DIGITS-CNN/cars/architecture-investigations/conv/nonlinear/l5/4parts/caffe_output.log

4867 lines
367 KiB
Plaintext

I0412 12:48:31.490209 6895 upgrade_proto.cpp:1082] Attempting to upgrade input file specified using deprecated 'solver_type' field (enum)': /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210412-124829-f869/solver.prototxt
I0412 12:48:31.490355 6895 upgrade_proto.cpp:1089] Successfully upgraded file specified using deprecated 'solver_type' field (enum) to 'type' field (string).
W0412 12:48:31.490360 6895 upgrade_proto.cpp:1091] Note that future Caffe releases will only support 'type' field (string) for a solver's type.
I0412 12:48:31.490418 6895 caffe.cpp:218] Using GPUs 2
I0412 12:48:31.504951 6895 caffe.cpp:223] GPU 2: GeForce GTX 1080 Ti
I0412 12:48:31.798967 6895 solver.cpp:44] Initializing solver from parameters:
test_iter: 51
test_interval: 102
base_lr: 0.01
display: 12
max_iter: 10200
lr_policy: "exp"
gamma: 0.99980193
momentum: 0.9
weight_decay: 0.0001
snapshot: 102
snapshot_prefix: "snapshot"
solver_mode: GPU
device_id: 2
net: "train_val.prototxt"
train_state {
level: 0
stage: ""
}
type: "SGD"
I0412 12:48:31.799770 6895 solver.cpp:87] Creating training net from net file: train_val.prototxt
I0412 12:48:31.800387 6895 net.cpp:294] The NetState phase (0) differed from the phase (1) specified by a rule in layer val-data
I0412 12:48:31.800403 6895 net.cpp:294] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy
I0412 12:48:31.800571 6895 net.cpp:51] Initializing net from parameters:
state {
phase: TRAIN
level: 0
stage: ""
}
layer {
name: "train-data"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mirror: true
crop_size: 227
mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto"
}
data_param {
source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/train_db"
batch_size: 128
backend: LMDB
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 96
kernel_size: 11
stride: 4
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "norm1"
type: "LRN"
bottom: "conv1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "norm1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 2
kernel_size: 5
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "norm2"
type: "LRN"
bottom: "conv2"
top: "norm2"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "norm2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "pool2"
top: "conv3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "conv5.2"
type: "Convolution"
bottom: "conv5"
top: "conv5.2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu5.2"
type: "ReLU"
bottom: "conv5.2"
top: "conv5.2"
}
layer {
name: "conv5.3"
type: "Convolution"
bottom: "conv5.2"
top: "conv5.3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu5.3"
type: "ReLU"
bottom: "conv5.3"
top: "conv5.3"
}
layer {
name: "conv5.4"
type: "Convolution"
bottom: "conv5.3"
top: "conv5.4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu5.4"
type: "ReLU"
bottom: "conv5.4"
top: "conv5.4"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5.4"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "fc6"
type: "InnerProduct"
bottom: "pool5"
top: "fc6"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4096
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6"
top: "fc6"
}
layer {
name: "drop6"
type: "Dropout"
bottom: "fc6"
top: "fc6"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc7"
type: "InnerProduct"
bottom: "fc6"
top: "fc7"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4096
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
}
layer {
name: "drop7"
type: "Dropout"
bottom: "fc7"
top: "fc7"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc8"
type: "InnerProduct"
bottom: "fc7"
top: "fc8"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 196
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "fc8"
bottom: "label"
top: "loss"
}
I0412 12:48:31.800668 6895 layer_factory.hpp:77] Creating layer train-data
I0412 12:48:31.802726 6895 db_lmdb.cpp:35] Opened lmdb /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/train_db
I0412 12:48:31.802932 6895 net.cpp:84] Creating Layer train-data
I0412 12:48:31.802942 6895 net.cpp:380] train-data -> data
I0412 12:48:31.802963 6895 net.cpp:380] train-data -> label
I0412 12:48:31.802973 6895 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto
I0412 12:48:31.807654 6895 data_layer.cpp:45] output data size: 128,3,227,227
I0412 12:48:31.939566 6895 net.cpp:122] Setting up train-data
I0412 12:48:31.939589 6895 net.cpp:129] Top shape: 128 3 227 227 (19787136)
I0412 12:48:31.939594 6895 net.cpp:129] Top shape: 128 (128)
I0412 12:48:31.939597 6895 net.cpp:137] Memory required for data: 79149056
I0412 12:48:31.939607 6895 layer_factory.hpp:77] Creating layer conv1
I0412 12:48:31.939627 6895 net.cpp:84] Creating Layer conv1
I0412 12:48:31.939632 6895 net.cpp:406] conv1 <- data
I0412 12:48:31.939644 6895 net.cpp:380] conv1 -> conv1
I0412 12:48:32.483711 6895 net.cpp:122] Setting up conv1
I0412 12:48:32.483733 6895 net.cpp:129] Top shape: 128 96 55 55 (37171200)
I0412 12:48:32.483737 6895 net.cpp:137] Memory required for data: 227833856
I0412 12:48:32.483755 6895 layer_factory.hpp:77] Creating layer relu1
I0412 12:48:32.483765 6895 net.cpp:84] Creating Layer relu1
I0412 12:48:32.483769 6895 net.cpp:406] relu1 <- conv1
I0412 12:48:32.483776 6895 net.cpp:367] relu1 -> conv1 (in-place)
I0412 12:48:32.484066 6895 net.cpp:122] Setting up relu1
I0412 12:48:32.484076 6895 net.cpp:129] Top shape: 128 96 55 55 (37171200)
I0412 12:48:32.484079 6895 net.cpp:137] Memory required for data: 376518656
I0412 12:48:32.484083 6895 layer_factory.hpp:77] Creating layer norm1
I0412 12:48:32.484091 6895 net.cpp:84] Creating Layer norm1
I0412 12:48:32.484095 6895 net.cpp:406] norm1 <- conv1
I0412 12:48:32.484100 6895 net.cpp:380] norm1 -> norm1
I0412 12:48:32.484557 6895 net.cpp:122] Setting up norm1
I0412 12:48:32.484568 6895 net.cpp:129] Top shape: 128 96 55 55 (37171200)
I0412 12:48:32.484571 6895 net.cpp:137] Memory required for data: 525203456
I0412 12:48:32.484575 6895 layer_factory.hpp:77] Creating layer pool1
I0412 12:48:32.484583 6895 net.cpp:84] Creating Layer pool1
I0412 12:48:32.484586 6895 net.cpp:406] pool1 <- norm1
I0412 12:48:32.484591 6895 net.cpp:380] pool1 -> pool1
I0412 12:48:32.484627 6895 net.cpp:122] Setting up pool1
I0412 12:48:32.484633 6895 net.cpp:129] Top shape: 128 96 27 27 (8957952)
I0412 12:48:32.484637 6895 net.cpp:137] Memory required for data: 561035264
I0412 12:48:32.484640 6895 layer_factory.hpp:77] Creating layer conv2
I0412 12:48:32.484649 6895 net.cpp:84] Creating Layer conv2
I0412 12:48:32.484653 6895 net.cpp:406] conv2 <- pool1
I0412 12:48:32.484658 6895 net.cpp:380] conv2 -> conv2
I0412 12:48:32.491274 6895 net.cpp:122] Setting up conv2
I0412 12:48:32.491288 6895 net.cpp:129] Top shape: 128 256 27 27 (23887872)
I0412 12:48:32.491292 6895 net.cpp:137] Memory required for data: 656586752
I0412 12:48:32.491302 6895 layer_factory.hpp:77] Creating layer relu2
I0412 12:48:32.491307 6895 net.cpp:84] Creating Layer relu2
I0412 12:48:32.491312 6895 net.cpp:406] relu2 <- conv2
I0412 12:48:32.491317 6895 net.cpp:367] relu2 -> conv2 (in-place)
I0412 12:48:32.491741 6895 net.cpp:122] Setting up relu2
I0412 12:48:32.491751 6895 net.cpp:129] Top shape: 128 256 27 27 (23887872)
I0412 12:48:32.491755 6895 net.cpp:137] Memory required for data: 752138240
I0412 12:48:32.491758 6895 layer_factory.hpp:77] Creating layer norm2
I0412 12:48:32.491765 6895 net.cpp:84] Creating Layer norm2
I0412 12:48:32.491768 6895 net.cpp:406] norm2 <- conv2
I0412 12:48:32.491775 6895 net.cpp:380] norm2 -> norm2
I0412 12:48:32.492069 6895 net.cpp:122] Setting up norm2
I0412 12:48:32.492077 6895 net.cpp:129] Top shape: 128 256 27 27 (23887872)
I0412 12:48:32.492080 6895 net.cpp:137] Memory required for data: 847689728
I0412 12:48:32.492084 6895 layer_factory.hpp:77] Creating layer pool2
I0412 12:48:32.492091 6895 net.cpp:84] Creating Layer pool2
I0412 12:48:32.492094 6895 net.cpp:406] pool2 <- norm2
I0412 12:48:32.492100 6895 net.cpp:380] pool2 -> pool2
I0412 12:48:32.492125 6895 net.cpp:122] Setting up pool2
I0412 12:48:32.492130 6895 net.cpp:129] Top shape: 128 256 13 13 (5537792)
I0412 12:48:32.492133 6895 net.cpp:137] Memory required for data: 869840896
I0412 12:48:32.492136 6895 layer_factory.hpp:77] Creating layer conv3
I0412 12:48:32.492164 6895 net.cpp:84] Creating Layer conv3
I0412 12:48:32.492168 6895 net.cpp:406] conv3 <- pool2
I0412 12:48:32.492173 6895 net.cpp:380] conv3 -> conv3
I0412 12:48:32.501987 6895 net.cpp:122] Setting up conv3
I0412 12:48:32.502000 6895 net.cpp:129] Top shape: 128 384 13 13 (8306688)
I0412 12:48:32.502004 6895 net.cpp:137] Memory required for data: 903067648
I0412 12:48:32.502013 6895 layer_factory.hpp:77] Creating layer relu3
I0412 12:48:32.502020 6895 net.cpp:84] Creating Layer relu3
I0412 12:48:32.502024 6895 net.cpp:406] relu3 <- conv3
I0412 12:48:32.502029 6895 net.cpp:367] relu3 -> conv3 (in-place)
I0412 12:48:32.502449 6895 net.cpp:122] Setting up relu3
I0412 12:48:32.502458 6895 net.cpp:129] Top shape: 128 384 13 13 (8306688)
I0412 12:48:32.502461 6895 net.cpp:137] Memory required for data: 936294400
I0412 12:48:32.502465 6895 layer_factory.hpp:77] Creating layer conv4
I0412 12:48:32.502473 6895 net.cpp:84] Creating Layer conv4
I0412 12:48:32.502477 6895 net.cpp:406] conv4 <- conv3
I0412 12:48:32.502482 6895 net.cpp:380] conv4 -> conv4
I0412 12:48:32.512389 6895 net.cpp:122] Setting up conv4
I0412 12:48:32.512403 6895 net.cpp:129] Top shape: 128 384 13 13 (8306688)
I0412 12:48:32.512408 6895 net.cpp:137] Memory required for data: 969521152
I0412 12:48:32.512415 6895 layer_factory.hpp:77] Creating layer relu4
I0412 12:48:32.512423 6895 net.cpp:84] Creating Layer relu4
I0412 12:48:32.512426 6895 net.cpp:406] relu4 <- conv4
I0412 12:48:32.512431 6895 net.cpp:367] relu4 -> conv4 (in-place)
I0412 12:48:32.512706 6895 net.cpp:122] Setting up relu4
I0412 12:48:32.512714 6895 net.cpp:129] Top shape: 128 384 13 13 (8306688)
I0412 12:48:32.512718 6895 net.cpp:137] Memory required for data: 1002747904
I0412 12:48:32.512722 6895 layer_factory.hpp:77] Creating layer conv5
I0412 12:48:32.512730 6895 net.cpp:84] Creating Layer conv5
I0412 12:48:32.512733 6895 net.cpp:406] conv5 <- conv4
I0412 12:48:32.512739 6895 net.cpp:380] conv5 -> conv5
I0412 12:48:32.517105 6895 net.cpp:122] Setting up conv5
I0412 12:48:32.517117 6895 net.cpp:129] Top shape: 128 64 13 13 (1384448)
I0412 12:48:32.517119 6895 net.cpp:137] Memory required for data: 1008285696
I0412 12:48:32.517129 6895 layer_factory.hpp:77] Creating layer relu5
I0412 12:48:32.517135 6895 net.cpp:84] Creating Layer relu5
I0412 12:48:32.517139 6895 net.cpp:406] relu5 <- conv5
I0412 12:48:32.517144 6895 net.cpp:367] relu5 -> conv5 (in-place)
I0412 12:48:32.517562 6895 net.cpp:122] Setting up relu5
I0412 12:48:32.517572 6895 net.cpp:129] Top shape: 128 64 13 13 (1384448)
I0412 12:48:32.517575 6895 net.cpp:137] Memory required for data: 1013823488
I0412 12:48:32.517580 6895 layer_factory.hpp:77] Creating layer conv5.2
I0412 12:48:32.517587 6895 net.cpp:84] Creating Layer conv5.2
I0412 12:48:32.517591 6895 net.cpp:406] conv5.2 <- conv5
I0412 12:48:32.517596 6895 net.cpp:380] conv5.2 -> conv5.2
I0412 12:48:32.520401 6895 net.cpp:122] Setting up conv5.2
I0412 12:48:32.520411 6895 net.cpp:129] Top shape: 128 64 13 13 (1384448)
I0412 12:48:32.520416 6895 net.cpp:137] Memory required for data: 1019361280
I0412 12:48:32.520421 6895 layer_factory.hpp:77] Creating layer relu5.2
I0412 12:48:32.520429 6895 net.cpp:84] Creating Layer relu5.2
I0412 12:48:32.520432 6895 net.cpp:406] relu5.2 <- conv5.2
I0412 12:48:32.520437 6895 net.cpp:367] relu5.2 -> conv5.2 (in-place)
I0412 12:48:32.520860 6895 net.cpp:122] Setting up relu5.2
I0412 12:48:32.520869 6895 net.cpp:129] Top shape: 128 64 13 13 (1384448)
I0412 12:48:32.520874 6895 net.cpp:137] Memory required for data: 1024899072
I0412 12:48:32.520876 6895 layer_factory.hpp:77] Creating layer conv5.3
I0412 12:48:32.520885 6895 net.cpp:84] Creating Layer conv5.3
I0412 12:48:32.520889 6895 net.cpp:406] conv5.3 <- conv5.2
I0412 12:48:32.520895 6895 net.cpp:380] conv5.3 -> conv5.3
I0412 12:48:32.524489 6895 net.cpp:122] Setting up conv5.3
I0412 12:48:32.524500 6895 net.cpp:129] Top shape: 128 64 13 13 (1384448)
I0412 12:48:32.524504 6895 net.cpp:137] Memory required for data: 1030436864
I0412 12:48:32.524528 6895 layer_factory.hpp:77] Creating layer relu5.3
I0412 12:48:32.524535 6895 net.cpp:84] Creating Layer relu5.3
I0412 12:48:32.524538 6895 net.cpp:406] relu5.3 <- conv5.3
I0412 12:48:32.524544 6895 net.cpp:367] relu5.3 -> conv5.3 (in-place)
I0412 12:48:32.525038 6895 net.cpp:122] Setting up relu5.3
I0412 12:48:32.525048 6895 net.cpp:129] Top shape: 128 64 13 13 (1384448)
I0412 12:48:32.525051 6895 net.cpp:137] Memory required for data: 1035974656
I0412 12:48:32.525055 6895 layer_factory.hpp:77] Creating layer conv5.4
I0412 12:48:32.525064 6895 net.cpp:84] Creating Layer conv5.4
I0412 12:48:32.525068 6895 net.cpp:406] conv5.4 <- conv5.3
I0412 12:48:32.525074 6895 net.cpp:380] conv5.4 -> conv5.4
I0412 12:48:32.529206 6895 net.cpp:122] Setting up conv5.4
I0412 12:48:32.529215 6895 net.cpp:129] Top shape: 128 64 13 13 (1384448)
I0412 12:48:32.529219 6895 net.cpp:137] Memory required for data: 1041512448
I0412 12:48:32.529225 6895 layer_factory.hpp:77] Creating layer relu5.4
I0412 12:48:32.529232 6895 net.cpp:84] Creating Layer relu5.4
I0412 12:48:32.529237 6895 net.cpp:406] relu5.4 <- conv5.4
I0412 12:48:32.529242 6895 net.cpp:367] relu5.4 -> conv5.4 (in-place)
I0412 12:48:32.529736 6895 net.cpp:122] Setting up relu5.4
I0412 12:48:32.529745 6895 net.cpp:129] Top shape: 128 64 13 13 (1384448)
I0412 12:48:32.529748 6895 net.cpp:137] Memory required for data: 1047050240
I0412 12:48:32.529752 6895 layer_factory.hpp:77] Creating layer pool5
I0412 12:48:32.529759 6895 net.cpp:84] Creating Layer pool5
I0412 12:48:32.529762 6895 net.cpp:406] pool5 <- conv5.4
I0412 12:48:32.529769 6895 net.cpp:380] pool5 -> pool5
I0412 12:48:32.529804 6895 net.cpp:122] Setting up pool5
I0412 12:48:32.529810 6895 net.cpp:129] Top shape: 128 64 6 6 (294912)
I0412 12:48:32.529814 6895 net.cpp:137] Memory required for data: 1048229888
I0412 12:48:32.529817 6895 layer_factory.hpp:77] Creating layer fc6
I0412 12:48:32.529824 6895 net.cpp:84] Creating Layer fc6
I0412 12:48:32.529826 6895 net.cpp:406] fc6 <- pool5
I0412 12:48:32.529832 6895 net.cpp:380] fc6 -> fc6
I0412 12:48:32.619758 6895 net.cpp:122] Setting up fc6
I0412 12:48:32.619781 6895 net.cpp:129] Top shape: 128 4096 (524288)
I0412 12:48:32.619783 6895 net.cpp:137] Memory required for data: 1050327040
I0412 12:48:32.619798 6895 layer_factory.hpp:77] Creating layer relu6
I0412 12:48:32.619807 6895 net.cpp:84] Creating Layer relu6
I0412 12:48:32.619812 6895 net.cpp:406] relu6 <- fc6
I0412 12:48:32.619819 6895 net.cpp:367] relu6 -> fc6 (in-place)
I0412 12:48:32.620450 6895 net.cpp:122] Setting up relu6
I0412 12:48:32.620460 6895 net.cpp:129] Top shape: 128 4096 (524288)
I0412 12:48:32.620463 6895 net.cpp:137] Memory required for data: 1052424192
I0412 12:48:32.620466 6895 layer_factory.hpp:77] Creating layer drop6
I0412 12:48:32.620473 6895 net.cpp:84] Creating Layer drop6
I0412 12:48:32.620477 6895 net.cpp:406] drop6 <- fc6
I0412 12:48:32.620482 6895 net.cpp:367] drop6 -> fc6 (in-place)
I0412 12:48:32.620509 6895 net.cpp:122] Setting up drop6
I0412 12:48:32.620515 6895 net.cpp:129] Top shape: 128 4096 (524288)
I0412 12:48:32.620519 6895 net.cpp:137] Memory required for data: 1054521344
I0412 12:48:32.620523 6895 layer_factory.hpp:77] Creating layer fc7
I0412 12:48:32.620532 6895 net.cpp:84] Creating Layer fc7
I0412 12:48:32.620535 6895 net.cpp:406] fc7 <- fc6
I0412 12:48:32.620540 6895 net.cpp:380] fc7 -> fc7
I0412 12:48:32.782341 6895 net.cpp:122] Setting up fc7
I0412 12:48:32.782361 6895 net.cpp:129] Top shape: 128 4096 (524288)
I0412 12:48:32.782363 6895 net.cpp:137] Memory required for data: 1056618496
I0412 12:48:32.782373 6895 layer_factory.hpp:77] Creating layer relu7
I0412 12:48:32.782382 6895 net.cpp:84] Creating Layer relu7
I0412 12:48:32.782387 6895 net.cpp:406] relu7 <- fc7
I0412 12:48:32.782393 6895 net.cpp:367] relu7 -> fc7 (in-place)
I0412 12:48:32.782811 6895 net.cpp:122] Setting up relu7
I0412 12:48:32.782820 6895 net.cpp:129] Top shape: 128 4096 (524288)
I0412 12:48:32.782824 6895 net.cpp:137] Memory required for data: 1058715648
I0412 12:48:32.782845 6895 layer_factory.hpp:77] Creating layer drop7
I0412 12:48:32.782852 6895 net.cpp:84] Creating Layer drop7
I0412 12:48:32.782855 6895 net.cpp:406] drop7 <- fc7
I0412 12:48:32.782861 6895 net.cpp:367] drop7 -> fc7 (in-place)
I0412 12:48:32.782886 6895 net.cpp:122] Setting up drop7
I0412 12:48:32.782891 6895 net.cpp:129] Top shape: 128 4096 (524288)
I0412 12:48:32.782893 6895 net.cpp:137] Memory required for data: 1060812800
I0412 12:48:32.782896 6895 layer_factory.hpp:77] Creating layer fc8
I0412 12:48:32.782904 6895 net.cpp:84] Creating Layer fc8
I0412 12:48:32.782907 6895 net.cpp:406] fc8 <- fc7
I0412 12:48:32.782913 6895 net.cpp:380] fc8 -> fc8
I0412 12:48:32.790649 6895 net.cpp:122] Setting up fc8
I0412 12:48:32.790659 6895 net.cpp:129] Top shape: 128 196 (25088)
I0412 12:48:32.790663 6895 net.cpp:137] Memory required for data: 1060913152
I0412 12:48:32.790669 6895 layer_factory.hpp:77] Creating layer loss
I0412 12:48:32.790676 6895 net.cpp:84] Creating Layer loss
I0412 12:48:32.790680 6895 net.cpp:406] loss <- fc8
I0412 12:48:32.790684 6895 net.cpp:406] loss <- label
I0412 12:48:32.790691 6895 net.cpp:380] loss -> loss
I0412 12:48:32.790699 6895 layer_factory.hpp:77] Creating layer loss
I0412 12:48:32.791342 6895 net.cpp:122] Setting up loss
I0412 12:48:32.791352 6895 net.cpp:129] Top shape: (1)
I0412 12:48:32.791354 6895 net.cpp:132] with loss weight 1
I0412 12:48:32.791373 6895 net.cpp:137] Memory required for data: 1060913156
I0412 12:48:32.791375 6895 net.cpp:198] loss needs backward computation.
I0412 12:48:32.791383 6895 net.cpp:198] fc8 needs backward computation.
I0412 12:48:32.791385 6895 net.cpp:198] drop7 needs backward computation.
I0412 12:48:32.791388 6895 net.cpp:198] relu7 needs backward computation.
I0412 12:48:32.791393 6895 net.cpp:198] fc7 needs backward computation.
I0412 12:48:32.791395 6895 net.cpp:198] drop6 needs backward computation.
I0412 12:48:32.791399 6895 net.cpp:198] relu6 needs backward computation.
I0412 12:48:32.791402 6895 net.cpp:198] fc6 needs backward computation.
I0412 12:48:32.791406 6895 net.cpp:198] pool5 needs backward computation.
I0412 12:48:32.791409 6895 net.cpp:198] relu5.4 needs backward computation.
I0412 12:48:32.791414 6895 net.cpp:198] conv5.4 needs backward computation.
I0412 12:48:32.791416 6895 net.cpp:198] relu5.3 needs backward computation.
I0412 12:48:32.791420 6895 net.cpp:198] conv5.3 needs backward computation.
I0412 12:48:32.791424 6895 net.cpp:198] relu5.2 needs backward computation.
I0412 12:48:32.791426 6895 net.cpp:198] conv5.2 needs backward computation.
I0412 12:48:32.791430 6895 net.cpp:198] relu5 needs backward computation.
I0412 12:48:32.791433 6895 net.cpp:198] conv5 needs backward computation.
I0412 12:48:32.791438 6895 net.cpp:198] relu4 needs backward computation.
I0412 12:48:32.791441 6895 net.cpp:198] conv4 needs backward computation.
I0412 12:48:32.791445 6895 net.cpp:198] relu3 needs backward computation.
I0412 12:48:32.791448 6895 net.cpp:198] conv3 needs backward computation.
I0412 12:48:32.791452 6895 net.cpp:198] pool2 needs backward computation.
I0412 12:48:32.791456 6895 net.cpp:198] norm2 needs backward computation.
I0412 12:48:32.791460 6895 net.cpp:198] relu2 needs backward computation.
I0412 12:48:32.791463 6895 net.cpp:198] conv2 needs backward computation.
I0412 12:48:32.791467 6895 net.cpp:198] pool1 needs backward computation.
I0412 12:48:32.791471 6895 net.cpp:198] norm1 needs backward computation.
I0412 12:48:32.791474 6895 net.cpp:198] relu1 needs backward computation.
I0412 12:48:32.791477 6895 net.cpp:198] conv1 needs backward computation.
I0412 12:48:32.791481 6895 net.cpp:200] train-data does not need backward computation.
I0412 12:48:32.791484 6895 net.cpp:242] This network produces output loss
I0412 12:48:32.791501 6895 net.cpp:255] Network initialization done.
I0412 12:48:32.792008 6895 solver.cpp:172] Creating test net (#0) specified by net file: train_val.prototxt
I0412 12:48:32.792043 6895 net.cpp:294] The NetState phase (1) differed from the phase (0) specified by a rule in layer train-data
I0412 12:48:32.792225 6895 net.cpp:51] Initializing net from parameters:
state {
phase: TEST
}
layer {
name: "val-data"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
crop_size: 227
mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto"
}
data_param {
source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db"
batch_size: 32
backend: LMDB
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 96
kernel_size: 11
stride: 4
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "norm1"
type: "LRN"
bottom: "conv1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "norm1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 2
kernel_size: 5
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "norm2"
type: "LRN"
bottom: "conv2"
top: "norm2"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "norm2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "pool2"
top: "conv3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "conv5.2"
type: "Convolution"
bottom: "conv5"
top: "conv5.2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu5.2"
type: "ReLU"
bottom: "conv5.2"
top: "conv5.2"
}
layer {
name: "conv5.3"
type: "Convolution"
bottom: "conv5.2"
top: "conv5.3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu5.3"
type: "ReLU"
bottom: "conv5.3"
top: "conv5.3"
}
layer {
name: "conv5.4"
type: "Convolution"
bottom: "conv5.3"
top: "conv5.4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu5.4"
type: "ReLU"
bottom: "conv5.4"
top: "conv5.4"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5.4"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "fc6"
type: "InnerProduct"
bottom: "pool5"
top: "fc6"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4096
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6"
top: "fc6"
}
layer {
name: "drop6"
type: "Dropout"
bottom: "fc6"
top: "fc6"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc7"
type: "InnerProduct"
bottom: "fc6"
top: "fc7"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4096
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
}
layer {
name: "drop7"
type: "Dropout"
bottom: "fc7"
top: "fc7"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc8"
type: "InnerProduct"
bottom: "fc7"
top: "fc8"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 196
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "accuracy"
type: "Accuracy"
bottom: "fc8"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "fc8"
bottom: "label"
top: "loss"
}
I0412 12:48:32.792325 6895 layer_factory.hpp:77] Creating layer val-data
I0412 12:48:32.793843 6895 db_lmdb.cpp:35] Opened lmdb /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db
I0412 12:48:32.794049 6895 net.cpp:84] Creating Layer val-data
I0412 12:48:32.794057 6895 net.cpp:380] val-data -> data
I0412 12:48:32.794065 6895 net.cpp:380] val-data -> label
I0412 12:48:32.794071 6895 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto
I0412 12:48:32.798063 6895 data_layer.cpp:45] output data size: 32,3,227,227
I0412 12:48:32.830011 6895 net.cpp:122] Setting up val-data
I0412 12:48:32.830031 6895 net.cpp:129] Top shape: 32 3 227 227 (4946784)
I0412 12:48:32.830036 6895 net.cpp:129] Top shape: 32 (32)
I0412 12:48:32.830039 6895 net.cpp:137] Memory required for data: 19787264
I0412 12:48:32.830046 6895 layer_factory.hpp:77] Creating layer label_val-data_1_split
I0412 12:48:32.830057 6895 net.cpp:84] Creating Layer label_val-data_1_split
I0412 12:48:32.830062 6895 net.cpp:406] label_val-data_1_split <- label
I0412 12:48:32.830068 6895 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_0
I0412 12:48:32.830077 6895 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_1
I0412 12:48:32.830121 6895 net.cpp:122] Setting up label_val-data_1_split
I0412 12:48:32.830125 6895 net.cpp:129] Top shape: 32 (32)
I0412 12:48:32.830129 6895 net.cpp:129] Top shape: 32 (32)
I0412 12:48:32.830149 6895 net.cpp:137] Memory required for data: 19787520
I0412 12:48:32.830153 6895 layer_factory.hpp:77] Creating layer conv1
I0412 12:48:32.830164 6895 net.cpp:84] Creating Layer conv1
I0412 12:48:32.830168 6895 net.cpp:406] conv1 <- data
I0412 12:48:32.830173 6895 net.cpp:380] conv1 -> conv1
I0412 12:48:32.832204 6895 net.cpp:122] Setting up conv1
I0412 12:48:32.832216 6895 net.cpp:129] Top shape: 32 96 55 55 (9292800)
I0412 12:48:32.832219 6895 net.cpp:137] Memory required for data: 56958720
I0412 12:48:32.832228 6895 layer_factory.hpp:77] Creating layer relu1
I0412 12:48:32.832235 6895 net.cpp:84] Creating Layer relu1
I0412 12:48:32.832238 6895 net.cpp:406] relu1 <- conv1
I0412 12:48:32.832243 6895 net.cpp:367] relu1 -> conv1 (in-place)
I0412 12:48:32.832870 6895 net.cpp:122] Setting up relu1
I0412 12:48:32.832878 6895 net.cpp:129] Top shape: 32 96 55 55 (9292800)
I0412 12:48:32.832881 6895 net.cpp:137] Memory required for data: 94129920
I0412 12:48:32.832885 6895 layer_factory.hpp:77] Creating layer norm1
I0412 12:48:32.832893 6895 net.cpp:84] Creating Layer norm1
I0412 12:48:32.832896 6895 net.cpp:406] norm1 <- conv1
I0412 12:48:32.832901 6895 net.cpp:380] norm1 -> norm1
I0412 12:48:32.834375 6895 net.cpp:122] Setting up norm1
I0412 12:48:32.834386 6895 net.cpp:129] Top shape: 32 96 55 55 (9292800)
I0412 12:48:32.834389 6895 net.cpp:137] Memory required for data: 131301120
I0412 12:48:32.834393 6895 layer_factory.hpp:77] Creating layer pool1
I0412 12:48:32.834400 6895 net.cpp:84] Creating Layer pool1
I0412 12:48:32.834403 6895 net.cpp:406] pool1 <- norm1
I0412 12:48:32.834409 6895 net.cpp:380] pool1 -> pool1
I0412 12:48:32.834439 6895 net.cpp:122] Setting up pool1
I0412 12:48:32.834443 6895 net.cpp:129] Top shape: 32 96 27 27 (2239488)
I0412 12:48:32.834446 6895 net.cpp:137] Memory required for data: 140259072
I0412 12:48:32.834450 6895 layer_factory.hpp:77] Creating layer conv2
I0412 12:48:32.834457 6895 net.cpp:84] Creating Layer conv2
I0412 12:48:32.834460 6895 net.cpp:406] conv2 <- pool1
I0412 12:48:32.834465 6895 net.cpp:380] conv2 -> conv2
I0412 12:48:32.843268 6895 net.cpp:122] Setting up conv2
I0412 12:48:32.843281 6895 net.cpp:129] Top shape: 32 256 27 27 (5971968)
I0412 12:48:32.843284 6895 net.cpp:137] Memory required for data: 164146944
I0412 12:48:32.843293 6895 layer_factory.hpp:77] Creating layer relu2
I0412 12:48:32.843299 6895 net.cpp:84] Creating Layer relu2
I0412 12:48:32.843303 6895 net.cpp:406] relu2 <- conv2
I0412 12:48:32.843312 6895 net.cpp:367] relu2 -> conv2 (in-place)
I0412 12:48:32.843817 6895 net.cpp:122] Setting up relu2
I0412 12:48:32.843827 6895 net.cpp:129] Top shape: 32 256 27 27 (5971968)
I0412 12:48:32.843830 6895 net.cpp:137] Memory required for data: 188034816
I0412 12:48:32.843833 6895 layer_factory.hpp:77] Creating layer norm2
I0412 12:48:32.843843 6895 net.cpp:84] Creating Layer norm2
I0412 12:48:32.843847 6895 net.cpp:406] norm2 <- conv2
I0412 12:48:32.843853 6895 net.cpp:380] norm2 -> norm2
I0412 12:48:32.844216 6895 net.cpp:122] Setting up norm2
I0412 12:48:32.844225 6895 net.cpp:129] Top shape: 32 256 27 27 (5971968)
I0412 12:48:32.844228 6895 net.cpp:137] Memory required for data: 211922688
I0412 12:48:32.844233 6895 layer_factory.hpp:77] Creating layer pool2
I0412 12:48:32.844238 6895 net.cpp:84] Creating Layer pool2
I0412 12:48:32.844241 6895 net.cpp:406] pool2 <- norm2
I0412 12:48:32.844249 6895 net.cpp:380] pool2 -> pool2
I0412 12:48:32.844277 6895 net.cpp:122] Setting up pool2
I0412 12:48:32.844282 6895 net.cpp:129] Top shape: 32 256 13 13 (1384448)
I0412 12:48:32.844285 6895 net.cpp:137] Memory required for data: 217460480
I0412 12:48:32.844288 6895 layer_factory.hpp:77] Creating layer conv3
I0412 12:48:32.844300 6895 net.cpp:84] Creating Layer conv3
I0412 12:48:32.844302 6895 net.cpp:406] conv3 <- pool2
I0412 12:48:32.844307 6895 net.cpp:380] conv3 -> conv3
I0412 12:48:32.855630 6895 net.cpp:122] Setting up conv3
I0412 12:48:32.855648 6895 net.cpp:129] Top shape: 32 384 13 13 (2076672)
I0412 12:48:32.855669 6895 net.cpp:137] Memory required for data: 225767168
I0412 12:48:32.855680 6895 layer_factory.hpp:77] Creating layer relu3
I0412 12:48:32.855688 6895 net.cpp:84] Creating Layer relu3
I0412 12:48:32.855692 6895 net.cpp:406] relu3 <- conv3
I0412 12:48:32.855698 6895 net.cpp:367] relu3 -> conv3 (in-place)
I0412 12:48:32.856218 6895 net.cpp:122] Setting up relu3
I0412 12:48:32.856228 6895 net.cpp:129] Top shape: 32 384 13 13 (2076672)
I0412 12:48:32.856231 6895 net.cpp:137] Memory required for data: 234073856
I0412 12:48:32.856235 6895 layer_factory.hpp:77] Creating layer conv4
I0412 12:48:32.856246 6895 net.cpp:84] Creating Layer conv4
I0412 12:48:32.856251 6895 net.cpp:406] conv4 <- conv3
I0412 12:48:32.856256 6895 net.cpp:380] conv4 -> conv4
I0412 12:48:32.865684 6895 net.cpp:122] Setting up conv4
I0412 12:48:32.865697 6895 net.cpp:129] Top shape: 32 384 13 13 (2076672)
I0412 12:48:32.865700 6895 net.cpp:137] Memory required for data: 242380544
I0412 12:48:32.865707 6895 layer_factory.hpp:77] Creating layer relu4
I0412 12:48:32.865715 6895 net.cpp:84] Creating Layer relu4
I0412 12:48:32.865720 6895 net.cpp:406] relu4 <- conv4
I0412 12:48:32.865725 6895 net.cpp:367] relu4 -> conv4 (in-place)
I0412 12:48:32.866235 6895 net.cpp:122] Setting up relu4
I0412 12:48:32.866245 6895 net.cpp:129] Top shape: 32 384 13 13 (2076672)
I0412 12:48:32.866247 6895 net.cpp:137] Memory required for data: 250687232
I0412 12:48:32.866251 6895 layer_factory.hpp:77] Creating layer conv5
I0412 12:48:32.866261 6895 net.cpp:84] Creating Layer conv5
I0412 12:48:32.866264 6895 net.cpp:406] conv5 <- conv4
I0412 12:48:32.866272 6895 net.cpp:380] conv5 -> conv5
I0412 12:48:32.871418 6895 net.cpp:122] Setting up conv5
I0412 12:48:32.871430 6895 net.cpp:129] Top shape: 32 64 13 13 (346112)
I0412 12:48:32.871433 6895 net.cpp:137] Memory required for data: 252071680
I0412 12:48:32.871445 6895 layer_factory.hpp:77] Creating layer relu5
I0412 12:48:32.871451 6895 net.cpp:84] Creating Layer relu5
I0412 12:48:32.871456 6895 net.cpp:406] relu5 <- conv5
I0412 12:48:32.871462 6895 net.cpp:367] relu5 -> conv5 (in-place)
I0412 12:48:32.871973 6895 net.cpp:122] Setting up relu5
I0412 12:48:32.871982 6895 net.cpp:129] Top shape: 32 64 13 13 (346112)
I0412 12:48:32.871985 6895 net.cpp:137] Memory required for data: 253456128
I0412 12:48:32.871989 6895 layer_factory.hpp:77] Creating layer conv5.2
I0412 12:48:32.872004 6895 net.cpp:84] Creating Layer conv5.2
I0412 12:48:32.872006 6895 net.cpp:406] conv5.2 <- conv5
I0412 12:48:32.872012 6895 net.cpp:380] conv5.2 -> conv5.2
I0412 12:48:32.876181 6895 net.cpp:122] Setting up conv5.2
I0412 12:48:32.876192 6895 net.cpp:129] Top shape: 32 64 13 13 (346112)
I0412 12:48:32.876196 6895 net.cpp:137] Memory required for data: 254840576
I0412 12:48:32.876204 6895 layer_factory.hpp:77] Creating layer relu5.2
I0412 12:48:32.876211 6895 net.cpp:84] Creating Layer relu5.2
I0412 12:48:32.876215 6895 net.cpp:406] relu5.2 <- conv5.2
I0412 12:48:32.876221 6895 net.cpp:367] relu5.2 -> conv5.2 (in-place)
I0412 12:48:32.876565 6895 net.cpp:122] Setting up relu5.2
I0412 12:48:32.876574 6895 net.cpp:129] Top shape: 32 64 13 13 (346112)
I0412 12:48:32.876578 6895 net.cpp:137] Memory required for data: 256225024
I0412 12:48:32.876581 6895 layer_factory.hpp:77] Creating layer conv5.3
I0412 12:48:32.876591 6895 net.cpp:84] Creating Layer conv5.3
I0412 12:48:32.876595 6895 net.cpp:406] conv5.3 <- conv5.2
I0412 12:48:32.876600 6895 net.cpp:380] conv5.3 -> conv5.3
I0412 12:48:32.881510 6895 net.cpp:122] Setting up conv5.3
I0412 12:48:32.881520 6895 net.cpp:129] Top shape: 32 64 13 13 (346112)
I0412 12:48:32.881523 6895 net.cpp:137] Memory required for data: 257609472
I0412 12:48:32.881531 6895 layer_factory.hpp:77] Creating layer relu5.3
I0412 12:48:32.881536 6895 net.cpp:84] Creating Layer relu5.3
I0412 12:48:32.881539 6895 net.cpp:406] relu5.3 <- conv5.3
I0412 12:48:32.881546 6895 net.cpp:367] relu5.3 -> conv5.3 (in-place)
I0412 12:48:32.883091 6895 net.cpp:122] Setting up relu5.3
I0412 12:48:32.883117 6895 net.cpp:129] Top shape: 32 64 13 13 (346112)
I0412 12:48:32.883121 6895 net.cpp:137] Memory required for data: 258993920
I0412 12:48:32.883124 6895 layer_factory.hpp:77] Creating layer conv5.4
I0412 12:48:32.883136 6895 net.cpp:84] Creating Layer conv5.4
I0412 12:48:32.883141 6895 net.cpp:406] conv5.4 <- conv5.3
I0412 12:48:32.883147 6895 net.cpp:380] conv5.4 -> conv5.4
I0412 12:48:32.886323 6895 net.cpp:122] Setting up conv5.4
I0412 12:48:32.886333 6895 net.cpp:129] Top shape: 32 64 13 13 (346112)
I0412 12:48:32.886337 6895 net.cpp:137] Memory required for data: 260378368
I0412 12:48:32.886343 6895 layer_factory.hpp:77] Creating layer relu5.4
I0412 12:48:32.886349 6895 net.cpp:84] Creating Layer relu5.4
I0412 12:48:32.886353 6895 net.cpp:406] relu5.4 <- conv5.4
I0412 12:48:32.886359 6895 net.cpp:367] relu5.4 -> conv5.4 (in-place)
I0412 12:48:32.886857 6895 net.cpp:122] Setting up relu5.4
I0412 12:48:32.886868 6895 net.cpp:129] Top shape: 32 64 13 13 (346112)
I0412 12:48:32.886870 6895 net.cpp:137] Memory required for data: 261762816
I0412 12:48:32.886874 6895 layer_factory.hpp:77] Creating layer pool5
I0412 12:48:32.886880 6895 net.cpp:84] Creating Layer pool5
I0412 12:48:32.886884 6895 net.cpp:406] pool5 <- conv5.4
I0412 12:48:32.886890 6895 net.cpp:380] pool5 -> pool5
I0412 12:48:32.886932 6895 net.cpp:122] Setting up pool5
I0412 12:48:32.886938 6895 net.cpp:129] Top shape: 32 64 6 6 (73728)
I0412 12:48:32.886941 6895 net.cpp:137] Memory required for data: 262057728
I0412 12:48:32.886945 6895 layer_factory.hpp:77] Creating layer fc6
I0412 12:48:32.886951 6895 net.cpp:84] Creating Layer fc6
I0412 12:48:32.886955 6895 net.cpp:406] fc6 <- pool5
I0412 12:48:32.886960 6895 net.cpp:380] fc6 -> fc6
I0412 12:48:32.976459 6895 net.cpp:122] Setting up fc6
I0412 12:48:32.976480 6895 net.cpp:129] Top shape: 32 4096 (131072)
I0412 12:48:32.976483 6895 net.cpp:137] Memory required for data: 262582016
I0412 12:48:32.976495 6895 layer_factory.hpp:77] Creating layer relu6
I0412 12:48:32.976505 6895 net.cpp:84] Creating Layer relu6
I0412 12:48:32.976511 6895 net.cpp:406] relu6 <- fc6
I0412 12:48:32.976516 6895 net.cpp:367] relu6 -> fc6 (in-place)
I0412 12:48:32.976923 6895 net.cpp:122] Setting up relu6
I0412 12:48:32.976931 6895 net.cpp:129] Top shape: 32 4096 (131072)
I0412 12:48:32.976934 6895 net.cpp:137] Memory required for data: 263106304
I0412 12:48:32.976938 6895 layer_factory.hpp:77] Creating layer drop6
I0412 12:48:32.976944 6895 net.cpp:84] Creating Layer drop6
I0412 12:48:32.976948 6895 net.cpp:406] drop6 <- fc6
I0412 12:48:32.976953 6895 net.cpp:367] drop6 -> fc6 (in-place)
I0412 12:48:32.976977 6895 net.cpp:122] Setting up drop6
I0412 12:48:32.976982 6895 net.cpp:129] Top shape: 32 4096 (131072)
I0412 12:48:32.976985 6895 net.cpp:137] Memory required for data: 263630592
I0412 12:48:32.976989 6895 layer_factory.hpp:77] Creating layer fc7
I0412 12:48:32.976996 6895 net.cpp:84] Creating Layer fc7
I0412 12:48:32.976999 6895 net.cpp:406] fc7 <- fc6
I0412 12:48:32.977005 6895 net.cpp:380] fc7 -> fc7
I0412 12:48:33.135601 6895 net.cpp:122] Setting up fc7
I0412 12:48:33.135623 6895 net.cpp:129] Top shape: 32 4096 (131072)
I0412 12:48:33.135627 6895 net.cpp:137] Memory required for data: 264154880
I0412 12:48:33.135637 6895 layer_factory.hpp:77] Creating layer relu7
I0412 12:48:33.135644 6895 net.cpp:84] Creating Layer relu7
I0412 12:48:33.135648 6895 net.cpp:406] relu7 <- fc7
I0412 12:48:33.135655 6895 net.cpp:367] relu7 -> fc7 (in-place)
I0412 12:48:33.136323 6895 net.cpp:122] Setting up relu7
I0412 12:48:33.136333 6895 net.cpp:129] Top shape: 32 4096 (131072)
I0412 12:48:33.136337 6895 net.cpp:137] Memory required for data: 264679168
I0412 12:48:33.136340 6895 layer_factory.hpp:77] Creating layer drop7
I0412 12:48:33.136346 6895 net.cpp:84] Creating Layer drop7
I0412 12:48:33.136350 6895 net.cpp:406] drop7 <- fc7
I0412 12:48:33.136356 6895 net.cpp:367] drop7 -> fc7 (in-place)
I0412 12:48:33.136381 6895 net.cpp:122] Setting up drop7
I0412 12:48:33.136405 6895 net.cpp:129] Top shape: 32 4096 (131072)
I0412 12:48:33.136409 6895 net.cpp:137] Memory required for data: 265203456
I0412 12:48:33.136412 6895 layer_factory.hpp:77] Creating layer fc8
I0412 12:48:33.136420 6895 net.cpp:84] Creating Layer fc8
I0412 12:48:33.136423 6895 net.cpp:406] fc8 <- fc7
I0412 12:48:33.136430 6895 net.cpp:380] fc8 -> fc8
I0412 12:48:33.144217 6895 net.cpp:122] Setting up fc8
I0412 12:48:33.144228 6895 net.cpp:129] Top shape: 32 196 (6272)
I0412 12:48:33.144232 6895 net.cpp:137] Memory required for data: 265228544
I0412 12:48:33.144238 6895 layer_factory.hpp:77] Creating layer fc8_fc8_0_split
I0412 12:48:33.144246 6895 net.cpp:84] Creating Layer fc8_fc8_0_split
I0412 12:48:33.144250 6895 net.cpp:406] fc8_fc8_0_split <- fc8
I0412 12:48:33.144255 6895 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_0
I0412 12:48:33.144263 6895 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_1
I0412 12:48:33.144297 6895 net.cpp:122] Setting up fc8_fc8_0_split
I0412 12:48:33.144301 6895 net.cpp:129] Top shape: 32 196 (6272)
I0412 12:48:33.144305 6895 net.cpp:129] Top shape: 32 196 (6272)
I0412 12:48:33.144309 6895 net.cpp:137] Memory required for data: 265278720
I0412 12:48:33.144311 6895 layer_factory.hpp:77] Creating layer accuracy
I0412 12:48:33.144317 6895 net.cpp:84] Creating Layer accuracy
I0412 12:48:33.144321 6895 net.cpp:406] accuracy <- fc8_fc8_0_split_0
I0412 12:48:33.144325 6895 net.cpp:406] accuracy <- label_val-data_1_split_0
I0412 12:48:33.144331 6895 net.cpp:380] accuracy -> accuracy
I0412 12:48:33.144337 6895 net.cpp:122] Setting up accuracy
I0412 12:48:33.144341 6895 net.cpp:129] Top shape: (1)
I0412 12:48:33.144345 6895 net.cpp:137] Memory required for data: 265278724
I0412 12:48:33.144347 6895 layer_factory.hpp:77] Creating layer loss
I0412 12:48:33.144357 6895 net.cpp:84] Creating Layer loss
I0412 12:48:33.144361 6895 net.cpp:406] loss <- fc8_fc8_0_split_1
I0412 12:48:33.144366 6895 net.cpp:406] loss <- label_val-data_1_split_1
I0412 12:48:33.144369 6895 net.cpp:380] loss -> loss
I0412 12:48:33.144376 6895 layer_factory.hpp:77] Creating layer loss
I0412 12:48:33.146119 6895 net.cpp:122] Setting up loss
I0412 12:48:33.146129 6895 net.cpp:129] Top shape: (1)
I0412 12:48:33.146133 6895 net.cpp:132] with loss weight 1
I0412 12:48:33.146143 6895 net.cpp:137] Memory required for data: 265278728
I0412 12:48:33.146147 6895 net.cpp:198] loss needs backward computation.
