BMI2_ATTRS size_t
|
||
|
HUF_decompress4X2_usingDTable_internal_fast(
|
||
|
void* dst, size_t dstSize,
|
||
|
const void* cSrc, size_t cSrcSize,
|
||
|
const HUF_DTable* DTable,
|
||
|
HUF_DecompressFastLoopFn loopFn) {
|
||
|
void const* dt = DTable + 1;
|
||
|
const BYTE* const iend = (const BYTE*)cSrc + 6;
|
||
|
BYTE* const oend = (BYTE*)dst + dstSize;
|
||
|
HUF_DecompressFastArgs args;
|
||
|
{
|
||
|
size_t const ret = HUF_DecompressFastArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable);
|
||
|
FORWARD_IF_ERROR(ret, "Failed to init asm args");
|
||
|
if (ret == 0)
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
assert(args.ip[0] >= args.ilimit);
|
||
|
loopFn(&args);
|
||
|
|
||
|
/* note : op4 already verified within main loop */
|
||
|
assert(args.ip[0] >= iend);
|
||
|
assert(args.ip[1] >= iend);
|
||
|
assert(args.ip[2] >= iend);
|
||
|
assert(args.ip[3] >= iend);
|
||
|
assert(args.op[3] <= oend);
|
||
|
(void)iend;
|
||
|
|
||
|
/* finish bitStreams one by one */
|
||
|
{
|
||
|
size_t const segmentSize = (dstSize+3) / 4;
|
||
|
BYTE* segmentEnd = (BYTE*)dst;
|
||
|
int i;
|
||
|
for (i = 0; i < 4; ++i) {
|
||
|
BIT_DStream_t bit;
|
||
|
if (segmentSize <= (size_t)(oend - segmentEnd))
|
||
|
segmentEnd += segmentSize;
|
||
|
else
|
||
|
segmentEnd = oend;
|
||
|
FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption");
|
||
|
args.op[i] += HUF_decodeStreamX2(args.op[i], &bit, segmentEnd, (HUF_DEltX2 const*)dt, HUF_DECODER_FAST_TABLELOG);
|
||
|
if (args.op[i] != segmentEnd)
|
||
|
return ERROR(corruption_detected);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* decoded size */
|
||
|
return dstSize;
|
||
|
}
|
||
|
|
||
|
static size_t HUF_decompress4X2_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc,
|
||
|
size_t cSrcSize, HUF_DTable const* DTable, int flags)
|
||
|
{
|
||
|
HUF_DecompressUsingDTableFn fallbackFn = HUF_decompress4X2_usingDTable_internal_default;
|
||
|
HUF_DecompressFastLoopFn loopFn = HUF_decompress4X2_usingDTable_internal_fast_c_loop;
|
||
|
|
||
|
#if DYNAMIC_BMI2
|
||
|
if (flags & HUF_flags_bmi2) {
|
||
|
fallbackFn = HUF_decompress4X2_usingDTable_internal_bmi2;
|
||
|
# if ZSTD_ENABLE_ASM_X86_64_BMI2
|
||
|
if (!(flags & HUF_flags_disableAsm)) {
|
||
|
loopFn = HUF_decompress4X2_usingDTable_internal_fast_asm_loop;
|
||
|
}
|
||
|
# endif
|
||
|
} else {
|
||
|
return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__)
|
||
|
if (!(flags & HUF_flags_disableAsm)) {
|
||
|
loopFn = HUF_decompress4X2_usingDTable_internal_fast_asm_loop;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
if (!(flags & HUF_flags_disableFast)) {
|
||
|
size_t const ret = HUF_decompress4X2_usingDTable_internal_fast(dst, dstSize, cSrc, cSrcSize, DTable, loopFn);
|
||
|
if (ret != 0)
|
||
|
return ret;
|
||
|
}
|
||
|
return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable);
