initial commit
This commit is contained in:
commit
284519c51d
124
.gitignore
vendored
Normal file
124
.gitignore
vendored
Normal file
@ -0,0 +1,124 @@
|
|||||||
|
scratch.py
|
||||||
|
|
||||||
|
node_modules/
|
||||||
|
|
||||||
|
# Byte-compiled / optimized / DLL files
|
||||||
|
*/__pycache__/*
|
||||||
|
*.py[cod]
|
||||||
|
*$py.class
|
||||||
|
|
||||||
|
.idea
|
||||||
|
.vscode
|
||||||
|
|
||||||
|
# C extensions
|
||||||
|
*.so
|
||||||
|
|
||||||
|
# Distribution / packaging
|
||||||
|
.Python
|
||||||
|
build/
|
||||||
|
develop-eggs/
|
||||||
|
dist/
|
||||||
|
downloads/
|
||||||
|
eggs/
|
||||||
|
.eggs/
|
||||||
|
lib/
|
||||||
|
lib64/
|
||||||
|
parts/
|
||||||
|
sdist/
|
||||||
|
var/
|
||||||
|
wheels/
|
||||||
|
pip-wheel-metadata/
|
||||||
|
share/python-wheels/
|
||||||
|
*.egg-info/
|
||||||
|
.installed.cfg
|
||||||
|
*.egg
|
||||||
|
MANIFEST
|
||||||
|
|
||||||
|
# PyInstaller
|
||||||
|
# Usually these files are written by a python script from a template
|
||||||
|
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||||
|
*.manifest
|
||||||
|
*.spec
|
||||||
|
|
||||||
|
# Installer logs
|
||||||
|
pip-log.txt
|
||||||
|
pip-delete-this-directory.txt
|
||||||
|
|
||||||
|
# Unit test / coverage reports
|
||||||
|
htmlcov/
|
||||||
|
.tox/
|
||||||
|
.nox/
|
||||||
|
.coverage
|
||||||
|
.coverage.*
|
||||||
|
.cache
|
||||||
|
nosetests.xml
|
||||||
|
coverage.xml
|
||||||
|
*.cover
|
||||||
|
.hypothesis/
|
||||||
|
.pytest_cache/
|
||||||
|
|
||||||
|
# Translations
|
||||||
|
*.mo
|
||||||
|
*.pot
|
||||||
|
|
||||||
|
# Django stuff:
|
||||||
|
*.log
|
||||||
|
local_settings.py
|
||||||
|
db.sqlite3
|
||||||
|
|
||||||
|
# Flask stuff:
|
||||||
|
instance/
|
||||||
|
.webassets-cache
|
||||||
|
|
||||||
|
# Scrapy stuff:
|
||||||
|
.scrapy
|
||||||
|
|
||||||
|
# Sphinx documentation
|
||||||
|
docs/_build/
|
||||||
|
|
||||||
|
# PyBuilder
|
||||||
|
target/
|
||||||
|
|
||||||
|
# Jupyter Notebook
|
||||||
|
.ipynb_checkpoints
|
||||||
|
|
||||||
|
# IPython
|
||||||
|
profile_default/
|
||||||
|
ipython_config.py
|
||||||
|
|
||||||
|
# pyenv
|
||||||
|
.python-version
|
||||||
|
|
||||||
|
# celery beat schedule file
|
||||||
|
celerybeat-schedule
|
||||||
|
|
||||||
|
# SageMath parsed files
|
||||||
|
*.sage.py
|
||||||
|
|
||||||
|
# Environments
|
||||||
|
.env
|
||||||
|
.venv
|
||||||
|
env/
|
||||||
|
venv/
|
||||||
|
ENV/
|
||||||
|
env.bak/
|
||||||
|
venv.bak/
|
||||||
|
|
||||||
|
# Spyder project settings
|
||||||
|
.spyderproject
|
||||||
|
.spyproject
|
||||||
|
|
||||||
|
# Rope project settings
|
||||||
|
.ropeproject
|
||||||
|
|
||||||
|
# mkdocs documentation
|
||||||
|
/site
|
||||||
|
|
||||||
|
# mypy
|
||||||
|
.mypy_cache/
|
||||||
|
.dmypy.json
|
||||||
|
dmypy.json
|
||||||
|
|
||||||
|
# Pyre type checker
|
||||||
|
.pyre/
|
||||||
|
/msrc/
|
32
descriptors.ipynb
Normal file
32
descriptors.ipynb
Normal file
@ -0,0 +1,32 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"<h2><center>average RGB</center></h2>"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.7.4"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 4
|
||||||
|
}
|
127
edge-detection.ipynb
Normal file
127
edge-detection.ipynb
Normal file
File diff suppressed because one or more lines are too long
13
gui.py
Normal file
13
gui.py
Normal file
@ -0,0 +1,13 @@
|
|||||||
|
import cv2
|
||||||
|
|
||||||
|
img = cv2.imread('nebula2.jpg', 0)
|
||||||
|
|
||||||
|
cv2.imshow('image', img)
|
||||||
|
k = cv2.waitKey(0)
|
||||||
|
if k == 27: # wait for ESC key to exit
|
||||||
|
cv2.destroyAllWindows()
|
||||||
|
elif k == ord('s'): # wait for 's' key to save and exit
|
||||||
|
cv2.imwrite('messigray.png', img)
|
||||||
|
cv2.destroyAllWindows()
|
||||||
|
|
||||||
|
# cv2.imwrite('nebula2.jpg', img)
|
540
numpy.ipynb
Normal file
540
numpy.ipynb
Normal file
@ -0,0 +1,540 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"<h3><center>arrays</center></h3>"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 36,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"array([[1, 2, 3],\n",
|
||||||
|
" [4, 5, 6]], dtype=int32)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 36,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"import numpy as np\n",
|
||||||
|
"\n",
|
||||||
|
"x = np.array([[1, 2, 3], [4, 5, 6]], np.int32)\n",
|
||||||
|