I0412 12:48:33.146152 6895 net.cpp:200] accuracy does not need backward computation.
I0412 12:48:33.146155 6895 net.cpp:198] fc8_fc8_0_split needs backward computation.
I0412 12:48:33.146158 6895 net.cpp:198] fc8 needs backward computation.
I0412 12:48:33.146162 6895 net.cpp:198] drop7 needs backward computation.
I0412 12:48:33.146165 6895 net.cpp:198] relu7 needs backward computation.
I0412 12:48:33.146168 6895 net.cpp:198] fc7 needs backward computation.
I0412 12:48:33.146171 6895 net.cpp:198] drop6 needs backward computation.
I0412 12:48:33.146175 6895 net.cpp:198] relu6 needs backward computation.
I0412 12:48:33.146178 6895 net.cpp:198] fc6 needs backward computation.
I0412 12:48:33.146183 6895 net.cpp:198] pool5 needs backward computation.
I0412 12:48:33.146185 6895 net.cpp:198] relu5.4 needs backward computation.
I0412 12:48:33.146189 6895 net.cpp:198] conv5.4 needs backward computation.
I0412 12:48:33.146193 6895 net.cpp:198] relu5.3 needs backward computation.
I0412 12:48:33.146198 6895 net.cpp:198] conv5.3 needs backward computation.
I0412 12:48:33.146200 6895 net.cpp:198] relu5.2 needs backward computation.
I0412 12:48:33.146203 6895 net.cpp:198] conv5.2 needs backward computation.
I0412 12:48:33.146207 6895 net.cpp:198] relu5 needs backward computation.
I0412 12:48:33.146210 6895 net.cpp:198] conv5 needs backward computation.
I0412 12:48:33.146214 6895 net.cpp:198] relu4 needs backward computation.
I0412 12:48:33.146217 6895 net.cpp:198] conv4 needs backward computation.
I0412 12:48:33.146221 6895 net.cpp:198] relu3 needs backward computation.
I0412 12:48:33.146239 6895 net.cpp:198] conv3 needs backward computation.
I0412 12:48:33.146242 6895 net.cpp:198] pool2 needs backward computation.
I0412 12:48:33.146246 6895 net.cpp:198] norm2 needs backward computation.
I0412 12:48:33.146250 6895 net.cpp:198] relu2 needs backward computation.
I0412 12:48:33.146253 6895 net.cpp:198] conv2 needs backward computation.
I0412 12:48:33.146256 6895 net.cpp:198] pool1 needs backward computation.
I0412 12:48:33.146260 6895 net.cpp:198] norm1 needs backward computation.
I0412 12:48:33.146263 6895 net.cpp:198] relu1 needs backward computation.
I0412 12:48:33.146266 6895 net.cpp:198] conv1 needs backward computation.
I0412 12:48:33.146270 6895 net.cpp:200] label_val-data_1_split does not need backward computation.
I0412 12:48:33.146275 6895 net.cpp:200] val-data does not need backward computation.
I0412 12:48:33.146277 6895 net.cpp:242] This network produces output accuracy
I0412 12:48:33.146281 6895 net.cpp:242] This network produces output loss
I0412 12:48:33.146299 6895 net.cpp:255] Network initialization done.
I0412 12:48:33.146386 6895 solver.cpp:56] Solver scaffolding done.
I0412 12:48:33.146981 6895 caffe.cpp:248] Starting Optimization
I0412 12:48:33.146989 6895 solver.cpp:272] Solving
I0412 12:48:33.146992 6895 solver.cpp:273] Learning Rate Policy: exp
I0412 12:48:33.148236 6895 solver.cpp:330] Iteration 0, Testing net (#0)
I0412 12:48:33.148245 6895 net.cpp:676] Ignoring source layer train-data
I0412 12:48:33.201103 6895 blocking_queue.cpp:49] Waiting for data
I0412 12:48:37.690565 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 12:48:37.734858 6895 solver.cpp:397] Test net output #0: accuracy = 0.00428922
I0412 12:48:37.734910 6895 solver.cpp:397] Test net output #1: loss = 5.27973 (* 1 = 5.27973 loss)
I0412 12:48:37.823364 6895 solver.cpp:218] Iteration 0 (1.13746e+37 iter/s, 4.67619s/12 iters), loss = 5.28104
I0412 12:48:37.824892 6895 solver.cpp:237] Train net output #0: loss = 5.28104 (* 1 = 5.28104 loss)
I0412 12:48:37.824911 6895 sgd_solver.cpp:105] Iteration 0, lr = 0.01
I0412 12:48:41.401437 6895 solver.cpp:218] Iteration 12 (3.35533 iter/s, 3.5764s/12 iters), loss = 5.29723
I0412 12:48:41.401489 6895 solver.cpp:237] Train net output #0: loss = 5.29723 (* 1 = 5.29723 loss)
I0412 12:48:41.401502 6895 sgd_solver.cpp:105] Iteration 12, lr = 0.00997626
I0412 12:48:45.981995 6895 solver.cpp:218] Iteration 24 (2.6199 iter/s, 4.58033s/12 iters), loss = 5.27704
I0412 12:48:45.982048 6895 solver.cpp:237] Train net output #0: loss = 5.27704 (* 1 = 5.27704 loss)
I0412 12:48:45.982059 6895 sgd_solver.cpp:105] Iteration 24, lr = 0.00995257
I0412 12:48:50.384068 6895 solver.cpp:218] Iteration 36 (2.72612 iter/s, 4.40186s/12 iters), loss = 5.28652
I0412 12:48:50.384121 6895 solver.cpp:237] Train net output #0: loss = 5.28652 (* 1 = 5.28652 loss)
I0412 12:48:50.384135 6895 sgd_solver.cpp:105] Iteration 36, lr = 0.00992894
I0412 12:48:54.910501 6895 solver.cpp:218] Iteration 48 (2.65122 iter/s, 4.52621s/12 iters), loss = 5.31176
I0412 12:48:54.910557 6895 solver.cpp:237] Train net output #0: loss = 5.31176 (* 1 = 5.31176 loss)
I0412 12:48:54.910569 6895 sgd_solver.cpp:105] Iteration 48, lr = 0.00990537
I0412 12:48:59.402689 6895 solver.cpp:218] Iteration 60 (2.67144 iter/s, 4.49196s/12 iters), loss = 5.30572
I0412 12:48:59.402738 6895 solver.cpp:237] Train net output #0: loss = 5.30572 (* 1 = 5.30572 loss)
I0412 12:48:59.402750 6895 sgd_solver.cpp:105] Iteration 60, lr = 0.00988185
I0412 12:49:03.949535 6895 solver.cpp:218] Iteration 72 (2.63932 iter/s, 4.54662s/12 iters), loss = 5.29702
I0412 12:49:03.949668 6895 solver.cpp:237] Train net output #0: loss = 5.29702 (* 1 = 5.29702 loss)
I0412 12:49:03.949687 6895 sgd_solver.cpp:105] Iteration 72, lr = 0.00985839
I0412 12:49:08.529842 6895 solver.cpp:218] Iteration 84 (2.62008 iter/s, 4.58001s/12 iters), loss = 5.30138
I0412 12:49:08.529896 6895 solver.cpp:237] Train net output #0: loss = 5.30138 (* 1 = 5.30138 loss)
I0412 12:49:08.529908 6895 sgd_solver.cpp:105] Iteration 84, lr = 0.00983498
I0412 12:49:13.166011 6895 solver.cpp:218] Iteration 96 (2.58847 iter/s, 4.63595s/12 iters), loss = 5.31484
I0412 12:49:13.166050 6895 solver.cpp:237] Train net output #0: loss = 5.31484 (* 1 = 5.31484 loss)
I0412 12:49:13.166059 6895 sgd_solver.cpp:105] Iteration 96, lr = 0.00981163
I0412 12:49:14.703181 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 12:49:15.008548 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_102.caffemodel
I0412 12:49:16.639775 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_102.solverstate
I0412 12:49:17.816581 6895 solver.cpp:330] Iteration 102, Testing net (#0)
I0412 12:49:17.816609 6895 net.cpp:676] Ignoring source layer train-data
I0412 12:49:22.178182 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 12:49:22.254534 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 12:49:22.254573 6895 solver.cpp:397] Test net output #1: loss = 5.29122 (* 1 = 5.29122 loss)
I0412 12:49:24.053894 6895 solver.cpp:218] Iteration 108 (1.10219 iter/s, 10.8875s/12 iters), loss = 5.31404
I0412 12:49:24.053934 6895 solver.cpp:237] Train net output #0: loss = 5.31404 (* 1 = 5.31404 loss)
I0412 12:49:24.053943 6895 sgd_solver.cpp:105] Iteration 108, lr = 0.00978834
I0412 12:49:28.793980 6895 solver.cpp:218] Iteration 120 (2.53172 iter/s, 4.73986s/12 iters), loss = 5.28525
I0412 12:49:28.794023 6895 solver.cpp:237] Train net output #0: loss = 5.28525 (* 1 = 5.28525 loss)
I0412 12:49:28.794034 6895 sgd_solver.cpp:105] Iteration 120, lr = 0.0097651
I0412 12:49:33.403769 6895 solver.cpp:218] Iteration 132 (2.60328 iter/s, 4.60958s/12 iters), loss = 5.25532
I0412 12:49:33.403818 6895 solver.cpp:237] Train net output #0: loss = 5.25532 (* 1 = 5.25532 loss)
I0412 12:49:33.403831 6895 sgd_solver.cpp:105] Iteration 132, lr = 0.00974192
I0412 12:49:37.988653 6895 solver.cpp:218] Iteration 144 (2.61742 iter/s, 4.58467s/12 iters), loss = 5.3164
I0412 12:49:37.988819 6895 solver.cpp:237] Train net output #0: loss = 5.3164 (* 1 = 5.3164 loss)
I0412 12:49:37.988832 6895 sgd_solver.cpp:105] Iteration 144, lr = 0.00971879
I0412 12:49:42.592864 6895 solver.cpp:218] Iteration 156 (2.60649 iter/s, 4.60388s/12 iters), loss = 5.25733
I0412 12:49:42.592902 6895 solver.cpp:237] Train net output #0: loss = 5.25733 (* 1 = 5.25733 loss)
I0412 12:49:42.592911 6895 sgd_solver.cpp:105] Iteration 156, lr = 0.00969571
I0412 12:49:47.170789 6895 solver.cpp:218] Iteration 168 (2.6214 iter/s, 4.57771s/12 iters), loss = 5.28043
I0412 12:49:47.170838 6895 solver.cpp:237] Train net output #0: loss = 5.28043 (* 1 = 5.28043 loss)
I0412 12:49:47.170850 6895 sgd_solver.cpp:105] Iteration 168, lr = 0.00967269
I0412 12:49:51.682124 6895 solver.cpp:218] Iteration 180 (2.66009 iter/s, 4.51112s/12 iters), loss = 5.27176
I0412 12:49:51.682179 6895 solver.cpp:237] Train net output #0: loss = 5.27176 (* 1 = 5.27176 loss)
I0412 12:49:51.682193 6895 sgd_solver.cpp:105] Iteration 180, lr = 0.00964973
I0412 12:49:56.591210 6895 solver.cpp:218] Iteration 192 (2.44456 iter/s, 4.90885s/12 iters), loss = 5.28863
I0412 12:49:56.591261 6895 solver.cpp:237] Train net output #0: loss = 5.28863 (* 1 = 5.28863 loss)
I0412 12:49:56.591274 6895 sgd_solver.cpp:105] Iteration 192, lr = 0.00962682
I0412 12:50:00.089115 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 12:50:00.755875 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_204.caffemodel
I0412 12:50:02.302210 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_204.solverstate
I0412 12:50:03.480113 6895 solver.cpp:330] Iteration 204, Testing net (#0)
I0412 12:50:03.480139 6895 net.cpp:676] Ignoring source layer train-data
I0412 12:50:07.794843 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 12:50:07.916316 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 12:50:07.916363 6895 solver.cpp:397] Test net output #1: loss = 5.28899 (* 1 = 5.28899 loss)
I0412 12:50:07.999385 6895 solver.cpp:218] Iteration 204 (1.05192 iter/s, 11.4077s/12 iters), loss = 5.27954
I0412 12:50:08.050048 6895 solver.cpp:237] Train net output #0: loss = 5.27954 (* 1 = 5.27954 loss)
I0412 12:50:08.050066 6895 sgd_solver.cpp:105] Iteration 204, lr = 0.00960396
I0412 12:50:12.236886 6895 solver.cpp:218] Iteration 216 (2.86623 iter/s, 4.18668s/12 iters), loss = 5.28881
I0412 12:50:12.236938 6895 solver.cpp:237] Train net output #0: loss = 5.28881 (* 1 = 5.28881 loss)
I0412 12:50:12.236951 6895 sgd_solver.cpp:105] Iteration 216, lr = 0.00958116
I0412 12:50:16.969936 6895 solver.cpp:218] Iteration 228 (2.53549 iter/s, 4.73281s/12 iters), loss = 5.27958
I0412 12:50:16.970008 6895 solver.cpp:237] Train net output #0: loss = 5.27958 (* 1 = 5.27958 loss)
I0412 12:50:16.970021 6895 sgd_solver.cpp:105] Iteration 228, lr = 0.00955841
I0412 12:50:21.572053 6895 solver.cpp:218] Iteration 240 (2.60764 iter/s, 4.60187s/12 iters), loss = 5.30905
I0412 12:50:21.572103 6895 solver.cpp:237] Train net output #0: loss = 5.30905 (* 1 = 5.30905 loss)
I0412 12:50:21.572114 6895 sgd_solver.cpp:105] Iteration 240, lr = 0.00953572
I0412 12:50:26.272096 6895 solver.cpp:218] Iteration 252 (2.55329 iter/s, 4.69982s/12 iters), loss = 5.28255
I0412 12:50:26.272145 6895 solver.cpp:237] Train net output #0: loss = 5.28255 (* 1 = 5.28255 loss)
I0412 12:50:26.272157 6895 sgd_solver.cpp:105] Iteration 252, lr = 0.00951308
I0412 12:50:31.026850 6895 solver.cpp:218] Iteration 264 (2.52391 iter/s, 4.75452s/12 iters), loss = 5.28733
I0412 12:50:31.026901 6895 solver.cpp:237] Train net output #0: loss = 5.28733 (* 1 = 5.28733 loss)
I0412 12:50:31.026913 6895 sgd_solver.cpp:105] Iteration 264, lr = 0.00949049
I0412 12:50:35.834257 6895 solver.cpp:218] Iteration 276 (2.49627 iter/s, 4.80717s/12 iters), loss = 5.30319
I0412 12:50:35.834313 6895 solver.cpp:237] Train net output #0: loss = 5.30319 (* 1 = 5.30319 loss)
I0412 12:50:35.834326 6895 sgd_solver.cpp:105] Iteration 276, lr = 0.00946796
I0412 12:50:40.620882 6895 solver.cpp:218] Iteration 288 (2.50711 iter/s, 4.78639s/12 iters), loss = 5.28544
I0412 12:50:40.622267 6895 solver.cpp:237] Train net output #0: loss = 5.28544 (* 1 = 5.28544 loss)
I0412 12:50:40.622277 6895 sgd_solver.cpp:105] Iteration 288, lr = 0.00944548
I0412 12:50:45.366179 6895 solver.cpp:218] Iteration 300 (2.52965 iter/s, 4.74373s/12 iters), loss = 5.30741
I0412 12:50:45.366227 6895 solver.cpp:237] Train net output #0: loss = 5.30741 (* 1 = 5.30741 loss)
I0412 12:50:45.366240 6895 sgd_solver.cpp:105] Iteration 300, lr = 0.00942305
I0412 12:50:46.247294 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 12:50:47.246747 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_306.caffemodel
I0412 12:50:48.803447 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_306.solverstate
I0412 12:50:49.984553 6895 solver.cpp:330] Iteration 306, Testing net (#0)
I0412 12:50:49.984583 6895 net.cpp:676] Ignoring source layer train-data
I0412 12:50:54.253332 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 12:50:54.409705 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 12:50:54.409750 6895 solver.cpp:397] Test net output #1: loss = 5.28761 (* 1 = 5.28761 loss)
I0412 12:50:56.209753 6895 solver.cpp:218] Iteration 312 (1.10669 iter/s, 10.8431s/12 iters), loss = 5.28592
I0412 12:50:56.209810 6895 solver.cpp:237] Train net output #0: loss = 5.28592 (* 1 = 5.28592 loss)
I0412 12:50:56.209821 6895 sgd_solver.cpp:105] Iteration 312, lr = 0.00940068
I0412 12:51:00.560437 6895 solver.cpp:218] Iteration 324 (2.75833 iter/s, 4.35045s/12 iters), loss = 5.24838
I0412 12:51:00.560492 6895 solver.cpp:237] Train net output #0: loss = 5.24838 (* 1 = 5.24838 loss)
I0412 12:51:00.560504 6895 sgd_solver.cpp:105] Iteration 324, lr = 0.00937836
I0412 12:51:05.171787 6895 solver.cpp:218] Iteration 336 (2.60241 iter/s, 4.61112s/12 iters), loss = 5.27058
I0412 12:51:05.171834 6895 solver.cpp:237] Train net output #0: loss = 5.27058 (* 1 = 5.27058 loss)
I0412 12:51:05.171845 6895 sgd_solver.cpp:105] Iteration 336, lr = 0.0093561
I0412 12:51:09.878695 6895 solver.cpp:218] Iteration 348 (2.54956 iter/s, 4.70669s/12 iters), loss = 5.27802
I0412 12:51:09.878732 6895 solver.cpp:237] Train net output #0: loss = 5.27802 (* 1 = 5.27802 loss)
I0412 12:51:09.878741 6895 sgd_solver.cpp:105] Iteration 348, lr = 0.00933388
I0412 12:51:14.531731 6895 solver.cpp:218] Iteration 360 (2.57908 iter/s, 4.65282s/12 iters), loss = 5.29873
I0412 12:51:14.531859 6895 solver.cpp:237] Train net output #0: loss = 5.29873 (* 1 = 5.29873 loss)
I0412 12:51:14.531868 6895 sgd_solver.cpp:105] Iteration 360, lr = 0.00931172
I0412 12:51:19.278115 6895 solver.cpp:218] Iteration 372 (2.5284 iter/s, 4.74608s/12 iters), loss = 5.27862
I0412 12:51:19.278152 6895 solver.cpp:237] Train net output #0: loss = 5.27862 (* 1 = 5.27862 loss)
I0412 12:51:19.278162 6895 sgd_solver.cpp:105] Iteration 372, lr = 0.00928961
I0412 12:51:24.060083 6895 solver.cpp:218] Iteration 384 (2.50955 iter/s, 4.78174s/12 iters), loss = 5.28298
I0412 12:51:24.060142 6895 solver.cpp:237] Train net output #0: loss = 5.28298 (* 1 = 5.28298 loss)
I0412 12:51:24.060158 6895 sgd_solver.cpp:105] Iteration 384, lr = 0.00926756
I0412 12:51:28.681586 6895 solver.cpp:218] Iteration 396 (2.59669 iter/s, 4.62127s/12 iters), loss = 5.281
I0412 12:51:28.681635 6895 solver.cpp:237] Train net output #0: loss = 5.281 (* 1 = 5.281 loss)
I0412 12:51:28.681648 6895 sgd_solver.cpp:105] Iteration 396, lr = 0.00924556
I0412 12:51:31.540634 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 12:51:32.813357 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_408.caffemodel
I0412 12:51:34.361600 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_408.solverstate
I0412 12:51:35.680192 6895 solver.cpp:330] Iteration 408, Testing net (#0)
I0412 12:51:35.680219 6895 net.cpp:676] Ignoring source layer train-data
I0412 12:51:39.899422 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 12:51:40.101161 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 12:51:40.101210 6895 solver.cpp:397] Test net output #1: loss = 5.28786 (* 1 = 5.28786 loss)
I0412 12:51:40.183200 6895 solver.cpp:218] Iteration 408 (1.04338 iter/s, 11.5011s/12 iters), loss = 5.28961
I0412 12:51:40.183245 6895 solver.cpp:237] Train net output #0: loss = 5.28961 (* 1 = 5.28961 loss)
I0412 12:51:40.183257 6895 sgd_solver.cpp:105] Iteration 408, lr = 0.00922361
I0412 12:51:44.088420 6895 solver.cpp:218] Iteration 420 (3.07297 iter/s, 3.90502s/12 iters), loss = 5.27667
I0412 12:51:44.088472 6895 solver.cpp:237] Train net output #0: loss = 5.27667 (* 1 = 5.27667 loss)
I0412 12:51:44.088486 6895 sgd_solver.cpp:105] Iteration 420, lr = 0.00920171
I0412 12:51:48.619386 6895 solver.cpp:218] Iteration 432 (2.64857 iter/s, 4.53074s/12 iters), loss = 5.27791
I0412 12:51:48.619503 6895 solver.cpp:237] Train net output #0: loss = 5.27791 (* 1 = 5.27791 loss)
I0412 12:51:48.619516 6895 sgd_solver.cpp:105] Iteration 432, lr = 0.00917986
I0412 12:51:53.199671 6895 solver.cpp:218] Iteration 444 (2.62009 iter/s, 4.57999s/12 iters), loss = 5.29805
I0412 12:51:53.199710 6895 solver.cpp:237] Train net output #0: loss = 5.29805 (* 1 = 5.29805 loss)
I0412 12:51:53.199719 6895 sgd_solver.cpp:105] Iteration 444, lr = 0.00915807
I0412 12:51:57.840859 6895 solver.cpp:218] Iteration 456 (2.58567 iter/s, 4.64097s/12 iters), loss = 5.2865
I0412 12:51:57.840907 6895 solver.cpp:237] Train net output #0: loss = 5.2865 (* 1 = 5.2865 loss)
I0412 12:51:57.840919 6895 sgd_solver.cpp:105] Iteration 456, lr = 0.00913632
I0412 12:52:02.675797 6895 solver.cpp:218] Iteration 468 (2.48206 iter/s, 4.8347s/12 iters), loss = 5.29359
I0412 12:52:02.675840 6895 solver.cpp:237] Train net output #0: loss = 5.29359 (* 1 = 5.29359 loss)
I0412 12:52:02.675849 6895 sgd_solver.cpp:105] Iteration 468, lr = 0.00911463
I0412 12:52:07.532490 6895 solver.cpp:218] Iteration 480 (2.47094 iter/s, 4.85646s/12 iters), loss = 5.2713
I0412 12:52:07.532547 6895 solver.cpp:237] Train net output #0: loss = 5.2713 (* 1 = 5.2713 loss)
I0412 12:52:07.532562 6895 sgd_solver.cpp:105] Iteration 480, lr = 0.00909299
I0412 12:52:12.278789 6895 solver.cpp:218] Iteration 492 (2.52842 iter/s, 4.74606s/12 iters), loss = 5.29781
I0412 12:52:12.278836 6895 solver.cpp:237] Train net output #0: loss = 5.29781 (* 1 = 5.29781 loss)
I0412 12:52:12.278847 6895 sgd_solver.cpp:105] Iteration 492, lr = 0.0090714
I0412 12:52:16.832526 6895 solver.cpp:218] Iteration 504 (2.63533 iter/s, 4.55351s/12 iters), loss = 5.27753
I0412 12:52:16.832583 6895 solver.cpp:237] Train net output #0: loss = 5.27753 (* 1 = 5.27753 loss)
I0412 12:52:16.832595 6895 sgd_solver.cpp:105] Iteration 504, lr = 0.00904986
I0412 12:52:17.037868 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 12:52:18.631309 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_510.caffemodel
I0412 12:52:20.855567 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_510.solverstate
I0412 12:52:22.052778 6895 solver.cpp:330] Iteration 510, Testing net (#0)
I0412 12:52:22.052805 6895 net.cpp:676] Ignoring source layer train-data
I0412 12:52:26.250666 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 12:52:26.486325 6895 solver.cpp:397] Test net output #0: accuracy = 0.00612745
I0412 12:52:26.486367 6895 solver.cpp:397] Test net output #1: loss = 5.28671 (* 1 = 5.28671 loss)
I0412 12:52:28.289288 6895 solver.cpp:218] Iteration 516 (1.04746 iter/s, 11.4563s/12 iters), loss = 5.29619
I0412 12:52:28.289338 6895 solver.cpp:237] Train net output #0: loss = 5.29619 (* 1 = 5.29619 loss)
I0412 12:52:28.289351 6895 sgd_solver.cpp:105] Iteration 516, lr = 0.00902838
I0412 12:52:32.755352 6895 solver.cpp:218] Iteration 528 (2.68706 iter/s, 4.46584s/12 iters), loss = 5.28695
I0412 12:52:32.755388 6895 solver.cpp:237] Train net output #0: loss = 5.28695 (* 1 = 5.28695 loss)
I0412 12:52:32.755398 6895 sgd_solver.cpp:105] Iteration 528, lr = 0.00900694
I0412 12:52:37.464805 6895 solver.cpp:218] Iteration 540 (2.54819 iter/s, 4.70923s/12 iters), loss = 5.28201
I0412 12:52:37.464864 6895 solver.cpp:237] Train net output #0: loss = 5.28201 (* 1 = 5.28201 loss)
I0412 12:52:37.464880 6895 sgd_solver.cpp:105] Iteration 540, lr = 0.00898556
I0412 12:52:42.191092 6895 solver.cpp:218] Iteration 552 (2.53912 iter/s, 4.72604s/12 iters), loss = 5.27329
I0412 12:52:42.191143 6895 solver.cpp:237] Train net output #0: loss = 5.27329 (* 1 = 5.27329 loss)
I0412 12:52:42.191155 6895 sgd_solver.cpp:105] Iteration 552, lr = 0.00896423
I0412 12:52:46.806666 6895 solver.cpp:218] Iteration 564 (2.60002 iter/s, 4.61534s/12 iters), loss = 5.26979
I0412 12:52:46.806707 6895 solver.cpp:237] Train net output #0: loss = 5.26979 (* 1 = 5.26979 loss)
I0412 12:52:46.806715 6895 sgd_solver.cpp:105] Iteration 564, lr = 0.00894294
I0412 12:52:51.581661 6895 solver.cpp:218] Iteration 576 (2.51321 iter/s, 4.77477s/12 iters), loss = 5.28361
I0412 12:52:51.581725 6895 solver.cpp:237] Train net output #0: loss = 5.28361 (* 1 = 5.28361 loss)
I0412 12:52:51.581734 6895 sgd_solver.cpp:105] Iteration 576, lr = 0.00892171
I0412 12:52:56.172927 6895 solver.cpp:218] Iteration 588 (2.6138 iter/s, 4.59102s/12 iters), loss = 5.27288
I0412 12:52:56.172966 6895 solver.cpp:237] Train net output #0: loss = 5.27288 (* 1 = 5.27288 loss)
I0412 12:52:56.172973 6895 sgd_solver.cpp:105] Iteration 588, lr = 0.00890053
I0412 12:53:00.999977 6895 solver.cpp:218] Iteration 600 (2.48611 iter/s, 4.82682s/12 iters), loss = 5.2641
I0412 12:53:01.000028 6895 solver.cpp:237] Train net output #0: loss = 5.2641 (* 1 = 5.2641 loss)
I0412 12:53:01.000041 6895 sgd_solver.cpp:105] Iteration 600, lr = 0.0088794
I0412 12:53:03.141002 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 12:53:05.184850 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_612.caffemodel
I0412 12:53:07.540866 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_612.solverstate
I0412 12:53:09.785488 6895 solver.cpp:330] Iteration 612, Testing net (#0)
I0412 12:53:09.785522 6895 net.cpp:676] Ignoring source layer train-data
I0412 12:53:13.942217 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 12:53:14.224691 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 12:53:14.224753 6895 solver.cpp:397] Test net output #1: loss = 5.28638 (* 1 = 5.28638 loss)
I0412 12:53:14.306268 6895 solver.cpp:218] Iteration 612 (0.901866 iter/s, 13.3057s/12 iters), loss = 5.28776
I0412 12:53:14.306329 6895 solver.cpp:237] Train net output #0: loss = 5.28776 (* 1 = 5.28776 loss)
I0412 12:53:14.306344 6895 sgd_solver.cpp:105] Iteration 612, lr = 0.00885831
I0412 12:53:18.449738 6895 solver.cpp:218] Iteration 624 (2.89628 iter/s, 4.14325s/12 iters), loss = 5.30074
I0412 12:53:18.449776 6895 solver.cpp:237] Train net output #0: loss = 5.30074 (* 1 = 5.30074 loss)
I0412 12:53:18.449784 6895 sgd_solver.cpp:105] Iteration 624, lr = 0.00883728
I0412 12:53:23.182945 6895 solver.cpp:218] Iteration 636 (2.5354 iter/s, 4.73299s/12 iters), loss = 5.29173
I0412 12:53:23.183084 6895 solver.cpp:237] Train net output #0: loss = 5.29173 (* 1 = 5.29173 loss)
I0412 12:53:23.183094 6895 sgd_solver.cpp:105] Iteration 636, lr = 0.0088163
I0412 12:53:27.704612 6895 solver.cpp:218] Iteration 648 (2.65408 iter/s, 4.52135s/12 iters), loss = 5.26638
I0412 12:53:27.704670 6895 solver.cpp:237] Train net output #0: loss = 5.26638 (* 1 = 5.26638 loss)
I0412 12:53:27.704684 6895 sgd_solver.cpp:105] Iteration 648, lr = 0.00879537
I0412 12:53:32.248598 6895 solver.cpp:218] Iteration 660 (2.64099 iter/s, 4.54375s/12 iters), loss = 5.2741
I0412 12:53:32.248649 6895 solver.cpp:237] Train net output #0: loss = 5.2741 (* 1 = 5.2741 loss)
I0412 12:53:32.248662 6895 sgd_solver.cpp:105] Iteration 660, lr = 0.00877449
I0412 12:53:36.756805 6895 solver.cpp:218] Iteration 672 (2.66195 iter/s, 4.50797s/12 iters), loss = 5.28561
I0412 12:53:36.756863 6895 solver.cpp:237] Train net output #0: loss = 5.28561 (* 1 = 5.28561 loss)
I0412 12:53:36.756875 6895 sgd_solver.cpp:105] Iteration 672, lr = 0.00875366
I0412 12:53:41.426079 6895 solver.cpp:218] Iteration 684 (2.57013 iter/s, 4.66903s/12 iters), loss = 5.28071
I0412 12:53:41.426139 6895 solver.cpp:237] Train net output #0: loss = 5.28071 (* 1 = 5.28071 loss)
I0412 12:53:41.426152 6895 sgd_solver.cpp:105] Iteration 684, lr = 0.00873287
I0412 12:53:41.748548 6895 blocking_queue.cpp:49] Waiting for data
I0412 12:53:45.988903 6895 solver.cpp:218] Iteration 696 (2.63008 iter/s, 4.56259s/12 iters), loss = 5.27411
I0412 12:53:45.988942 6895 solver.cpp:237] Train net output #0: loss = 5.27411 (* 1 = 5.27411 loss)
I0412 12:53:45.988950 6895 sgd_solver.cpp:105] Iteration 696, lr = 0.00871214
I0412 12:53:50.404037 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 12:53:50.774830 6895 solver.cpp:218] Iteration 708 (2.50747 iter/s, 4.7857s/12 iters), loss = 5.25915
I0412 12:53:50.774883 6895 solver.cpp:237] Train net output #0: loss = 5.25915 (* 1 = 5.25915 loss)
I0412 12:53:50.774895 6895 sgd_solver.cpp:105] Iteration 708, lr = 0.00869145
I0412 12:53:52.723212 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_714.caffemodel
I0412 12:53:54.271729 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_714.solverstate
I0412 12:53:55.670935 6895 solver.cpp:330] Iteration 714, Testing net (#0)
I0412 12:53:55.670959 6895 net.cpp:676] Ignoring source layer train-data
I0412 12:53:59.767300 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 12:54:00.084301 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 12:54:00.084350 6895 solver.cpp:397] Test net output #1: loss = 5.28711 (* 1 = 5.28711 loss)
I0412 12:54:01.848992 6895 solver.cpp:218] Iteration 720 (1.08365 iter/s, 11.0737s/12 iters), loss = 5.28074
I0412 12:54:01.849050 6895 solver.cpp:237] Train net output #0: loss = 5.28074 (* 1 = 5.28074 loss)
I0412 12:54:01.849061 6895 sgd_solver.cpp:105] Iteration 720, lr = 0.00867082
I0412 12:54:06.393859 6895 solver.cpp:218] Iteration 732 (2.64048 iter/s, 4.54463s/12 iters), loss = 5.27636
I0412 12:54:06.393906 6895 solver.cpp:237] Train net output #0: loss = 5.27636 (* 1 = 5.27636 loss)
I0412 12:54:06.393918 6895 sgd_solver.cpp:105] Iteration 732, lr = 0.00865023
I0412 12:54:10.987524 6895 solver.cpp:218] Iteration 744 (2.61242 iter/s, 4.59344s/12 iters), loss = 5.28484
I0412 12:54:10.987571 6895 solver.cpp:237] Train net output #0: loss = 5.28484 (* 1 = 5.28484 loss)
I0412 12:54:10.987583 6895 sgd_solver.cpp:105] Iteration 744, lr = 0.0086297
I0412 12:54:15.580893 6895 solver.cpp:218] Iteration 756 (2.61259 iter/s, 4.59314s/12 iters), loss = 5.28823
I0412 12:54:15.580946 6895 solver.cpp:237] Train net output #0: loss = 5.28823 (* 1 = 5.28823 loss)
I0412 12:54:15.580958 6895 sgd_solver.cpp:105] Iteration 756, lr = 0.00860921
I0412 12:54:20.089118 6895 solver.cpp:218] Iteration 768 (2.66194 iter/s, 4.508s/12 iters), loss = 5.28312
I0412 12:54:20.089169 6895 solver.cpp:237] Train net output #0: loss = 5.28312 (* 1 = 5.28312 loss)
I0412 12:54:20.089182 6895 sgd_solver.cpp:105] Iteration 768, lr = 0.00858877
I0412 12:54:24.562855 6895 solver.cpp:218] Iteration 780 (2.68246 iter/s, 4.4735s/12 iters), loss = 5.26528
I0412 12:54:24.563001 6895 solver.cpp:237] Train net output #0: loss = 5.26528 (* 1 = 5.26528 loss)
I0412 12:54:24.563016 6895 sgd_solver.cpp:105] Iteration 780, lr = 0.00856838
I0412 12:54:29.118896 6895 solver.cpp:218] Iteration 792 (2.63405 iter/s, 4.55572s/12 iters), loss = 5.26999
I0412 12:54:29.118933 6895 solver.cpp:237] Train net output #0: loss = 5.26999 (* 1 = 5.26999 loss)
I0412 12:54:29.118942 6895 sgd_solver.cpp:105] Iteration 792, lr = 0.00854803
I0412 12:54:33.872632 6895 solver.cpp:218] Iteration 804 (2.52445 iter/s, 4.75351s/12 iters), loss = 5.29654
I0412 12:54:33.872684 6895 solver.cpp:237] Train net output #0: loss = 5.29654 (* 1 = 5.29654 loss)
I0412 12:54:33.872696 6895 sgd_solver.cpp:105] Iteration 804, lr = 0.00852774
I0412 12:54:35.461997 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 12:54:38.008719 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_816.caffemodel
I0412 12:54:39.511540 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_816.solverstate
I0412 12:54:40.683897 6895 solver.cpp:330] Iteration 816, Testing net (#0)
I0412 12:54:40.683920 6895 net.cpp:676] Ignoring source layer train-data
I0412 12:54:44.849347 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 12:54:45.201333 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 12:54:45.201375 6895 solver.cpp:397] Test net output #1: loss = 5.28677 (* 1 = 5.28677 loss)
I0412 12:54:45.283259 6895 solver.cpp:218] Iteration 816 (1.0517 iter/s, 11.4101s/12 iters), loss = 5.28559
I0412 12:54:45.283298 6895 solver.cpp:237] Train net output #0: loss = 5.28559 (* 1 = 5.28559 loss)
I0412 12:54:45.283308 6895 sgd_solver.cpp:105] Iteration 816, lr = 0.00850749
I0412 12:54:49.369395 6895 solver.cpp:218] Iteration 828 (2.93691 iter/s, 4.08593s/12 iters), loss = 5.28282
I0412 12:54:49.369452 6895 solver.cpp:237] Train net output #0: loss = 5.28282 (* 1 = 5.28282 loss)
I0412 12:54:49.369467 6895 sgd_solver.cpp:105] Iteration 828, lr = 0.00848729
I0412 12:54:53.994318 6895 solver.cpp:218] Iteration 840 (2.59477 iter/s, 4.62469s/12 iters), loss = 5.24052
I0412 12:54:53.994359 6895 solver.cpp:237] Train net output #0: loss = 5.24052 (* 1 = 5.24052 loss)
I0412 12:54:53.994367 6895 sgd_solver.cpp:105] Iteration 840, lr = 0.00846714
I0412 12:54:58.765026 6895 solver.cpp:218] Iteration 852 (2.51547 iter/s, 4.77048s/12 iters), loss = 5.30545
I0412 12:54:58.765199 6895 solver.cpp:237] Train net output #0: loss = 5.30545 (* 1 = 5.30545 loss)
I0412 12:54:58.765215 6895 sgd_solver.cpp:105] Iteration 852, lr = 0.00844704
I0412 12:55:03.197095 6895 solver.cpp:218] Iteration 864 (2.70775 iter/s, 4.43172s/12 iters), loss = 5.26045
I0412 12:55:03.197150 6895 solver.cpp:237] Train net output #0: loss = 5.26045 (* 1 = 5.26045 loss)
I0412 12:55:03.197165 6895 sgd_solver.cpp:105] Iteration 864, lr = 0.00842698
