MDDP-Cableship/maths/power_sim.m
2020-12-28 21:16:48 +00:00

173 lines
5.7 KiB
Matlab

function [power_in,battery_level,power_out,unused_energy,unavailable_energy, batt_capacity] = ...
power_sim(MAX_P_OUT, MIN_P_OUT, MAX_P_IN, MIN_P_IN, SIMULATION_DAYS, init_p_out, init_p_in, init_battery, CUMULATIVE_ERRORS, extra_p_out)
%POWER_SIM Summary of this function goes here
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Specs
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CELL_TOTAL = 193600; % from battery script
CHARGE_EFF = 0.8;
DISCHARGE_EFF = 0.8;
P_IN_INTERVAL = ( 200e3/(5*60) ) * 0.75; % W amount that gen power increases when required
P_OUT_INTERVAL = 1e4; % W amount that load can varies by randomly
cell_voltage = 3.6; % V
% cell_capacity = 2850; % mAh
cell_capacity = 3500; % mAh
cell_dis_c = 1; % 1/h
cell_charge_c = 0.5; % 1/h
cell_dis_i = cell_capacity * cell_dis_c / 1e3; % A
cell_charge_i = cell_capacity * cell_charge_c / 1e3; % A
batt_dis_p = cell_dis_i * cell_voltage * CELL_TOTAL; % W
batt_charge_p = cell_charge_i * cell_voltage * CELL_TOTAL; % W
batt_capacity = CELL_TOTAL * cell_capacity * cell_voltage / 1e3; % Wh
% P_IN = MAX_P_IN * P_IN_LOAD; % W, efficient load
P_IN = (MIN_P_OUT + MAX_P_OUT) / 2; % W, Average power out
P_IN_EFF = 200e3; % W per cell of efficiency
sim_seconds = SIMULATION_DAYS * 24 * 60 * 60;
twenty_minutes = 20 * 60; % s
%%%%%%% unit conversions
batt_capacity = batt_capacity * 3600; % J
BATT_FULL_LEVEL = 0.8; % battery level at which the power input decreases
BATT_WARN_LEVEL = 0.5; % battery level at which the power input increases
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Simulate
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Arrays for time varying values
power_in = zeros(1, sim_seconds);
battery_level = zeros(1, sim_seconds);
power_out = zeros(1, sim_seconds);
unused_energy = zeros(1, sim_seconds);
unavailable_energy = zeros(1, sim_seconds);
% 'cursor' values that change throughout sim
current_p_in = P_IN;
current_p_out = (MAX_P_OUT + MIN_P_OUT) / 2;
% Set initial value
power_in(1) = init_p_in;
if init_battery == -1
battery_level(1)= 0.5*batt_capacity;
else
battery_level(1)= init_battery;
end
power_out(1) = init_p_out;
EXTRA_POWER = false;
if exist('extra_p_out')
EXTRA_POWER = true;
end
% loop through day
for SECOND=1:sim_seconds
battery_net = current_p_in - current_p_out; % net power this second
if EXTRA_POWER
battery_net = battery_net - sum(extra_p_out(:, SECOND));
end
% get last energy value at the battery
% set cumulative values
if SECOND == 1
battery_last = battery_level(1);
if CUMULATIVE_ERRORS
unused_energy(SECOND) = unused_energy(1); % cumulative
unavailable_energy(SECOND) = unavailable_energy(1); % cumulative
end
else
battery_last = battery_level(SECOND - 1);
if CUMULATIVE_ERRORS
unused_energy(SECOND) = unused_energy(SECOND - 1); % cumulative
unavailable_energy(SECOND) = unavailable_energy(SECOND - 1); % cumulative
end
end
% CHARGING
if battery_net > 0
curr_battery = battery_last + min(battery_net, batt_charge_p) * CHARGE_EFF;
% TOO MUCH FOR BATTERY CAPACITY
if batt_capacity < curr_battery
unused_energy(SECOND) = unused_energy(SECOND) + abs(batt_capacity - curr_battery);
end
% TOO MUCH CURRENT FOR BATTERY
if battery_net > batt_charge_p
unused_energy(SECOND) = unused_energy(SECOND) + battery_net - batt_charge_p;
end
% DISCHARGING
else
discharge_p = min(abs(battery_net), batt_dis_p);
curr_battery = battery_last - discharge_p / DISCHARGE_EFF;
% BATTERY EMPTY
if curr_battery < 0
unavailable_energy(SECOND) = unavailable_energy(SECOND) + abs(curr_battery);
end
% TOO MUCH CURRENT FOR BATTERY
if abs(battery_net) > batt_dis_p
unavailable_energy(SECOND) = unavailable_energy(SECOND) + abs(battery_net) - batt_dis_p;
end
end
% STORE VALUES
power_in(SECOND) = current_p_in;
battery_level(SECOND) = max(min(curr_battery, batt_capacity), 0);
power_out(SECOND) = current_p_out;
if EXTRA_POWER
power_out(SECOND) = power_out(SECOND) + sum(extra_p_out(:, SECOND));
end
% CHANGE LOAD
power_out_delta = (rand - 0.5) * 2 * P_OUT_INTERVAL;
current_p_out = min(max(current_p_out + power_out_delta, MIN_P_OUT), MAX_P_OUT);
batt_percent = (battery_level(SECOND)/batt_capacity);
if mod(SECOND, twenty_minutes) == 0
% BATTERY LOW, INCREASE POWER IN
% if battery_net < 0 && batt_percent < BATT_WARN_LEVEL
if batt_percent < BATT_WARN_LEVEL
% percent_diff = (BATT_WARN_LEVEL - batt_percent) / BATT_WARN_LEVEL;
%current_p_in = min(current_p_in + percent_diff * P_IN_INTERVAL, MAX_P_IN);
current_p_in = current_p_in + P_IN_EFF;
% BATTERY HIGH, DECREASE POWER IN
elseif batt_percent > BATT_FULL_LEVEL
% percent_diff = 1 - (abs(BATT_FULL_LEVEL - batt_percent) / (1 - BATT_FULL_LEVEL));
% current_p_in = max(current_p_in - percent_diff * P_IN_INTERVAL, MIN_P_IN);
current_p_in = max(current_p_in - P_IN_EFF, 0);
% NEITHER, RELAX TO EFFICIENT STATE
else
delta_to_efficiency = P_IN - current_p_in;
if delta_to_efficiency > 0
current_p_in = min(current_p_in + P_IN_INTERVAL, P_IN);
else
current_p_in = max(current_p_in - P_IN_INTERVAL, P_IN);
end
end
end
end
end