|
||
|
}
|
||
|
|
||
|
HUF_DGEN(HUF_decompress1X2_usingDTable_internal)
|
||
|
|
||
|
size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize,
|
||
|
const void* cSrc, size_t cSrcSize,
|
||
|
void* workSpace, size_t wkspSize, int flags)
|
||
|
{
|
||
|
const BYTE* ip = (const BYTE*) cSrc;
|
||
|
|
||
|
size_t const hSize = HUF_readDTableX2_wksp(DCtx, cSrc, cSrcSize,
|
||
|
workSpace, wkspSize, flags);
|
||
|
if (HUF_isError(hSize)) return hSize;
|
||
|
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
|
||
|
ip += hSize; cSrcSize -= hSize;
|
||
|
|
||
|
return HUF_decompress1X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, flags);
|
||
|
}
|
||
|
|
||
|
static size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
|
||
|
const void* cSrc, size_t cSrcSize,
|
||
|
void* workSpace, size_t wkspSize, int flags)
|
||
|
{
|
||
|
const BYTE* ip = (const BYTE*) cSrc;
|
||
|
|
||
|
size_t hSize = HUF_readDTableX2_wksp(dctx, cSrc, cSrcSize,
|
||
|
workSpace, wkspSize, flags);
|
||
|
if (HUF_isError(hSize)) return hSize;
|
||
|
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
|
||
|
ip += hSize; cSrcSize -= hSize;
|
||
|
|
||
|
return HUF_decompress4X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags);
|
||
|
}
|
||
|
|
||
|
#endif /* HUF_FORCE_DECOMPRESS_X1 */
|
||
|
|
||
|
|
||
|
/* ***********************************/
|
||
|
/* Universal decompression selectors */
|
||
|
/* ***********************************/
|
||
|
|
||
|
|
||
|
#if !defined(HUF_FORCE_DECOMPRESS_X1) && !defined(HUF_FORCE_DECOMPRESS_X2)
|
||
|
typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
|
||
|
static const algo_time_t algoTime[16 /* Quantization */][2 /* single, double */] =
|
||
|
{
|
||
|
/* single, double, quad */
|
||
|
{{0,0}, {1,1}}, /* Q==0 : impossible */
|
||
|
{{0,0}, {1,1}}, /* Q==1 : impossible */
|
||
|
{{ 150,216}, { 381,119}}, /* Q == 2 : 12-18% */
|
||
|
{{ 170,205}, { 514,112}}, /* Q == 3 : 18-25% */
|
||
|
{{ 177,199}, { 539,110}}, /* Q == 4 : 25-32% */
|
||
|
{{ 197,194}, { 644,107}}, /* Q == 5 : 32-38% */
|
||
|
{{ 221,192}, { 735,107}}, /* Q == 6 : 38-44% */
|
||
|
{{ 256,189}, { 881,106}}, /* Q == 7 : 44-50% */
|
||
|
{{ 359,188}, {1167,109}}, /* Q == 8 : 50-56% */
|
||
|
{{ 582,187}, {1570,114}}, /* Q == 9 : 56-62% */
|
||
|
{{ 688,187}, {1712,122}}, /* Q ==10 : 62-69% */
|
||
|
{{ 825,186}, {1965,136}}, /* Q ==11 : 69-75% */
|
||
|
{{ 976,185}, {2131,150}}, /* Q ==12 : 75-81% */
|
||
|
{{1180,186}, {2070,175}}, /* Q ==13 : 81-87% */
|
||
|
{{1377,185}, {1731,202}}, /* Q ==14 : 87-93% */
|
||
|
{{1412,185}, {1695,202}}, /* Q ==15 : 93-99% */
|
||
|
};
|
||
|
#endif
|
||
|
|
||
|
/** HUF_selectDecoder() :
|
||
|
* Tells which decoder is likely to decode faster,
|
||
|
* based on a set of pre-computed metrics.
|
||
|
* @return : 0==HUF_decompress4X1, 1==HUF_decompress4X2 .