I0412 12:55:07.620424 6895 solver.cpp:218] Iteration 876 (2.71303 iter/s, 4.4231s/12 iters), loss = 5.27754
I0412 12:55:07.620478 6895 solver.cpp:237] Train net output #0: loss = 5.27754 (* 1 = 5.27754 loss)
I0412 12:55:07.620491 6895 sgd_solver.cpp:105] Iteration 876, lr = 0.00840698
I0412 12:55:12.070470 6895 solver.cpp:218] Iteration 888 (2.69674 iter/s, 4.44982s/12 iters), loss = 5.27424
I0412 12:55:12.070518 6895 solver.cpp:237] Train net output #0: loss = 5.27424 (* 1 = 5.27424 loss)
I0412 12:55:12.070529 6895 sgd_solver.cpp:105] Iteration 888, lr = 0.00838702
I0412 12:55:16.656962 6895 solver.cpp:218] Iteration 900 (2.61651 iter/s, 4.58626s/12 iters), loss = 5.28302
I0412 12:55:16.657019 6895 solver.cpp:237] Train net output #0: loss = 5.28302 (* 1 = 5.28302 loss)
I0412 12:55:16.657032 6895 sgd_solver.cpp:105] Iteration 900, lr = 0.0083671
I0412 12:55:20.253166 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 12:55:21.293089 6895 solver.cpp:218] Iteration 912 (2.58851 iter/s, 4.63588s/12 iters), loss = 5.26479
I0412 12:55:21.293140 6895 solver.cpp:237] Train net output #0: loss = 5.26479 (* 1 = 5.26479 loss)
I0412 12:55:21.293152 6895 sgd_solver.cpp:105] Iteration 912, lr = 0.00834724
I0412 12:55:23.102921 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_918.caffemodel
I0412 12:55:24.672719 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_918.solverstate
I0412 12:55:25.863783 6895 solver.cpp:330] Iteration 918, Testing net (#0)
I0412 12:55:25.863812 6895 net.cpp:676] Ignoring source layer train-data
I0412 12:55:29.872663 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 12:55:30.275331 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 12:55:30.275380 6895 solver.cpp:397] Test net output #1: loss = 5.28641 (* 1 = 5.28641 loss)
I0412 12:55:31.993129 6895 solver.cpp:218] Iteration 924 (1.12154 iter/s, 10.6996s/12 iters), loss = 5.28492
I0412 12:55:31.993182 6895 solver.cpp:237] Train net output #0: loss = 5.28492 (* 1 = 5.28492 loss)
I0412 12:55:31.993196 6895 sgd_solver.cpp:105] Iteration 924, lr = 0.00832742
I0412 12:55:36.426291 6895 solver.cpp:218] Iteration 936 (2.70701 iter/s, 4.43294s/12 iters), loss = 5.26647
I0412 12:55:36.426338 6895 solver.cpp:237] Train net output #0: loss = 5.26647 (* 1 = 5.26647 loss)
I0412 12:55:36.426349 6895 sgd_solver.cpp:105] Iteration 936, lr = 0.00830765
I0412 12:55:40.979606 6895 solver.cpp:218] Iteration 948 (2.63557 iter/s, 4.55309s/12 iters), loss = 5.29206
I0412 12:55:40.979648 6895 solver.cpp:237] Train net output #0: loss = 5.29206 (* 1 = 5.29206 loss)
I0412 12:55:40.979660 6895 sgd_solver.cpp:105] Iteration 948, lr = 0.00828793
I0412 12:55:45.527746 6895 solver.cpp:218] Iteration 960 (2.63857 iter/s, 4.54792s/12 iters), loss = 5.25876
I0412 12:55:45.527782 6895 solver.cpp:237] Train net output #0: loss = 5.25876 (* 1 = 5.25876 loss)
I0412 12:55:45.527789 6895 sgd_solver.cpp:105] Iteration 960, lr = 0.00826825
I0412 12:55:50.149525 6895 solver.cpp:218] Iteration 972 (2.59653 iter/s, 4.62156s/12 iters), loss = 5.27607
I0412 12:55:50.149566 6895 solver.cpp:237] Train net output #0: loss = 5.27607 (* 1 = 5.27607 loss)
I0412 12:55:50.149576 6895 sgd_solver.cpp:105] Iteration 972, lr = 0.00824862
I0412 12:55:54.631160 6895 solver.cpp:218] Iteration 984 (2.67773 iter/s, 4.48141s/12 iters), loss = 5.29292
I0412 12:55:54.631214 6895 solver.cpp:237] Train net output #0: loss = 5.29292 (* 1 = 5.29292 loss)
I0412 12:55:54.631227 6895 sgd_solver.cpp:105] Iteration 984, lr = 0.00822903
I0412 12:55:59.252925 6895 solver.cpp:218] Iteration 996 (2.59654 iter/s, 4.62153s/12 iters), loss = 5.28055
I0412 12:55:59.252972 6895 solver.cpp:237] Train net output #0: loss = 5.28055 (* 1 = 5.28055 loss)
I0412 12:55:59.252985 6895 sgd_solver.cpp:105] Iteration 996, lr = 0.0082095
I0412 12:56:03.757944 6895 solver.cpp:218] Iteration 1008 (2.66383 iter/s, 4.5048s/12 iters), loss = 5.29522
I0412 12:56:03.758114 6895 solver.cpp:237] Train net output #0: loss = 5.29522 (* 1 = 5.29522 loss)
I0412 12:56:03.758126 6895 sgd_solver.cpp:105] Iteration 1008, lr = 0.00819001
I0412 12:56:04.668505 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 12:56:08.043040 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1020.caffemodel
I0412 12:56:09.585644 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1020.solverstate
I0412 12:56:10.804677 6895 solver.cpp:330] Iteration 1020, Testing net (#0)
I0412 12:56:10.804708 6895 net.cpp:676] Ignoring source layer train-data
I0412 12:56:14.867442 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 12:56:15.295719 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 12:56:15.295768 6895 solver.cpp:397] Test net output #1: loss = 5.28621 (* 1 = 5.28621 loss)
I0412 12:56:15.378868 6895 solver.cpp:218] Iteration 1020 (1.03267 iter/s, 11.6203s/12 iters), loss = 5.30033
I0412 12:56:15.378926 6895 solver.cpp:237] Train net output #0: loss = 5.30033 (* 1 = 5.30033 loss)
I0412 12:56:15.378937 6895 sgd_solver.cpp:105] Iteration 1020, lr = 0.00817056
I0412 12:56:19.189785 6895 solver.cpp:218] Iteration 1032 (3.14902 iter/s, 3.81071s/12 iters), loss = 5.25487
I0412 12:56:19.189826 6895 solver.cpp:237] Train net output #0: loss = 5.25487 (* 1 = 5.25487 loss)
I0412 12:56:19.189834 6895 sgd_solver.cpp:105] Iteration 1032, lr = 0.00815116
I0412 12:56:24.024960 6895 solver.cpp:218] Iteration 1044 (2.48193 iter/s, 4.83494s/12 iters), loss = 5.26782
I0412 12:56:24.025004 6895 solver.cpp:237] Train net output #0: loss = 5.26782 (* 1 = 5.26782 loss)
I0412 12:56:24.025014 6895 sgd_solver.cpp:105] Iteration 1044, lr = 0.00813181
I0412 12:56:28.767381 6895 solver.cpp:218] Iteration 1056 (2.53048 iter/s, 4.74219s/12 iters), loss = 5.27006
I0412 12:56:28.767437 6895 solver.cpp:237] Train net output #0: loss = 5.27006 (* 1 = 5.27006 loss)
I0412 12:56:28.767450 6895 sgd_solver.cpp:105] Iteration 1056, lr = 0.0081125
I0412 12:56:33.271030 6895 solver.cpp:218] Iteration 1068 (2.66464 iter/s, 4.50342s/12 iters), loss = 5.29013
I0412 12:56:33.271085 6895 solver.cpp:237] Train net output #0: loss = 5.29013 (* 1 = 5.29013 loss)
I0412 12:56:33.271097 6895 sgd_solver.cpp:105] Iteration 1068, lr = 0.00809324
I0412 12:56:37.976837 6895 solver.cpp:218] Iteration 1080 (2.55017 iter/s, 4.70556s/12 iters), loss = 5.27946
I0412 12:56:37.976931 6895 solver.cpp:237] Train net output #0: loss = 5.27946 (* 1 = 5.27946 loss)
I0412 12:56:37.976945 6895 sgd_solver.cpp:105] Iteration 1080, lr = 0.00807403
I0412 12:56:42.519913 6895 solver.cpp:218] Iteration 1092 (2.64154 iter/s, 4.54281s/12 iters), loss = 5.28525
I0412 12:56:42.519963 6895 solver.cpp:237] Train net output #0: loss = 5.28525 (* 1 = 5.28525 loss)
I0412 12:56:42.519973 6895 sgd_solver.cpp:105] Iteration 1092, lr = 0.00805486
I0412 12:56:47.203883 6895 solver.cpp:218] Iteration 1104 (2.56206 iter/s, 4.68373s/12 iters), loss = 5.27253
I0412 12:56:47.203940 6895 solver.cpp:237] Train net output #0: loss = 5.27253 (* 1 = 5.27253 loss)
I0412 12:56:47.203953 6895 sgd_solver.cpp:105] Iteration 1104, lr = 0.00803573
I0412 12:56:50.142125 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 12:56:51.852430 6895 solver.cpp:218] Iteration 1116 (2.58159 iter/s, 4.6483s/12 iters), loss = 5.27505
I0412 12:56:51.852488 6895 solver.cpp:237] Train net output #0: loss = 5.27505 (* 1 = 5.27505 loss)
I0412 12:56:51.852501 6895 sgd_solver.cpp:105] Iteration 1116, lr = 0.00801666
I0412 12:56:53.620857 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1122.caffemodel
I0412 12:56:56.294914 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1122.solverstate
I0412 12:56:58.316812 6895 solver.cpp:330] Iteration 1122, Testing net (#0)
I0412 12:56:58.316840 6895 net.cpp:676] Ignoring source layer train-data
I0412 12:57:02.285226 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 12:57:02.758239 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 12:57:02.758287 6895 solver.cpp:397] Test net output #1: loss = 5.28677 (* 1 = 5.28677 loss)
I0412 12:57:04.608191 6895 solver.cpp:218] Iteration 1128 (0.940791 iter/s, 12.7552s/12 iters), loss = 5.2711
I0412 12:57:04.608249 6895 solver.cpp:237] Train net output #0: loss = 5.2711 (* 1 = 5.2711 loss)
I0412 12:57:04.608263 6895 sgd_solver.cpp:105] Iteration 1128, lr = 0.00799762
I0412 12:57:09.250834 6895 solver.cpp:218] Iteration 1140 (2.58487 iter/s, 4.6424s/12 iters), loss = 5.26928
I0412 12:57:09.250967 6895 solver.cpp:237] Train net output #0: loss = 5.26928 (* 1 = 5.26928 loss)
I0412 12:57:09.250979 6895 sgd_solver.cpp:105] Iteration 1140, lr = 0.00797863
I0412 12:57:13.797328 6895 solver.cpp:218] Iteration 1152 (2.63958 iter/s, 4.54618s/12 iters), loss = 5.28318
I0412 12:57:13.797370 6895 solver.cpp:237] Train net output #0: loss = 5.28318 (* 1 = 5.28318 loss)
I0412 12:57:13.797381 6895 sgd_solver.cpp:105] Iteration 1152, lr = 0.00795969
I0412 12:57:18.394642 6895 solver.cpp:218] Iteration 1164 (2.61035 iter/s, 4.59709s/12 iters), loss = 5.27217
I0412 12:57:18.394681 6895 solver.cpp:237] Train net output #0: loss = 5.27217 (* 1 = 5.27217 loss)
I0412 12:57:18.394690 6895 sgd_solver.cpp:105] Iteration 1164, lr = 0.00794079
I0412 12:57:22.984671 6895 solver.cpp:218] Iteration 1176 (2.61449 iter/s, 4.5898s/12 iters), loss = 5.2896
I0412 12:57:22.984724 6895 solver.cpp:237] Train net output #0: loss = 5.2896 (* 1 = 5.2896 loss)
I0412 12:57:22.984735 6895 sgd_solver.cpp:105] Iteration 1176, lr = 0.00792194
I0412 12:57:27.766736 6895 solver.cpp:218] Iteration 1188 (2.5095 iter/s, 4.78182s/12 iters), loss = 5.27718
I0412 12:57:27.766785 6895 solver.cpp:237] Train net output #0: loss = 5.27718 (* 1 = 5.27718 loss)
I0412 12:57:27.766795 6895 sgd_solver.cpp:105] Iteration 1188, lr = 0.00790313
I0412 12:57:32.525148 6895 solver.cpp:218] Iteration 1200 (2.52197 iter/s, 4.75818s/12 iters), loss = 5.28826
I0412 12:57:32.525195 6895 solver.cpp:237] Train net output #0: loss = 5.28826 (* 1 = 5.28826 loss)
I0412 12:57:32.525204 6895 sgd_solver.cpp:105] Iteration 1200, lr = 0.00788437
I0412 12:57:37.399842 6895 solver.cpp:218] Iteration 1212 (2.46182 iter/s, 4.87445s/12 iters), loss = 5.27032
I0412 12:57:37.399904 6895 solver.cpp:237] Train net output #0: loss = 5.27032 (* 1 = 5.27032 loss)
I0412 12:57:37.399919 6895 sgd_solver.cpp:105] Iteration 1212, lr = 0.00786565
I0412 12:57:37.656977 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 12:57:41.892423 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1224.caffemodel
I0412 12:57:44.887754 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1224.solverstate
I0412 12:57:46.616103 6895 solver.cpp:330] Iteration 1224, Testing net (#0)
I0412 12:57:46.616135 6895 net.cpp:676] Ignoring source layer train-data
I0412 12:57:50.638041 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 12:57:51.146347 6895 solver.cpp:397] Test net output #0: accuracy = 0.00612745
I0412 12:57:51.146394 6895 solver.cpp:397] Test net output #1: loss = 5.28622 (* 1 = 5.28622 loss)
I0412 12:57:51.229600 6895 solver.cpp:218] Iteration 1224 (0.867731 iter/s, 13.8292s/12 iters), loss = 5.28931
I0412 12:57:51.229655 6895 solver.cpp:237] Train net output #0: loss = 5.28931 (* 1 = 5.28931 loss)
I0412 12:57:51.229666 6895 sgd_solver.cpp:105] Iteration 1224, lr = 0.00784697
I0412 12:57:55.350536 6895 solver.cpp:218] Iteration 1236 (2.91211 iter/s, 4.12072s/12 iters), loss = 5.27456
I0412 12:57:55.350589 6895 solver.cpp:237] Train net output #0: loss = 5.27456 (* 1 = 5.27456 loss)
I0412 12:57:55.350602 6895 sgd_solver.cpp:105] Iteration 1236, lr = 0.00782834
I0412 12:58:00.028194 6895 solver.cpp:218] Iteration 1248 (2.56552 iter/s, 4.67742s/12 iters), loss = 5.28282
I0412 12:58:00.028242 6895 solver.cpp:237] Train net output #0: loss = 5.28282 (* 1 = 5.28282 loss)
I0412 12:58:00.028254 6895 sgd_solver.cpp:105] Iteration 1248, lr = 0.00780976
I0412 12:58:05.031042 6895 solver.cpp:218] Iteration 1260 (2.39875 iter/s, 5.00261s/12 iters), loss = 5.2748
I0412 12:58:05.031100 6895 solver.cpp:237] Train net output #0: loss = 5.2748 (* 1 = 5.2748 loss)
I0412 12:58:05.031114 6895 sgd_solver.cpp:105] Iteration 1260, lr = 0.00779122
I0412 12:58:09.500113 6895 solver.cpp:218] Iteration 1272 (2.68526 iter/s, 4.46884s/12 iters), loss = 5.244
I0412 12:58:09.500149 6895 solver.cpp:237] Train net output #0: loss = 5.244 (* 1 = 5.244 loss)
I0412 12:58:09.500157 6895 sgd_solver.cpp:105] Iteration 1272, lr = 0.00777272
I0412 12:58:14.567026 6895 solver.cpp:218] Iteration 1284 (2.36842 iter/s, 5.06667s/12 iters), loss = 5.28712
I0412 12:58:14.567262 6895 solver.cpp:237] Train net output #0: loss = 5.28712 (* 1 = 5.28712 loss)
I0412 12:58:14.567272 6895 sgd_solver.cpp:105] Iteration 1284, lr = 0.00775426
I0412 12:58:19.415709 6895 solver.cpp:218] Iteration 1296 (2.47512 iter/s, 4.84826s/12 iters), loss = 5.26481
I0412 12:58:19.415761 6895 solver.cpp:237] Train net output #0: loss = 5.26481 (* 1 = 5.26481 loss)
I0412 12:58:19.415772 6895 sgd_solver.cpp:105] Iteration 1296, lr = 0.00773585
I0412 12:58:24.266186 6895 solver.cpp:218] Iteration 1308 (2.47411 iter/s, 4.85024s/12 iters), loss = 5.25368
I0412 12:58:24.266243 6895 solver.cpp:237] Train net output #0: loss = 5.25368 (* 1 = 5.25368 loss)
I0412 12:58:24.266258 6895 sgd_solver.cpp:105] Iteration 1308, lr = 0.00771749
I0412 12:58:26.705137 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 12:58:29.063206 6895 solver.cpp:218] Iteration 1320 (2.50168 iter/s, 4.79677s/12 iters), loss = 5.28209
I0412 12:58:29.063252 6895 solver.cpp:237] Train net output #0: loss = 5.28209 (* 1 = 5.28209 loss)
I0412 12:58:29.063261 6895 sgd_solver.cpp:105] Iteration 1320, lr = 0.00769916
I0412 12:58:30.919299 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1326.caffemodel
I0412 12:58:32.462154 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1326.solverstate
I0412 12:58:33.642817 6895 solver.cpp:330] Iteration 1326, Testing net (#0)
I0412 12:58:33.642846 6895 net.cpp:676] Ignoring source layer train-data
I0412 12:58:37.696472 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 12:58:38.253684 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 12:58:38.253731 6895 solver.cpp:397] Test net output #1: loss = 5.28702 (* 1 = 5.28702 loss)
I0412 12:58:40.083053 6895 solver.cpp:218] Iteration 1332 (1.08899 iter/s, 11.0194s/12 iters), loss = 5.29007
I0412 12:58:40.083097 6895 solver.cpp:237] Train net output #0: loss = 5.29007 (* 1 = 5.29007 loss)
I0412 12:58:40.083106 6895 sgd_solver.cpp:105] Iteration 1332, lr = 0.00768088
I0412 12:58:44.800455 6895 solver.cpp:218] Iteration 1344 (2.5439 iter/s, 4.71717s/12 iters), loss = 5.2876
I0412 12:58:44.800592 6895 solver.cpp:237] Train net output #0: loss = 5.2876 (* 1 = 5.2876 loss)
I0412 12:58:44.800602 6895 sgd_solver.cpp:105] Iteration 1344, lr = 0.00766265
I0412 12:58:49.638500 6895 solver.cpp:218] Iteration 1356 (2.48051 iter/s, 4.83772s/12 iters), loss = 5.27717
I0412 12:58:49.638543 6895 solver.cpp:237] Train net output #0: loss = 5.27717 (* 1 = 5.27717 loss)
I0412 12:58:49.638556 6895 sgd_solver.cpp:105] Iteration 1356, lr = 0.00764446
I0412 12:58:54.529489 6895 solver.cpp:218] Iteration 1368 (2.45361 iter/s, 4.89075s/12 iters), loss = 5.27491
I0412 12:58:54.529539 6895 solver.cpp:237] Train net output #0: loss = 5.27491 (* 1 = 5.27491 loss)
I0412 12:58:54.529551 6895 sgd_solver.cpp:105] Iteration 1368, lr = 0.00762631
I0412 12:58:55.260325 6895 blocking_queue.cpp:49] Waiting for data
I0412 12:58:59.074154 6895 solver.cpp:218] Iteration 1380 (2.64059 iter/s, 4.54443s/12 iters), loss = 5.2762
I0412 12:58:59.074210 6895 solver.cpp:237] Train net output #0: loss = 5.2762 (* 1 = 5.2762 loss)
I0412 12:58:59.074223 6895 sgd_solver.cpp:105] Iteration 1380, lr = 0.0076082
I0412 12:59:03.830839 6895 solver.cpp:218] Iteration 1392 (2.52289 iter/s, 4.75645s/12 iters), loss = 5.26885
I0412 12:59:03.830878 6895 solver.cpp:237] Train net output #0: loss = 5.26885 (* 1 = 5.26885 loss)
I0412 12:59:03.830888 6895 sgd_solver.cpp:105] Iteration 1392, lr = 0.00759014
I0412 12:59:08.777796 6895 solver.cpp:218] Iteration 1404 (2.42585 iter/s, 4.94672s/12 iters), loss = 5.28153
I0412 12:59:08.777846 6895 solver.cpp:237] Train net output #0: loss = 5.28153 (* 1 = 5.28153 loss)
I0412 12:59:08.777858 6895 sgd_solver.cpp:105] Iteration 1404, lr = 0.00757212
I0412 12:59:12.981858 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 12:59:13.323226 6895 solver.cpp:218] Iteration 1416 (2.64015 iter/s, 4.5452s/12 iters), loss = 5.26331
I0412 12:59:13.323290 6895 solver.cpp:237] Train net output #0: loss = 5.26331 (* 1 = 5.26331 loss)
I0412 12:59:13.323308 6895 sgd_solver.cpp:105] Iteration 1416, lr = 0.00755414
I0412 12:59:17.715131 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1428.caffemodel
I0412 12:59:19.200783 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1428.solverstate
I0412 12:59:20.984850 6895 solver.cpp:330] Iteration 1428, Testing net (#0)
I0412 12:59:20.984877 6895 net.cpp:676] Ignoring source layer train-data
I0412 12:59:25.185369 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 12:59:25.776583 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 12:59:25.776631 6895 solver.cpp:397] Test net output #1: loss = 5.2862 (* 1 = 5.2862 loss)
I0412 12:59:25.859921 6895 solver.cpp:218] Iteration 1428 (0.957231 iter/s, 12.5362s/12 iters), loss = 5.27563
I0412 12:59:25.859964 6895 solver.cpp:237] Train net output #0: loss = 5.27563 (* 1 = 5.27563 loss)
I0412 12:59:25.859974 6895 sgd_solver.cpp:105] Iteration 1428, lr = 0.0075362
I0412 12:59:29.925839 6895 solver.cpp:218] Iteration 1440 (2.95152 iter/s, 4.06571s/12 iters), loss = 5.28669
I0412 12:59:29.925892 6895 solver.cpp:237] Train net output #0: loss = 5.28669 (* 1 = 5.28669 loss)
I0412 12:59:29.925904 6895 sgd_solver.cpp:105] Iteration 1440, lr = 0.00751831
I0412 12:59:35.027884 6895 solver.cpp:218] Iteration 1452 (2.35212 iter/s, 5.10179s/12 iters), loss = 5.28321
I0412 12:59:35.027937 6895 solver.cpp:237] Train net output #0: loss = 5.28321 (* 1 = 5.28321 loss)
I0412 12:59:35.027948 6895 sgd_solver.cpp:105] Iteration 1452, lr = 0.00750046
I0412 12:59:39.581465 6895 solver.cpp:218] Iteration 1464 (2.63542 iter/s, 4.55335s/12 iters), loss = 5.28135
I0412 12:59:39.581507 6895 solver.cpp:237] Train net output #0: loss = 5.28135 (* 1 = 5.28135 loss)
I0412 12:59:39.581516 6895 sgd_solver.cpp:105] Iteration 1464, lr = 0.00748265
I0412 12:59:44.365751 6895 solver.cpp:218] Iteration 1476 (2.50833 iter/s, 4.78406s/12 iters), loss = 5.27557
I0412 12:59:44.365794 6895 solver.cpp:237] Train net output #0: loss = 5.27557 (* 1 = 5.27557 loss)
I0412 12:59:44.365805 6895 sgd_solver.cpp:105] Iteration 1476, lr = 0.00746489
I0412 12:59:49.136624 6895 solver.cpp:218] Iteration 1488 (2.51538 iter/s, 4.77064s/12 iters), loss = 5.25007
I0412 12:59:49.136775 6895 solver.cpp:237] Train net output #0: loss = 5.25007 (* 1 = 5.25007 loss)
I0412 12:59:49.136788 6895 sgd_solver.cpp:105] Iteration 1488, lr = 0.00744716
I0412 12:59:53.869357 6895 solver.cpp:218] Iteration 1500 (2.53571 iter/s, 4.7324s/12 iters), loss = 5.27066
I0412 12:59:53.869406 6895 solver.cpp:237] Train net output #0: loss = 5.27066 (* 1 = 5.27066 loss)
I0412 12:59:53.869416 6895 sgd_solver.cpp:105] Iteration 1500, lr = 0.00742948
I0412 12:59:58.679227 6895 solver.cpp:218] Iteration 1512 (2.495 iter/s, 4.80963s/12 iters), loss = 5.29204
I0412 12:59:58.679280 6895 solver.cpp:237] Train net output #0: loss = 5.29204 (* 1 = 5.29204 loss)
I0412 12:59:58.679289 6895 sgd_solver.cpp:105] Iteration 1512, lr = 0.00741184
I0412 13:00:00.289821 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:00:03.426920 6895 solver.cpp:218] Iteration 1524 (2.52767 iter/s, 4.74745s/12 iters), loss = 5.27713
I0412 13:00:03.426972 6895 solver.cpp:237] Train net output #0: loss = 5.27713 (* 1 = 5.27713 loss)
I0412 13:00:03.426985 6895 sgd_solver.cpp:105] Iteration 1524, lr = 0.00739425
I0412 13:00:05.344749 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1530.caffemodel
I0412 13:00:06.896195 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1530.solverstate
I0412 13:00:08.066613 6895 solver.cpp:330] Iteration 1530, Testing net (#0)
I0412 13:00:08.066635 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:00:11.857064 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:00:12.503051 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:00:12.503096 6895 solver.cpp:397] Test net output #1: loss = 5.28588 (* 1 = 5.28588 loss)
I0412 13:00:14.288653 6895 solver.cpp:218] Iteration 1536 (1.10484 iter/s, 10.8613s/12 iters), loss = 5.28564
I0412 13:00:14.288698 6895 solver.cpp:237] Train net output #0: loss = 5.28564 (* 1 = 5.28564 loss)
I0412 13:00:14.288707 6895 sgd_solver.cpp:105] Iteration 1536, lr = 0.00737669
I0412 13:00:18.918908 6895 solver.cpp:218] Iteration 1548 (2.59178 iter/s, 4.63002s/12 iters), loss = 5.2372
I0412 13:00:18.918965 6895 solver.cpp:237] Train net output #0: loss = 5.2372 (* 1 = 5.2372 loss)
I0412 13:00:18.918978 6895 sgd_solver.cpp:105] Iteration 1548, lr = 0.00735918
I0412 13:00:23.602453 6895 solver.cpp:218] Iteration 1560 (2.56229 iter/s, 4.6833s/12 iters), loss = 5.29264
I0412 13:00:23.602560 6895 solver.cpp:237] Train net output #0: loss = 5.29264 (* 1 = 5.29264 loss)
I0412 13:00:23.602576 6895 sgd_solver.cpp:105] Iteration 1560, lr = 0.00734171
I0412 13:00:28.319772 6895 solver.cpp:218] Iteration 1572 (2.54397 iter/s, 4.71703s/12 iters), loss = 5.25925
I0412 13:00:28.319819 6895 solver.cpp:237] Train net output #0: loss = 5.25925 (* 1 = 5.25925 loss)
I0412 13:00:28.319829 6895 sgd_solver.cpp:105] Iteration 1572, lr = 0.00732427
I0412 13:00:33.056125 6895 solver.cpp:218] Iteration 1584 (2.53372 iter/s, 4.73611s/12 iters), loss = 5.27499
I0412 13:00:33.056187 6895 solver.cpp:237] Train net output #0: loss = 5.27499 (* 1 = 5.27499 loss)
I0412 13:00:33.056205 6895 sgd_solver.cpp:105] Iteration 1584, lr = 0.00730688
I0412 13:00:37.749620 6895 solver.cpp:218] Iteration 1596 (2.55686 iter/s, 4.69325s/12 iters), loss = 5.27181
I0412 13:00:37.749683 6895 solver.cpp:237] Train net output #0: loss = 5.27181 (* 1 = 5.27181 loss)
I0412 13:00:37.749697 6895 sgd_solver.cpp:105] Iteration 1596, lr = 0.00728954
I0412 13:00:42.418876 6895 solver.cpp:218] Iteration 1608 (2.57014 iter/s, 4.66901s/12 iters), loss = 5.27769
I0412 13:00:42.418921 6895 solver.cpp:237] Train net output #0: loss = 5.27769 (* 1 = 5.27769 loss)
I0412 13:00:42.418931 6895 sgd_solver.cpp:105] Iteration 1608, lr = 0.00727223
I0412 13:00:46.071380 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:00:47.077145 6895 solver.cpp:218] Iteration 1620 (2.57619 iter/s, 4.65804s/12 iters), loss = 5.26207
I0412 13:00:47.077201 6895 solver.cpp:237] Train net output #0: loss = 5.26207 (* 1 = 5.26207 loss)
I0412 13:00:47.077214 6895 sgd_solver.cpp:105] Iteration 1620, lr = 0.00725496
I0412 13:00:51.571384 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1632.caffemodel
I0412 13:00:53.074774 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1632.solverstate
I0412 13:00:55.806603 6895 solver.cpp:330] Iteration 1632, Testing net (#0)
I0412 13:00:55.806728 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:00:59.695036 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:01:00.418051 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:01:00.418092 6895 solver.cpp:397] Test net output #1: loss = 5.28581 (* 1 = 5.28581 loss)
I0412 13:01:00.501793 6895 solver.cpp:218] Iteration 1632 (0.893915 iter/s, 13.4241s/12 iters), loss = 5.28758
I0412 13:01:00.501844 6895 solver.cpp:237] Train net output #0: loss = 5.28758 (* 1 = 5.28758 loss)
I0412 13:01:00.501855 6895 sgd_solver.cpp:105] Iteration 1632, lr = 0.00723774
I0412 13:01:04.550338 6895 solver.cpp:218] Iteration 1644 (2.96419 iter/s, 4.04833s/12 iters), loss = 5.25816
I0412 13:01:04.550379 6895 solver.cpp:237] Train net output #0: loss = 5.25816 (* 1 = 5.25816 loss)
I0412 13:01:04.550388 6895 sgd_solver.cpp:105] Iteration 1644, lr = 0.00722056
I0412 13:01:09.383036 6895 solver.cpp:218] Iteration 1656 (2.48321 iter/s, 4.83246s/12 iters), loss = 5.28783
I0412 13:01:09.383095 6895 solver.cpp:237] Train net output #0: loss = 5.28783 (* 1 = 5.28783 loss)
I0412 13:01:09.383106 6895 sgd_solver.cpp:105] Iteration 1656, lr = 0.00720341
I0412 13:01:14.052202 6895 solver.cpp:218] Iteration 1668 (2.57018 iter/s, 4.66893s/12 iters), loss = 5.26214
I0412 13:01:14.052259 6895 solver.cpp:237] Train net output #0: loss = 5.26214 (* 1 = 5.26214 loss)
I0412 13:01:14.052271 6895 sgd_solver.cpp:105] Iteration 1668, lr = 0.00718631
I0412 13:01:18.846226 6895 solver.cpp:218] Iteration 1680 (2.50325 iter/s, 4.79378s/12 iters), loss = 5.27722
I0412 13:01:18.846276 6895 solver.cpp:237] Train net output #0: loss = 5.27722 (* 1 = 5.27722 loss)
I0412 13:01:18.846287 6895 sgd_solver.cpp:105] Iteration 1680, lr = 0.00716925
I0412 13:01:23.657325 6895 solver.cpp:218] Iteration 1692 (2.49436 iter/s, 4.81086s/12 iters), loss = 5.29632
I0412 13:01:23.657373 6895 solver.cpp:237] Train net output #0: loss = 5.29632 (* 1 = 5.29632 loss)
I0412 13:01:23.657383 6895 sgd_solver.cpp:105] Iteration 1692, lr = 0.00715223
I0412 13:01:28.327873 6895 solver.cpp:218] Iteration 1704 (2.56942 iter/s, 4.67031s/12 iters), loss = 5.26865
I0412 13:01:28.327975 6895 solver.cpp:237] Train net output #0: loss = 5.26865 (* 1 = 5.26865 loss)
I0412 13:01:28.327989 6895 sgd_solver.cpp:105] Iteration 1704, lr = 0.00713525
I0412 13:01:33.055905 6895 solver.cpp:218] Iteration 1716 (2.53821 iter/s, 4.72774s/12 iters), loss = 5.28277
I0412 13:01:33.055961 6895 solver.cpp:237] Train net output #0: loss = 5.28277 (* 1 = 5.28277 loss)
I0412 13:01:33.055974 6895 sgd_solver.cpp:105] Iteration 1716, lr = 0.00711831
I0412 13:01:34.005095 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:01:37.702775 6895 solver.cpp:218] Iteration 1728 (2.58252 iter/s, 4.64663s/12 iters), loss = 5.28648
I0412 13:01:37.702833 6895 solver.cpp:237] Train net output #0: loss = 5.28648 (* 1 = 5.28648 loss)
I0412 13:01:37.702847 6895 sgd_solver.cpp:105] Iteration 1728, lr = 0.00710141
I0412 13:01:39.730684 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1734.caffemodel
I0412 13:01:41.276796 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1734.solverstate
I0412 13:01:42.447108 6895 solver.cpp:330] Iteration 1734, Testing net (#0)
I0412 13:01:42.447130 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:01:46.306538 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:01:47.011994 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:01:47.012043 6895 solver.cpp:397] Test net output #1: loss = 5.28626 (* 1 = 5.28626 loss)
I0412 13:01:48.641634 6895 solver.cpp:218] Iteration 1740 (1.09705 iter/s, 10.9384s/12 iters), loss = 5.25696
I0412 13:01:48.641682 6895 solver.cpp:237] Train net output #0: loss = 5.25696 (* 1 = 5.25696 loss)
I0412 13:01:48.641690 6895 sgd_solver.cpp:105] Iteration 1740, lr = 0.00708455
I0412 13:01:53.134516 6895 solver.cpp:218] Iteration 1752 (2.67103 iter/s, 4.49265s/12 iters), loss = 5.26981
I0412 13:01:53.134572 6895 solver.cpp:237] Train net output #0: loss = 5.26981 (* 1 = 5.26981 loss)
I0412 13:01:53.134583 6895 sgd_solver.cpp:105] Iteration 1752, lr = 0.00706773
I0412 13:01:57.669589 6895 solver.cpp:218] Iteration 1764 (2.64618 iter/s, 4.53484s/12 iters), loss = 5.27007
I0412 13:01:57.669638 6895 solver.cpp:237] Train net output #0: loss = 5.27007 (* 1 = 5.27007 loss)
I0412 13:01:57.669648 6895 sgd_solver.cpp:105] Iteration 1764, lr = 0.00705094
I0412 13:02:02.515455 6895 solver.cpp:218] Iteration 1776 (2.47646 iter/s, 4.84562s/12 iters), loss = 5.2801
I0412 13:02:02.515631 6895 solver.cpp:237] Train net output #0: loss = 5.2801 (* 1 = 5.2801 loss)
I0412 13:02:02.515648 6895 sgd_solver.cpp:105] Iteration 1776, lr = 0.0070342
I0412 13:02:07.306991 6895 solver.cpp:218] Iteration 1788 (2.5046 iter/s, 4.79118s/12 iters), loss = 5.26694
I0412 13:02:07.307042 6895 solver.cpp:237] Train net output #0: loss = 5.26694 (* 1 = 5.26694 loss)
I0412 13:02:07.307054 6895 sgd_solver.cpp:105] Iteration 1788, lr = 0.0070175
I0412 13:02:12.028062 6895 solver.cpp:218] Iteration 1800 (2.54192 iter/s, 4.72084s/12 iters), loss = 5.27943
I0412 13:02:12.028105 6895 solver.cpp:237] Train net output #0: loss = 5.27943 (* 1 = 5.27943 loss)
I0412 13:02:12.028112 6895 sgd_solver.cpp:105] Iteration 1800, lr = 0.00700084
I0412 13:02:16.882972 6895 solver.cpp:218] Iteration 1812 (2.47184 iter/s, 4.85468s/12 iters), loss = 5.2651
I0412 13:02:16.883023 6895 solver.cpp:237] Train net output #0: loss = 5.2651 (* 1 = 5.2651 loss)
I0412 13:02:16.883035 6895 sgd_solver.cpp:105] Iteration 1812, lr = 0.00698422
I0412 13:02:19.891167 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:02:21.533437 6895 solver.cpp:218] Iteration 1824 (2.58052 iter/s, 4.65023s/12 iters), loss = 5.27713
I0412 13:02:21.533483 6895 solver.cpp:237] Train net output #0: loss = 5.27713 (* 1 = 5.27713 loss)
I0412 13:02:21.533493 6895 sgd_solver.cpp:105] Iteration 1824, lr = 0.00696764
I0412 13:02:25.841490 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1836.caffemodel
I0412 13:02:31.909224 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1836.solverstate
I0412 13:02:33.534070 6895 solver.cpp:330] Iteration 1836, Testing net (#0)
I0412 13:02:33.534150 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:02:37.262881 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:02:38.011471 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:02:38.011520 6895 solver.cpp:397] Test net output #1: loss = 5.28551 (* 1 = 5.28551 loss)
