
IoT Aggregation Algorithm Coursework 3 IMPLEMENTATION

Figure 1: Demonstration of SAX aggregation with window size of 2 and alphabet of length 4

1 Description
Symbolic Aggregation Approximation (SAX) was implemented as an in-network data processing technique, compressing the
representation while allowing further processing on this symbolic string. Figure 1 shows two rounds of SAX output following
data collection, a window size of 2 was used and an alphabet of length 4, i.e the characters a through d inclusive. 12 C floats
total 48 bytes of data, this can be reduced by a factor of 4 using char representation instead, a window size of 2 halves the
number of output samples and lowers the required memory to just 6 bytes.

2 Specification
SAX is implemented in two separate steps, that of transforming the time-series into Piecewise Aggregate Approximation (PAA)
representation and then representing this numeric series with a symbolic alphabet.

2.1 PAA
The standard deviation and mean of the data series were first calculated, these are required for Z-normalisation. This normal-
isation process takes a series of data and transforms it into one with a mean of 0 and a standard deviation of 1. This changes
the context of the value from being measured in lux to being a measure of a samples distance from the mean, 0, in standard
deviations. This allows comparison of different time-series.

Following Z-normalisation, the size of the series is reduced by applying a windowing function. This takes subsequent equally-
sized groups of samples and reduces the group to the mean of those values.

As a result of these two actions, the original time series has been reduced to a given length of samples with a mean of 0 and
standard deviation of 1.

2.2 SAX
With the result of the above, the remaining step is to replace each sample value with a symbol to represent it. The amount of
symbols to be used is given, each will represent the same probability range when considering a Gaussian distribution of mean
0 and standard deviation of 1. This can be achieved by using standard deviation breakpoints defined such that the area under
Gaussian curve between breakpoints is the same.

3 Implementation
The SAX functionality was added as an alternative buffer rotating mechanism over the original 12-to-1/4-to-1/12-to-12 ag-
gregation system. The length of the output buffer is calculated such that it can be allocated. From here the input buffer is
Z-normalised using the normaliseBuffer(buffer) function from the buffer.h header. This function iterates over each value in
the buffer, subtracts the buffer’s mean and then divides by the standard deviation. Following this, the buffer is aggregated using
the same 4-to-1 aggregation function aggregateBuffer(bufferIn, bufferOut, groupSize) as the group size is variable. The
output from this function represents the PAA form of the initial data series.

This final buffer is handled using handleFinalBuffer(buffer) where a pre-processor directive checks whether SAX is being
used. If so the PAA buffer is stringified using stringifyBuffer(buffer) which performs the SAX symbolic representation.

November 2020 1 Andy Pack / 6420013


	Description
	Specification
	PAA
	SAX

	Implementation

