83769a8449
added imload normalisation added fixes for 0 edge histogram
121 lines
4.0 KiB
Python
121 lines
4.0 KiB
Python
from vision.model import Image
|
|
from typing import List
|
|
import numpy as np
|
|
|
|
import vision.descriptor.avg_RGB as rgb
|
|
import vision.util.edge as edge
|
|
import logging
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def grid_image(height: int, width: int, pixels: np.array):
|
|
shape = pixels.shape
|
|
|
|
segments = []
|
|
for i in range(height):
|
|
for j in range(width):
|
|
|
|
row_start = round(i * shape[0] / height)
|
|
row_end = round((i+1) * shape[0] / height)
|
|
|
|
column_start = round(j * shape[1] / width)
|
|
column_end = round((j + 1) * shape[1] / width)
|
|
|
|
segments.append(pixels[row_start:row_end, column_start:column_end, :])
|
|
|
|
return segments
|
|
|
|
|
|
def extract_spatial_texture(height: int,
|
|
width: int,
|
|
bins: int,
|
|
threshold: float,
|
|
pixels: np.array = None,
|
|
image: Image = None,
|
|
images: List[Image] = None):
|
|
|
|
if pixels is None and image is None and images is None:
|
|
raise KeyError('no image provided')
|
|
|
|
def extract(i):
|
|
segments = grid_image(height, width, i)
|
|
descriptor = np.array([])
|
|
for seg in segments:
|
|
img_edge = edge.get_edge_info(pixels=seg)
|
|
hist = edge.get_edge_angle_hist(img_edge, bins=bins, threshold=threshold)
|
|
descriptor = np.append(descriptor, hist)
|
|
return descriptor
|
|
|
|
if images is not None:
|
|
length = len(images)
|
|
for index, image in enumerate(images):
|
|
logger.debug(f'generating {index} of {length}')
|
|
image.descriptor = extract(image.pixels)
|
|
return
|
|
elif image is not None:
|
|
image.descriptor = extract(image.pixels)
|
|
else:
|
|
return extract(pixels)
|
|
|
|
|
|
def extract_spatial_average_rgb(height: int,
|
|
width: int,
|
|
pixels: np.array = None,
|
|
image: Image = None,
|
|
images: List[Image] = None):
|
|
|
|
if pixels is None and image is None and images is None:
|
|
raise KeyError('no image provided')
|
|
|
|
def extract(i):
|
|
segments = grid_image(height, width, i)
|
|
descriptor = np.array([])
|
|
for seg in segments:
|
|
descriptor = np.append(descriptor, rgb.extract_average_rgb(pixels=seg))
|
|
return descriptor
|
|
|
|
if images is not None:
|
|
length = len(images)
|
|
for index, image in enumerate(images):
|
|
logger.debug(f'generating {index} of {length}')
|
|
image.descriptor = extract(image.pixels)
|
|
return
|
|
elif image is not None:
|
|
image.descriptor = extract(image.pixels)
|
|
else:
|
|
return extract(pixels)
|
|
|
|
|
|
def extract_spatial_avg_rgb_texture(height: int,
|
|
width: int,
|
|
bins: int,
|
|
threshold: float,
|
|
pixels: np.array = None,
|
|
image: Image = None,
|
|
images: List[Image] = None):
|
|
|
|
if pixels is None and image is None and images is None:
|
|
raise KeyError('no image provided')
|
|
|
|
def extract(i):
|
|
segments = grid_image(height, width, i)
|
|
descriptor = np.array([])
|
|
for seg in segments:
|
|
img_edge = edge.get_edge_info(pixels=seg)
|
|
hist = edge.get_edge_angle_hist(img_edge, bins=bins, threshold=threshold)
|
|
descriptor = np.append(descriptor, hist)
|
|
|
|
descriptor = np.append(descriptor, rgb.extract_average_rgb(pixels=seg))
|
|
return descriptor
|
|
|
|
if images is not None:
|
|
length = len(images)
|
|
for index, image in enumerate(images):
|
|
logger.debug(f'generating {index} of {length}')
|
|
image.descriptor = extract(image.pixels)
|
|
return
|
|
elif image is not None:
|
|
image.descriptor = extract(image.pixels)
|
|
else:
|
|
return extract(pixels)
|