I0412 13:02:38.094558 6895 solver.cpp:218] Iteration 1836 (0.724618 iter/s, 16.5605s/12 iters), loss = 5.27936
I0412 13:02:38.094611 6895 solver.cpp:237] Train net output #0: loss = 5.27936 (* 1 = 5.27936 loss)
I0412 13:02:38.094621 6895 sgd_solver.cpp:105] Iteration 1836, lr = 0.0069511
I0412 13:02:41.970981 6895 solver.cpp:218] Iteration 1848 (3.0958 iter/s, 3.87622s/12 iters), loss = 5.27736
I0412 13:02:41.971036 6895 solver.cpp:237] Train net output #0: loss = 5.27736 (* 1 = 5.27736 loss)
I0412 13:02:41.971048 6895 sgd_solver.cpp:105] Iteration 1848, lr = 0.00693459
I0412 13:02:46.598357 6895 solver.cpp:218] Iteration 1860 (2.59339 iter/s, 4.62715s/12 iters), loss = 5.28735
I0412 13:02:46.598402 6895 solver.cpp:237] Train net output #0: loss = 5.28735 (* 1 = 5.28735 loss)
I0412 13:02:46.598412 6895 sgd_solver.cpp:105] Iteration 1860, lr = 0.00691813
I0412 13:02:51.269163 6895 solver.cpp:218] Iteration 1872 (2.56928 iter/s, 4.67057s/12 iters), loss = 5.27063
I0412 13:02:51.269223 6895 solver.cpp:237] Train net output #0: loss = 5.27063 (* 1 = 5.27063 loss)
I0412 13:02:51.269237 6895 sgd_solver.cpp:105] Iteration 1872, lr = 0.0069017
I0412 13:02:55.984100 6895 solver.cpp:218] Iteration 1884 (2.54523 iter/s, 4.7147s/12 iters), loss = 5.28331
I0412 13:02:55.984143 6895 solver.cpp:237] Train net output #0: loss = 5.28331 (* 1 = 5.28331 loss)
I0412 13:02:55.984151 6895 sgd_solver.cpp:105] Iteration 1884, lr = 0.00688532
I0412 13:03:00.861975 6895 solver.cpp:218] Iteration 1896 (2.46022 iter/s, 4.87762s/12 iters), loss = 5.26893
I0412 13:03:00.862031 6895 solver.cpp:237] Train net output #0: loss = 5.26893 (* 1 = 5.26893 loss)
I0412 13:03:00.862044 6895 sgd_solver.cpp:105] Iteration 1896, lr = 0.00686897
I0412 13:03:05.654886 6895 solver.cpp:218] Iteration 1908 (2.50383 iter/s, 4.79266s/12 iters), loss = 5.28856
I0412 13:03:05.655015 6895 solver.cpp:237] Train net output #0: loss = 5.28856 (* 1 = 5.28856 loss)
I0412 13:03:05.655025 6895 sgd_solver.cpp:105] Iteration 1908, lr = 0.00685266
I0412 13:03:10.404692 6895 solver.cpp:218] Iteration 1920 (2.52659 iter/s, 4.74949s/12 iters), loss = 5.27268
I0412 13:03:10.404733 6895 solver.cpp:237] Train net output #0: loss = 5.27268 (* 1 = 5.27268 loss)
I0412 13:03:10.404742 6895 sgd_solver.cpp:105] Iteration 1920, lr = 0.00683639
I0412 13:03:10.722687 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:03:15.227334 6895 solver.cpp:218] Iteration 1932 (2.48838 iter/s, 4.82241s/12 iters), loss = 5.28533
I0412 13:03:15.227383 6895 solver.cpp:237] Train net output #0: loss = 5.28533 (* 1 = 5.28533 loss)
I0412 13:03:15.227396 6895 sgd_solver.cpp:105] Iteration 1932, lr = 0.00682016
I0412 13:03:17.190949 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1938.caffemodel
I0412 13:03:20.602068 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1938.solverstate
I0412 13:03:21.770781 6895 solver.cpp:330] Iteration 1938, Testing net (#0)
I0412 13:03:21.770804 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:03:25.460532 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:03:26.262663 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:03:26.262710 6895 solver.cpp:397] Test net output #1: loss = 5.28592 (* 1 = 5.28592 loss)
I0412 13:03:27.830073 6895 solver.cpp:218] Iteration 1944 (0.952213 iter/s, 12.6022s/12 iters), loss = 5.2659
I0412 13:03:27.830129 6895 solver.cpp:237] Train net output #0: loss = 5.2659 (* 1 = 5.2659 loss)
I0412 13:03:27.830142 6895 sgd_solver.cpp:105] Iteration 1944, lr = 0.00680397
I0412 13:03:32.245981 6895 solver.cpp:218] Iteration 1956 (2.71759 iter/s, 4.41567s/12 iters), loss = 5.28476
I0412 13:03:32.246026 6895 solver.cpp:237] Train net output #0: loss = 5.28476 (* 1 = 5.28476 loss)
I0412 13:03:32.246037 6895 sgd_solver.cpp:105] Iteration 1956, lr = 0.00678782
I0412 13:03:37.053037 6895 solver.cpp:218] Iteration 1968 (2.49645 iter/s, 4.80682s/12 iters), loss = 5.28258
I0412 13:03:37.053158 6895 solver.cpp:237] Train net output #0: loss = 5.28258 (* 1 = 5.28258 loss)
I0412 13:03:37.053169 6895 sgd_solver.cpp:105] Iteration 1968, lr = 0.0067717
I0412 13:03:41.965757 6895 solver.cpp:218] Iteration 1980 (2.44279 iter/s, 4.91241s/12 iters), loss = 5.25556
I0412 13:03:41.965813 6895 solver.cpp:237] Train net output #0: loss = 5.25556 (* 1 = 5.25556 loss)
I0412 13:03:41.965828 6895 sgd_solver.cpp:105] Iteration 1980, lr = 0.00675562
I0412 13:03:46.679632 6895 solver.cpp:218] Iteration 1992 (2.54581 iter/s, 4.71363s/12 iters), loss = 5.28419
I0412 13:03:46.679692 6895 solver.cpp:237] Train net output #0: loss = 5.28419 (* 1 = 5.28419 loss)
I0412 13:03:46.679704 6895 sgd_solver.cpp:105] Iteration 1992, lr = 0.00673958
I0412 13:03:51.496825 6895 solver.cpp:218] Iteration 2004 (2.4912 iter/s, 4.81695s/12 iters), loss = 5.27435
I0412 13:03:51.496870 6895 solver.cpp:237] Train net output #0: loss = 5.27435 (* 1 = 5.27435 loss)
I0412 13:03:51.496877 6895 sgd_solver.cpp:105] Iteration 2004, lr = 0.00672358
I0412 13:03:56.444203 6895 solver.cpp:218] Iteration 2016 (2.42565 iter/s, 4.94714s/12 iters), loss = 5.25626
I0412 13:03:56.444247 6895 solver.cpp:237] Train net output #0: loss = 5.25626 (* 1 = 5.25626 loss)
I0412 13:03:56.444255 6895 sgd_solver.cpp:105] Iteration 2016, lr = 0.00670762
I0412 13:03:58.827412 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:04:01.244678 6895 solver.cpp:218] Iteration 2028 (2.49987 iter/s, 4.80024s/12 iters), loss = 5.27435
I0412 13:04:01.244729 6895 solver.cpp:237] Train net output #0: loss = 5.27435 (* 1 = 5.27435 loss)
I0412 13:04:01.244740 6895 sgd_solver.cpp:105] Iteration 2028, lr = 0.00669169
I0412 13:04:05.672617 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2040.caffemodel
I0412 13:04:07.283316 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2040.solverstate
I0412 13:04:08.455230 6895 solver.cpp:330] Iteration 2040, Testing net (#0)
I0412 13:04:08.455252 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:04:12.127408 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:04:12.955099 6895 solver.cpp:397] Test net output #0: accuracy = 0.00612745
I0412 13:04:12.955150 6895 solver.cpp:397] Test net output #1: loss = 5.2858 (* 1 = 5.2858 loss)
I0412 13:04:13.037781 6895 solver.cpp:218] Iteration 2040 (1.01759 iter/s, 11.7926s/12 iters), loss = 5.27988
I0412 13:04:13.037842 6895 solver.cpp:237] Train net output #0: loss = 5.27988 (* 1 = 5.27988 loss)
I0412 13:04:13.037854 6895 sgd_solver.cpp:105] Iteration 2040, lr = 0.00667581
I0412 13:04:17.013196 6895 solver.cpp:218] Iteration 2052 (3.01872 iter/s, 3.97519s/12 iters), loss = 5.28716
I0412 13:04:17.013262 6895 solver.cpp:237] Train net output #0: loss = 5.28716 (* 1 = 5.28716 loss)
I0412 13:04:17.013274 6895 sgd_solver.cpp:105] Iteration 2052, lr = 0.00665996
I0412 13:04:18.196627 6895 blocking_queue.cpp:49] Waiting for data
I0412 13:04:21.871817 6895 solver.cpp:218] Iteration 2064 (2.46996 iter/s, 4.85837s/12 iters), loss = 5.28015
I0412 13:04:21.871867 6895 solver.cpp:237] Train net output #0: loss = 5.28015 (* 1 = 5.28015 loss)
I0412 13:04:21.871879 6895 sgd_solver.cpp:105] Iteration 2064, lr = 0.00664414
I0412 13:04:26.709221 6895 solver.cpp:218] Iteration 2076 (2.48079 iter/s, 4.83716s/12 iters), loss = 5.27821
I0412 13:04:26.709276 6895 solver.cpp:237] Train net output #0: loss = 5.27821 (* 1 = 5.27821 loss)
I0412 13:04:26.709288 6895 sgd_solver.cpp:105] Iteration 2076, lr = 0.00662837
I0412 13:04:31.554461 6895 solver.cpp:218] Iteration 2088 (2.47678 iter/s, 4.845s/12 iters), loss = 5.27327
I0412 13:04:31.554512 6895 solver.cpp:237] Train net output #0: loss = 5.27327 (* 1 = 5.27327 loss)
I0412 13:04:31.554524 6895 sgd_solver.cpp:105] Iteration 2088, lr = 0.00661263
I0412 13:04:36.500164 6895 solver.cpp:218] Iteration 2100 (2.42647 iter/s, 4.94546s/12 iters), loss = 5.27263
I0412 13:04:36.500221 6895 solver.cpp:237] Train net output #0: loss = 5.27263 (* 1 = 5.27263 loss)
I0412 13:04:36.500233 6895 sgd_solver.cpp:105] Iteration 2100, lr = 0.00659693
I0412 13:04:41.345945 6895 solver.cpp:218] Iteration 2112 (2.47651 iter/s, 4.84554s/12 iters), loss = 5.27834
I0412 13:04:41.346065 6895 solver.cpp:237] Train net output #0: loss = 5.27834 (* 1 = 5.27834 loss)
I0412 13:04:41.346078 6895 sgd_solver.cpp:105] Iteration 2112, lr = 0.00658127
I0412 13:04:45.764796 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:04:46.090046 6895 solver.cpp:218] Iteration 2124 (2.52962 iter/s, 4.7438s/12 iters), loss = 5.2596
I0412 13:04:46.090096 6895 solver.cpp:237] Train net output #0: loss = 5.2596 (* 1 = 5.2596 loss)
I0412 13:04:46.090106 6895 sgd_solver.cpp:105] Iteration 2124, lr = 0.00656564
I0412 13:04:50.827495 6895 solver.cpp:218] Iteration 2136 (2.53313 iter/s, 4.73721s/12 iters), loss = 5.276
I0412 13:04:50.827539 6895 solver.cpp:237] Train net output #0: loss = 5.276 (* 1 = 5.276 loss)
I0412 13:04:50.827549 6895 sgd_solver.cpp:105] Iteration 2136, lr = 0.00655006
I0412 13:04:52.850210 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2142.caffemodel
I0412 13:04:54.409541 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2142.solverstate
I0412 13:04:55.580611 6895 solver.cpp:330] Iteration 2142, Testing net (#0)
I0412 13:04:55.580636 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:04:59.068666 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:04:59.929448 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:04:59.929487 6895 solver.cpp:397] Test net output #1: loss = 5.28569 (* 1 = 5.28569 loss)
I0412 13:05:01.721484 6895 solver.cpp:218] Iteration 2148 (1.10157 iter/s, 10.8935s/12 iters), loss = 5.28234
I0412 13:05:01.721536 6895 solver.cpp:237] Train net output #0: loss = 5.28234 (* 1 = 5.28234 loss)
I0412 13:05:01.721547 6895 sgd_solver.cpp:105] Iteration 2148, lr = 0.00653451
I0412 13:05:06.570394 6895 solver.cpp:218] Iteration 2160 (2.47491 iter/s, 4.84867s/12 iters), loss = 5.2876
I0412 13:05:06.570446 6895 solver.cpp:237] Train net output #0: loss = 5.2876 (* 1 = 5.2876 loss)
I0412 13:05:06.570457 6895 sgd_solver.cpp:105] Iteration 2160, lr = 0.00651899
I0412 13:05:11.641263 6895 solver.cpp:218] Iteration 2172 (2.36658 iter/s, 5.07061s/12 iters), loss = 5.27966
I0412 13:05:11.641369 6895 solver.cpp:237] Train net output #0: loss = 5.27966 (* 1 = 5.27966 loss)
I0412 13:05:11.641379 6895 sgd_solver.cpp:105] Iteration 2172, lr = 0.00650351
I0412 13:05:16.641659 6895 solver.cpp:218] Iteration 2184 (2.39995 iter/s, 5.0001s/12 iters), loss = 5.26912
I0412 13:05:16.641710 6895 solver.cpp:237] Train net output #0: loss = 5.26912 (* 1 = 5.26912 loss)
I0412 13:05:16.641721 6895 sgd_solver.cpp:105] Iteration 2184, lr = 0.00648807
I0412 13:05:21.473765 6895 solver.cpp:218] Iteration 2196 (2.48351 iter/s, 4.83187s/12 iters), loss = 5.25495
I0412 13:05:21.473816 6895 solver.cpp:237] Train net output #0: loss = 5.25495 (* 1 = 5.25495 loss)
I0412 13:05:21.473829 6895 sgd_solver.cpp:105] Iteration 2196, lr = 0.00647267
I0412 13:05:26.509009 6895 solver.cpp:218] Iteration 2208 (2.38332 iter/s, 5.035s/12 iters), loss = 5.27244
I0412 13:05:26.509061 6895 solver.cpp:237] Train net output #0: loss = 5.27244 (* 1 = 5.27244 loss)
I0412 13:05:26.509073 6895 sgd_solver.cpp:105] Iteration 2208, lr = 0.0064573
I0412 13:05:31.397472 6895 solver.cpp:218] Iteration 2220 (2.45488 iter/s, 4.88822s/12 iters), loss = 5.27864
I0412 13:05:31.397524 6895 solver.cpp:237] Train net output #0: loss = 5.27864 (* 1 = 5.27864 loss)
I0412 13:05:31.397536 6895 sgd_solver.cpp:105] Iteration 2220, lr = 0.00644197
I0412 13:05:33.161717 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:05:36.225481 6895 solver.cpp:218] Iteration 2232 (2.48562 iter/s, 4.82777s/12 iters), loss = 5.28784
I0412 13:05:36.225533 6895 solver.cpp:237] Train net output #0: loss = 5.28784 (* 1 = 5.28784 loss)
I0412 13:05:36.225543 6895 sgd_solver.cpp:105] Iteration 2232, lr = 0.00642668
I0412 13:05:40.629791 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2244.caffemodel
I0412 13:05:43.810258 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2244.solverstate
I0412 13:05:45.005833 6895 solver.cpp:330] Iteration 2244, Testing net (#0)
I0412 13:05:45.005862 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:05:48.656343 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:05:49.563421 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:05:49.563475 6895 solver.cpp:397] Test net output #1: loss = 5.28564 (* 1 = 5.28564 loss)
I0412 13:05:49.646925 6895 solver.cpp:218] Iteration 2244 (0.894128 iter/s, 13.4209s/12 iters), loss = 5.28253
I0412 13:05:49.646975 6895 solver.cpp:237] Train net output #0: loss = 5.28253 (* 1 = 5.28253 loss)
I0412 13:05:49.646986 6895 sgd_solver.cpp:105] Iteration 2244, lr = 0.00641142
I0412 13:05:53.787668 6895 solver.cpp:218] Iteration 2256 (2.89818 iter/s, 4.14053s/12 iters), loss = 5.24433
I0412 13:05:53.787714 6895 solver.cpp:237] Train net output #0: loss = 5.24433 (* 1 = 5.24433 loss)
I0412 13:05:53.787724 6895 sgd_solver.cpp:105] Iteration 2256, lr = 0.0063962
I0412 13:05:58.592062 6895 solver.cpp:218] Iteration 2268 (2.49784 iter/s, 4.80416s/12 iters), loss = 5.28682
I0412 13:05:58.592108 6895 solver.cpp:237] Train net output #0: loss = 5.28682 (* 1 = 5.28682 loss)
I0412 13:05:58.592115 6895 sgd_solver.cpp:105] Iteration 2268, lr = 0.00638101
I0412 13:06:03.496592 6895 solver.cpp:218] Iteration 2280 (2.44684 iter/s, 4.90429s/12 iters), loss = 5.25681
I0412 13:06:03.496641 6895 solver.cpp:237] Train net output #0: loss = 5.25681 (* 1 = 5.25681 loss)
I0412 13:06:03.496651 6895 sgd_solver.cpp:105] Iteration 2280, lr = 0.00636586
I0412 13:06:08.211678 6895 solver.cpp:218] Iteration 2292 (2.54515 iter/s, 4.71485s/12 iters), loss = 5.27078
I0412 13:06:08.211719 6895 solver.cpp:237] Train net output #0: loss = 5.27078 (* 1 = 5.27078 loss)
I0412 13:06:08.211728 6895 sgd_solver.cpp:105] Iteration 2292, lr = 0.00635075
I0412 13:06:13.134305 6895 solver.cpp:218] Iteration 2304 (2.43784 iter/s, 4.92239s/12 iters), loss = 5.26999
I0412 13:06:13.134364 6895 solver.cpp:237] Train net output #0: loss = 5.26999 (* 1 = 5.26999 loss)
I0412 13:06:13.134378 6895 sgd_solver.cpp:105] Iteration 2304, lr = 0.00633567
I0412 13:06:17.931043 6895 solver.cpp:218] Iteration 2316 (2.50183 iter/s, 4.79649s/12 iters), loss = 5.26945
I0412 13:06:17.931177 6895 solver.cpp:237] Train net output #0: loss = 5.26945 (* 1 = 5.26945 loss)
I0412 13:06:17.931190 6895 sgd_solver.cpp:105] Iteration 2316, lr = 0.00632063
I0412 13:06:21.924508 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:06:23.098049 6895 solver.cpp:218] Iteration 2328 (2.32258 iter/s, 5.16667s/12 iters), loss = 5.26007
I0412 13:06:23.098104 6895 solver.cpp:237] Train net output #0: loss = 5.26007 (* 1 = 5.26007 loss)
I0412 13:06:23.098117 6895 sgd_solver.cpp:105] Iteration 2328, lr = 0.00630562
I0412 13:06:28.002854 6895 solver.cpp:218] Iteration 2340 (2.4467 iter/s, 4.90456s/12 iters), loss = 5.28798
I0412 13:06:28.002904 6895 solver.cpp:237] Train net output #0: loss = 5.28798 (* 1 = 5.28798 loss)
I0412 13:06:28.002914 6895 sgd_solver.cpp:105] Iteration 2340, lr = 0.00629065
I0412 13:06:30.000631 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2346.caffemodel
I0412 13:06:32.053277 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2346.solverstate
I0412 13:06:38.345288 6895 solver.cpp:330] Iteration 2346, Testing net (#0)
I0412 13:06:38.345316 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:06:41.844035 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:06:42.798996 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:06:42.799038 6895 solver.cpp:397] Test net output #1: loss = 5.28595 (* 1 = 5.28595 loss)
I0412 13:06:44.465377 6895 solver.cpp:218] Iteration 2352 (0.728958 iter/s, 16.4619s/12 iters), loss = 5.25958
I0412 13:06:44.465436 6895 solver.cpp:237] Train net output #0: loss = 5.25958 (* 1 = 5.25958 loss)
I0412 13:06:44.465448 6895 sgd_solver.cpp:105] Iteration 2352, lr = 0.00627571
I0412 13:06:49.180979 6895 solver.cpp:218] Iteration 2364 (2.54488 iter/s, 4.71535s/12 iters), loss = 5.30477
I0412 13:06:49.181118 6895 solver.cpp:237] Train net output #0: loss = 5.30477 (* 1 = 5.30477 loss)
I0412 13:06:49.181129 6895 sgd_solver.cpp:105] Iteration 2364, lr = 0.00626081
I0412 13:06:54.085124 6895 solver.cpp:218] Iteration 2376 (2.44707 iter/s, 4.90382s/12 iters), loss = 5.26193
I0412 13:06:54.085183 6895 solver.cpp:237] Train net output #0: loss = 5.26193 (* 1 = 5.26193 loss)
I0412 13:06:54.085198 6895 sgd_solver.cpp:105] Iteration 2376, lr = 0.00624595
I0412 13:06:58.979809 6895 solver.cpp:218] Iteration 2388 (2.45176 iter/s, 4.89443s/12 iters), loss = 5.27815
I0412 13:06:58.979863 6895 solver.cpp:237] Train net output #0: loss = 5.27815 (* 1 = 5.27815 loss)
I0412 13:06:58.979874 6895 sgd_solver.cpp:105] Iteration 2388, lr = 0.00623112
I0412 13:07:03.996178 6895 solver.cpp:218] Iteration 2400 (2.39229 iter/s, 5.01612s/12 iters), loss = 5.28382
I0412 13:07:03.996230 6895 solver.cpp:237] Train net output #0: loss = 5.28382 (* 1 = 5.28382 loss)
I0412 13:07:03.996241 6895 sgd_solver.cpp:105] Iteration 2400, lr = 0.00621633
I0412 13:07:09.274855 6895 solver.cpp:218] Iteration 2412 (2.27341 iter/s, 5.27842s/12 iters), loss = 5.27336
I0412 13:07:09.274911 6895 solver.cpp:237] Train net output #0: loss = 5.27336 (* 1 = 5.27336 loss)
I0412 13:07:09.274924 6895 sgd_solver.cpp:105] Iteration 2412, lr = 0.00620157
I0412 13:07:14.138849 6895 solver.cpp:218] Iteration 2424 (2.46723 iter/s, 4.86375s/12 iters), loss = 5.27805
I0412 13:07:14.138891 6895 solver.cpp:237] Train net output #0: loss = 5.27805 (* 1 = 5.27805 loss)
I0412 13:07:14.138900 6895 sgd_solver.cpp:105] Iteration 2424, lr = 0.00618684
I0412 13:07:15.217376 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:07:19.046002 6895 solver.cpp:218] Iteration 2436 (2.44555 iter/s, 4.90688s/12 iters), loss = 5.28455
I0412 13:07:19.046046 6895 solver.cpp:237] Train net output #0: loss = 5.28455 (* 1 = 5.28455 loss)
I0412 13:07:19.046054 6895 sgd_solver.cpp:105] Iteration 2436, lr = 0.00617215
I0412 13:07:23.482159 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2448.caffemodel
I0412 13:07:26.440433 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2448.solverstate
I0412 13:07:28.254940 6895 solver.cpp:330] Iteration 2448, Testing net (#0)
I0412 13:07:28.254971 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:07:31.846019 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:07:32.977350 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:07:32.977401 6895 solver.cpp:397] Test net output #1: loss = 5.28538 (* 1 = 5.28538 loss)
I0412 13:07:33.060708 6895 solver.cpp:218] Iteration 2448 (0.856278 iter/s, 14.0141s/12 iters), loss = 5.26208
I0412 13:07:33.060761 6895 solver.cpp:237] Train net output #0: loss = 5.26208 (* 1 = 5.26208 loss)
I0412 13:07:33.060772 6895 sgd_solver.cpp:105] Iteration 2448, lr = 0.0061575
I0412 13:07:37.304991 6895 solver.cpp:218] Iteration 2460 (2.82748 iter/s, 4.24406s/12 iters), loss = 5.26289
I0412 13:07:37.305040 6895 solver.cpp:237] Train net output #0: loss = 5.26289 (* 1 = 5.26289 loss)
I0412 13:07:37.305050 6895 sgd_solver.cpp:105] Iteration 2460, lr = 0.00614288
I0412 13:07:42.038038 6895 solver.cpp:218] Iteration 2472 (2.53549 iter/s, 4.73281s/12 iters), loss = 5.27272
I0412 13:07:42.038092 6895 solver.cpp:237] Train net output #0: loss = 5.27272 (* 1 = 5.27272 loss)
I0412 13:07:42.038105 6895 sgd_solver.cpp:105] Iteration 2472, lr = 0.0061283
I0412 13:07:46.809478 6895 solver.cpp:218] Iteration 2484 (2.51509 iter/s, 4.77119s/12 iters), loss = 5.2766
I0412 13:07:46.809536 6895 solver.cpp:237] Train net output #0: loss = 5.2766 (* 1 = 5.2766 loss)
I0412 13:07:46.809548 6895 sgd_solver.cpp:105] Iteration 2484, lr = 0.00611375
I0412 13:07:51.666678 6895 solver.cpp:218] Iteration 2496 (2.47068 iter/s, 4.85696s/12 iters), loss = 5.27292
I0412 13:07:51.666724 6895 solver.cpp:237] Train net output #0: loss = 5.27292 (* 1 = 5.27292 loss)
I0412 13:07:51.666733 6895 sgd_solver.cpp:105] Iteration 2496, lr = 0.00609923
I0412 13:07:56.479841 6895 solver.cpp:218] Iteration 2508 (2.49328 iter/s, 4.81293s/12 iters), loss = 5.29029
I0412 13:07:56.479974 6895 solver.cpp:237] Train net output #0: loss = 5.29029 (* 1 = 5.29029 loss)
I0412 13:07:56.479986 6895 sgd_solver.cpp:105] Iteration 2508, lr = 0.00608475
I0412 13:08:01.358610 6895 solver.cpp:218] Iteration 2520 (2.4598 iter/s, 4.87845s/12 iters), loss = 5.27947
I0412 13:08:01.358655 6895 solver.cpp:237] Train net output #0: loss = 5.27947 (* 1 = 5.27947 loss)
I0412 13:08:01.358665 6895 sgd_solver.cpp:105] Iteration 2520, lr = 0.0060703
I0412 13:08:04.538448 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:08:06.255251 6895 solver.cpp:218] Iteration 2532 (2.45078 iter/s, 4.8964s/12 iters), loss = 5.28117
I0412 13:08:06.255304 6895 solver.cpp:237] Train net output #0: loss = 5.28117 (* 1 = 5.28117 loss)
I0412 13:08:06.255316 6895 sgd_solver.cpp:105] Iteration 2532, lr = 0.00605589
I0412 13:08:10.997758 6895 solver.cpp:218] Iteration 2544 (2.53044 iter/s, 4.74227s/12 iters), loss = 5.27635
I0412 13:08:10.997808 6895 solver.cpp:237] Train net output #0: loss = 5.27635 (* 1 = 5.27635 loss)
I0412 13:08:10.997819 6895 sgd_solver.cpp:105] Iteration 2544, lr = 0.00604151
I0412 13:08:13.016981 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2550.caffemodel
I0412 13:08:19.817821 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2550.solverstate
I0412 13:08:24.844863 6895 solver.cpp:330] Iteration 2550, Testing net (#0)
I0412 13:08:24.844893 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:08:28.230868 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:08:29.246942 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:08:29.246986 6895 solver.cpp:397] Test net output #1: loss = 5.28554 (* 1 = 5.28554 loss)
I0412 13:08:31.083899 6895 solver.cpp:218] Iteration 2556 (0.59745 iter/s, 20.0853s/12 iters), loss = 5.28406
I0412 13:08:31.083945 6895 solver.cpp:237] Train net output #0: loss = 5.28406 (* 1 = 5.28406 loss)
I0412 13:08:31.083953 6895 sgd_solver.cpp:105] Iteration 2556, lr = 0.00602717
I0412 13:08:36.206233 6895 solver.cpp:218] Iteration 2568 (2.3428 iter/s, 5.12208s/12 iters), loss = 5.28937
I0412 13:08:36.206281 6895 solver.cpp:237] Train net output #0: loss = 5.28937 (* 1 = 5.28937 loss)
I0412 13:08:36.206290 6895 sgd_solver.cpp:105] Iteration 2568, lr = 0.00601286
I0412 13:08:40.999626 6895 solver.cpp:218] Iteration 2580 (2.50357 iter/s, 4.79315s/12 iters), loss = 5.27495
I0412 13:08:40.999687 6895 solver.cpp:237] Train net output #0: loss = 5.27495 (* 1 = 5.27495 loss)
I0412 13:08:40.999699 6895 sgd_solver.cpp:105] Iteration 2580, lr = 0.00599858
I0412 13:08:46.174960 6895 solver.cpp:218] Iteration 2592 (2.31881 iter/s, 5.17507s/12 iters), loss = 5.28511
I0412 13:08:46.175012 6895 solver.cpp:237] Train net output #0: loss = 5.28511 (* 1 = 5.28511 loss)
I0412 13:08:46.175024 6895 sgd_solver.cpp:105] Iteration 2592, lr = 0.00598434
I0412 13:08:50.960772 6895 solver.cpp:218] Iteration 2604 (2.50754 iter/s, 4.78557s/12 iters), loss = 5.25661
I0412 13:08:50.960820 6895 solver.cpp:237] Train net output #0: loss = 5.25661 (* 1 = 5.25661 loss)
I0412 13:08:50.960829 6895 sgd_solver.cpp:105] Iteration 2604, lr = 0.00597013
I0412 13:08:55.652348 6895 solver.cpp:218] Iteration 2616 (2.5579 iter/s, 4.69134s/12 iters), loss = 5.2783
I0412 13:08:55.652392 6895 solver.cpp:237] Train net output #0: loss = 5.2783 (* 1 = 5.2783 loss)
I0412 13:08:55.652401 6895 sgd_solver.cpp:105] Iteration 2616, lr = 0.00595596
I0412 13:09:00.533974 6895 solver.cpp:218] Iteration 2628 (2.45832 iter/s, 4.88138s/12 iters), loss = 5.28085
I0412 13:09:00.534067 6895 solver.cpp:237] Train net output #0: loss = 5.28085 (* 1 = 5.28085 loss)
I0412 13:09:00.534081 6895 sgd_solver.cpp:105] Iteration 2628, lr = 0.00594182
I0412 13:09:00.920794 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:09:05.570259 6895 solver.cpp:218] Iteration 2640 (2.38284 iter/s, 5.036s/12 iters), loss = 5.28327
I0412 13:09:05.570309 6895 solver.cpp:237] Train net output #0: loss = 5.28327 (* 1 = 5.28327 loss)
I0412 13:09:05.570320 6895 sgd_solver.cpp:105] Iteration 2640, lr = 0.00592771
I0412 13:09:10.160691 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2652.caffemodel
I0412 13:09:11.707106 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2652.solverstate
I0412 13:09:13.964583 6895 solver.cpp:330] Iteration 2652, Testing net (#0)
I0412 13:09:13.964612 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:09:17.637143 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:09:18.688210 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:09:18.688239 6895 solver.cpp:397] Test net output #1: loss = 5.28578 (* 1 = 5.28578 loss)
I0412 13:09:18.771143 6895 solver.cpp:218] Iteration 2652 (0.909067 iter/s, 13.2003s/12 iters), loss = 5.26996
I0412 13:09:18.771184 6895 solver.cpp:237] Train net output #0: loss = 5.26996 (* 1 = 5.26996 loss)
I0412 13:09:18.771193 6895 sgd_solver.cpp:105] Iteration 2652, lr = 0.00591364
I0412 13:09:22.796289 6895 solver.cpp:218] Iteration 2664 (2.98141 iter/s, 4.02494s/12 iters), loss = 5.28087
I0412 13:09:22.796334 6895 solver.cpp:237] Train net output #0: loss = 5.28087 (* 1 = 5.28087 loss)
I0412 13:09:22.796345 6895 sgd_solver.cpp:105] Iteration 2664, lr = 0.0058996
I0412 13:09:27.562111 6895 solver.cpp:218] Iteration 2676 (2.51805 iter/s, 4.76559s/12 iters), loss = 5.27199
I0412 13:09:27.562155 6895 solver.cpp:237] Train net output #0: loss = 5.27199 (* 1 = 5.27199 loss)
I0412 13:09:27.562165 6895 sgd_solver.cpp:105] Iteration 2676, lr = 0.00588559
I0412 13:09:32.442169 6895 solver.cpp:218] Iteration 2688 (2.45911 iter/s, 4.87982s/12 iters), loss = 5.26433
I0412 13:09:32.442309 6895 solver.cpp:237] Train net output #0: loss = 5.26433 (* 1 = 5.26433 loss)
I0412 13:09:32.442322 6895 sgd_solver.cpp:105] Iteration 2688, lr = 0.00587162
I0412 13:09:37.293555 6895 solver.cpp:218] Iteration 2700 (2.47369 iter/s, 4.85106s/12 iters), loss = 5.28082
I0412 13:09:37.293608 6895 solver.cpp:237] Train net output #0: loss = 5.28082 (* 1 = 5.28082 loss)
I0412 13:09:37.293620 6895 sgd_solver.cpp:105] Iteration 2700, lr = 0.00585768
I0412 13:09:42.176746 6895 solver.cpp:218] Iteration 2712 (2.45753 iter/s, 4.88295s/12 iters), loss = 5.28254
I0412 13:09:42.176795 6895 solver.cpp:237] Train net output #0: loss = 5.28254 (* 1 = 5.28254 loss)
I0412 13:09:42.176807 6895 sgd_solver.cpp:105] Iteration 2712, lr = 0.00584377
I0412 13:09:47.076584 6895 solver.cpp:218] Iteration 2724 (2.44918 iter/s, 4.8996s/12 iters), loss = 5.26058
I0412 13:09:47.076635 6895 solver.cpp:237] Train net output #0: loss = 5.26058 (* 1 = 5.26058 loss)
I0412 13:09:47.076645 6895 sgd_solver.cpp:105] Iteration 2724, lr = 0.0058299
I0412 13:09:49.822789 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:09:52.332798 6895 solver.cpp:218] Iteration 2736 (2.28312 iter/s, 5.25596s/12 iters), loss = 5.28527
I0412 13:09:52.332846 6895 solver.cpp:237] Train net output #0: loss = 5.28527 (* 1 = 5.28527 loss)
I0412 13:09:52.332856 6895 sgd_solver.cpp:105] Iteration 2736, lr = 0.00581605
I0412 13:09:57.108518 6895 solver.cpp:218] Iteration 2748 (2.51284 iter/s, 4.77548s/12 iters), loss = 5.27622
I0412 13:09:57.108579 6895 solver.cpp:237] Train net output #0: loss = 5.27622 (* 1 = 5.27622 loss)
I0412 13:09:57.108592 6895 sgd_solver.cpp:105] Iteration 2748, lr = 0.00580225
I0412 13:09:59.038751 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2754.caffemodel
I0412 13:10:00.541721 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2754.solverstate
I0412 13:10:01.708606 6895 solver.cpp:330] Iteration 2754, Testing net (#0)
I0412 13:10:01.708629 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:10:04.742636 6895 blocking_queue.cpp:49] Waiting for data
I0412 13:10:05.067154 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:10:06.169993 6895 solver.cpp:397] Test net output #0: accuracy = 0.00612745
I0412 13:10:06.170043 6895 solver.cpp:397] Test net output #1: loss = 5.28567 (* 1 = 5.28567 loss)
I0412 13:10:08.166734 6895 solver.cpp:218] Iteration 2760 (1.08521 iter/s, 11.0577s/12 iters), loss = 5.28099
I0412 13:10:08.166779 6895 solver.cpp:237] Train net output #0: loss = 5.28099 (* 1 = 5.28099 loss)
I0412 13:10:08.166788 6895 sgd_solver.cpp:105] Iteration 2760, lr = 0.00578847
I0412 13:10:12.925983 6895 solver.cpp:218] Iteration 2772 (2.52154 iter/s, 4.759s/12 iters), loss = 5.27795
I0412 13:10:12.926036 6895 solver.cpp:237] Train net output #0: loss = 5.27795 (* 1 = 5.27795 loss)
I0412 13:10:12.926049 6895 sgd_solver.cpp:105] Iteration 2772, lr = 0.00577473
I0412 13:10:17.727275 6895 solver.cpp:218] Iteration 2784 (2.49945 iter/s, 4.80105s/12 iters), loss = 5.28562
I0412 13:10:17.727330 6895 solver.cpp:237] Train net output #0: loss = 5.28562 (* 1 = 5.28562 loss)
I0412 13:10:17.727344 6895 sgd_solver.cpp:105] Iteration 2784, lr = 0.00576102
I0412 13:10:22.465240 6895 solver.cpp:218] Iteration 2796 (2.53286 iter/s, 4.73772s/12 iters), loss = 5.26863
I0412 13:10:22.465296 6895 solver.cpp:237] Train net output #0: loss = 5.26863 (* 1 = 5.26863 loss)
I0412 13:10:22.465307 6895 sgd_solver.cpp:105] Iteration 2796, lr = 0.00574734
I0412 13:10:27.313776 6895 solver.cpp:218] Iteration 2808 (2.4751 iter/s, 4.84829s/12 iters), loss = 5.26685
I0412 13:10:27.313838 6895 solver.cpp:237] Train net output #0: loss = 5.26685 (* 1 = 5.26685 loss)
I0412 13:10:27.313853 6895 sgd_solver.cpp:105] Iteration 2808, lr = 0.00573369
I0412 13:10:31.999377 6895 solver.cpp:218] Iteration 2820 (2.56117 iter/s, 4.68535s/12 iters), loss = 5.27641