"x"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 4,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"(2, 3)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 4,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"x.shape"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 6,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"dtype('int32')"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 6,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"x.dtype"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 7,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"2"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 7,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"x[0, 1]"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 37,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"array([1, 4], dtype=int32)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 37,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"x[:, 0]"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"<h3><center>inserting</center></h3>"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 13,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"array([1, 2, 3, 4, 5, 6, 7, 8, 9])"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 13,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"x = np.array([[1, 2, 3], [4, 5, 6]])\n",
|
||||||
|
"x = np.append(x, [7, 8, 9])\n",
|
||||||
|
"x"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 17,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"array([[1, 2, 3],\n",
|
||||||
|
" [4, 5, 6],\n",
|
||||||
|
" [7, 8, 9]])"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 17,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"x = np.array([[1, 2, 3], [4, 5, 6]])\n",
|
||||||
|
"x = np.append(arr=x, values=[[7, 8, 9]], axis=0)\n",
|
||||||
|
"x"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 18,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"array([[ 2, 4, 6],\n",
|
||||||
|
" [ 8, 10, 12]], dtype=int32)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 18,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"x = np.array([[1, 2, 3], [4, 5, 6]])\n",
|
||||||
|
"x = np.add(x, x)\n",
|
||||||
|
"x"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 26,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"[[1, 2, 3], [4, 5, 6], [7, 8, 9]]"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 26,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])\n",
|
||||||
|
"x.tolist()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 30,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"array([[1],\n",
|
||||||
|
" [2],\n",
|
||||||
|
" [3],\n",
|
||||||
|
" [4],\n",
|
||||||
|
" [5],\n",
|
||||||
|
" [6]])"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 30,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"x = np.array([[1, 2, 3], [4, 5, 6]])\n",
|
||||||
|
"np.reshape(x, (-1, 1))"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 32,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"[[1 2 3]\n",
|
||||||
|
" [4 5 6]]\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"array([[1, 4],\n",
|
||||||
|
" [2, 5],\n",
|
||||||
|
" [3, 6]])"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 32,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"x = np.array([[1, 2, 3], [4, 5, 6]])\n",
|
||||||
|
"print(x)\n",
|
||||||
|
"x.transpose()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 34,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"array([1, 2, 3, 4, 5, 6])"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 34,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"x = np.array([[1, 2, 3], [4, 5, 6]])\n",
|
||||||
|
"x.flatten()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 39,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"array([[4, 3],\n",
|
||||||
|
" [5, 7]])"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 39,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"a = [4, 3, 5, 7, 6, 8]\n",
|
||||||
|
"np.take(a, [[0, 1], [2, 3]])"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 41,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"array([-44, 1, -55, 3, 4])"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 41,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"a = np.arange(5)\n",
|
||||||
|
"np.put(a, [0, 2], [-44, -55])\n",
|
||||||
|
"a"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 44,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"array([10, 1, 10, 3, 4])"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 44,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"a = np.arange(5)\n",
|
||||||
|
"np.put(a, [0, 2], 10)\n",
|
||||||
|
"a"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 50,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"6\n",
|
||||||
|
"[4 5 6]\n",
|
||||||
|