|
||
|
* Assumption : 0 < dstSize <= 128 KB */
|
||
|
U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize)
|
||
|
{
|
||
|
assert(dstSize > 0);
|
||
|
assert(dstSize <= 128*1024);
|
||
|
#if defined(HUF_FORCE_DECOMPRESS_X1)
|
||
|
(void)dstSize;
|
||
|
(void)cSrcSize;
|
||
|
return 0;
|
||
|
#elif defined(HUF_FORCE_DECOMPRESS_X2)
|
||
|
(void)dstSize;
|
||
|
(void)cSrcSize;
|
||
|
return 1;
|
||
|
#else
|
||
|
/* decoder timing evaluation */
|
||
|
{ U32 const Q = (cSrcSize >= dstSize) ? 15 : (U32)(cSrcSize * 16 / dstSize); /* Q < 16 */
|
||
|
U32 const D256 = (U32)(dstSize >> 8);
|
||
|
U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256);
|
||
|
U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256);
|
||
|
DTime1 += DTime1 >> 5; /* small advantage to algorithm using less memory, to reduce cache eviction */
|
||
|
return DTime1 < DTime0;
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
size_t HUF_decompress1X_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
|
||
|
const void* cSrc, size_t cSrcSize,
|
||
|
void* workSpace, size_t wkspSize, int flags)
|
||
|
{
|
||
|
/* validation checks */
|
||
|
if (dstSize == 0) return ERROR(dstSize_tooSmall);
|
||
|
if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
|
||
|
if (cSrcSize == dstSize) { ZSTD_memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
|
||
|
if (cSrcSize == 1) { ZSTD_memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
|
||
|
|
||
|
{ U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
|
||
|
#if defined(HUF_FORCE_DECOMPRESS_X1)
|
||
|
(void)algoNb;
|
||
|
assert(algoNb == 0);
|
||
|
return HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc,
|
||
|
cSrcSize, workSpace, wkspSize, flags);
|
||
|
#elif defined(HUF_FORCE_DECOMPRESS_X2)
|
||
|
(void)algoNb;
|
||
|
assert(algoNb == 1);
|
||
|
return HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
|
||
|
cSrcSize, workSpace, wkspSize, flags);
|
||
|
#else
|
||
|
return algoNb ? HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
|
||
|
cSrcSize, workSpace, wkspSize, flags):
|
||
|
HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc,
|
||
|
cSrcSize, workSpace, wkspSize, flags);
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int flags)
|
||
|
{
|
||
|
DTableDesc const dtd = HUF_getDTableDesc(DTable);
|
||
|
#if defined(HUF_FORCE_DECOMPRESS_X1)
|
||
|
(void)dtd;
|
||
|
assert(dtd.tableType == 0);
|
||
|
return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
|
||
|
#elif defined(HUF_FORCE_DECOMPRESS_X2)
|
||
|
(void)dtd;
|
||
|
assert(dtd.tableType == 1);
|
||
|
return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
|
||
|
#else
|
||
|
return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags) :
|
||
|
HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
#ifndef HUF_FORCE_DECOMPRESS_X2
|
||
|
size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags)
|
||
|
{
|
||
|
const BYTE* ip = (const BYTE*) cSrc;
|
||
|
|
||
|
size_t const hSize = HUF_readDTableX1_wksp(dctx, cSrc, cSrcSize, workSpace, wkspSize, flags);
|
||
|
if (HUF_isError(hSize)) return hSize;
|
||
|
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
|
||
|
ip += hSize; cSrcSize -= hSize;
|
||
|
|
||
|
return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int flags)
|
||
|
{
|
||
|
DTableDesc const dtd = HUF_getDTableDesc(DTable);
|
||
|
#if defined(HUF_FORCE_DECOMPRESS_X1)
|
||
|
(void)dtd;
|
||
|
assert(dtd.tableType == 0);
|
||
|
return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
|
||
|
#elif defined(HUF_FORCE_DECOMPRESS_X2)
|
||
|
(void)dtd;
|
||
|
assert(dtd.tableType == 1);
|
||
|
return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
|
||
|
#else
|
||
|
return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags) :
|
||
|
HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags)
|
||
|
{
|
||
|
/* validation checks */
|
||
|
if (dstSize == 0) return ERROR(dstSize_tooSmall);
|
||
|
if (cSrcSize == 0) return ERROR(corruption_detected);
|
||
|
|
||
|
{ U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
|
||
|
#if defined(HUF_FORCE_DECOMPRESS_X1)
|
||
|
(void)algoNb;
|
||
|
assert(algoNb == 0);
|
||
|
return HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags);
|
||
|
#elif defined(HUF_FORCE_DECOMPRESS_X2)
|
||
|
(void)algoNb;
|
||
|
assert(algoNb == 1);
|
||
|
return HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags);
|
||
|
#else
|
||
|
return algoNb ? HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags) :
|
||
|
HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags);
|
||
|
#endif
|
||
|
}
|
||
|
}
|