I0412 13:10:31.999433 6895 solver.cpp:237] Train net output #0: loss = 5.27641 (* 1 = 5.27641 loss)
I0412 13:10:31.999444 6895 sgd_solver.cpp:105] Iteration 2820, lr = 0.00572008
I0412 13:10:36.552740 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:10:36.842155 6895 solver.cpp:218] Iteration 2832 (2.47804 iter/s, 4.84253s/12 iters), loss = 5.26032
I0412 13:10:36.842209 6895 solver.cpp:237] Train net output #0: loss = 5.26032 (* 1 = 5.26032 loss)
I0412 13:10:36.842223 6895 sgd_solver.cpp:105] Iteration 2832, lr = 0.0057065
I0412 13:10:41.603636 6895 solver.cpp:218] Iteration 2844 (2.52035 iter/s, 4.76124s/12 iters), loss = 5.27054
I0412 13:10:41.603688 6895 solver.cpp:237] Train net output #0: loss = 5.27054 (* 1 = 5.27054 loss)
I0412 13:10:41.603700 6895 sgd_solver.cpp:105] Iteration 2844, lr = 0.00569295
I0412 13:10:45.859833 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2856.caffemodel
I0412 13:10:49.115020 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2856.solverstate
I0412 13:10:51.676409 6895 solver.cpp:330] Iteration 2856, Testing net (#0)
I0412 13:10:51.676438 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:10:55.098178 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:10:56.234905 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:10:56.234961 6895 solver.cpp:397] Test net output #1: loss = 5.28609 (* 1 = 5.28609 loss)
I0412 13:10:56.318023 6895 solver.cpp:218] Iteration 2856 (0.815562 iter/s, 14.7138s/12 iters), loss = 5.29319
I0412 13:10:56.318082 6895 solver.cpp:237] Train net output #0: loss = 5.29319 (* 1 = 5.29319 loss)
I0412 13:10:56.318094 6895 sgd_solver.cpp:105] Iteration 2856, lr = 0.00567944
I0412 13:11:00.338742 6895 solver.cpp:218] Iteration 2868 (2.9847 iter/s, 4.0205s/12 iters), loss = 5.28292
I0412 13:11:00.338799 6895 solver.cpp:237] Train net output #0: loss = 5.28292 (* 1 = 5.28292 loss)
I0412 13:11:00.338814 6895 sgd_solver.cpp:105] Iteration 2868, lr = 0.00566595
I0412 13:11:05.087682 6895 solver.cpp:218] Iteration 2880 (2.52701 iter/s, 4.74869s/12 iters), loss = 5.27799
I0412 13:11:05.087726 6895 solver.cpp:237] Train net output #0: loss = 5.27799 (* 1 = 5.27799 loss)
I0412 13:11:05.087734 6895 sgd_solver.cpp:105] Iteration 2880, lr = 0.0056525
I0412 13:11:09.936295 6895 solver.cpp:218] Iteration 2892 (2.47506 iter/s, 4.84837s/12 iters), loss = 5.27522
I0412 13:11:09.936408 6895 solver.cpp:237] Train net output #0: loss = 5.27522 (* 1 = 5.27522 loss)
I0412 13:11:09.936417 6895 sgd_solver.cpp:105] Iteration 2892, lr = 0.00563908
I0412 13:11:14.626628 6895 solver.cpp:218] Iteration 2904 (2.55862 iter/s, 4.69003s/12 iters), loss = 5.25393
I0412 13:11:14.626690 6895 solver.cpp:237] Train net output #0: loss = 5.25393 (* 1 = 5.25393 loss)
I0412 13:11:14.626705 6895 sgd_solver.cpp:105] Iteration 2904, lr = 0.00562569
I0412 13:11:19.509881 6895 solver.cpp:218] Iteration 2916 (2.45751 iter/s, 4.883s/12 iters), loss = 5.27658
I0412 13:11:19.509932 6895 solver.cpp:237] Train net output #0: loss = 5.27658 (* 1 = 5.27658 loss)
I0412 13:11:19.509943 6895 sgd_solver.cpp:105] Iteration 2916, lr = 0.00561233
I0412 13:11:24.473125 6895 solver.cpp:218] Iteration 2928 (2.41789 iter/s, 4.963s/12 iters), loss = 5.28563
I0412 13:11:24.473184 6895 solver.cpp:237] Train net output #0: loss = 5.28563 (* 1 = 5.28563 loss)
I0412 13:11:24.473196 6895 sgd_solver.cpp:105] Iteration 2928, lr = 0.00559901
I0412 13:11:26.302491 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:11:29.285343 6895 solver.cpp:218] Iteration 2940 (2.49378 iter/s, 4.81197s/12 iters), loss = 5.28426
I0412 13:11:29.285392 6895 solver.cpp:237] Train net output #0: loss = 5.28426 (* 1 = 5.28426 loss)
I0412 13:11:29.285403 6895 sgd_solver.cpp:105] Iteration 2940, lr = 0.00558572
I0412 13:11:34.299919 6895 solver.cpp:218] Iteration 2952 (2.39314 iter/s, 5.01433s/12 iters), loss = 5.28121
I0412 13:11:34.299958 6895 solver.cpp:237] Train net output #0: loss = 5.28121 (* 1 = 5.28121 loss)
I0412 13:11:34.299968 6895 sgd_solver.cpp:105] Iteration 2952, lr = 0.00557245
I0412 13:11:36.270363 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2958.caffemodel
I0412 13:11:40.297288 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2958.solverstate
I0412 13:11:42.929410 6895 solver.cpp:330] Iteration 2958, Testing net (#0)
I0412 13:11:42.929436 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:11:46.192595 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:11:47.462484 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:11:47.462534 6895 solver.cpp:397] Test net output #1: loss = 5.28578 (* 1 = 5.28578 loss)
I0412 13:11:49.362993 6895 solver.cpp:218] Iteration 2964 (0.796682 iter/s, 15.0625s/12 iters), loss = 5.24393
I0412 13:11:49.363042 6895 solver.cpp:237] Train net output #0: loss = 5.24393 (* 1 = 5.24393 loss)
I0412 13:11:49.363052 6895 sgd_solver.cpp:105] Iteration 2964, lr = 0.00555922
I0412 13:11:54.168942 6895 solver.cpp:218] Iteration 2976 (2.49703 iter/s, 4.80571s/12 iters), loss = 5.28513
I0412 13:11:54.168987 6895 solver.cpp:237] Train net output #0: loss = 5.28513 (* 1 = 5.28513 loss)
I0412 13:11:54.168994 6895 sgd_solver.cpp:105] Iteration 2976, lr = 0.00554603
I0412 13:11:58.883198 6895 solver.cpp:218] Iteration 2988 (2.5456 iter/s, 4.71402s/12 iters), loss = 5.26118
I0412 13:11:58.883263 6895 solver.cpp:237] Train net output #0: loss = 5.26118 (* 1 = 5.26118 loss)
I0412 13:11:58.883277 6895 sgd_solver.cpp:105] Iteration 2988, lr = 0.00553286
I0412 13:12:03.543610 6895 solver.cpp:218] Iteration 3000 (2.57502 iter/s, 4.66016s/12 iters), loss = 5.27216
I0412 13:12:03.543666 6895 solver.cpp:237] Train net output #0: loss = 5.27216 (* 1 = 5.27216 loss)
I0412 13:12:03.543678 6895 sgd_solver.cpp:105] Iteration 3000, lr = 0.00551972
I0412 13:12:08.350876 6895 solver.cpp:218] Iteration 3012 (2.49635 iter/s, 4.80703s/12 iters), loss = 5.27358
I0412 13:12:08.350924 6895 solver.cpp:237] Train net output #0: loss = 5.27358 (* 1 = 5.27358 loss)
I0412 13:12:08.350937 6895 sgd_solver.cpp:105] Iteration 3012, lr = 0.00550662
I0412 13:12:13.285097 6895 solver.cpp:218] Iteration 3024 (2.43212 iter/s, 4.93397s/12 iters), loss = 5.26325
I0412 13:12:13.285259 6895 solver.cpp:237] Train net output #0: loss = 5.26325 (* 1 = 5.26325 loss)
I0412 13:12:13.285274 6895 sgd_solver.cpp:105] Iteration 3024, lr = 0.00549354
I0412 13:12:17.053987 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:12:18.101215 6895 solver.cpp:218] Iteration 3036 (2.49181 iter/s, 4.81577s/12 iters), loss = 5.2603
I0412 13:12:18.101260 6895 solver.cpp:237] Train net output #0: loss = 5.2603 (* 1 = 5.2603 loss)
I0412 13:12:18.101270 6895 sgd_solver.cpp:105] Iteration 3036, lr = 0.0054805
I0412 13:12:22.945914 6895 solver.cpp:218] Iteration 3048 (2.47706 iter/s, 4.84446s/12 iters), loss = 5.29349
I0412 13:12:22.945983 6895 solver.cpp:237] Train net output #0: loss = 5.29349 (* 1 = 5.29349 loss)
I0412 13:12:22.945996 6895 sgd_solver.cpp:105] Iteration 3048, lr = 0.00546749
I0412 13:12:27.427120 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3060.caffemodel
I0412 13:12:31.743901 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3060.solverstate
I0412 13:12:34.616662 6895 solver.cpp:330] Iteration 3060, Testing net (#0)
I0412 13:12:34.616691 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:12:37.847096 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:12:39.058887 6895 solver.cpp:397] Test net output #0: accuracy = 0.00612745
I0412 13:12:39.058938 6895 solver.cpp:397] Test net output #1: loss = 5.28565 (* 1 = 5.28565 loss)
I0412 13:12:39.142338 6895 solver.cpp:218] Iteration 3060 (0.740935 iter/s, 16.1957s/12 iters), loss = 5.25967
I0412 13:12:39.142400 6895 solver.cpp:237] Train net output #0: loss = 5.25967 (* 1 = 5.25967 loss)
I0412 13:12:39.142412 6895 sgd_solver.cpp:105] Iteration 3060, lr = 0.00545451
I0412 13:12:43.114531 6895 solver.cpp:218] Iteration 3072 (3.02117 iter/s, 3.97197s/12 iters), loss = 5.30707
I0412 13:12:43.114581 6895 solver.cpp:237] Train net output #0: loss = 5.30707 (* 1 = 5.30707 loss)
I0412 13:12:43.114589 6895 sgd_solver.cpp:105] Iteration 3072, lr = 0.00544156
I0412 13:12:48.056016 6895 solver.cpp:218] Iteration 3084 (2.42855 iter/s, 4.94123s/12 iters), loss = 5.27359
I0412 13:12:48.056156 6895 solver.cpp:237] Train net output #0: loss = 5.27359 (* 1 = 5.27359 loss)
I0412 13:12:48.056172 6895 sgd_solver.cpp:105] Iteration 3084, lr = 0.00542864
I0412 13:12:52.947224 6895 solver.cpp:218] Iteration 3096 (2.45355 iter/s, 4.89088s/12 iters), loss = 5.27309
I0412 13:12:52.947284 6895 solver.cpp:237] Train net output #0: loss = 5.27309 (* 1 = 5.27309 loss)
I0412 13:12:52.947297 6895 sgd_solver.cpp:105] Iteration 3096, lr = 0.00541575
I0412 13:12:57.887270 6895 solver.cpp:218] Iteration 3108 (2.42925 iter/s, 4.9398s/12 iters), loss = 5.27804
I0412 13:12:57.887310 6895 solver.cpp:237] Train net output #0: loss = 5.27804 (* 1 = 5.27804 loss)
I0412 13:12:57.887320 6895 sgd_solver.cpp:105] Iteration 3108, lr = 0.00540289
I0412 13:13:02.777675 6895 solver.cpp:218] Iteration 3120 (2.4539 iter/s, 4.89017s/12 iters), loss = 5.27157
I0412 13:13:02.777737 6895 solver.cpp:237] Train net output #0: loss = 5.27157 (* 1 = 5.27157 loss)
I0412 13:13:02.777753 6895 sgd_solver.cpp:105] Iteration 3120, lr = 0.00539006
I0412 13:13:07.757261 6895 solver.cpp:218] Iteration 3132 (2.40996 iter/s, 4.97933s/12 iters), loss = 5.2828
I0412 13:13:07.757315 6895 solver.cpp:237] Train net output #0: loss = 5.2828 (* 1 = 5.2828 loss)
I0412 13:13:07.757328 6895 sgd_solver.cpp:105] Iteration 3132, lr = 0.00537727
I0412 13:13:08.887809 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:13:12.735587 6895 solver.cpp:218] Iteration 3144 (2.41057 iter/s, 4.97807s/12 iters), loss = 5.28299
I0412 13:13:12.735643 6895 solver.cpp:237] Train net output #0: loss = 5.28299 (* 1 = 5.28299 loss)
I0412 13:13:12.735656 6895 sgd_solver.cpp:105] Iteration 3144, lr = 0.0053645
I0412 13:13:17.564591 6895 solver.cpp:218] Iteration 3156 (2.48511 iter/s, 4.82875s/12 iters), loss = 5.24879
I0412 13:13:17.564646 6895 solver.cpp:237] Train net output #0: loss = 5.24879 (* 1 = 5.24879 loss)
I0412 13:13:17.564657 6895 sgd_solver.cpp:105] Iteration 3156, lr = 0.00535176
I0412 13:13:19.521294 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3162.caffemodel
I0412 13:13:21.071678 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3162.solverstate
I0412 13:13:22.311825 6895 solver.cpp:330] Iteration 3162, Testing net (#0)
I0412 13:13:22.311846 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:13:25.540194 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:13:26.797125 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:13:26.797155 6895 solver.cpp:397] Test net output #1: loss = 5.28574 (* 1 = 5.28574 loss)
I0412 13:13:28.575278 6895 solver.cpp:218] Iteration 3168 (1.0899 iter/s, 11.0102s/12 iters), loss = 5.27107
I0412 13:13:28.575337 6895 solver.cpp:237] Train net output #0: loss = 5.27107 (* 1 = 5.27107 loss)
I0412 13:13:28.575349 6895 sgd_solver.cpp:105] Iteration 3168, lr = 0.00533906
I0412 13:13:33.418238 6895 solver.cpp:218] Iteration 3180 (2.47795 iter/s, 4.84271s/12 iters), loss = 5.27588
I0412 13:13:33.418293 6895 solver.cpp:237] Train net output #0: loss = 5.27588 (* 1 = 5.27588 loss)
I0412 13:13:33.418304 6895 sgd_solver.cpp:105] Iteration 3180, lr = 0.00532638
I0412 13:13:38.210332 6895 solver.cpp:218] Iteration 3192 (2.50425 iter/s, 4.79185s/12 iters), loss = 5.27511
I0412 13:13:38.210386 6895 solver.cpp:237] Train net output #0: loss = 5.27511 (* 1 = 5.27511 loss)
I0412 13:13:38.210397 6895 sgd_solver.cpp:105] Iteration 3192, lr = 0.00531374
I0412 13:13:43.071931 6895 solver.cpp:218] Iteration 3204 (2.46845 iter/s, 4.86136s/12 iters), loss = 5.26554
I0412 13:13:43.071979 6895 solver.cpp:237] Train net output #0: loss = 5.26554 (* 1 = 5.26554 loss)
I0412 13:13:43.071991 6895 sgd_solver.cpp:105] Iteration 3204, lr = 0.00530112
I0412 13:13:47.996381 6895 solver.cpp:218] Iteration 3216 (2.43694 iter/s, 4.92421s/12 iters), loss = 5.28966
I0412 13:13:47.996438 6895 solver.cpp:237] Train net output #0: loss = 5.28966 (* 1 = 5.28966 loss)
I0412 13:13:47.996449 6895 sgd_solver.cpp:105] Iteration 3216, lr = 0.00528853
I0412 13:13:52.892709 6895 solver.cpp:218] Iteration 3228 (2.45094 iter/s, 4.89608s/12 iters), loss = 5.27876
I0412 13:13:52.895576 6895 solver.cpp:237] Train net output #0: loss = 5.27876 (* 1 = 5.27876 loss)
I0412 13:13:52.895587 6895 sgd_solver.cpp:105] Iteration 3228, lr = 0.00527598
I0412 13:13:56.054507 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:13:57.758257 6895 solver.cpp:218] Iteration 3240 (2.46787 iter/s, 4.86249s/12 iters), loss = 5.28389
I0412 13:13:57.758322 6895 solver.cpp:237] Train net output #0: loss = 5.28389 (* 1 = 5.28389 loss)
I0412 13:13:57.758337 6895 sgd_solver.cpp:105] Iteration 3240, lr = 0.00526345
I0412 13:14:03.051517 6895 solver.cpp:218] Iteration 3252 (2.26715 iter/s, 5.29299s/12 iters), loss = 5.26997
I0412 13:14:03.051560 6895 solver.cpp:237] Train net output #0: loss = 5.26997 (* 1 = 5.26997 loss)
I0412 13:14:03.051569 6895 sgd_solver.cpp:105] Iteration 3252, lr = 0.00525095
I0412 13:14:07.433584 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3264.caffemodel
I0412 13:14:09.024056 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3264.solverstate
I0412 13:14:10.236852 6895 solver.cpp:330] Iteration 3264, Testing net (#0)
I0412 13:14:10.236877 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:14:13.474803 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:14:14.823798 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:14:14.823854 6895 solver.cpp:397] Test net output #1: loss = 5.2861 (* 1 = 5.2861 loss)
I0412 13:14:14.906993 6895 solver.cpp:218] Iteration 3264 (1.01223 iter/s, 11.855s/12 iters), loss = 5.27476
I0412 13:14:14.907052 6895 solver.cpp:237] Train net output #0: loss = 5.27476 (* 1 = 5.27476 loss)
I0412 13:14:14.907064 6895 sgd_solver.cpp:105] Iteration 3264, lr = 0.00523849
I0412 13:14:18.800807 6895 solver.cpp:218] Iteration 3276 (3.08198 iter/s, 3.89361s/12 iters), loss = 5.29066
I0412 13:14:18.800853 6895 solver.cpp:237] Train net output #0: loss = 5.29066 (* 1 = 5.29066 loss)
I0412 13:14:18.800863 6895 sgd_solver.cpp:105] Iteration 3276, lr = 0.00522605
I0412 13:14:23.900171 6895 solver.cpp:218] Iteration 3288 (2.35335 iter/s, 5.09912s/12 iters), loss = 5.26243
I0412 13:14:23.900302 6895 solver.cpp:237] Train net output #0: loss = 5.26243 (* 1 = 5.26243 loss)
I0412 13:14:23.900312 6895 sgd_solver.cpp:105] Iteration 3288, lr = 0.00521364
I0412 13:14:28.684322 6895 solver.cpp:218] Iteration 3300 (2.50845 iter/s, 4.78383s/12 iters), loss = 5.28695
I0412 13:14:28.684366 6895 solver.cpp:237] Train net output #0: loss = 5.28695 (* 1 = 5.28695 loss)
I0412 13:14:28.684374 6895 sgd_solver.cpp:105] Iteration 3300, lr = 0.00520126
I0412 13:14:33.763958 6895 solver.cpp:218] Iteration 3312 (2.36248 iter/s, 5.0794s/12 iters), loss = 5.26255
I0412 13:14:33.763994 6895 solver.cpp:237] Train net output #0: loss = 5.26255 (* 1 = 5.26255 loss)
I0412 13:14:33.764003 6895 sgd_solver.cpp:105] Iteration 3312, lr = 0.00518892
I0412 13:14:38.669339 6895 solver.cpp:218] Iteration 3324 (2.44641 iter/s, 4.90515s/12 iters), loss = 5.28406
I0412 13:14:38.669381 6895 solver.cpp:237] Train net output #0: loss = 5.28406 (* 1 = 5.28406 loss)
I0412 13:14:38.669389 6895 sgd_solver.cpp:105] Iteration 3324, lr = 0.0051766
I0412 13:14:43.354743 6895 solver.cpp:218] Iteration 3336 (2.56127 iter/s, 4.68518s/12 iters), loss = 5.27623
I0412 13:14:43.354797 6895 solver.cpp:237] Train net output #0: loss = 5.27623 (* 1 = 5.27623 loss)
I0412 13:14:43.354810 6895 sgd_solver.cpp:105] Iteration 3336, lr = 0.00516431
I0412 13:14:43.755203 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:14:49.017786 6895 solver.cpp:218] Iteration 3348 (2.11911 iter/s, 5.66276s/12 iters), loss = 5.27772
I0412 13:14:49.017833 6895 solver.cpp:237] Train net output #0: loss = 5.27772 (* 1 = 5.27772 loss)
I0412 13:14:49.017843 6895 sgd_solver.cpp:105] Iteration 3348, lr = 0.00515204
I0412 13:14:53.979674 6895 solver.cpp:218] Iteration 3360 (2.41855 iter/s, 4.96165s/12 iters), loss = 5.26601
I0412 13:14:53.979735 6895 solver.cpp:237] Train net output #0: loss = 5.26601 (* 1 = 5.26601 loss)
I0412 13:14:53.979745 6895 sgd_solver.cpp:105] Iteration 3360, lr = 0.00513981
I0412 13:14:55.977129 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3366.caffemodel
I0412 13:14:57.455128 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3366.solverstate
I0412 13:14:58.617069 6895 solver.cpp:330] Iteration 3366, Testing net (#0)
I0412 13:14:58.617095 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:15:01.676635 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:15:03.059293 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:15:03.059342 6895 solver.cpp:397] Test net output #1: loss = 5.28585 (* 1 = 5.28585 loss)
I0412 13:15:04.800329 6895 solver.cpp:218] Iteration 3372 (1.10904 iter/s, 10.8202s/12 iters), loss = 5.28264
I0412 13:15:04.800380 6895 solver.cpp:237] Train net output #0: loss = 5.28264 (* 1 = 5.28264 loss)
I0412 13:15:04.800390 6895 sgd_solver.cpp:105] Iteration 3372, lr = 0.00512761
I0412 13:15:09.613843 6895 solver.cpp:218] Iteration 3384 (2.49311 iter/s, 4.81327s/12 iters), loss = 5.26503
I0412 13:15:09.613889 6895 solver.cpp:237] Train net output #0: loss = 5.26503 (* 1 = 5.26503 loss)
I0412 13:15:09.613899 6895 sgd_solver.cpp:105] Iteration 3384, lr = 0.00511544
I0412 13:15:14.463673 6895 solver.cpp:218] Iteration 3396 (2.47443 iter/s, 4.84959s/12 iters), loss = 5.26331
I0412 13:15:14.463718 6895 solver.cpp:237] Train net output #0: loss = 5.26331 (* 1 = 5.26331 loss)
I0412 13:15:14.463726 6895 sgd_solver.cpp:105] Iteration 3396, lr = 0.00510329
I0412 13:15:19.258548 6895 solver.cpp:218] Iteration 3408 (2.50279 iter/s, 4.79464s/12 iters), loss = 5.28709
I0412 13:15:19.258594 6895 solver.cpp:237] Train net output #0: loss = 5.28709 (* 1 = 5.28709 loss)
I0412 13:15:19.258602 6895 sgd_solver.cpp:105] Iteration 3408, lr = 0.00509117
I0412 13:15:24.066746 6895 solver.cpp:218] Iteration 3420 (2.49586 iter/s, 4.80795s/12 iters), loss = 5.27561
I0412 13:15:24.066890 6895 solver.cpp:237] Train net output #0: loss = 5.27561 (* 1 = 5.27561 loss)
I0412 13:15:24.066905 6895 sgd_solver.cpp:105] Iteration 3420, lr = 0.00507909
I0412 13:15:29.000520 6895 solver.cpp:218] Iteration 3432 (2.43238 iter/s, 4.93344s/12 iters), loss = 5.26261
I0412 13:15:29.000568 6895 solver.cpp:237] Train net output #0: loss = 5.26261 (* 1 = 5.26261 loss)
I0412 13:15:29.000581 6895 sgd_solver.cpp:105] Iteration 3432, lr = 0.00506703
I0412 13:15:31.556972 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:15:33.786306 6895 solver.cpp:218] Iteration 3444 (2.50755 iter/s, 4.78555s/12 iters), loss = 5.27616
I0412 13:15:33.786365 6895 solver.cpp:237] Train net output #0: loss = 5.27616 (* 1 = 5.27616 loss)
I0412 13:15:33.786375 6895 sgd_solver.cpp:105] Iteration 3444, lr = 0.005055
I0412 13:15:38.565987 6895 solver.cpp:218] Iteration 3456 (2.51077 iter/s, 4.77941s/12 iters), loss = 5.27682
I0412 13:15:38.566049 6895 solver.cpp:237] Train net output #0: loss = 5.27682 (* 1 = 5.27682 loss)
I0412 13:15:38.566064 6895 sgd_solver.cpp:105] Iteration 3456, lr = 0.005043
I0412 13:15:43.064008 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3468.caffemodel
I0412 13:15:44.611219 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3468.solverstate
I0412 13:15:45.917811 6895 solver.cpp:330] Iteration 3468, Testing net (#0)
I0412 13:15:45.917836 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:15:46.276623 6895 blocking_queue.cpp:49] Waiting for data
I0412 13:15:48.985970 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:15:50.367861 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:15:50.367897 6895 solver.cpp:397] Test net output #1: loss = 5.28618 (* 1 = 5.28618 loss)
I0412 13:15:50.450904 6895 solver.cpp:218] Iteration 3468 (1.00973 iter/s, 11.8844s/12 iters), loss = 5.27477
I0412 13:15:50.450958 6895 solver.cpp:237] Train net output #0: loss = 5.27477 (* 1 = 5.27477 loss)
I0412 13:15:50.450969 6895 sgd_solver.cpp:105] Iteration 3468, lr = 0.00503102
I0412 13:15:54.406059 6895 solver.cpp:218] Iteration 3480 (3.03418 iter/s, 3.95495s/12 iters), loss = 5.27944
I0412 13:15:54.406185 6895 solver.cpp:237] Train net output #0: loss = 5.27944 (* 1 = 5.27944 loss)
I0412 13:15:54.406200 6895 sgd_solver.cpp:105] Iteration 3480, lr = 0.00501908
I0412 13:15:59.054965 6895 solver.cpp:218] Iteration 3492 (2.58143 iter/s, 4.64859s/12 iters), loss = 5.28781
I0412 13:15:59.055011 6895 solver.cpp:237] Train net output #0: loss = 5.28781 (* 1 = 5.28781 loss)
I0412 13:15:59.055020 6895 sgd_solver.cpp:105] Iteration 3492, lr = 0.00500716
I0412 13:16:03.932713 6895 solver.cpp:218] Iteration 3504 (2.46027 iter/s, 4.87751s/12 iters), loss = 5.27615
I0412 13:16:03.932771 6895 solver.cpp:237] Train net output #0: loss = 5.27615 (* 1 = 5.27615 loss)
I0412 13:16:03.932782 6895 sgd_solver.cpp:105] Iteration 3504, lr = 0.00499527
I0412 13:16:08.958537 6895 solver.cpp:218] Iteration 3516 (2.38779 iter/s, 5.02557s/12 iters), loss = 5.26704
I0412 13:16:08.958580 6895 solver.cpp:237] Train net output #0: loss = 5.26704 (* 1 = 5.26704 loss)
I0412 13:16:08.958590 6895 sgd_solver.cpp:105] Iteration 3516, lr = 0.00498341
I0412 13:16:13.853204 6895 solver.cpp:218] Iteration 3528 (2.45177 iter/s, 4.89443s/12 iters), loss = 5.27221
I0412 13:16:13.853241 6895 solver.cpp:237] Train net output #0: loss = 5.27221 (* 1 = 5.27221 loss)
I0412 13:16:13.853250 6895 sgd_solver.cpp:105] Iteration 3528, lr = 0.00497158
I0412 13:16:18.353801 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:16:18.610193 6895 solver.cpp:218] Iteration 3540 (2.52273 iter/s, 4.75676s/12 iters), loss = 5.26285
I0412 13:16:18.610236 6895 solver.cpp:237] Train net output #0: loss = 5.26285 (* 1 = 5.26285 loss)
I0412 13:16:18.610245 6895 sgd_solver.cpp:105] Iteration 3540, lr = 0.00495978
I0412 13:16:23.473377 6895 solver.cpp:218] Iteration 3552 (2.46764 iter/s, 4.86294s/12 iters), loss = 5.26738
I0412 13:16:23.473433 6895 solver.cpp:237] Train net output #0: loss = 5.26738 (* 1 = 5.26738 loss)
I0412 13:16:23.473445 6895 sgd_solver.cpp:105] Iteration 3552, lr = 0.004948
I0412 13:16:28.325546 6895 solver.cpp:218] Iteration 3564 (2.47325 iter/s, 4.85192s/12 iters), loss = 5.29174
I0412 13:16:28.325690 6895 solver.cpp:237] Train net output #0: loss = 5.29174 (* 1 = 5.29174 loss)
I0412 13:16:28.325704 6895 sgd_solver.cpp:105] Iteration 3564, lr = 0.00493626
I0412 13:16:30.237408 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3570.caffemodel
I0412 13:16:34.219467 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3570.solverstate
I0412 13:16:38.470937 6895 solver.cpp:330] Iteration 3570, Testing net (#0)
I0412 13:16:38.470959 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:16:41.493223 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:16:42.900251 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:16:42.900298 6895 solver.cpp:397] Test net output #1: loss = 5.28592 (* 1 = 5.28592 loss)
I0412 13:16:44.607614 6895 solver.cpp:218] Iteration 3576 (0.737041 iter/s, 16.2813s/12 iters), loss = 5.28697
I0412 13:16:44.607666 6895 solver.cpp:237] Train net output #0: loss = 5.28697 (* 1 = 5.28697 loss)
I0412 13:16:44.607677 6895 sgd_solver.cpp:105] Iteration 3576, lr = 0.00492454
I0412 13:16:49.463354 6895 solver.cpp:218] Iteration 3588 (2.47143 iter/s, 4.85549s/12 iters), loss = 5.27697
I0412 13:16:49.463404 6895 solver.cpp:237] Train net output #0: loss = 5.27697 (* 1 = 5.27697 loss)
I0412 13:16:49.463416 6895 sgd_solver.cpp:105] Iteration 3588, lr = 0.00491284
I0412 13:16:54.387217 6895 solver.cpp:218] Iteration 3600 (2.43724 iter/s, 4.92361s/12 iters), loss = 5.26214
I0412 13:16:54.387271 6895 solver.cpp:237] Train net output #0: loss = 5.26214 (* 1 = 5.26214 loss)
I0412 13:16:54.387284 6895 sgd_solver.cpp:105] Iteration 3600, lr = 0.00490118
I0412 13:16:59.304930 6895 solver.cpp:218] Iteration 3612 (2.44028 iter/s, 4.91746s/12 iters), loss = 5.24481
I0412 13:16:59.305030 6895 solver.cpp:237] Train net output #0: loss = 5.24481 (* 1 = 5.24481 loss)
I0412 13:16:59.305042 6895 sgd_solver.cpp:105] Iteration 3612, lr = 0.00488954
I0412 13:17:04.158345 6895 solver.cpp:218] Iteration 3624 (2.47264 iter/s, 4.85312s/12 iters), loss = 5.27834
I0412 13:17:04.158404 6895 solver.cpp:237] Train net output #0: loss = 5.27834 (* 1 = 5.27834 loss)
I0412 13:17:04.158417 6895 sgd_solver.cpp:105] Iteration 3624, lr = 0.00487793
I0412 13:17:09.102005 6895 solver.cpp:218] Iteration 3636 (2.42749 iter/s, 4.94338s/12 iters), loss = 5.28357
I0412 13:17:09.102052 6895 solver.cpp:237] Train net output #0: loss = 5.28357 (* 1 = 5.28357 loss)
I0412 13:17:09.102062 6895 sgd_solver.cpp:105] Iteration 3636, lr = 0.00486635
I0412 13:17:11.018281 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:17:14.237493 6895 solver.cpp:218] Iteration 3648 (2.3368 iter/s, 5.13524s/12 iters), loss = 5.28739
I0412 13:17:14.237557 6895 solver.cpp:237] Train net output #0: loss = 5.28739 (* 1 = 5.28739 loss)
I0412 13:17:14.237573 6895 sgd_solver.cpp:105] Iteration 3648, lr = 0.0048548
I0412 13:17:19.153625 6895 solver.cpp:218] Iteration 3660 (2.44107 iter/s, 4.91588s/12 iters), loss = 5.2794
I0412 13:17:19.153676 6895 solver.cpp:237] Train net output #0: loss = 5.2794 (* 1 = 5.2794 loss)
I0412 13:17:19.153688 6895 sgd_solver.cpp:105] Iteration 3660, lr = 0.00484327
I0412 13:17:23.474191 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3672.caffemodel
I0412 13:17:24.951632 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3672.solverstate
I0412 13:17:26.125222 6895 solver.cpp:330] Iteration 3672, Testing net (#0)
I0412 13:17:26.125247 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:17:28.998697 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:17:30.451414 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:17:30.451509 6895 solver.cpp:397] Test net output #1: loss = 5.28534 (* 1 = 5.28534 loss)
I0412 13:17:30.534404 6895 solver.cpp:218] Iteration 3672 (1.05445 iter/s, 11.3803s/12 iters), loss = 5.25554
I0412 13:17:30.534448 6895 solver.cpp:237] Train net output #0: loss = 5.25554 (* 1 = 5.25554 loss)
I0412 13:17:30.534456 6895 sgd_solver.cpp:105] Iteration 3672, lr = 0.00483177
I0412 13:17:34.718633 6895 solver.cpp:218] Iteration 3684 (2.86806 iter/s, 4.18402s/12 iters), loss = 5.27058
I0412 13:17:34.718677 6895 solver.cpp:237] Train net output #0: loss = 5.27058 (* 1 = 5.27058 loss)
I0412 13:17:34.718684 6895 sgd_solver.cpp:105] Iteration 3684, lr = 0.0048203
I0412 13:17:39.586563 6895 solver.cpp:218] Iteration 3696 (2.46523 iter/s, 4.86769s/12 iters), loss = 5.26182
I0412 13:17:39.586613 6895 solver.cpp:237] Train net output #0: loss = 5.26182 (* 1 = 5.26182 loss)
I0412 13:17:39.586624 6895 sgd_solver.cpp:105] Iteration 3696, lr = 0.00480886
I0412 13:17:44.333391 6895 solver.cpp:218] Iteration 3708 (2.52813 iter/s, 4.74659s/12 iters), loss = 5.26838
I0412 13:17:44.333431 6895 solver.cpp:237] Train net output #0: loss = 5.26838 (* 1 = 5.26838 loss)
I0412 13:17:44.333439 6895 sgd_solver.cpp:105] Iteration 3708, lr = 0.00479744
I0412 13:17:49.146088 6895 solver.cpp:218] Iteration 3720 (2.49353 iter/s, 4.81246s/12 iters), loss = 5.27118
I0412 13:17:49.146144 6895 solver.cpp:237] Train net output #0: loss = 5.27118 (* 1 = 5.27118 loss)
I0412 13:17:49.146157 6895 sgd_solver.cpp:105] Iteration 3720, lr = 0.00478605
I0412 13:17:53.995321 6895 solver.cpp:218] Iteration 3732 (2.47474 iter/s, 4.84899s/12 iters), loss = 5.25685
I0412 13:17:53.995365 6895 solver.cpp:237] Train net output #0: loss = 5.25685 (* 1 = 5.25685 loss)
I0412 13:17:53.995374 6895 sgd_solver.cpp:105] Iteration 3732, lr = 0.00477469
I0412 13:17:57.922346 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:17:58.814941 6895 solver.cpp:218] Iteration 3744 (2.48995 iter/s, 4.81938s/12 iters), loss = 5.25813
I0412 13:17:58.814994 6895 solver.cpp:237] Train net output #0: loss = 5.25813 (* 1 = 5.25813 loss)
I0412 13:17:58.815006 6895 sgd_solver.cpp:105] Iteration 3744, lr = 0.00476335
I0412 13:18:03.690762 6895 solver.cpp:218] Iteration 3756 (2.46125 iter/s, 4.87557s/12 iters), loss = 5.28385
I0412 13:18:03.690867 6895 solver.cpp:237] Train net output #0: loss = 5.28385 (* 1 = 5.28385 loss)
I0412 13:18:03.690878 6895 sgd_solver.cpp:105] Iteration 3756, lr = 0.00475204
I0412 13:18:08.554922 6895 solver.cpp:218] Iteration 3768 (2.46717 iter/s, 4.86386s/12 iters), loss = 5.26175
I0412 13:18:08.554968 6895 solver.cpp:237] Train net output #0: loss = 5.26175 (* 1 = 5.26175 loss)
I0412 13:18:08.554978 6895 sgd_solver.cpp:105] Iteration 3768, lr = 0.00474076
I0412 13:18:10.534263 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3774.caffemodel
I0412 13:18:13.264951 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3774.solverstate
I0412 13:18:15.248209 6895 solver.cpp:330] Iteration 3774, Testing net (#0)
I0412 13:18:15.248240 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:18:18.316488 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:18:19.812193 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:18:19.812247 6895 solver.cpp:397] Test net output #1: loss = 5.28642 (* 1 = 5.28642 loss)
I0412 13:18:21.632341 6895 solver.cpp:218] Iteration 3780 (0.91765 iter/s, 13.0769s/12 iters), loss = 5.30766
