added power model, fixed some battery stuff

This commit is contained in:
aj 2020-11-29 16:05:48 +00:00
parent 38beaae7cb
commit 625d1b7b18
3 changed files with 260 additions and 7 deletions

1
.gitignore vendored
View File

@ -2,3 +2,4 @@
*#
*.pdf
*.eps
*.asv

View File

@ -26,7 +26,7 @@ cell_weight = 48; % g
cell_dia = 18.4; % mm
cell_height = 65; % mm
cell_price = 6; % £
cell_price = 6; % £
%%%%%%% P IN
@ -116,12 +116,12 @@ total_weight = cell_weight * total_cells; % kg
%% Output
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
printf('%d cells arranged %d x %d cells\n', total_cells, series_length, parallel_length);
printf('%.2f m3, weighs %.2f kg\n', total_volume, total_weight);
printf('£%.2fM\n\n', total_cells * cell_price / 1e6);
fprintf('%d cells arranged %d x %d cells\n', total_cells, series_length, parallel_length);
fprintf('%.2f m3, weighs %.2f kg\n', total_volume, total_weight);
fprintf('£%.2fM\n\n', total_cells * cell_price / 1e6);
printf('%.2f Ah, %.2f MWh, \n', total_capacity, total_capacity_Wh / 1e6);
printf('%.2f V, %.2f A for %.2f MW\n', voltage_out, current_out, max_power_out / 1e6);
fprintf('%.2f Ah, %.2f MWh, \n', total_capacity, total_capacity_Wh / 1e6);
fprintf('%.2f V, %.2f A for %.2f MW\n', voltage_out, current_out, max_power_out / 1e6);
if P_OUT_INCLUDES_P_IN
printf('Totals to %.2f MW including %.2f MW of coupled input power\n', P_OUT / 1e6, P_IN / 1e6);
fprintf('Totals to %.2f MW including %.2f MW of coupled input power\n', P_OUT / 1e6, P_IN / 1e6);
end