"[3 6]\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"x = np.array([[1, 2, 3], [4, 5, 6]])\n",
|
||||||
|
"print(x.max())\n",
|
||||||
|
"print(x.max(axis=0))\n",
|
||||||
|
"print(x.max(axis=1))"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 51,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"array([[0.125, 0.754, 0.345],\n",
|
||||||
|
" [0.453, 0.896, 0.384]])"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 51,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"x = np.array([[0.12541, 0.753682, 0.3453453], [0.45261364, 0.8957225, 0.3842736]])\n",
|
||||||
|
"np.round(x, 3)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 53,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"21\n",
|
||||||
|
"[ 6 15]\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"x = np.array([[1, 2, 3], [4, 5, 6]])\n",
|
||||||
|
"print(np.sum(x))\n",
|
||||||
|
"print(np.sum(x, axis=1))"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 55,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"3.5\n",
|
||||||
|
"[2.5 3.5 4.5]\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"x = np.array([[1, 2, 3], [4, 5, 6]])\n",
|
||||||
|
"print(np.mean(x))\n",
|
||||||
|
"print(np.mean(x, axis=0))"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 56,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"1.707825127659933\n",
|
||||||
|
"[1.5 1.5 1.5]\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"x = np.array([[1, 2, 3], [4, 5, 6]])\n",
|
||||||
|
"print(np.std(x))\n",
|
||||||
|
"print(np.std(x, axis=0))"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 66,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"[[2 3 4]\n",
|
||||||
|
" [5 6 7]]\n",
|
||||||
|
"[[ 2 4 6]\n",
|
||||||
|
" [ 8 10 12]]\n",
|
||||||
|
"[[0.5 1. 1.5]\n",
|
||||||
|
" [2. 2.5 3. ]]\n",
|
||||||
|
"floor [[0 1 1]\n",
|
||||||
|
" [2 2 3]]\n",
|
||||||
|
"mod [[1 0 1]\n",
|
||||||
|
" [0 1 0]]\n",
|
||||||
|
"power [[ 1 4 9]\n",
|
||||||
|
" [16 25 36]]\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"x = np.array([[1, 2, 3], [4, 5, 6]])\n",
|
||||||
|
"print(x + 1)\n",
|
||||||
|
"print(x * 2)\n",
|
||||||
|
"print(x / 2)\n",
|
||||||
|
"print('floor', x // 2)\n",
|
||||||
|
"print('mod', x % 2)\n",
|
||||||
|
"print('power', pow(x, 2))"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 68,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"array([[ 4, 16, 36],\n",
|
||||||
|
" [ 64, 100, 144]])"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 68,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"x = np.array([[1, 2, 3], [4, 5, 6]])\n",
|
||||||
|
"x *= 2\n",
|
||||||
|
"x **= 2\n",
|
||||||
|
"x"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.7.4"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 4
|
||||||
|
}
|
293
opencv.ipynb
Normal file
293
opencv.ipynb
Normal file
File diff suppressed because one or more lines are too long
55
requirements.txt
Normal file
55
requirements.txt
Normal file
@ -0,0 +1,55 @@
|
|||||||
|
attrs==19.3.0
|
||||||
|
backcall==0.1.0
|
||||||
|
bleach==3.1.0
|
||||||
|
cycler==0.10.0
|
||||||
|
decorator==4.4.1
|
||||||
|
defusedxml==0.6.0
|
||||||
|
entrypoints==0.3
|
||||||
|
importlib-metadata==1.2.0
|
||||||
|
ipykernel==5.1.3
|
||||||
|
ipython==7.10.1
|
||||||
|
ipython-genutils==0.2.0
|
||||||
|
jedi==0.15.1
|
||||||
|
Jinja2==2.10.3
|
||||||
|
joblib==0.14.0
|
||||||
|
json5==0.8.5
|
||||||
|
jsonschema==3.2.0
|
||||||
|
jupyter-client==5.3.4
|
||||||
|
jupyter-core==4.6.1
|
||||||
|
jupyterlab==1.2.3
|
||||||
|
jupyterlab-server==1.0.6
|
||||||
|
kiwisolver==1.1.0
|
||||||
|
MarkupSafe==1.1.1
|
||||||
|
matplotlib==3.1.2
|
||||||
|
mistune==0.8.4
|
||||||
|
more-itertools==8.0.2
|
||||||
|
nbconvert==5.6.1
|
||||||
|
nbformat==4.4.0
|
||||||
|
notebook==6.0.2
|
||||||
|
numpy==1.17.4
|
||||||
|
opencv-python==4.1.2.30
|
||||||
|
pandas==0.25.3
|
||||||
|
pandocfilters==1.4.2
|
||||||
|
parso==0.5.1
|
||||||
|
pexpect==4.7.0
|
||||||
|
pickleshare==0.7.5
|
||||||
|
prometheus-client==0.7.1
|
||||||
|
prompt-toolkit==3.0.2
|
||||||
|
ptyprocess==0.6.0
|
||||||
|
Pygments==2.5.2
|
||||||
|
pyparsing==2.4.5
|
||||||
|
pyrsistent==0.15.6
|
||||||
|
python-dateutil==2.8.1
|
||||||
|
pytz==2019.3
|
||||||
|
pyzmq==18.1.1
|
||||||
|
scikit-learn==0.22
|
||||||
|
scipy==1.3.3
|
||||||
|
Send2Trash==1.5.0
|
||||||
|
six==1.13.0
|
||||||
|
terminado==0.8.3
|
||||||
|
testpath==0.4.4
|
||||||
|
tornado==6.0.3
|
||||||
|
traitlets==4.3.3
|
||||||
|
wcwidth==0.1.7
|
||||||
|
webencodings==0.5.1
|
||||||
|
zipp==0.6.0
|
Loading…
Reference in New Issue
Block a user