I0412 13:18:21.632393 6895 solver.cpp:237] Train net output #0: loss = 5.30766 (* 1 = 5.30766 loss)
I0412 13:18:21.632405 6895 sgd_solver.cpp:105] Iteration 3780, lr = 0.00472951
I0412 13:18:26.502928 6895 solver.cpp:218] Iteration 3792 (2.46389 iter/s, 4.87034s/12 iters), loss = 5.2754
I0412 13:18:26.502985 6895 solver.cpp:237] Train net output #0: loss = 5.2754 (* 1 = 5.2754 loss)
I0412 13:18:26.503000 6895 sgd_solver.cpp:105] Iteration 3792, lr = 0.00471828
I0412 13:18:31.144430 6895 solver.cpp:218] Iteration 3804 (2.5855 iter/s, 4.64127s/12 iters), loss = 5.27207
I0412 13:18:31.144462 6895 solver.cpp:237] Train net output #0: loss = 5.27207 (* 1 = 5.27207 loss)
I0412 13:18:31.144469 6895 sgd_solver.cpp:105] Iteration 3804, lr = 0.00470707
I0412 13:18:35.734680 6895 solver.cpp:218] Iteration 3816 (2.61436 iter/s, 4.59003s/12 iters), loss = 5.27416
I0412 13:18:35.734825 6895 solver.cpp:237] Train net output #0: loss = 5.27416 (* 1 = 5.27416 loss)
I0412 13:18:35.734838 6895 sgd_solver.cpp:105] Iteration 3816, lr = 0.0046959
I0412 13:18:40.395188 6895 solver.cpp:218] Iteration 3828 (2.57501 iter/s, 4.66018s/12 iters), loss = 5.26478
I0412 13:18:40.395249 6895 solver.cpp:237] Train net output #0: loss = 5.26478 (* 1 = 5.26478 loss)
I0412 13:18:40.395262 6895 sgd_solver.cpp:105] Iteration 3828, lr = 0.00468475
I0412 13:18:45.328946 6895 solver.cpp:218] Iteration 3840 (2.43235 iter/s, 4.9335s/12 iters), loss = 5.26765
I0412 13:18:45.329000 6895 solver.cpp:237] Train net output #0: loss = 5.26765 (* 1 = 5.26765 loss)
I0412 13:18:45.329012 6895 sgd_solver.cpp:105] Iteration 3840, lr = 0.00467363
I0412 13:18:46.450835 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:18:50.337586 6895 solver.cpp:218] Iteration 3852 (2.39598 iter/s, 5.00838s/12 iters), loss = 5.27657
I0412 13:18:50.337641 6895 solver.cpp:237] Train net output #0: loss = 5.27657 (* 1 = 5.27657 loss)
I0412 13:18:50.337652 6895 sgd_solver.cpp:105] Iteration 3852, lr = 0.00466253
I0412 13:18:55.141979 6895 solver.cpp:218] Iteration 3864 (2.49785 iter/s, 4.80412s/12 iters), loss = 5.25491
I0412 13:18:55.142032 6895 solver.cpp:237] Train net output #0: loss = 5.25491 (* 1 = 5.25491 loss)
I0412 13:18:55.142043 6895 sgd_solver.cpp:105] Iteration 3864, lr = 0.00465146
I0412 13:18:59.551434 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3876.caffemodel
I0412 13:19:02.578861 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3876.solverstate
I0412 13:19:07.311666 6895 solver.cpp:330] Iteration 3876, Testing net (#0)
I0412 13:19:07.311766 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:19:10.234333 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:19:11.767804 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:19:11.767846 6895 solver.cpp:397] Test net output #1: loss = 5.28592 (* 1 = 5.28592 loss)
I0412 13:19:11.850867 6895 solver.cpp:218] Iteration 3876 (0.71821 iter/s, 16.7082s/12 iters), loss = 5.27111
I0412 13:19:11.850919 6895 solver.cpp:237] Train net output #0: loss = 5.27111 (* 1 = 5.27111 loss)
I0412 13:19:11.850930 6895 sgd_solver.cpp:105] Iteration 3876, lr = 0.00464042
I0412 13:19:15.937903 6895 solver.cpp:218] Iteration 3888 (2.93627 iter/s, 4.08682s/12 iters), loss = 5.27429
I0412 13:19:15.937980 6895 solver.cpp:237] Train net output #0: loss = 5.27429 (* 1 = 5.27429 loss)
I0412 13:19:15.937994 6895 sgd_solver.cpp:105] Iteration 3888, lr = 0.0046294
I0412 13:19:20.629320 6895 solver.cpp:218] Iteration 3900 (2.55799 iter/s, 4.69118s/12 iters), loss = 5.27472
I0412 13:19:20.629369 6895 solver.cpp:237] Train net output #0: loss = 5.27472 (* 1 = 5.27472 loss)
I0412 13:19:20.629379 6895 sgd_solver.cpp:105] Iteration 3900, lr = 0.00461841
I0412 13:19:25.432273 6895 solver.cpp:218] Iteration 3912 (2.49859 iter/s, 4.80271s/12 iters), loss = 5.26442
I0412 13:19:25.432332 6895 solver.cpp:237] Train net output #0: loss = 5.26442 (* 1 = 5.26442 loss)
I0412 13:19:25.432344 6895 sgd_solver.cpp:105] Iteration 3912, lr = 0.00460744
I0412 13:19:30.207511 6895 solver.cpp:218] Iteration 3924 (2.51309 iter/s, 4.77499s/12 iters), loss = 5.29634
I0412 13:19:30.207564 6895 solver.cpp:237] Train net output #0: loss = 5.29634 (* 1 = 5.29634 loss)
I0412 13:19:30.207576 6895 sgd_solver.cpp:105] Iteration 3924, lr = 0.0045965
I0412 13:19:35.057703 6895 solver.cpp:218] Iteration 3936 (2.47425 iter/s, 4.84995s/12 iters), loss = 5.2759
I0412 13:19:35.057755 6895 solver.cpp:237] Train net output #0: loss = 5.2759 (* 1 = 5.2759 loss)
I0412 13:19:35.057767 6895 sgd_solver.cpp:105] Iteration 3936, lr = 0.00458559
I0412 13:19:38.521010 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:19:40.193691 6895 solver.cpp:218] Iteration 3948 (2.33657 iter/s, 5.13574s/12 iters), loss = 5.28469
I0412 13:19:40.193734 6895 solver.cpp:237] Train net output #0: loss = 5.28469 (* 1 = 5.28469 loss)
I0412 13:19:40.193743 6895 sgd_solver.cpp:105] Iteration 3948, lr = 0.0045747
I0412 13:19:44.945840 6895 solver.cpp:218] Iteration 3960 (2.5253 iter/s, 4.75191s/12 iters), loss = 5.26908
I0412 13:19:44.945894 6895 solver.cpp:237] Train net output #0: loss = 5.26908 (* 1 = 5.26908 loss)
I0412 13:19:44.945905 6895 sgd_solver.cpp:105] Iteration 3960, lr = 0.00456384
I0412 13:19:49.708230 6895 solver.cpp:218] Iteration 3972 (2.51987 iter/s, 4.76215s/12 iters), loss = 5.2791
I0412 13:19:49.708276 6895 solver.cpp:237] Train net output #0: loss = 5.2791 (* 1 = 5.2791 loss)
I0412 13:19:49.708285 6895 sgd_solver.cpp:105] Iteration 3972, lr = 0.00455301
I0412 13:19:51.688884 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3978.caffemodel
I0412 13:19:55.541966 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3978.solverstate
I0412 13:19:58.654150 6895 solver.cpp:330] Iteration 3978, Testing net (#0)
I0412 13:19:58.654181 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:20:01.529953 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:20:03.102485 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:20:03.102531 6895 solver.cpp:397] Test net output #1: loss = 5.28569 (* 1 = 5.28569 loss)
I0412 13:20:05.100129 6895 solver.cpp:218] Iteration 3984 (0.779663 iter/s, 15.3913s/12 iters), loss = 5.27958
I0412 13:20:05.100189 6895 solver.cpp:237] Train net output #0: loss = 5.27958 (* 1 = 5.27958 loss)
I0412 13:20:05.100201 6895 sgd_solver.cpp:105] Iteration 3984, lr = 0.0045422
I0412 13:20:09.928046 6895 solver.cpp:218] Iteration 3996 (2.48567 iter/s, 4.82767s/12 iters), loss = 5.26898
I0412 13:20:09.928144 6895 solver.cpp:237] Train net output #0: loss = 5.26898 (* 1 = 5.26898 loss)
I0412 13:20:09.928156 6895 sgd_solver.cpp:105] Iteration 3996, lr = 0.00453141
I0412 13:20:14.567852 6895 solver.cpp:218] Iteration 4008 (2.58647 iter/s, 4.63952s/12 iters), loss = 5.28718
I0412 13:20:14.567893 6895 solver.cpp:237] Train net output #0: loss = 5.28718 (* 1 = 5.28718 loss)
I0412 13:20:14.567901 6895 sgd_solver.cpp:105] Iteration 4008, lr = 0.00452066
I0412 13:20:19.323130 6895 solver.cpp:218] Iteration 4020 (2.52364 iter/s, 4.75504s/12 iters), loss = 5.25735
I0412 13:20:19.323185 6895 solver.cpp:237] Train net output #0: loss = 5.25735 (* 1 = 5.25735 loss)
I0412 13:20:19.323199 6895 sgd_solver.cpp:105] Iteration 4020, lr = 0.00450992
I0412 13:20:24.077589 6895 solver.cpp:218] Iteration 4032 (2.52408 iter/s, 4.75421s/12 iters), loss = 5.27288
I0412 13:20:24.077648 6895 solver.cpp:237] Train net output #0: loss = 5.27288 (* 1 = 5.27288 loss)
I0412 13:20:24.077662 6895 sgd_solver.cpp:105] Iteration 4032, lr = 0.00449921
I0412 13:20:28.927996 6895 solver.cpp:218] Iteration 4044 (2.47414 iter/s, 4.85016s/12 iters), loss = 5.27578
I0412 13:20:28.928043 6895 solver.cpp:237] Train net output #0: loss = 5.27578 (* 1 = 5.27578 loss)
I0412 13:20:28.928053 6895 sgd_solver.cpp:105] Iteration 4044, lr = 0.00448853
I0412 13:20:29.434877 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:20:33.937762 6895 solver.cpp:218] Iteration 4056 (2.39544 iter/s, 5.00953s/12 iters), loss = 5.27817
I0412 13:20:33.937800 6895 solver.cpp:237] Train net output #0: loss = 5.27817 (* 1 = 5.27817 loss)
I0412 13:20:33.937809 6895 sgd_solver.cpp:105] Iteration 4056, lr = 0.00447788
I0412 13:20:38.767114 6895 solver.cpp:218] Iteration 4068 (2.48492 iter/s, 4.82912s/12 iters), loss = 5.27277
I0412 13:20:38.767160 6895 solver.cpp:237] Train net output #0: loss = 5.27277 (* 1 = 5.27277 loss)
I0412 13:20:38.767169 6895 sgd_solver.cpp:105] Iteration 4068, lr = 0.00446724
I0412 13:20:43.231393 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4080.caffemodel
I0412 13:20:44.897080 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4080.solverstate
I0412 13:20:46.065677 6895 solver.cpp:330] Iteration 4080, Testing net (#0)
I0412 13:20:46.065697 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:20:48.903893 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:20:50.507411 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:20:50.507462 6895 solver.cpp:397] Test net output #1: loss = 5.28616 (* 1 = 5.28616 loss)
I0412 13:20:50.590210 6895 solver.cpp:218] Iteration 4080 (1.015 iter/s, 11.8226s/12 iters), loss = 5.28854
I0412 13:20:50.590265 6895 solver.cpp:237] Train net output #0: loss = 5.28854 (* 1 = 5.28854 loss)
I0412 13:20:50.590287 6895 sgd_solver.cpp:105] Iteration 4080, lr = 0.00445664
I0412 13:20:54.674896 6895 solver.cpp:218] Iteration 4092 (2.93796 iter/s, 4.08447s/12 iters), loss = 5.26624
I0412 13:20:54.674945 6895 solver.cpp:237] Train net output #0: loss = 5.26624 (* 1 = 5.26624 loss)
I0412 13:20:54.674957 6895 sgd_solver.cpp:105] Iteration 4092, lr = 0.00444606
I0412 13:20:59.509855 6895 solver.cpp:218] Iteration 4104 (2.48205 iter/s, 4.83471s/12 iters), loss = 5.2631
I0412 13:20:59.509912 6895 solver.cpp:237] Train net output #0: loss = 5.2631 (* 1 = 5.2631 loss)
I0412 13:20:59.509923 6895 sgd_solver.cpp:105] Iteration 4104, lr = 0.0044355
I0412 13:21:04.654007 6895 solver.cpp:218] Iteration 4116 (2.33287 iter/s, 5.14389s/12 iters), loss = 5.29664
I0412 13:21:04.654059 6895 solver.cpp:237] Train net output #0: loss = 5.29664 (* 1 = 5.29664 loss)
I0412 13:21:04.654070 6895 sgd_solver.cpp:105] Iteration 4116, lr = 0.00442497
I0412 13:21:09.613395 6895 solver.cpp:218] Iteration 4128 (2.41977 iter/s, 4.95914s/12 iters), loss = 5.26592
I0412 13:21:09.613447 6895 solver.cpp:237] Train net output #0: loss = 5.26592 (* 1 = 5.26592 loss)
I0412 13:21:09.613459 6895 sgd_solver.cpp:105] Iteration 4128, lr = 0.00441447
I0412 13:21:14.509474 6895 solver.cpp:218] Iteration 4140 (2.45106 iter/s, 4.89584s/12 iters), loss = 5.2593
I0412 13:21:14.509583 6895 solver.cpp:237] Train net output #0: loss = 5.2593 (* 1 = 5.2593 loss)
I0412 13:21:14.509595 6895 sgd_solver.cpp:105] Iteration 4140, lr = 0.00440398
I0412 13:21:17.236364 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:21:19.694061 6895 solver.cpp:218] Iteration 4152 (2.31469 iter/s, 5.18427s/12 iters), loss = 5.27085
I0412 13:21:19.694116 6895 solver.cpp:237] Train net output #0: loss = 5.27085 (* 1 = 5.27085 loss)
I0412 13:21:19.694128 6895 sgd_solver.cpp:105] Iteration 4152, lr = 0.00439353
I0412 13:21:21.055307 6895 blocking_queue.cpp:49] Waiting for data
I0412 13:21:24.688349 6895 solver.cpp:218] Iteration 4164 (2.40287 iter/s, 4.99404s/12 iters), loss = 5.26466
I0412 13:21:24.688400 6895 solver.cpp:237] Train net output #0: loss = 5.26466 (* 1 = 5.26466 loss)
I0412 13:21:24.688411 6895 sgd_solver.cpp:105] Iteration 4164, lr = 0.0043831
I0412 13:21:29.633071 6895 solver.cpp:218] Iteration 4176 (2.42695 iter/s, 4.94447s/12 iters), loss = 5.27147
I0412 13:21:29.633124 6895 solver.cpp:237] Train net output #0: loss = 5.27147 (* 1 = 5.27147 loss)
I0412 13:21:29.633136 6895 sgd_solver.cpp:105] Iteration 4176, lr = 0.00437269
I0412 13:21:31.749567 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4182.caffemodel
I0412 13:21:35.018097 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4182.solverstate
I0412 13:21:36.190912 6895 solver.cpp:330] Iteration 4182, Testing net (#0)
I0412 13:21:36.190937 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:21:39.141322 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:21:40.795081 6895 solver.cpp:397] Test net output #0: accuracy = 0.00612745
I0412 13:21:40.795128 6895 solver.cpp:397] Test net output #1: loss = 5.28585 (* 1 = 5.28585 loss)
I0412 13:21:42.660559 6895 solver.cpp:218] Iteration 4188 (0.921168 iter/s, 13.0269s/12 iters), loss = 5.27243
I0412 13:21:42.660616 6895 solver.cpp:237] Train net output #0: loss = 5.27243 (* 1 = 5.27243 loss)
I0412 13:21:42.660629 6895 sgd_solver.cpp:105] Iteration 4188, lr = 0.00436231
I0412 13:21:47.474228 6895 solver.cpp:218] Iteration 4200 (2.49303 iter/s, 4.81343s/12 iters), loss = 5.28447
I0412 13:21:47.474352 6895 solver.cpp:237] Train net output #0: loss = 5.28447 (* 1 = 5.28447 loss)
I0412 13:21:47.474362 6895 sgd_solver.cpp:105] Iteration 4200, lr = 0.00435195
I0412 13:21:52.190378 6895 solver.cpp:218] Iteration 4212 (2.54462 iter/s, 4.71584s/12 iters), loss = 5.27363
I0412 13:21:52.190424 6895 solver.cpp:237] Train net output #0: loss = 5.27363 (* 1 = 5.27363 loss)
I0412 13:21:52.190436 6895 sgd_solver.cpp:105] Iteration 4212, lr = 0.00434162
I0412 13:21:57.040654 6895 solver.cpp:218] Iteration 4224 (2.47421 iter/s, 4.85003s/12 iters), loss = 5.26101
I0412 13:21:57.040711 6895 solver.cpp:237] Train net output #0: loss = 5.26101 (* 1 = 5.26101 loss)
I0412 13:21:57.040724 6895 sgd_solver.cpp:105] Iteration 4224, lr = 0.00433131
I0412 13:22:02.019362 6895 solver.cpp:218] Iteration 4236 (2.41039 iter/s, 4.97845s/12 iters), loss = 5.26748
I0412 13:22:02.019412 6895 solver.cpp:237] Train net output #0: loss = 5.26748 (* 1 = 5.26748 loss)
I0412 13:22:02.019424 6895 sgd_solver.cpp:105] Iteration 4236, lr = 0.00432103
I0412 13:22:06.679572 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:22:06.908071 6895 solver.cpp:218] Iteration 4248 (2.45476 iter/s, 4.88846s/12 iters), loss = 5.24243
I0412 13:22:06.908124 6895 solver.cpp:237] Train net output #0: loss = 5.24243 (* 1 = 5.24243 loss)
I0412 13:22:06.908136 6895 sgd_solver.cpp:105] Iteration 4248, lr = 0.00431077
I0412 13:22:12.018250 6895 solver.cpp:218] Iteration 4260 (2.34837 iter/s, 5.10992s/12 iters), loss = 5.26584
I0412 13:22:12.018299 6895 solver.cpp:237] Train net output #0: loss = 5.26584 (* 1 = 5.26584 loss)
I0412 13:22:12.018311 6895 sgd_solver.cpp:105] Iteration 4260, lr = 0.00430053
I0412 13:22:16.878319 6895 solver.cpp:218] Iteration 4272 (2.46922 iter/s, 4.85983s/12 iters), loss = 5.29066
I0412 13:22:16.878376 6895 solver.cpp:237] Train net output #0: loss = 5.29066 (* 1 = 5.29066 loss)
I0412 13:22:16.878388 6895 sgd_solver.cpp:105] Iteration 4272, lr = 0.00429032
I0412 13:22:21.025892 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4284.caffemodel
I0412 13:22:25.313843 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4284.solverstate
I0412 13:22:30.348309 6895 solver.cpp:330] Iteration 4284, Testing net (#0)
I0412 13:22:30.348330 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:22:33.166591 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:22:34.867034 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:22:34.867084 6895 solver.cpp:397] Test net output #1: loss = 5.28598 (* 1 = 5.28598 loss)
I0412 13:22:34.950229 6895 solver.cpp:218] Iteration 4284 (0.664041 iter/s, 18.0712s/12 iters), loss = 5.27973
I0412 13:22:34.950289 6895 solver.cpp:237] Train net output #0: loss = 5.27973 (* 1 = 5.27973 loss)
I0412 13:22:34.950299 6895 sgd_solver.cpp:105] Iteration 4284, lr = 0.00428014
I0412 13:22:39.194996 6895 solver.cpp:218] Iteration 4296 (2.82717 iter/s, 4.24453s/12 iters), loss = 5.27544
I0412 13:22:39.195060 6895 solver.cpp:237] Train net output #0: loss = 5.27544 (* 1 = 5.27544 loss)
I0412 13:22:39.195075 6895 sgd_solver.cpp:105] Iteration 4296, lr = 0.00426998
I0412 13:22:44.485215 6895 solver.cpp:218] Iteration 4308 (2.26845 iter/s, 5.28995s/12 iters), loss = 5.26007
I0412 13:22:44.485258 6895 solver.cpp:237] Train net output #0: loss = 5.26007 (* 1 = 5.26007 loss)
I0412 13:22:44.485267 6895 sgd_solver.cpp:105] Iteration 4308, lr = 0.00425984
I0412 13:22:49.255385 6895 solver.cpp:218] Iteration 4320 (2.51575 iter/s, 4.76994s/12 iters), loss = 5.25049
I0412 13:22:49.255429 6895 solver.cpp:237] Train net output #0: loss = 5.25049 (* 1 = 5.25049 loss)
I0412 13:22:49.255440 6895 sgd_solver.cpp:105] Iteration 4320, lr = 0.00424972
I0412 13:22:53.956204 6895 solver.cpp:218] Iteration 4332 (2.55287 iter/s, 4.70059s/12 iters), loss = 5.27902
I0412 13:22:53.956346 6895 solver.cpp:237] Train net output #0: loss = 5.27902 (* 1 = 5.27902 loss)
I0412 13:22:53.956357 6895 sgd_solver.cpp:105] Iteration 4332, lr = 0.00423964
I0412 13:22:58.742681 6895 solver.cpp:218] Iteration 4344 (2.50723 iter/s, 4.78615s/12 iters), loss = 5.28001
I0412 13:22:58.742728 6895 solver.cpp:237] Train net output #0: loss = 5.28001 (* 1 = 5.28001 loss)
I0412 13:22:58.742740 6895 sgd_solver.cpp:105] Iteration 4344, lr = 0.00422957
I0412 13:23:00.540511 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:23:03.498234 6895 solver.cpp:218] Iteration 4356 (2.52349 iter/s, 4.75531s/12 iters), loss = 5.29127
I0412 13:23:03.498288 6895 solver.cpp:237] Train net output #0: loss = 5.29127 (* 1 = 5.29127 loss)
I0412 13:23:03.498301 6895 sgd_solver.cpp:105] Iteration 4356, lr = 0.00421953
I0412 13:23:08.318409 6895 solver.cpp:218] Iteration 4368 (2.48966 iter/s, 4.81993s/12 iters), loss = 5.2794
I0412 13:23:08.318465 6895 solver.cpp:237] Train net output #0: loss = 5.2794 (* 1 = 5.2794 loss)
I0412 13:23:08.318476 6895 sgd_solver.cpp:105] Iteration 4368, lr = 0.00420951
I0412 13:23:12.982007 6895 solver.cpp:218] Iteration 4380 (2.57325 iter/s, 4.66336s/12 iters), loss = 5.26511
I0412 13:23:12.982053 6895 solver.cpp:237] Train net output #0: loss = 5.26511 (* 1 = 5.26511 loss)
I0412 13:23:12.982062 6895 sgd_solver.cpp:105] Iteration 4380, lr = 0.00419952
I0412 13:23:14.993594 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4386.caffemodel
I0412 13:23:16.536265 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4386.solverstate
I0412 13:23:19.293231 6895 solver.cpp:330] Iteration 4386, Testing net (#0)
I0412 13:23:19.293254 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:23:22.056309 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:23:23.830955 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:23:23.830996 6895 solver.cpp:397] Test net output #1: loss = 5.28581 (* 1 = 5.28581 loss)
I0412 13:23:25.534014 6895 solver.cpp:218] Iteration 4392 (0.956062 iter/s, 12.5515s/12 iters), loss = 5.26923
I0412 13:23:25.534124 6895 solver.cpp:237] Train net output #0: loss = 5.26923 (* 1 = 5.26923 loss)
I0412 13:23:25.534134 6895 sgd_solver.cpp:105] Iteration 4392, lr = 0.00418954
I0412 13:23:30.666673 6895 solver.cpp:218] Iteration 4404 (2.33811 iter/s, 5.13234s/12 iters), loss = 5.26404
I0412 13:23:30.666725 6895 solver.cpp:237] Train net output #0: loss = 5.26404 (* 1 = 5.26404 loss)
I0412 13:23:30.666736 6895 sgd_solver.cpp:105] Iteration 4404, lr = 0.0041796
I0412 13:23:35.334080 6895 solver.cpp:218] Iteration 4416 (2.57115 iter/s, 4.66717s/12 iters), loss = 5.2677
I0412 13:23:35.334131 6895 solver.cpp:237] Train net output #0: loss = 5.2677 (* 1 = 5.2677 loss)
I0412 13:23:35.334143 6895 sgd_solver.cpp:105] Iteration 4416, lr = 0.00416967
I0412 13:23:40.123404 6895 solver.cpp:218] Iteration 4428 (2.5057 iter/s, 4.78908s/12 iters), loss = 5.26619
I0412 13:23:40.123456 6895 solver.cpp:237] Train net output #0: loss = 5.26619 (* 1 = 5.26619 loss)
I0412 13:23:40.123468 6895 sgd_solver.cpp:105] Iteration 4428, lr = 0.00415977
I0412 13:23:45.012666 6895 solver.cpp:218] Iteration 4440 (2.45448 iter/s, 4.88901s/12 iters), loss = 5.26618
I0412 13:23:45.012725 6895 solver.cpp:237] Train net output #0: loss = 5.26618 (* 1 = 5.26618 loss)
I0412 13:23:45.012738 6895 sgd_solver.cpp:105] Iteration 4440, lr = 0.0041499
I0412 13:23:48.998669 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:23:49.997675 6895 solver.cpp:218] Iteration 4452 (2.40734 iter/s, 4.98475s/12 iters), loss = 5.25524
I0412 13:23:49.997728 6895 solver.cpp:237] Train net output #0: loss = 5.25524 (* 1 = 5.25524 loss)
I0412 13:23:49.997738 6895 sgd_solver.cpp:105] Iteration 4452, lr = 0.00414005
I0412 13:23:54.794782 6895 solver.cpp:218] Iteration 4464 (2.50164 iter/s, 4.79686s/12 iters), loss = 5.28031
I0412 13:23:54.794840 6895 solver.cpp:237] Train net output #0: loss = 5.28031 (* 1 = 5.28031 loss)
I0412 13:23:54.794852 6895 sgd_solver.cpp:105] Iteration 4464, lr = 0.00413022
I0412 13:23:59.735515 6895 solver.cpp:218] Iteration 4476 (2.42891 iter/s, 4.94048s/12 iters), loss = 5.26179
I0412 13:23:59.735638 6895 solver.cpp:237] Train net output #0: loss = 5.26179 (* 1 = 5.26179 loss)
I0412 13:23:59.735649 6895 sgd_solver.cpp:105] Iteration 4476, lr = 0.00412041
I0412 13:24:04.164814 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4488.caffemodel
I0412 13:24:07.050361 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4488.solverstate
I0412 13:24:12.943588 6895 solver.cpp:330] Iteration 4488, Testing net (#0)
I0412 13:24:12.943619 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:24:15.627960 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:24:17.399153 6895 solver.cpp:397] Test net output #0: accuracy = 0.00612745
I0412 13:24:17.399199 6895 solver.cpp:397] Test net output #1: loss = 5.2857 (* 1 = 5.2857 loss)
I0412 13:24:17.482266 6895 solver.cpp:218] Iteration 4488 (0.67621 iter/s, 17.746s/12 iters), loss = 5.31
I0412 13:24:17.482321 6895 solver.cpp:237] Train net output #0: loss = 5.31 (* 1 = 5.31 loss)
I0412 13:24:17.482331 6895 sgd_solver.cpp:105] Iteration 4488, lr = 0.00411063
I0412 13:24:21.963855 6895 solver.cpp:218] Iteration 4500 (2.67776 iter/s, 4.48136s/12 iters), loss = 5.26826
I0412 13:24:21.963912 6895 solver.cpp:237] Train net output #0: loss = 5.26826 (* 1 = 5.26826 loss)
I0412 13:24:21.963923 6895 sgd_solver.cpp:105] Iteration 4500, lr = 0.00410087
I0412 13:24:26.843437 6895 solver.cpp:218] Iteration 4512 (2.45935 iter/s, 4.87933s/12 iters), loss = 5.26776
I0412 13:24:26.843493 6895 solver.cpp:237] Train net output #0: loss = 5.26776 (* 1 = 5.26776 loss)
I0412 13:24:26.843508 6895 sgd_solver.cpp:105] Iteration 4512, lr = 0.00409113
I0412 13:24:31.771311 6895 solver.cpp:218] Iteration 4524 (2.43525 iter/s, 4.92762s/12 iters), loss = 5.27692
I0412 13:24:31.771394 6895 solver.cpp:237] Train net output #0: loss = 5.27692 (* 1 = 5.27692 loss)
I0412 13:24:31.771405 6895 sgd_solver.cpp:105] Iteration 4524, lr = 0.00408142
I0412 13:24:36.591789 6895 solver.cpp:218] Iteration 4536 (2.48952 iter/s, 4.82021s/12 iters), loss = 5.27064
I0412 13:24:36.591841 6895 solver.cpp:237] Train net output #0: loss = 5.27064 (* 1 = 5.27064 loss)
I0412 13:24:36.591854 6895 sgd_solver.cpp:105] Iteration 4536, lr = 0.00407173
I0412 13:24:41.318117 6895 solver.cpp:218] Iteration 4548 (2.5391 iter/s, 4.72609s/12 iters), loss = 5.26399
I0412 13:24:41.318157 6895 solver.cpp:237] Train net output #0: loss = 5.26399 (* 1 = 5.26399 loss)
I0412 13:24:41.318167 6895 sgd_solver.cpp:105] Iteration 4548, lr = 0.00406206
I0412 13:24:42.533082 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:24:46.044920 6895 solver.cpp:218] Iteration 4560 (2.53884 iter/s, 4.72657s/12 iters), loss = 5.27572
I0412 13:24:46.044970 6895 solver.cpp:237] Train net output #0: loss = 5.27572 (* 1 = 5.27572 loss)
I0412 13:24:46.044981 6895 sgd_solver.cpp:105] Iteration 4560, lr = 0.00405242
I0412 13:24:50.617708 6895 solver.cpp:218] Iteration 4572 (2.62435 iter/s, 4.57256s/12 iters), loss = 5.26485
I0412 13:24:50.617753 6895 solver.cpp:237] Train net output #0: loss = 5.26485 (* 1 = 5.26485 loss)
I0412 13:24:50.617765 6895 sgd_solver.cpp:105] Iteration 4572, lr = 0.0040428
I0412 13:24:55.636379 6895 solver.cpp:218] Iteration 4584 (2.39119 iter/s, 5.01843s/12 iters), loss = 5.27758
I0412 13:24:55.636420 6895 solver.cpp:237] Train net output #0: loss = 5.27758 (* 1 = 5.27758 loss)
I0412 13:24:55.636428 6895 sgd_solver.cpp:105] Iteration 4584, lr = 0.0040332
I0412 13:24:57.625308 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4590.caffemodel
I0412 13:25:01.004762 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4590.solverstate
I0412 13:25:03.309437 6895 solver.cpp:330] Iteration 4590, Testing net (#0)
I0412 13:25:03.309538 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:25:05.974253 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:25:07.790355 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:25:07.790398 6895 solver.cpp:397] Test net output #1: loss = 5.28567 (* 1 = 5.28567 loss)
I0412 13:25:09.641537 6895 solver.cpp:218] Iteration 4596 (0.856862 iter/s, 14.0046s/12 iters), loss = 5.26722
I0412 13:25:09.641589 6895 solver.cpp:237] Train net output #0: loss = 5.26722 (* 1 = 5.26722 loss)
I0412 13:25:09.641602 6895 sgd_solver.cpp:105] Iteration 4596, lr = 0.00402362
I0412 13:25:14.322221 6895 solver.cpp:218] Iteration 4608 (2.56386 iter/s, 4.68045s/12 iters), loss = 5.27354
I0412 13:25:14.322260 6895 solver.cpp:237] Train net output #0: loss = 5.27354 (* 1 = 5.27354 loss)
I0412 13:25:14.322269 6895 sgd_solver.cpp:105] Iteration 4608, lr = 0.00401407
I0412 13:25:19.246989 6895 solver.cpp:218] Iteration 4620 (2.43678 iter/s, 4.92453s/12 iters), loss = 5.26268
I0412 13:25:19.247037 6895 solver.cpp:237] Train net output #0: loss = 5.26268 (* 1 = 5.26268 loss)
I0412 13:25:19.247049 6895 sgd_solver.cpp:105] Iteration 4620, lr = 0.00400454
I0412 13:25:24.127919 6895 solver.cpp:218] Iteration 4632 (2.45867 iter/s, 4.88069s/12 iters), loss = 5.29171
I0412 13:25:24.127961 6895 solver.cpp:237] Train net output #0: loss = 5.29171 (* 1 = 5.29171 loss)
I0412 13:25:24.127969 6895 sgd_solver.cpp:105] Iteration 4632, lr = 0.00399503
I0412 13:25:28.853765 6895 solver.cpp:218] Iteration 4644 (2.53936 iter/s, 4.72561s/12 iters), loss = 5.27098
I0412 13:25:28.853827 6895 solver.cpp:237] Train net output #0: loss = 5.27098 (* 1 = 5.27098 loss)
I0412 13:25:28.853842 6895 sgd_solver.cpp:105] Iteration 4644, lr = 0.00398555
I0412 13:25:32.178685 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:25:33.754063 6895 solver.cpp:218] Iteration 4656 (2.44896 iter/s, 4.90004s/12 iters), loss = 5.27993
I0412 13:25:33.754206 6895 solver.cpp:237] Train net output #0: loss = 5.27993 (* 1 = 5.27993 loss)
I0412 13:25:33.754218 6895 sgd_solver.cpp:105] Iteration 4656, lr = 0.00397608
I0412 13:25:38.633952 6895 solver.cpp:218] Iteration 4668 (2.45924 iter/s, 4.87955s/12 iters), loss = 5.2648
I0412 13:25:38.634025 6895 solver.cpp:237] Train net output #0: loss = 5.2648 (* 1 = 5.2648 loss)
I0412 13:25:38.634037 6895 sgd_solver.cpp:105] Iteration 4668, lr = 0.00396664
I0412 13:25:43.316612 6895 solver.cpp:218] Iteration 4680 (2.56279 iter/s, 4.6824s/12 iters), loss = 5.28033
I0412 13:25:43.316673 6895 solver.cpp:237] Train net output #0: loss = 5.28033 (* 1 = 5.28033 loss)
I0412 13:25:43.316686 6895 sgd_solver.cpp:105] Iteration 4680, lr = 0.00395723
I0412 13:25:47.640110 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4692.caffemodel
I0412 13:25:53.636649 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4692.solverstate
I0412 13:25:58.753464 6895 solver.cpp:330] Iteration 4692, Testing net (#0)
I0412 13:25:58.753494 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:26:01.344980 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:26:03.195657 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:26:03.195708 6895 solver.cpp:397] Test net output #1: loss = 5.28606 (* 1 = 5.28606 loss)
I0412 13:26:03.279309 6895 solver.cpp:218] Iteration 4692 (0.601146 iter/s, 19.9619s/12 iters), loss = 5.27232
I0412 13:26:03.279363 6895 solver.cpp:237] Train net output #0: loss = 5.27232 (* 1 = 5.27232 loss)
I0412 13:26:03.279376 6895 sgd_solver.cpp:105] Iteration 4692, lr = 0.00394783
I0412 13:26:07.379492 6895 solver.cpp:218] Iteration 4704 (2.92686 iter/s, 4.09996s/12 iters), loss = 5.26765
I0412 13:26:07.379637 6895 solver.cpp:237] Train net output #0: loss = 5.26765 (* 1 = 5.26765 loss)
I0412 13:26:07.379649 6895 sgd_solver.cpp:105] Iteration 4704, lr = 0.00393846
I0412 13:26:12.262779 6895 solver.cpp:218] Iteration 4716 (2.45753 iter/s, 4.88295s/12 iters), loss = 5.27852
I0412 13:26:12.262830 6895 solver.cpp:237] Train net output #0: loss = 5.27852 (* 1 = 5.27852 loss)
I0412 13:26:12.262842 6895 sgd_solver.cpp:105] Iteration 4716, lr = 0.00392911
I0412 13:26:17.080142 6895 solver.cpp:218] Iteration 4728 (2.49111 iter/s, 4.81712s/12 iters), loss = 5.26629
I0412 13:26:17.080204 6895 solver.cpp:237] Train net output #0: loss = 5.26629 (* 1 = 5.26629 loss)
I0412 13:26:17.080217 6895 sgd_solver.cpp:105] Iteration 4728, lr = 0.00391978
I0412 13:26:21.904048 6895 solver.cpp:218] Iteration 4740 (2.48774 iter/s, 4.82365s/12 iters), loss = 5.27973
I0412 13:26:21.904100 6895 solver.cpp:237] Train net output #0: loss = 5.27973 (* 1 = 5.27973 loss)
I0412 13:26:21.904110 6895 sgd_solver.cpp:105] Iteration 4740, lr = 0.00391047
I0412 13:26:26.782694 6895 solver.cpp:218] Iteration 4752 (2.45982 iter/s, 4.8784s/12 iters), loss = 5.28606
I0412 13:26:26.782744 6895 solver.cpp:237] Train net output #0: loss = 5.28606 (* 1 = 5.28606 loss)
I0412 13:26:26.782755 6895 sgd_solver.cpp:105] Iteration 4752, lr = 0.00390119
I0412 13:26:27.312146 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:26:31.504258 6895 solver.cpp:218] Iteration 4764 (2.54166 iter/s, 4.72133s/12 iters), loss = 5.28174