252
maths/power_model.m Normal file
View File

@ -0,0 +1,252 @@
%% power_model.m
%%
%% Vessel power model
close all;clear all;clc;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Flags
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CUMULATIVE_ERRORS = false;
ITERATE = ~true;
SAVE = ~true;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ITERATIONS = 5;
CELL_TOTAL = 159201; % from battery script
% CELL_TOTAL = 500000;
MIN_P_IN = 0; % W, max power from fuel cells
MAX_P_IN = 8e6; % W, max power from fuel cells
P_IN_LOAD = 0.8; % most efficient load percent
INIT_P_OUT = 0.70;
PROP_P_OUT = 8e6; % W, propulsion max output power
HOTEL_P_OUT = 3e4; % W, hotel average power usage
P_IN_INTERVAL = 1e2; % W amount that gen power increases when required
P_OUT_INTERVAL = 2e4; % W amount that load can varies by randomly
SIMULATION_DAYS = 1; % days
BATT_INIT_LEVEL = 0.5;
BATT_FULL_LEVEL = 0.95; % battery level at which the power input decreases
BATT_WARN_LEVEL = 0.4; % battery level at which the power input increases
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Specs
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
cell_voltage = 3.6; % V
cell_capacity = 2850; % mAh
cell_dis_c = 1; % 1/h
cell_charge_c = 0.5; % 1/h
cell_dis_i = cell_capacity * cell_dis_c / 1e3; % A
cell_charge_i = cell_capacity * cell_charge_c / 1e3; % A
batt_dis_p = cell_dis_i * cell_voltage * CELL_TOTAL; % W
batt_charge_p = cell_charge_i * cell_voltage * CELL_TOTAL; % W
batt_capacity = CELL_TOTAL * cell_capacity * cell_voltage / 1e3; % Wh
P_IN = MAX_P_IN * P_IN_LOAD; % W
P_OUT = PROP_P_OUT + HOTEL_P_OUT; % W
sim_seconds = SIMULATION_DAYS * 24 * 60 * 60;
%%%%%%% unit conversions
batt_capacity = batt_capacity * 3600; % J
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Simulate
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ITERATE; iter_range = ITERATIONS; else; iter_range = 1; end
for I=(1:iter_range)
% Arrays for time varying values
power_in = zeros(1, sim_seconds);
battery_level = zeros(1, sim_seconds);
power_out = zeros(1, sim_seconds);
unused_energy = zeros(1, sim_seconds);
unavailable_energy = zeros(1, sim_seconds);
% 'cursor' values that change throughout sim
current_p_in = P_IN;
current_p_out = P_OUT * INIT_P_OUT;
% Set initial value
power_in(1) = current_p_in;
battery_level(1)= batt_capacity * BATT_INIT_LEVEL;
power_out(1) = current_p_out;
% loop through day
for SECOND=1:sim_seconds
battery_net = current_p_in - current_p_out; % net power this second
% get last energy value at the battery
% set cumulative values
if SECOND == 1
battery_last = battery_level(1);
if CUMULATIVE_ERRORS
unused_energy(SECOND) = unused_energy(1); % cumulative
unavailable_energy(SECOND) = unavailable_energy(1); % cumulative
end
else
battery_last = battery_level(SECOND - 1);
if CUMULATIVE_ERRORS
unused_energy(SECOND) = unused_energy(SECOND - 1); % cumulative
unavailable_energy(SECOND) = unavailable_energy(SECOND - 1); % cumulative
end
end
% CHARGING
if battery_net > 0
curr_battery = battery_last + min(battery_net, batt_charge_p);
% TOO MUCH FOR BATTERY CAPACITY
if batt_capacity < curr_battery
unused_energy(SECOND) = unused_energy(SECOND) + abs(batt_capacity - curr_battery);
end
% TOO MUCH CURRENT FOR BATTERY
if battery_net > batt_charge_p
unused_energy(SECOND) = unused_energy(SECOND) + battery_net - batt_charge_p;
end
% DISCHARGING
else
discharge_p = min(abs(battery_net), batt_dis_p);
curr_battery = battery_last - discharge_p;
% BATTERY EMPTY
if curr_battery < 0
unavailable_energy(SECOND) = unavailable_energy(SECOND) + abs(curr_battery);
end
% TOO MUCH CURRENT FOR BATTERY
if abs(battery_net) > batt_dis_p
unavailable_energy(SECOND) = unavailable_energy(SECOND) + abs(battery_net) - batt_dis_p;
end
end
% STORE VALUES
power_in(SECOND) = current_p_in;
battery_level(SECOND) = max(min(curr_battery, batt_capacity), 0);
power_out(SECOND) = current_p_out;
% CHANGE LOAD
power_out_delta = (rand - 0.5) * 2 * P_OUT_INTERVAL;
current_p_out = min(max(current_p_out + power_out_delta, 0), P_OUT);
% BATTERY LOW, INCREASE POWER IN
% if battery_net < 0 && (battery_level(SECOND)/batt_capacity) < BATT_WARN_LEVEL
if (battery_level(SECOND)/batt_capacity) < BATT_WARN_LEVEL
current_p_in = min(current_p_in + P_IN_INTERVAL, MAX_P_IN);
% BATTERY HIGH, DECREASE POWER IN
elseif (battery_level(SECOND)/batt_capacity) > BATT_FULL_LEVEL
current_p_in = max(current_p_in - P_IN_INTERVAL, MIN_P_IN);
% NEITHER, RELAX TO EFFICIENT STATE
else
delta_to_efficiency = P_IN - current_p_in;
if delta_to_efficiency > 0
current_p_in = min(current_p_in + P_IN_INTERVAL, P_IN);
else
current_p_in = max(current_p_in - P_IN_INTERVAL, P_IN);
end
end
end
x = (1:sim_seconds) / (60 * 60);
x_ticks = (1: sim_seconds / (60 * 60));
if SIMULATION_DAYS > 2
x = x / 24;
x_ticks = (1: sim_seconds / (60 * 60 * 24));
end
figure(I)
line_width = 2;
subplot(3, 1, 1);
hold on;
grid on;
plot(x, power_in / 1e6, 'g', 'LineWidth', line_width);
plot(x, power_out / 1e6, 'r', 'LineWidth', line_width);
yline(P_IN / 1e6, '--m', 'LineWidth', line_width * 0.5)
legend('Power In', 'Power Out', 'Ideal Power In');
ylabel('Power (MW)')
xlim([0 inf])
ylim([0 max(P_OUT, P_IN) / 1e6])
xticks(x_ticks)
if SIMULATION_DAYS > 2
xlabel('Time (Days)')
else
xlabel('Time (Hours)')
end
hold off;
% figure(2)
subplot(3, 1, 2);
hold on;
grid on;
plot(x, battery_level * 100 / batt_capacity, 'LineWidth', line_width);
legend('Battery Level');
ylabel('Capacity (%)')
xlim([0 inf])
ylim([0 100])
xticks(x_ticks)
if SIMULATION_DAYS > 2
xlabel('Time (Days)')
else
xlabel('Time (Hours)')
end
hold off;
subplot(3, 1, 3);
hold on;
grid on;
plot(x, unused_energy, 'g', 'LineWidth', line_width);
plot(x, unavailable_energy, 'r', 'LineWidth', line_width);
legend('Unused', 'Unavailable');
if CUMULATIVE_ERRORS
ylabel('Energy (J)')
else
ylabel('Power (W)')
end
xlim([0 inf])
ylim([0 inf])
xticks(x_ticks)
if SIMULATION_DAYS > 2
xlabel('Time (Days)')
else
xlabel('Time (Hours)')
end
hold off;
if SAVE
print(sprintf('%i', I),'-dpng')
end
end
% FINAL STATS
if ~CUMULATIVE_ERRORS
fprintf('%.f MJ/day of unused power\n', unused_energy(end) / (1e6 * SIMULATION_DAYS));
fprintf('%.f MJ/day of unavailable power\n\n', unavailable_energy(end) / (1e6 * SIMULATION_DAYS));
fprintf('%.f MJ of unused power\n', unused_energy(end) / 1e6);
fprintf('%.f MJ of unavailable power\n', unavailable_energy(end) / 1e6);
end