I0412 13:26:31.504313 6895 solver.cpp:237] Train net output #0: loss = 5.28174 (* 1 = 5.28174 loss)
I0412 13:26:31.504328 6895 sgd_solver.cpp:105] Iteration 4764, lr = 0.00389193
I0412 13:26:36.444794 6895 solver.cpp:218] Iteration 4776 (2.42901 iter/s, 4.94029s/12 iters), loss = 5.26723
I0412 13:26:36.444849 6895 solver.cpp:237] Train net output #0: loss = 5.26723 (* 1 = 5.26723 loss)
I0412 13:26:36.444860 6895 sgd_solver.cpp:105] Iteration 4776, lr = 0.00388269
I0412 13:26:41.291435 6895 solver.cpp:218] Iteration 4788 (2.47607 iter/s, 4.84639s/12 iters), loss = 5.29397
I0412 13:26:41.291551 6895 solver.cpp:237] Train net output #0: loss = 5.29397 (* 1 = 5.29397 loss)
I0412 13:26:41.291566 6895 sgd_solver.cpp:105] Iteration 4788, lr = 0.00387347
I0412 13:26:43.237164 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4794.caffemodel
I0412 13:26:45.045081 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4794.solverstate
I0412 13:26:46.235934 6895 solver.cpp:330] Iteration 4794, Testing net (#0)
I0412 13:26:46.235957 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:26:48.786618 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:26:50.686043 6895 solver.cpp:397] Test net output #0: accuracy = 0.00612745
I0412 13:26:50.686091 6895 solver.cpp:397] Test net output #1: loss = 5.28536 (* 1 = 5.28536 loss)
I0412 13:26:52.524749 6895 solver.cpp:218] Iteration 4800 (1.0683 iter/s, 11.2328s/12 iters), loss = 5.27577
I0412 13:26:52.524806 6895 solver.cpp:237] Train net output #0: loss = 5.27577 (* 1 = 5.27577 loss)
I0412 13:26:52.524819 6895 sgd_solver.cpp:105] Iteration 4800, lr = 0.00386427
I0412 13:26:57.381206 6895 solver.cpp:218] Iteration 4812 (2.47106 iter/s, 4.85621s/12 iters), loss = 5.26323
I0412 13:26:57.381245 6895 solver.cpp:237] Train net output #0: loss = 5.26323 (* 1 = 5.26323 loss)
I0412 13:26:57.381256 6895 sgd_solver.cpp:105] Iteration 4812, lr = 0.0038551
I0412 13:27:02.310317 6895 solver.cpp:218] Iteration 4824 (2.43463 iter/s, 4.92887s/12 iters), loss = 5.29073
I0412 13:27:02.310369 6895 solver.cpp:237] Train net output #0: loss = 5.29073 (* 1 = 5.29073 loss)
I0412 13:27:02.310379 6895 sgd_solver.cpp:105] Iteration 4824, lr = 0.00384594
I0412 13:27:07.216940 6895 solver.cpp:218] Iteration 4836 (2.4458 iter/s, 4.90638s/12 iters), loss = 5.26393
I0412 13:27:07.216996 6895 solver.cpp:237] Train net output #0: loss = 5.26393 (* 1 = 5.26393 loss)
I0412 13:27:07.217010 6895 sgd_solver.cpp:105] Iteration 4836, lr = 0.00383681
I0412 13:27:08.780073 6895 blocking_queue.cpp:49] Waiting for data
I0412 13:27:12.172859 6895 solver.cpp:218] Iteration 4848 (2.42147 iter/s, 4.95566s/12 iters), loss = 5.26941
I0412 13:27:12.172991 6895 solver.cpp:237] Train net output #0: loss = 5.26941 (* 1 = 5.26941 loss)
I0412 13:27:12.173000 6895 sgd_solver.cpp:105] Iteration 4848, lr = 0.0038277
I0412 13:27:14.703773 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:27:17.049242 6895 solver.cpp:218] Iteration 4860 (2.461 iter/s, 4.87606s/12 iters), loss = 5.26891
I0412 13:27:17.049289 6895 solver.cpp:237] Train net output #0: loss = 5.26891 (* 1 = 5.26891 loss)
I0412 13:27:17.049299 6895 sgd_solver.cpp:105] Iteration 4860, lr = 0.00381862
I0412 13:27:21.832018 6895 solver.cpp:218] Iteration 4872 (2.50913 iter/s, 4.78254s/12 iters), loss = 5.26481
I0412 13:27:21.832074 6895 solver.cpp:237] Train net output #0: loss = 5.26481 (* 1 = 5.26481 loss)
I0412 13:27:21.832087 6895 sgd_solver.cpp:105] Iteration 4872, lr = 0.00380955
I0412 13:27:26.753307 6895 solver.cpp:218] Iteration 4884 (2.43851 iter/s, 4.92104s/12 iters), loss = 5.26865
I0412 13:27:26.753361 6895 solver.cpp:237] Train net output #0: loss = 5.26865 (* 1 = 5.26865 loss)
I0412 13:27:26.753373 6895 sgd_solver.cpp:105] Iteration 4884, lr = 0.0038005
I0412 13:27:31.073465 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4896.caffemodel
I0412 13:27:33.112591 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4896.solverstate
I0412 13:27:34.294682 6895 solver.cpp:330] Iteration 4896, Testing net (#0)
I0412 13:27:34.294713 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:27:36.908679 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:27:38.881693 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:27:38.881744 6895 solver.cpp:397] Test net output #1: loss = 5.2863 (* 1 = 5.2863 loss)
I0412 13:27:38.964546 6895 solver.cpp:218] Iteration 4896 (0.982743 iter/s, 12.2107s/12 iters), loss = 5.26911
I0412 13:27:38.964599 6895 solver.cpp:237] Train net output #0: loss = 5.26911 (* 1 = 5.26911 loss)
I0412 13:27:38.964612 6895 sgd_solver.cpp:105] Iteration 4896, lr = 0.00379148
I0412 13:27:43.051664 6895 solver.cpp:218] Iteration 4908 (2.93621 iter/s, 4.08689s/12 iters), loss = 5.29148
I0412 13:27:43.051782 6895 solver.cpp:237] Train net output #0: loss = 5.29148 (* 1 = 5.29148 loss)
I0412 13:27:43.051795 6895 sgd_solver.cpp:105] Iteration 4908, lr = 0.00378248
I0412 13:27:48.000706 6895 solver.cpp:218] Iteration 4920 (2.42486 iter/s, 4.94873s/12 iters), loss = 5.26906
I0412 13:27:48.000749 6895 solver.cpp:237] Train net output #0: loss = 5.26906 (* 1 = 5.26906 loss)
I0412 13:27:48.000759 6895 sgd_solver.cpp:105] Iteration 4920, lr = 0.0037735
I0412 13:27:52.911413 6895 solver.cpp:218] Iteration 4932 (2.44376 iter/s, 4.91047s/12 iters), loss = 5.2652
I0412 13:27:52.911468 6895 solver.cpp:237] Train net output #0: loss = 5.2652 (* 1 = 5.2652 loss)
I0412 13:27:52.911478 6895 sgd_solver.cpp:105] Iteration 4932, lr = 0.00376454
I0412 13:27:57.786660 6895 solver.cpp:218] Iteration 4944 (2.46154 iter/s, 4.875s/12 iters), loss = 5.26649
I0412 13:27:57.786705 6895 solver.cpp:237] Train net output #0: loss = 5.26649 (* 1 = 5.26649 loss)
I0412 13:27:57.786712 6895 sgd_solver.cpp:105] Iteration 4944, lr = 0.0037556
I0412 13:28:02.798759 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:28:02.990717 6895 solver.cpp:218] Iteration 4956 (2.30601 iter/s, 5.2038s/12 iters), loss = 5.24959
I0412 13:28:02.990780 6895 solver.cpp:237] Train net output #0: loss = 5.24959 (* 1 = 5.24959 loss)
I0412 13:28:02.990797 6895 sgd_solver.cpp:105] Iteration 4956, lr = 0.00374669
I0412 13:28:07.854180 6895 solver.cpp:218] Iteration 4968 (2.46751 iter/s, 4.86321s/12 iters), loss = 5.26735
I0412 13:28:07.854244 6895 solver.cpp:237] Train net output #0: loss = 5.26735 (* 1 = 5.26735 loss)
I0412 13:28:07.854260 6895 sgd_solver.cpp:105] Iteration 4968, lr = 0.00373779
I0412 13:28:12.531075 6895 solver.cpp:218] Iteration 4980 (2.56594 iter/s, 4.67664s/12 iters), loss = 5.29236
I0412 13:28:12.531134 6895 solver.cpp:237] Train net output #0: loss = 5.29236 (* 1 = 5.29236 loss)
I0412 13:28:12.531148 6895 sgd_solver.cpp:105] Iteration 4980, lr = 0.00372892
I0412 13:28:17.468652 6895 solver.cpp:218] Iteration 4992 (2.43047 iter/s, 4.93732s/12 iters), loss = 5.28742
I0412 13:28:17.468811 6895 solver.cpp:237] Train net output #0: loss = 5.28742 (* 1 = 5.28742 loss)
I0412 13:28:17.468824 6895 sgd_solver.cpp:105] Iteration 4992, lr = 0.00372006
I0412 13:28:19.410356 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4998.caffemodel
I0412 13:28:24.889210 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4998.solverstate
I0412 13:28:26.075443 6895 solver.cpp:330] Iteration 4998, Testing net (#0)
I0412 13:28:26.075465 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:28:28.460722 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:28:30.489130 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:28:30.489174 6895 solver.cpp:397] Test net output #1: loss = 5.2862 (* 1 = 5.2862 loss)
I0412 13:28:32.319520 6895 solver.cpp:218] Iteration 5004 (0.808072 iter/s, 14.8502s/12 iters), loss = 5.28023
I0412 13:28:32.319569 6895 solver.cpp:237] Train net output #0: loss = 5.28023 (* 1 = 5.28023 loss)
I0412 13:28:32.319579 6895 sgd_solver.cpp:105] Iteration 5004, lr = 0.00371123
I0412 13:28:37.024952 6895 solver.cpp:218] Iteration 5016 (2.55037 iter/s, 4.70519s/12 iters), loss = 5.267
I0412 13:28:37.025009 6895 solver.cpp:237] Train net output #0: loss = 5.267 (* 1 = 5.267 loss)
I0412 13:28:37.025022 6895 sgd_solver.cpp:105] Iteration 5016, lr = 0.00370242
I0412 13:28:41.821082 6895 solver.cpp:218] Iteration 5028 (2.50215 iter/s, 4.79588s/12 iters), loss = 5.24806
I0412 13:28:41.821127 6895 solver.cpp:237] Train net output #0: loss = 5.24806 (* 1 = 5.24806 loss)
I0412 13:28:41.821135 6895 sgd_solver.cpp:105] Iteration 5028, lr = 0.00369363
I0412 13:28:46.701275 6895 solver.cpp:218] Iteration 5040 (2.45904 iter/s, 4.87995s/12 iters), loss = 5.28829
I0412 13:28:46.701325 6895 solver.cpp:237] Train net output #0: loss = 5.28829 (* 1 = 5.28829 loss)
I0412 13:28:46.701336 6895 sgd_solver.cpp:105] Iteration 5040, lr = 0.00368486
I0412 13:28:51.489184 6895 solver.cpp:218] Iteration 5052 (2.50644 iter/s, 4.78767s/12 iters), loss = 5.27062
I0412 13:28:51.489338 6895 solver.cpp:237] Train net output #0: loss = 5.27062 (* 1 = 5.27062 loss)
I0412 13:28:51.489352 6895 sgd_solver.cpp:105] Iteration 5052, lr = 0.00367611
I0412 13:28:53.385823 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:28:56.364923 6895 solver.cpp:218] Iteration 5064 (2.46134 iter/s, 4.87539s/12 iters), loss = 5.29132
I0412 13:28:56.364974 6895 solver.cpp:237] Train net output #0: loss = 5.29132 (* 1 = 5.29132 loss)
I0412 13:28:56.364986 6895 sgd_solver.cpp:105] Iteration 5064, lr = 0.00366738
I0412 13:29:01.191480 6895 solver.cpp:218] Iteration 5076 (2.48637 iter/s, 4.82632s/12 iters), loss = 5.27018
I0412 13:29:01.191522 6895 solver.cpp:237] Train net output #0: loss = 5.27018 (* 1 = 5.27018 loss)
I0412 13:29:01.191530 6895 sgd_solver.cpp:105] Iteration 5076, lr = 0.00365868
I0412 13:29:06.228837 6895 solver.cpp:218] Iteration 5088 (2.38232 iter/s, 5.03711s/12 iters), loss = 5.26159
I0412 13:29:06.228879 6895 solver.cpp:237] Train net output #0: loss = 5.26159 (* 1 = 5.26159 loss)
I0412 13:29:06.228888 6895 sgd_solver.cpp:105] Iteration 5088, lr = 0.00364999
I0412 13:29:10.632246 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5100.caffemodel
I0412 13:29:15.025849 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5100.solverstate
I0412 13:29:19.099771 6895 solver.cpp:330] Iteration 5100, Testing net (#0)
I0412 13:29:19.099795 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:29:21.437418 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:29:23.451236 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:29:23.454355 6895 solver.cpp:397] Test net output #1: loss = 5.28592 (* 1 = 5.28592 loss)
I0412 13:29:23.538441 6895 solver.cpp:218] Iteration 5100 (0.693284 iter/s, 17.3089s/12 iters), loss = 5.26542
I0412 13:29:23.540064 6895 solver.cpp:237] Train net output #0: loss = 5.26542 (* 1 = 5.26542 loss)
I0412 13:29:23.540078 6895 sgd_solver.cpp:105] Iteration 5100, lr = 0.00364132
I0412 13:29:27.733309 6895 solver.cpp:218] Iteration 5112 (2.86187 iter/s, 4.19307s/12 iters), loss = 5.26208
I0412 13:29:27.733353 6895 solver.cpp:237] Train net output #0: loss = 5.26208 (* 1 = 5.26208 loss)
I0412 13:29:27.733362 6895 sgd_solver.cpp:105] Iteration 5112, lr = 0.00363268
I0412 13:29:32.674446 6895 solver.cpp:218] Iteration 5124 (2.42871 iter/s, 4.94089s/12 iters), loss = 5.27586
I0412 13:29:32.674506 6895 solver.cpp:237] Train net output #0: loss = 5.27586 (* 1 = 5.27586 loss)
I0412 13:29:32.674520 6895 sgd_solver.cpp:105] Iteration 5124, lr = 0.00362405
I0412 13:29:37.450372 6895 solver.cpp:218] Iteration 5136 (2.51273 iter/s, 4.77567s/12 iters), loss = 5.26526
I0412 13:29:37.450430 6895 solver.cpp:237] Train net output #0: loss = 5.26526 (* 1 = 5.26526 loss)
I0412 13:29:37.450444 6895 sgd_solver.cpp:105] Iteration 5136, lr = 0.00361545
I0412 13:29:41.988744 6895 solver.cpp:218] Iteration 5148 (2.64426 iter/s, 4.53814s/12 iters), loss = 5.2626
I0412 13:29:41.988796 6895 solver.cpp:237] Train net output #0: loss = 5.2626 (* 1 = 5.2626 loss)
I0412 13:29:41.988809 6895 sgd_solver.cpp:105] Iteration 5148, lr = 0.00360687
I0412 13:29:45.849578 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:29:46.719682 6895 solver.cpp:218] Iteration 5160 (2.53662 iter/s, 4.7307s/12 iters), loss = 5.26358
I0412 13:29:46.719736 6895 solver.cpp:237] Train net output #0: loss = 5.26358 (* 1 = 5.26358 loss)
I0412 13:29:46.719748 6895 sgd_solver.cpp:105] Iteration 5160, lr = 0.0035983
I0412 13:29:51.591949 6895 solver.cpp:218] Iteration 5172 (2.46304 iter/s, 4.87202s/12 iters), loss = 5.27612
I0412 13:29:51.591998 6895 solver.cpp:237] Train net output #0: loss = 5.27612 (* 1 = 5.27612 loss)
I0412 13:29:51.592012 6895 sgd_solver.cpp:105] Iteration 5172, lr = 0.00358976
I0412 13:29:56.539909 6895 solver.cpp:218] Iteration 5184 (2.42536 iter/s, 4.94772s/12 iters), loss = 5.27239
I0412 13:29:56.540047 6895 solver.cpp:237] Train net output #0: loss = 5.27239 (* 1 = 5.27239 loss)
I0412 13:29:56.540058 6895 sgd_solver.cpp:105] Iteration 5184, lr = 0.00358124
I0412 13:30:01.487882 6895 solver.cpp:218] Iteration 5196 (2.4254 iter/s, 4.94763s/12 iters), loss = 5.31076
I0412 13:30:01.487938 6895 solver.cpp:237] Train net output #0: loss = 5.31076 (* 1 = 5.31076 loss)
I0412 13:30:01.487951 6895 sgd_solver.cpp:105] Iteration 5196, lr = 0.00357273
I0412 13:30:03.369400 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5202.caffemodel
I0412 13:30:04.877647 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5202.solverstate
I0412 13:30:06.062213 6895 solver.cpp:330] Iteration 5202, Testing net (#0)
I0412 13:30:06.062239 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:30:08.506736 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:30:10.561075 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:30:10.561127 6895 solver.cpp:397] Test net output #1: loss = 5.28609 (* 1 = 5.28609 loss)
I0412 13:30:12.257408 6895 solver.cpp:218] Iteration 5208 (1.1143 iter/s, 10.7691s/12 iters), loss = 5.27321
I0412 13:30:12.257474 6895 solver.cpp:237] Train net output #0: loss = 5.27321 (* 1 = 5.27321 loss)
I0412 13:30:12.257489 6895 sgd_solver.cpp:105] Iteration 5208, lr = 0.00356425
I0412 13:30:16.994241 6895 solver.cpp:218] Iteration 5220 (2.53347 iter/s, 4.73658s/12 iters), loss = 5.27401
I0412 13:30:16.994294 6895 solver.cpp:237] Train net output #0: loss = 5.27401 (* 1 = 5.27401 loss)
I0412 13:30:16.994305 6895 sgd_solver.cpp:105] Iteration 5220, lr = 0.00355579
I0412 13:30:22.011768 6895 solver.cpp:218] Iteration 5232 (2.39174 iter/s, 5.01728s/12 iters), loss = 5.27431
I0412 13:30:22.011811 6895 solver.cpp:237] Train net output #0: loss = 5.27431 (* 1 = 5.27431 loss)
I0412 13:30:22.011821 6895 sgd_solver.cpp:105] Iteration 5232, lr = 0.00354735
I0412 13:30:26.883630 6895 solver.cpp:218] Iteration 5244 (2.46325 iter/s, 4.87162s/12 iters), loss = 5.27078
I0412 13:30:26.883750 6895 solver.cpp:237] Train net output #0: loss = 5.27078 (* 1 = 5.27078 loss)
I0412 13:30:26.883760 6895 sgd_solver.cpp:105] Iteration 5244, lr = 0.00353892
I0412 13:30:31.721587 6895 solver.cpp:218] Iteration 5256 (2.48055 iter/s, 4.83765s/12 iters), loss = 5.26164
I0412 13:30:31.721630 6895 solver.cpp:237] Train net output #0: loss = 5.26164 (* 1 = 5.26164 loss)
I0412 13:30:31.721639 6895 sgd_solver.cpp:105] Iteration 5256, lr = 0.00353052
I0412 13:30:32.992293 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:30:36.752290 6895 solver.cpp:218] Iteration 5268 (2.38547 iter/s, 5.03046s/12 iters), loss = 5.27825
I0412 13:30:36.752332 6895 solver.cpp:237] Train net output #0: loss = 5.27825 (* 1 = 5.27825 loss)
I0412 13:30:36.752341 6895 sgd_solver.cpp:105] Iteration 5268, lr = 0.00352214
I0412 13:30:41.837050 6895 solver.cpp:218] Iteration 5280 (2.36011 iter/s, 5.08452s/12 iters), loss = 5.26596
I0412 13:30:41.837095 6895 solver.cpp:237] Train net output #0: loss = 5.26596 (* 1 = 5.26596 loss)
I0412 13:30:41.837105 6895 sgd_solver.cpp:105] Iteration 5280, lr = 0.00351378
I0412 13:30:46.809747 6895 solver.cpp:218] Iteration 5292 (2.4133 iter/s, 4.97245s/12 iters), loss = 5.27896
I0412 13:30:46.809790 6895 solver.cpp:237] Train net output #0: loss = 5.27896 (* 1 = 5.27896 loss)
I0412 13:30:46.809799 6895 sgd_solver.cpp:105] Iteration 5292, lr = 0.00350544
I0412 13:30:51.340171 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5304.caffemodel
I0412 13:30:53.155306 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5304.solverstate
I0412 13:30:54.694319 6895 solver.cpp:330] Iteration 5304, Testing net (#0)
I0412 13:30:54.694339 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:30:57.065486 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:30:59.307193 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:30:59.307237 6895 solver.cpp:397] Test net output #1: loss = 5.2861 (* 1 = 5.2861 loss)
I0412 13:30:59.391321 6895 solver.cpp:218] Iteration 5304 (0.953815 iter/s, 12.5811s/12 iters), loss = 5.27339
I0412 13:30:59.391368 6895 solver.cpp:237] Train net output #0: loss = 5.27339 (* 1 = 5.27339 loss)
I0412 13:30:59.391377 6895 sgd_solver.cpp:105] Iteration 5304, lr = 0.00349711
I0412 13:31:03.586249 6895 solver.cpp:218] Iteration 5316 (2.86074 iter/s, 4.19471s/12 iters), loss = 5.26959
I0412 13:31:03.586311 6895 solver.cpp:237] Train net output #0: loss = 5.26959 (* 1 = 5.26959 loss)
I0412 13:31:03.586326 6895 sgd_solver.cpp:105] Iteration 5316, lr = 0.00348881
I0412 13:31:08.298398 6895 solver.cpp:218] Iteration 5328 (2.54674 iter/s, 4.7119s/12 iters), loss = 5.26215
I0412 13:31:08.298442 6895 solver.cpp:237] Train net output #0: loss = 5.26215 (* 1 = 5.26215 loss)
I0412 13:31:08.298453 6895 sgd_solver.cpp:105] Iteration 5328, lr = 0.00348053
I0412 13:31:13.213304 6895 solver.cpp:218] Iteration 5340 (2.44167 iter/s, 4.91466s/12 iters), loss = 5.29815
I0412 13:31:13.213358 6895 solver.cpp:237] Train net output #0: loss = 5.29815 (* 1 = 5.29815 loss)
I0412 13:31:13.213371 6895 sgd_solver.cpp:105] Iteration 5340, lr = 0.00347226
I0412 13:31:18.098623 6895 solver.cpp:218] Iteration 5352 (2.45646 iter/s, 4.88507s/12 iters), loss = 5.27234
I0412 13:31:18.098680 6895 solver.cpp:237] Train net output #0: loss = 5.27234 (* 1 = 5.27234 loss)
I0412 13:31:18.098696 6895 sgd_solver.cpp:105] Iteration 5352, lr = 0.00346402
I0412 13:31:21.384258 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:31:22.844938 6895 solver.cpp:218] Iteration 5364 (2.52841 iter/s, 4.74607s/12 iters), loss = 5.27619
I0412 13:31:22.844990 6895 solver.cpp:237] Train net output #0: loss = 5.27619 (* 1 = 5.27619 loss)
I0412 13:31:22.845002 6895 sgd_solver.cpp:105] Iteration 5364, lr = 0.0034558
I0412 13:31:27.657567 6895 solver.cpp:218] Iteration 5376 (2.49356 iter/s, 4.81239s/12 iters), loss = 5.26675
I0412 13:31:27.657696 6895 solver.cpp:237] Train net output #0: loss = 5.26675 (* 1 = 5.26675 loss)
I0412 13:31:27.657704 6895 sgd_solver.cpp:105] Iteration 5376, lr = 0.00344759
I0412 13:31:32.499547 6895 solver.cpp:218] Iteration 5388 (2.47849 iter/s, 4.84166s/12 iters), loss = 5.2706
I0412 13:31:32.499596 6895 solver.cpp:237] Train net output #0: loss = 5.2706 (* 1 = 5.2706 loss)
I0412 13:31:32.499606 6895 sgd_solver.cpp:105] Iteration 5388, lr = 0.00343941
I0412 13:31:37.362105 6895 solver.cpp:218] Iteration 5400 (2.46796 iter/s, 4.86232s/12 iters), loss = 5.2685
I0412 13:31:37.362160 6895 solver.cpp:237] Train net output #0: loss = 5.2685 (* 1 = 5.2685 loss)
I0412 13:31:37.362172 6895 sgd_solver.cpp:105] Iteration 5400, lr = 0.00343124
I0412 13:31:39.290308 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5406.caffemodel
I0412 13:31:40.842424 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5406.solverstate
I0412 13:31:42.901129 6895 solver.cpp:330] Iteration 5406, Testing net (#0)
I0412 13:31:42.901160 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:31:45.288918 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:31:47.420193 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:31:47.420239 6895 solver.cpp:397] Test net output #1: loss = 5.28594 (* 1 = 5.28594 loss)
I0412 13:31:49.203783 6895 solver.cpp:218] Iteration 5412 (1.01341 iter/s, 11.8412s/12 iters), loss = 5.26411
I0412 13:31:49.203840 6895 solver.cpp:237] Train net output #0: loss = 5.26411 (* 1 = 5.26411 loss)
I0412 13:31:49.203851 6895 sgd_solver.cpp:105] Iteration 5412, lr = 0.00342309
I0412 13:31:54.113148 6895 solver.cpp:218] Iteration 5424 (2.44443 iter/s, 4.90911s/12 iters), loss = 5.27823
I0412 13:31:54.113209 6895 solver.cpp:237] Train net output #0: loss = 5.27823 (* 1 = 5.27823 loss)
I0412 13:31:54.113224 6895 sgd_solver.cpp:105] Iteration 5424, lr = 0.00341497
I0412 13:31:59.236507 6895 solver.cpp:218] Iteration 5436 (2.34233 iter/s, 5.1231s/12 iters), loss = 5.26819
I0412 13:31:59.236634 6895 solver.cpp:237] Train net output #0: loss = 5.26819 (* 1 = 5.26819 loss)
I0412 13:31:59.236645 6895 sgd_solver.cpp:105] Iteration 5436, lr = 0.00340686
I0412 13:32:03.949060 6895 solver.cpp:218] Iteration 5448 (2.54656 iter/s, 4.71224s/12 iters), loss = 5.2775
I0412 13:32:03.949115 6895 solver.cpp:237] Train net output #0: loss = 5.2775 (* 1 = 5.2775 loss)
I0412 13:32:03.949126 6895 sgd_solver.cpp:105] Iteration 5448, lr = 0.00339877
I0412 13:32:08.749527 6895 solver.cpp:218] Iteration 5460 (2.49988 iter/s, 4.80022s/12 iters), loss = 5.28175
I0412 13:32:08.749577 6895 solver.cpp:237] Train net output #0: loss = 5.28175 (* 1 = 5.28175 loss)
I0412 13:32:08.749586 6895 sgd_solver.cpp:105] Iteration 5460, lr = 0.0033907
I0412 13:32:09.300616 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:32:13.670817 6895 solver.cpp:218] Iteration 5472 (2.43851 iter/s, 4.92104s/12 iters), loss = 5.2792
I0412 13:32:13.670871 6895 solver.cpp:237] Train net output #0: loss = 5.2792 (* 1 = 5.2792 loss)
I0412 13:32:13.670882 6895 sgd_solver.cpp:105] Iteration 5472, lr = 0.00338265
I0412 13:32:18.676992 6895 solver.cpp:218] Iteration 5484 (2.39716 iter/s, 5.00592s/12 iters), loss = 5.2735
I0412 13:32:18.677038 6895 solver.cpp:237] Train net output #0: loss = 5.2735 (* 1 = 5.2735 loss)
I0412 13:32:18.677048 6895 sgd_solver.cpp:105] Iteration 5484, lr = 0.00337462
I0412 13:32:23.344159 6895 solver.cpp:218] Iteration 5496 (2.57128 iter/s, 4.66694s/12 iters), loss = 5.28901
I0412 13:32:23.344208 6895 solver.cpp:237] Train net output #0: loss = 5.28901 (* 1 = 5.28901 loss)
I0412 13:32:23.344219 6895 sgd_solver.cpp:105] Iteration 5496, lr = 0.00336661
I0412 13:32:28.096690 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5508.caffemodel
I0412 13:32:29.547169 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5508.solverstate
I0412 13:32:30.908538 6895 solver.cpp:330] Iteration 5508, Testing net (#0)
I0412 13:32:30.908565 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:32:33.061473 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:32:35.511104 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:32:35.511163 6895 solver.cpp:397] Test net output #1: loss = 5.28674 (* 1 = 5.28674 loss)
I0412 13:32:35.595427 6895 solver.cpp:218] Iteration 5508 (0.979532 iter/s, 12.2507s/12 iters), loss = 5.27773
I0412 13:32:35.595491 6895 solver.cpp:237] Train net output #0: loss = 5.27773 (* 1 = 5.27773 loss)
I0412 13:32:35.595505 6895 sgd_solver.cpp:105] Iteration 5508, lr = 0.00335861
I0412 13:32:39.855979 6895 solver.cpp:218] Iteration 5520 (2.81669 iter/s, 4.26032s/12 iters), loss = 5.27574
I0412 13:32:39.856019 6895 solver.cpp:237] Train net output #0: loss = 5.27574 (* 1 = 5.27574 loss)
I0412 13:32:39.856029 6895 sgd_solver.cpp:105] Iteration 5520, lr = 0.00335064
I0412 13:32:41.897534 6895 blocking_queue.cpp:49] Waiting for data
I0412 13:32:44.672097 6895 solver.cpp:218] Iteration 5532 (2.49176 iter/s, 4.81588s/12 iters), loss = 5.28641
I0412 13:32:44.672154 6895 solver.cpp:237] Train net output #0: loss = 5.28641 (* 1 = 5.28641 loss)
I0412 13:32:44.672168 6895 sgd_solver.cpp:105] Iteration 5532, lr = 0.00334268
I0412 13:32:49.616969 6895 solver.cpp:218] Iteration 5544 (2.42688 iter/s, 4.94461s/12 iters), loss = 5.25794
I0412 13:32:49.617030 6895 solver.cpp:237] Train net output #0: loss = 5.25794 (* 1 = 5.25794 loss)
I0412 13:32:49.617043 6895 sgd_solver.cpp:105] Iteration 5544, lr = 0.00333475
I0412 13:32:54.545686 6895 solver.cpp:218] Iteration 5556 (2.43483 iter/s, 4.92847s/12 iters), loss = 5.27411
I0412 13:32:54.545730 6895 solver.cpp:237] Train net output #0: loss = 5.27411 (* 1 = 5.27411 loss)
I0412 13:32:54.545738 6895 sgd_solver.cpp:105] Iteration 5556, lr = 0.00332683
I0412 13:32:57.285672 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:32:59.598093 6895 solver.cpp:218] Iteration 5568 (2.37522 iter/s, 5.05216s/12 iters), loss = 5.28006
I0412 13:32:59.598246 6895 solver.cpp:237] Train net output #0: loss = 5.28006 (* 1 = 5.28006 loss)
I0412 13:32:59.598261 6895 sgd_solver.cpp:105] Iteration 5568, lr = 0.00331893
I0412 13:33:04.264154 6895 solver.cpp:218] Iteration 5580 (2.57195 iter/s, 4.66573s/12 iters), loss = 5.2664
I0412 13:33:04.264211 6895 solver.cpp:237] Train net output #0: loss = 5.2664 (* 1 = 5.2664 loss)
I0412 13:33:04.264222 6895 sgd_solver.cpp:105] Iteration 5580, lr = 0.00331105
I0412 13:33:09.098276 6895 solver.cpp:218] Iteration 5592 (2.48248 iter/s, 4.83388s/12 iters), loss = 5.27848
I0412 13:33:09.098315 6895 solver.cpp:237] Train net output #0: loss = 5.27848 (* 1 = 5.27848 loss)
I0412 13:33:09.098325 6895 sgd_solver.cpp:105] Iteration 5592, lr = 0.00330319
I0412 13:33:13.899395 6895 solver.cpp:218] Iteration 5604 (2.49954 iter/s, 4.80089s/12 iters), loss = 5.26953
I0412 13:33:13.899451 6895 solver.cpp:237] Train net output #0: loss = 5.26953 (* 1 = 5.26953 loss)
I0412 13:33:13.899463 6895 sgd_solver.cpp:105] Iteration 5604, lr = 0.00329535
I0412 13:33:15.765151 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5610.caffemodel
I0412 13:33:23.090137 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5610.solverstate
I0412 13:33:27.909102 6895 solver.cpp:330] Iteration 5610, Testing net (#0)
I0412 13:33:27.909130 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:33:30.069555 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:33:32.359493 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:33:32.359529 6895 solver.cpp:397] Test net output #1: loss = 5.28603 (* 1 = 5.28603 loss)
I0412 13:33:34.131011 6895 solver.cpp:218] Iteration 5616 (0.593155 iter/s, 20.2308s/12 iters), loss = 5.29231
I0412 13:33:34.131059 6895 solver.cpp:237] Train net output #0: loss = 5.29231 (* 1 = 5.29231 loss)
I0412 13:33:34.131069 6895 sgd_solver.cpp:105] Iteration 5616, lr = 0.00328752
I0412 13:33:39.085407 6895 solver.cpp:218] Iteration 5628 (2.42221 iter/s, 4.95415s/12 iters), loss = 5.27287
I0412 13:33:39.085449 6895 solver.cpp:237] Train net output #0: loss = 5.27287 (* 1 = 5.27287 loss)
I0412 13:33:39.085459 6895 sgd_solver.cpp:105] Iteration 5628, lr = 0.00327972
I0412 13:33:44.116813 6895 solver.cpp:218] Iteration 5640 (2.38514 iter/s, 5.03116s/12 iters), loss = 5.26448
I0412 13:33:44.116875 6895 solver.cpp:237] Train net output #0: loss = 5.26448 (* 1 = 5.26448 loss)
I0412 13:33:44.116890 6895 sgd_solver.cpp:105] Iteration 5640, lr = 0.00327193
I0412 13:33:48.798763 6895 solver.cpp:218] Iteration 5652 (2.56317 iter/s, 4.6817s/12 iters), loss = 5.26716
I0412 13:33:48.798820 6895 solver.cpp:237] Train net output #0: loss = 5.26716 (* 1 = 5.26716 loss)
I0412 13:33:48.798831 6895 sgd_solver.cpp:105] Iteration 5652, lr = 0.00326416
I0412 13:33:53.709518 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:33:53.869341 6895 solver.cpp:218] Iteration 5664 (2.36672 iter/s, 5.07032s/12 iters), loss = 5.25295
I0412 13:33:53.869397 6895 solver.cpp:237] Train net output #0: loss = 5.25295 (* 1 = 5.25295 loss)
I0412 13:33:53.869410 6895 sgd_solver.cpp:105] Iteration 5664, lr = 0.00325641
I0412 13:33:58.888731 6895 solver.cpp:218] Iteration 5676 (2.39085 iter/s, 5.01914s/12 iters), loss = 5.26501
I0412 13:33:58.888774 6895 solver.cpp:237] Train net output #0: loss = 5.26501 (* 1 = 5.26501 loss)
I0412 13:33:58.888783 6895 sgd_solver.cpp:105] Iteration 5676, lr = 0.00324868
I0412 13:34:03.737795 6895 solver.cpp:218] Iteration 5688 (2.47482 iter/s, 4.84883s/12 iters), loss = 5.29441
I0412 13:34:03.737895 6895 solver.cpp:237] Train net output #0: loss = 5.29441 (* 1 = 5.29441 loss)
I0412 13:34:03.737905 6895 sgd_solver.cpp:105] Iteration 5688, lr = 0.00324097
I0412 13:34:08.787060 6895 solver.cpp:218] Iteration 5700 (2.37672 iter/s, 5.04897s/12 iters), loss = 5.28538
I0412 13:34:08.787101 6895 solver.cpp:237] Train net output #0: loss = 5.28538 (* 1 = 5.28538 loss)
I0412 13:34:08.787109 6895 sgd_solver.cpp:105] Iteration 5700, lr = 0.00323328
I0412 13:34:13.291131 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5712.caffemodel
I0412 13:34:15.288964 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5712.solverstate
I0412 13:34:16.459830 6895 solver.cpp:330] Iteration 5712, Testing net (#0)
I0412 13:34:16.459858 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:34:18.741084 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:34:21.086102 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:34:21.086148 6895 solver.cpp:397] Test net output #1: loss = 5.28594 (* 1 = 5.28594 loss)
I0412 13:34:21.170094 6895 solver.cpp:218] Iteration 5712 (0.969108 iter/s, 12.3825s/12 iters), loss = 5.27795
I0412 13:34:21.170172 6895 solver.cpp:237] Train net output #0: loss = 5.27795 (* 1 = 5.27795 loss)
I0412 13:34:21.170189 6895 sgd_solver.cpp:105] Iteration 5712, lr = 0.0032256
I0412 13:34:25.293248 6895 solver.cpp:218] Iteration 5724 (2.91056 iter/s, 4.12291s/12 iters), loss = 5.26504
I0412 13:34:25.293305 6895 solver.cpp:237] Train net output #0: loss = 5.26504 (* 1 = 5.26504 loss)
I0412 13:34:25.293318 6895 sgd_solver.cpp:105] Iteration 5724, lr = 0.00321794
I0412 13:34:30.150950 6895 solver.cpp:218] Iteration 5736 (2.47043 iter/s, 4.85745s/12 iters), loss = 5.24704
I0412 13:34:30.151005 6895 solver.cpp:237] Train net output #0: loss = 5.24704 (* 1 = 5.24704 loss)
I0412 13:34:30.151018 6895 sgd_solver.cpp:105] Iteration 5736, lr = 0.0032103
I0412 13:34:35.091636 6895 solver.cpp:218] Iteration 5748 (2.42894 iter/s, 4.94043s/12 iters), loss = 5.27886
I0412 13:34:35.091795 6895 solver.cpp:237] Train net output #0: loss = 5.27886 (* 1 = 5.27886 loss)
I0412 13:34:35.091809 6895 sgd_solver.cpp:105] Iteration 5748, lr = 0.00320268
I0412 13:34:39.995301 6895 solver.cpp:218] Iteration 5760 (2.44732 iter/s, 4.90332s/12 iters), loss = 5.26752
I0412 13:34:39.995344 6895 solver.cpp:237] Train net output #0: loss = 5.26752 (* 1 = 5.26752 loss)
I0412 13:34:39.995352 6895 sgd_solver.cpp:105] Iteration 5760, lr = 0.00319508
I0412 13:34:41.852262 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:34:44.691138 6895 solver.cpp:218] Iteration 5772 (2.55558 iter/s, 4.69561s/12 iters), loss = 5.29442
I0412 13:34:44.691182 6895 solver.cpp:237] Train net output #0: loss = 5.29442 (* 1 = 5.29442 loss)
I0412 13:34:44.691191 6895 sgd_solver.cpp:105] Iteration 5772, lr = 0.00318749
I0412 13:34:49.639968 6895 solver.cpp:218] Iteration 5784 (2.42494 iter/s, 4.94858s/12 iters), loss = 5.27442
I0412 13:34:49.640020 6895 solver.cpp:237] Train net output #0: loss = 5.27442 (* 1 = 5.27442 loss)
I0412 13:34:49.640031 6895 sgd_solver.cpp:105] Iteration 5784, lr = 0.00317992
I0412 13:34:54.584456 6895 solver.cpp:218] Iteration 5796 (2.42707 iter/s, 4.94424s/12 iters), loss = 5.26901
I0412 13:34:54.584497 6895 solver.cpp:237] Train net output #0: loss = 5.26901 (* 1 = 5.26901 loss)
I0412 13:34:54.584506 6895 sgd_solver.cpp:105] Iteration 5796, lr = 0.00317237
I0412 13:34:59.503800 6895 solver.cpp:218] Iteration 5808 (2.43946 iter/s, 4.91911s/12 iters), loss = 5.26413
I0412 13:34:59.503840 6895 solver.cpp:237] Train net output #0: loss = 5.26413 (* 1 = 5.26413 loss)
I0412 13:34:59.503851 6895 sgd_solver.cpp:105] Iteration 5808, lr = 0.00316484
I0412 13:35:01.366984 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5814.caffemodel
I0412 13:35:02.924129 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5814.solverstate
I0412 13:35:04.093140 6895 solver.cpp:330] Iteration 5814, Testing net (#0)
I0412 13:35:04.093163 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:35:06.308863 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:35:08.602072 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:35:08.602116 6895 solver.cpp:397] Test net output #1: loss = 5.28578 (* 1 = 5.28578 loss)
I0412 13:35:10.547230 6895 solver.cpp:218] Iteration 5820 (1.08666 iter/s, 11.043s/12 iters), loss = 5.27483
I0412 13:35:10.547273 6895 solver.cpp:237] Train net output #0: loss = 5.27483 (* 1 = 5.27483 loss)
I0412 13:35:10.547281 6895 sgd_solver.cpp:105] Iteration 5820, lr = 0.00315733
I0412 13:35:15.480343 6895 solver.cpp:218] Iteration 5832 (2.43266 iter/s, 4.93287s/12 iters), loss = 5.27814
I0412 13:35:15.480396 6895 solver.cpp:237] Train net output #0: loss = 5.27814 (* 1 = 5.27814 loss)
I0412 13:35:15.480407 6895 sgd_solver.cpp:105] Iteration 5832, lr = 0.00314983
I0412 13:35:20.353061 6895 solver.cpp:218] Iteration 5844 (2.46282 iter/s, 4.87247s/12 iters), loss = 5.25762
I0412 13:35:20.353101 6895 solver.cpp:237] Train net output #0: loss = 5.25762 (* 1 = 5.25762 loss)
I0412 13:35:20.353109 6895 sgd_solver.cpp:105] Iteration 5844, lr = 0.00314235
I0412 13:35:25.217301 6895 solver.cpp:218] Iteration 5856 (2.4671 iter/s, 4.86401s/12 iters), loss = 5.26121
I0412 13:35:25.217350 6895 solver.cpp:237] Train net output #0: loss = 5.26121 (* 1 = 5.26121 loss)
I0412 13:35:25.217360 6895 sgd_solver.cpp:105] Iteration 5856, lr = 0.00313489
I0412 13:35:29.536834 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:35:30.363936 6895 solver.cpp:218] Iteration 5868 (2.33173 iter/s, 5.14639s/12 iters), loss = 5.25673
I0412 13:35:30.363982 6895 solver.cpp:237] Train net output #0: loss = 5.25673 (* 1 = 5.25673 loss)
I0412 13:35:30.363992 6895 sgd_solver.cpp:105] Iteration 5868, lr = 0.00312745
I0412 13:35:35.025573 6895 solver.cpp:218] Iteration 5880 (2.57433 iter/s, 4.66141s/12 iters), loss = 5.2781
I0412 13:35:35.025614 6895 solver.cpp:237] Train net output #0: loss = 5.2781 (* 1 = 5.2781 loss)
I0412 13:35:35.025624 6895 sgd_solver.cpp:105] Iteration 5880, lr = 0.00312002
I0412 13:35:39.740078 6895 solver.cpp:218] Iteration 5892 (2.54546 iter/s, 4.71428s/12 iters), loss = 5.27066
I0412 13:35:39.740151 6895 solver.cpp:237] Train net output #0: loss = 5.27066 (* 1 = 5.27066 loss)
I0412 13:35:39.740161 6895 sgd_solver.cpp:105] Iteration 5892, lr = 0.00311262
I0412 13:35:44.875800 6895 solver.cpp:218] Iteration 5904 (2.3367 iter/s, 5.13545s/12 iters), loss = 5.30557
I0412 13:35:44.875852 6895 solver.cpp:237] Train net output #0: loss = 5.30557 (* 1 = 5.30557 loss)
I0412 13:35:44.875864 6895 sgd_solver.cpp:105] Iteration 5904, lr = 0.00310523
I0412 13:35:49.253363 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5916.caffemodel
I0412 13:35:50.808861 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5916.solverstate
I0412 13:35:51.998718 6895 solver.cpp:330] Iteration 5916, Testing net (#0)
I0412 13:35:51.998746 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:35:54.067404 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:35:56.405057 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:35:56.405095 6895 solver.cpp:397] Test net output #1: loss = 5.28582 (* 1 = 5.28582 loss)
I0412 13:35:56.488471 6895 solver.cpp:218] Iteration 5916 (1.0334 iter/s, 11.6122s/12 iters), loss = 5.27096
I0412 13:35:56.488517 6895 solver.cpp:237] Train net output #0: loss = 5.27096 (* 1 = 5.27096 loss)
I0412 13:35:56.488525 6895 sgd_solver.cpp:105] Iteration 5916, lr = 0.00309785
I0412 13:36:00.603008 6895 solver.cpp:218] Iteration 5928 (2.91664 iter/s, 4.11432s/12 iters), loss = 5.2726
I0412 13:36:00.603057 6895 solver.cpp:237] Train net output #0: loss = 5.2726 (* 1 = 5.2726 loss)
I0412 13:36:00.603070 6895 sgd_solver.cpp:105] Iteration 5928, lr = 0.0030905
I0412 13:36:05.331310 6895 solver.cpp:218] Iteration 5940 (2.53804 iter/s, 4.72806s/12 iters), loss = 5.28109
I0412 13:36:05.331360 6895 solver.cpp:237] Train net output #0: loss = 5.28109 (* 1 = 5.28109 loss)
I0412 13:36:05.331370 6895 sgd_solver.cpp:105] Iteration 5940, lr = 0.00308316
I0412 13:36:10.252862 6895 solver.cpp:218] Iteration 5952 (2.43838 iter/s, 4.92131s/12 iters), loss = 5.27157
I0412 13:36:10.252965 6895 solver.cpp:237] Train net output #0: loss = 5.27157 (* 1 = 5.27157 loss)
I0412 13:36:10.252977 6895 sgd_solver.cpp:105] Iteration 5952, lr = 0.00307584
I0412 13:36:15.078356 6895 solver.cpp:218] Iteration 5964 (2.48694 iter/s, 4.8252s/12 iters), loss = 5.25963
I0412 13:36:15.078409 6895 solver.cpp:237] Train net output #0: loss = 5.25963 (* 1 = 5.25963 loss)
I0412 13:36:15.078420 6895 sgd_solver.cpp:105] Iteration 5964, lr = 0.00306854
I0412 13:36:16.354018 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:36:19.953085 6895 solver.cpp:218] Iteration 5976 (2.4618 iter/s, 4.87449s/12 iters), loss = 5.27747
I0412 13:36:19.953123 6895 solver.cpp:237] Train net output #0: loss = 5.27747 (* 1 = 5.27747 loss)
I0412 13:36:19.953131 6895 sgd_solver.cpp:105] Iteration 5976, lr = 0.00306125
I0412 13:36:24.880209 6895 solver.cpp:218] Iteration 5988 (2.43561 iter/s, 4.92689s/12 iters), loss = 5.26505
I0412 13:36:24.880256 6895 solver.cpp:237] Train net output #0: loss = 5.26505 (* 1 = 5.26505 loss)
I0412 13:36:24.880266 6895 sgd_solver.cpp:105] Iteration 5988, lr = 0.00305398
I0412 13:36:29.811265 6895 solver.cpp:218] Iteration 6000 (2.43368 iter/s, 4.93081s/12 iters), loss = 5.27855
I0412 13:36:29.811319 6895 solver.cpp:237] Train net output #0: loss = 5.27855 (* 1 = 5.27855 loss)
I0412 13:36:29.811331 6895 sgd_solver.cpp:105] Iteration 6000, lr = 0.00304673
I0412 13:36:34.715776 6895 solver.cpp:218] Iteration 6012 (2.44685 iter/s, 4.90427s/12 iters), loss = 5.27079
I0412 13:36:34.715818 6895 solver.cpp:237] Train net output #0: loss = 5.27079 (* 1 = 5.27079 loss)
I0412 13:36:34.715827 6895 sgd_solver.cpp:105] Iteration 6012, lr = 0.0030395
I0412 13:36:36.597273 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6018.caffemodel
I0412 13:36:38.269855 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6018.solverstate
I0412 13:36:39.443819 6895 solver.cpp:330] Iteration 6018, Testing net (#0)
I0412 13:36:39.443846 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:36:41.531219 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:36:43.988647 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:36:43.988678 6895 solver.cpp:397] Test net output #1: loss = 5.28588 (* 1 = 5.28588 loss)
I0412 13:36:45.709084 6895 solver.cpp:218] Iteration 6024 (1.09162 iter/s, 10.9929s/12 iters), loss = 5.2652
I0412 13:36:45.709128 6895 solver.cpp:237] Train net output #0: loss = 5.2652 (* 1 = 5.2652 loss)
I0412 13:36:45.709136 6895 sgd_solver.cpp:105] Iteration 6024, lr = 0.00303228
I0412 13:36:50.712137 6895 solver.cpp:218] Iteration 6036 (2.39865 iter/s, 5.00281s/12 iters), loss = 5.25859
I0412 13:36:50.712183 6895 solver.cpp:237] Train net output #0: loss = 5.25859 (* 1 = 5.25859 loss)
I0412 13:36:50.712193 6895 sgd_solver.cpp:105] Iteration 6036, lr = 0.00302508
I0412 13:36:55.364884 6895 solver.cpp:218] Iteration 6048 (2.57925 iter/s, 4.65252s/12 iters), loss = 5.3033
I0412 13:36:55.364928 6895 solver.cpp:237] Train net output #0: loss = 5.3033 (* 1 = 5.3033 loss)
I0412 13:36:55.364935 6895 sgd_solver.cpp:105] Iteration 6048, lr = 0.0030179
I0412 13:37:00.223402 6895 solver.cpp:218] Iteration 6060 (2.47001 iter/s, 4.85828s/12 iters), loss = 5.28307
I0412 13:37:00.223451 6895 solver.cpp:237] Train net output #0: loss = 5.28307 (* 1 = 5.28307 loss)
I0412 13:37:00.223462 6895 sgd_solver.cpp:105] Iteration 6060, lr = 0.00301074
I0412 13:37:03.673185 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:37:05.094075 6895 solver.cpp:218] Iteration 6072 (2.46385 iter/s, 4.87043s/12 iters), loss = 5.27539
I0412 13:37:05.094117 6895 solver.cpp:237] Train net output #0: loss = 5.27539 (* 1 = 5.27539 loss)
I0412 13:37:05.094126 6895 sgd_solver.cpp:105] Iteration 6072, lr = 0.00300359
I0412 13:37:09.896251 6895 solver.cpp:218] Iteration 6084 (2.49899 iter/s, 4.80194s/12 iters), loss = 5.262
I0412 13:37:09.896302 6895 solver.cpp:237] Train net output #0: loss = 5.262 (* 1 = 5.262 loss)
I0412 13:37:09.896315 6895 sgd_solver.cpp:105] Iteration 6084, lr = 0.00299646
I0412 13:37:14.604882 6895 solver.cpp:218] Iteration 6096 (2.54864 iter/s, 4.7084s/12 iters), loss = 5.26215
I0412 13:37:14.605000 6895 solver.cpp:237] Train net output #0: loss = 5.26215 (* 1 = 5.26215 loss)
I0412 13:37:14.605007 6895 sgd_solver.cpp:105] Iteration 6096, lr = 0.00298934
I0412 13:37:19.391943 6895 solver.cpp:218] Iteration 6108 (2.50692 iter/s, 4.78675s/12 iters), loss = 5.27467
I0412 13:37:19.392005 6895 solver.cpp:237] Train net output #0: loss = 5.27467 (* 1 = 5.27467 loss)
I0412 13:37:19.392022 6895 sgd_solver.cpp:105] Iteration 6108, lr = 0.00298225
I0412 13:37:23.638770 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6120.caffemodel
I0412 13:37:27.979641 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6120.solverstate
I0412 13:37:33.614960 6895 solver.cpp:330] Iteration 6120, Testing net (#0)
I0412 13:37:33.614980 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:37:35.786346 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:37:38.245625 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:37:38.245676 6895 solver.cpp:397] Test net output #1: loss = 5.28579 (* 1 = 5.28579 loss)
I0412 13:37:38.329437 6895 solver.cpp:218] Iteration 6120 (0.633689 iter/s, 18.9367s/12 iters), loss = 5.26519
I0412 13:37:38.329494 6895 solver.cpp:237] Train net output #0: loss = 5.26519 (* 1 = 5.26519 loss)
I0412 13:37:38.329507 6895 sgd_solver.cpp:105] Iteration 6120, lr = 0.00297517
I0412 13:37:42.446154 6895 solver.cpp:218] Iteration 6132 (2.9151 iter/s, 4.1165s/12 iters), loss = 5.27403
I0412 13:37:42.446195 6895 solver.cpp:237] Train net output #0: loss = 5.27403 (* 1 = 5.27403 loss)
I0412 13:37:42.446204 6895 sgd_solver.cpp:105] Iteration 6132, lr = 0.0029681
I0412 13:37:47.281020 6895 solver.cpp:218] Iteration 6144 (2.48209 iter/s, 4.83463s/12 iters), loss = 5.27006
I0412 13:37:47.281127 6895 solver.cpp:237] Train net output #0: loss = 5.27006 (* 1 = 5.27006 loss)
I0412 13:37:47.281139 6895 sgd_solver.cpp:105] Iteration 6144, lr = 0.00296105
I0412 13:37:52.203467 6895 solver.cpp:218] Iteration 6156 (2.43796 iter/s, 4.92215s/12 iters), loss = 5.27707
I0412 13:37:52.203526 6895 solver.cpp:237] Train net output #0: loss = 5.27707 (* 1 = 5.27707 loss)
I0412 13:37:52.203539 6895 sgd_solver.cpp:105] Iteration 6156, lr = 0.00295402
I0412 13:37:57.125712 6895 solver.cpp:218] Iteration 6168 (2.43804 iter/s, 4.92199s/12 iters), loss = 5.28815
I0412 13:37:57.125758 6895 solver.cpp:237] Train net output #0: loss = 5.28815 (* 1 = 5.28815 loss)
I0412 13:37:57.125768 6895 sgd_solver.cpp:105] Iteration 6168, lr = 0.00294701
I0412 13:37:57.775821 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:38:02.209620 6895 solver.cpp:218] Iteration 6180 (2.36051 iter/s, 5.08364s/12 iters), loss = 5.28324
I0412 13:38:02.209672 6895 solver.cpp:237] Train net output #0: loss = 5.28324 (* 1 = 5.28324 loss)
I0412 13:38:02.209683 6895 sgd_solver.cpp:105] Iteration 6180, lr = 0.00294001
I0412 13:38:07.026821 6895 solver.cpp:218] Iteration 6192 (2.4912 iter/s, 4.81696s/12 iters), loss = 5.26979
I0412 13:38:07.026860 6895 solver.cpp:237] Train net output #0: loss = 5.26979 (* 1 = 5.26979 loss)
I0412 13:38:07.026868 6895 sgd_solver.cpp:105] Iteration 6192, lr = 0.00293303
I0412 13:38:11.785288 6895 solver.cpp:218] Iteration 6204 (2.52194 iter/s, 4.75823s/12 iters), loss = 5.28823
I0412 13:38:11.785347 6895 solver.cpp:237] Train net output #0: loss = 5.28823 (* 1 = 5.28823 loss)
I0412 13:38:11.785358 6895 sgd_solver.cpp:105] Iteration 6204, lr = 0.00292607
I0412 13:38:16.648268 6895 solver.cpp:218] Iteration 6216 (2.46775 iter/s, 4.86274s/12 iters), loss = 5.27945
I0412 13:38:16.648325 6895 solver.cpp:237] Train net output #0: loss = 5.27945 (* 1 = 5.27945 loss)
I0412 13:38:16.648336 6895 sgd_solver.cpp:105] Iteration 6216, lr = 0.00291912
I0412 13:38:18.712692 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6222.caffemodel
I0412 13:38:20.569451 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6222.solverstate
I0412 13:38:21.745668 6895 solver.cpp:330] Iteration 6222, Testing net (#0)
I0412 13:38:21.745695 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:38:23.746981 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:38:25.070951 6895 blocking_queue.cpp:49] Waiting for data
I0412 13:38:26.446919 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:38:26.446950 6895 solver.cpp:397] Test net output #1: loss = 5.28567 (* 1 = 5.28567 loss)
I0412 13:38:28.332185 6895 solver.cpp:218] Iteration 6228 (1.0271 iter/s, 11.6834s/12 iters), loss = 5.27916
I0412 13:38:28.332229 6895 solver.cpp:237] Train net output #0: loss = 5.27916 (* 1 = 5.27916 loss)
I0412 13:38:28.332237 6895 sgd_solver.cpp:105] Iteration 6228, lr = 0.00291219
I0412 13:38:33.147109 6895 solver.cpp:218] Iteration 6240 (2.49237 iter/s, 4.8147s/12 iters), loss = 5.2813
I0412 13:38:33.147153 6895 solver.cpp:237] Train net output #0: loss = 5.2813 (* 1 = 5.2813 loss)
I0412 13:38:33.147163 6895 sgd_solver.cpp:105] Iteration 6240, lr = 0.00290528
I0412 13:38:37.937649 6895 solver.cpp:218] Iteration 6252 (2.50506 iter/s, 4.79031s/12 iters), loss = 5.26073
I0412 13:38:37.937705 6895 solver.cpp:237] Train net output #0: loss = 5.26073 (* 1 = 5.26073 loss)
I0412 13:38:37.937716 6895 sgd_solver.cpp:105] Iteration 6252, lr = 0.00289838
I0412 13:38:42.782619 6895 solver.cpp:218] Iteration 6264 (2.47692 iter/s, 4.84473s/12 iters), loss = 5.26628
I0412 13:38:42.782658 6895 solver.cpp:237] Train net output #0: loss = 5.26628 (* 1 = 5.26628 loss)
I0412 13:38:42.782667 6895 sgd_solver.cpp:105] Iteration 6264, lr = 0.0028915
I0412 13:38:45.373041 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:38:47.556684 6895 solver.cpp:218] Iteration 6276 (2.5137 iter/s, 4.77384s/12 iters), loss = 5.27611
I0412 13:38:47.556732 6895 solver.cpp:237] Train net output #0: loss = 5.27611 (* 1 = 5.27611 loss)
I0412 13:38:47.556744 6895 sgd_solver.cpp:105] Iteration 6276, lr = 0.00288463
I0412 13:38:52.217998 6895 solver.cpp:218] Iteration 6288 (2.5745 iter/s, 4.66109s/12 iters), loss = 5.25624
I0412 13:38:52.218116 6895 solver.cpp:237] Train net output #0: loss = 5.25624 (* 1 = 5.25624 loss)
I0412 13:38:52.218127 6895 sgd_solver.cpp:105] Iteration 6288, lr = 0.00287779
I0412 13:38:57.235524 6895 solver.cpp:218] Iteration 6300 (2.39176 iter/s, 5.01722s/12 iters), loss = 5.26939
I0412 13:38:57.235571 6895 solver.cpp:237] Train net output #0: loss = 5.26939 (* 1 = 5.26939 loss)
I0412 13:38:57.235582 6895 sgd_solver.cpp:105] Iteration 6300, lr = 0.00287095
I0412 13:39:01.924994 6895 solver.cpp:218] Iteration 6312 (2.55904 iter/s, 4.68925s/12 iters), loss = 5.26096
I0412 13:39:01.925031 6895 solver.cpp:237] Train net output #0: loss = 5.26096 (* 1 = 5.26096 loss)
I0412 13:39:01.925040 6895 sgd_solver.cpp:105] Iteration 6312, lr = 0.00286414
I0412 13:39:06.225122 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6324.caffemodel
I0412 13:39:08.836993 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6324.solverstate
I0412 13:39:10.736963 6895 solver.cpp:330] Iteration 6324, Testing net (#0)
I0412 13:39:10.736989 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:39:12.624555 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:39:15.165362 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:39:15.165407 6895 solver.cpp:397] Test net output #1: loss = 5.28571 (* 1 = 5.28571 loss)
I0412 13:39:15.248889 6895 solver.cpp:218] Iteration 6324 (0.900673 iter/s, 13.3234s/12 iters), loss = 5.29699
I0412 13:39:15.248936 6895 solver.cpp:237] Train net output #0: loss = 5.29699 (* 1 = 5.29699 loss)
I0412 13:39:15.248946 6895 sgd_solver.cpp:105] Iteration 6324, lr = 0.00285734
I0412 13:39:19.292387 6895 solver.cpp:218] Iteration 6336 (2.96788 iter/s, 4.04329s/12 iters), loss = 5.27112
I0412 13:39:19.292431 6895 solver.cpp:237] Train net output #0: loss = 5.27112 (* 1 = 5.27112 loss)
I0412 13:39:19.292439 6895 sgd_solver.cpp:105] Iteration 6336, lr = 0.00285055
I0412 13:39:24.400156 6895 solver.cpp:218] Iteration 6348 (2.34947 iter/s, 5.10753s/12 iters), loss = 5.26746
I0412 13:39:24.400290 6895 solver.cpp:237] Train net output #0: loss = 5.26746 (* 1 = 5.26746 loss)
I0412 13:39:24.400301 6895 sgd_solver.cpp:105] Iteration 6348, lr = 0.00284379
I0412 13:39:29.251276 6895 solver.cpp:218] Iteration 6360 (2.47382 iter/s, 4.8508s/12 iters), loss = 5.26716
I0412 13:39:29.251323 6895 solver.cpp:237] Train net output #0: loss = 5.26716 (* 1 = 5.26716 loss)
I0412 13:39:29.251334 6895 sgd_solver.cpp:105] Iteration 6360, lr = 0.00283703
I0412 13:39:33.927532 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:39:34.067306 6895 solver.cpp:218] Iteration 6372 (2.4918 iter/s, 4.8158s/12 iters), loss = 5.25294
I0412 13:39:34.067355 6895 solver.cpp:237] Train net output #0: loss = 5.25294 (* 1 = 5.25294 loss)
I0412 13:39:34.067366 6895 sgd_solver.cpp:105] Iteration 6372, lr = 0.0028303
I0412 13:39:38.845906 6895 solver.cpp:218] Iteration 6384 (2.51132 iter/s, 4.77836s/12 iters), loss = 5.2709
I0412 13:39:38.845973 6895 solver.cpp:237] Train net output #0: loss = 5.2709 (* 1 = 5.2709 loss)
I0412 13:39:38.845988 6895 sgd_solver.cpp:105] Iteration 6384, lr = 0.00282358
I0412 13:39:43.540444 6895 solver.cpp:218] Iteration 6396 (2.55629 iter/s, 4.6943s/12 iters), loss = 5.29306
I0412 13:39:43.540510 6895 solver.cpp:237] Train net output #0: loss = 5.29306 (* 1 = 5.29306 loss)
I0412 13:39:43.540529 6895 sgd_solver.cpp:105] Iteration 6396, lr = 0.00281687
I0412 13:39:48.356088 6895 solver.cpp:218] Iteration 6408 (2.492 iter/s, 4.8154s/12 iters), loss = 5.28434
I0412 13:39:48.356135 6895 solver.cpp:237] Train net output #0: loss = 5.28434 (* 1 = 5.28434 loss)
I0412 13:39:48.356146 6895 sgd_solver.cpp:105] Iteration 6408, lr = 0.00281019
I0412 13:39:52.998720 6895 solver.cpp:218] Iteration 6420 (2.58486 iter/s, 4.64241s/12 iters), loss = 5.28096
I0412 13:39:52.998761 6895 solver.cpp:237] Train net output #0: loss = 5.28096 (* 1 = 5.28096 loss)
I0412 13:39:52.998771 6895 sgd_solver.cpp:105] Iteration 6420, lr = 0.00280351
I0412 13:39:54.867812 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6426.caffemodel
I0412 13:40:07.479441 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6426.solverstate
I0412 13:40:14.540212 6895 solver.cpp:330] Iteration 6426, Testing net (#0)
I0412 13:40:14.540232 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:40:16.499617 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:40:19.091274 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:40:19.091325 6895 solver.cpp:397] Test net output #1: loss = 5.28574 (* 1 = 5.28574 loss)
I0412 13:40:20.897730 6895 solver.cpp:218] Iteration 6432 (0.430139 iter/s, 27.898s/12 iters), loss = 5.2658
I0412 13:40:20.897789 6895 solver.cpp:237] Train net output #0: loss = 5.2658 (* 1 = 5.2658 loss)
I0412 13:40:20.897800 6895 sgd_solver.cpp:105] Iteration 6432, lr = 0.00279686
I0412 13:40:25.632529 6895 solver.cpp:218] Iteration 6444 (2.53456 iter/s, 4.73456s/12 iters), loss = 5.24549
I0412 13:40:25.632633 6895 solver.cpp:237] Train net output #0: loss = 5.24549 (* 1 = 5.24549 loss)
I0412 13:40:25.632645 6895 sgd_solver.cpp:105] Iteration 6444, lr = 0.00279022
I0412 13:40:30.617074 6895 solver.cpp:218] Iteration 6456 (2.40758 iter/s, 4.98425s/12 iters), loss = 5.27469
I0412 13:40:30.617120 6895 solver.cpp:237] Train net output #0: loss = 5.27469 (* 1 = 5.27469 loss)
I0412 13:40:30.617130 6895 sgd_solver.cpp:105] Iteration 6456, lr = 0.00278359
I0412 13:40:35.324959 6895 solver.cpp:218] Iteration 6468 (2.54904 iter/s, 4.70765s/12 iters), loss = 5.2664
I0412 13:40:35.325011 6895 solver.cpp:237] Train net output #0: loss = 5.2664 (* 1 = 5.2664 loss)
I0412 13:40:35.325021 6895 sgd_solver.cpp:105] Iteration 6468, lr = 0.00277698
I0412 13:40:37.255079 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:40:40.101574 6895 solver.cpp:218] Iteration 6480 (2.51236 iter/s, 4.77638s/12 iters), loss = 5.28705
I0412 13:40:40.101619 6895 solver.cpp:237] Train net output #0: loss = 5.28705 (* 1 = 5.28705 loss)
I0412 13:40:40.101629 6895 sgd_solver.cpp:105] Iteration 6480, lr = 0.00277039
I0412 13:40:44.987815 6895 solver.cpp:218] Iteration 6492 (2.45599 iter/s, 4.88601s/12 iters), loss = 5.27077
I0412 13:40:44.987855 6895 solver.cpp:237] Train net output #0: loss = 5.27077 (* 1 = 5.27077 loss)
I0412 13:40:44.987864 6895 sgd_solver.cpp:105] Iteration 6492, lr = 0.00276381
I0412 13:40:49.838234 6895 solver.cpp:218] Iteration 6504 (2.47413 iter/s, 4.85019s/12 iters), loss = 5.27175
I0412 13:40:49.838276 6895 solver.cpp:237] Train net output #0: loss = 5.27175 (* 1 = 5.27175 loss)
I0412 13:40:49.838286 6895 sgd_solver.cpp:105] Iteration 6504, lr = 0.00275725
I0412 13:40:54.426518 6895 solver.cpp:218] Iteration 6516 (2.61548 iter/s, 4.58806s/12 iters), loss = 5.26234
I0412 13:40:54.426563 6895 solver.cpp:237] Train net output #0: loss = 5.26234 (* 1 = 5.26234 loss)
I0412 13:40:54.426573 6895 sgd_solver.cpp:105] Iteration 6516, lr = 0.00275071
I0412 13:40:59.143615 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6528.caffemodel
I0412 13:41:02.391491 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6528.solverstate
I0412 13:41:03.978857 6895 solver.cpp:330] Iteration 6528, Testing net (#0)
I0412 13:41:03.978878 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:41:05.774297 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:41:08.335192 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:41:08.335243 6895 solver.cpp:397] Test net output #1: loss = 5.28563 (* 1 = 5.28563 loss)
I0412 13:41:08.418989 6895 solver.cpp:218] Iteration 6528 (0.857638 iter/s, 13.9919s/12 iters), loss = 5.26976
I0412 13:41:08.419044 6895 solver.cpp:237] Train net output #0: loss = 5.26976 (* 1 = 5.26976 loss)
I0412 13:41:08.419055 6895 sgd_solver.cpp:105] Iteration 6528, lr = 0.00274418
I0412 13:41:12.809306 6895 solver.cpp:218] Iteration 6540 (2.73343 iter/s, 4.39009s/12 iters), loss = 5.27528
I0412 13:41:12.809352 6895 solver.cpp:237] Train net output #0: loss = 5.27528 (* 1 = 5.27528 loss)
I0412 13:41:12.809361 6895 sgd_solver.cpp:105] Iteration 6540, lr = 0.00273766
I0412 13:41:17.412652 6895 solver.cpp:218] Iteration 6552 (2.60693 iter/s, 4.60312s/12 iters), loss = 5.27352
I0412 13:41:17.412706 6895 solver.cpp:237] Train net output #0: loss = 5.27352 (* 1 = 5.27352 loss)
I0412 13:41:17.412717 6895 sgd_solver.cpp:105] Iteration 6552, lr = 0.00273116
I0412 13:41:22.226444 6895 solver.cpp:218] Iteration 6564 (2.49296 iter/s, 4.81356s/12 iters), loss = 5.26062
I0412 13:41:22.226485 6895 solver.cpp:237] Train net output #0: loss = 5.26062 (* 1 = 5.26062 loss)
I0412 13:41:22.226493 6895 sgd_solver.cpp:105] Iteration 6564, lr = 0.00272468
I0412 13:41:26.489658 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:41:27.266633 6895 solver.cpp:218] Iteration 6576 (2.38098 iter/s, 5.03995s/12 iters), loss = 5.25579
I0412 13:41:27.266700 6895 solver.cpp:237] Train net output #0: loss = 5.25579 (* 1 = 5.25579 loss)
I0412 13:41:27.266714 6895 sgd_solver.cpp:105] Iteration 6576, lr = 0.00271821
I0412 13:41:32.065791 6895 solver.cpp:218] Iteration 6588 (2.50057 iter/s, 4.79891s/12 iters), loss = 5.27942
I0412 13:41:32.065992 6895 solver.cpp:237] Train net output #0: loss = 5.27942 (* 1 = 5.27942 loss)
I0412 13:41:32.066009 6895 sgd_solver.cpp:105] Iteration 6588, lr = 0.00271175
I0412 13:41:36.781731 6895 solver.cpp:218] Iteration 6600 (2.54475 iter/s, 4.71559s/12 iters), loss = 5.27305
I0412 13:41:36.781778 6895 solver.cpp:237] Train net output #0: loss = 5.27305 (* 1 = 5.27305 loss)
I0412 13:41:36.781788 6895 sgd_solver.cpp:105] Iteration 6600, lr = 0.00270532
I0412 13:41:41.554836 6895 solver.cpp:218] Iteration 6612 (2.51421 iter/s, 4.77287s/12 iters), loss = 5.30424
I0412 13:41:41.554894 6895 solver.cpp:237] Train net output #0: loss = 5.30424 (* 1 = 5.30424 loss)
I0412 13:41:41.554906 6895 sgd_solver.cpp:105] Iteration 6612, lr = 0.00269889
I0412 13:41:46.538542 6895 solver.cpp:218] Iteration 6624 (2.40796 iter/s, 4.98346s/12 iters), loss = 5.27384
I0412 13:41:46.538583 6895 solver.cpp:237] Train net output #0: loss = 5.27384 (* 1 = 5.27384 loss)
I0412 13:41:46.538592 6895 sgd_solver.cpp:105] Iteration 6624, lr = 0.00269248
I0412 13:41:48.435918 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6630.caffemodel
I0412 13:41:49.999883 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6630.solverstate
I0412 13:41:51.860654 6895 solver.cpp:330] Iteration 6630, Testing net (#0)
I0412 13:41:51.860683 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:41:53.694648 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:41:56.289105 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:41:56.289149 6895 solver.cpp:397] Test net output #1: loss = 5.28575 (* 1 = 5.28575 loss)
I0412 13:41:57.918473 6895 solver.cpp:218] Iteration 6636 (1.05453 iter/s, 11.3795s/12 iters), loss = 5.2755
I0412 13:41:57.918534 6895 solver.cpp:237] Train net output #0: loss = 5.2755 (* 1 = 5.2755 loss)
I0412 13:41:57.918547 6895 sgd_solver.cpp:105] Iteration 6636, lr = 0.00268609
I0412 13:42:02.629113 6895 solver.cpp:218] Iteration 6648 (2.54756 iter/s, 4.71039s/12 iters), loss = 5.27744
I0412 13:42:02.629246 6895 solver.cpp:237] Train net output #0: loss = 5.27744 (* 1 = 5.27744 loss)
I0412 13:42:02.629261 6895 sgd_solver.cpp:105] Iteration 6648, lr = 0.00267971
I0412 13:42:07.576968 6895 solver.cpp:218] Iteration 6660 (2.42545 iter/s, 4.94753s/12 iters), loss = 5.28235
I0412 13:42:07.577023 6895 solver.cpp:237] Train net output #0: loss = 5.28235 (* 1 = 5.28235 loss)
I0412 13:42:07.577035 6895 sgd_solver.cpp:105] Iteration 6660, lr = 0.00267335
I0412 13:42:12.715864 6895 solver.cpp:218] Iteration 6672 (2.33524 iter/s, 5.13865s/12 iters), loss = 5.26567
I0412 13:42:12.715906 6895 solver.cpp:237] Train net output #0: loss = 5.26567 (* 1 = 5.26567 loss)
I0412 13:42:12.715915 6895 sgd_solver.cpp:105] Iteration 6672, lr = 0.00266701
I0412 13:42:13.990293 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:42:17.533439 6895 solver.cpp:218] Iteration 6684 (2.491 iter/s, 4.81735s/12 iters), loss = 5.27392
I0412 13:42:17.533486 6895 solver.cpp:237] Train net output #0: loss = 5.27392 (* 1 = 5.27392 loss)
I0412 13:42:17.533497 6895 sgd_solver.cpp:105] Iteration 6684, lr = 0.00266067
I0412 13:42:22.343248 6895 solver.cpp:218] Iteration 6696 (2.49502 iter/s, 4.80958s/12 iters), loss = 5.26904
I0412 13:42:22.343299 6895 solver.cpp:237] Train net output #0: loss = 5.26904 (* 1 = 5.26904 loss)
I0412 13:42:22.343310 6895 sgd_solver.cpp:105] Iteration 6696, lr = 0.00265436
I0412 13:42:26.995040 6895 solver.cpp:218] Iteration 6708 (2.57978 iter/s, 4.65156s/12 iters), loss = 5.27427
I0412 13:42:26.995096 6895 solver.cpp:237] Train net output #0: loss = 5.27427 (* 1 = 5.27427 loss)
I0412 13:42:26.995110 6895 sgd_solver.cpp:105] Iteration 6708, lr = 0.00264805
I0412 13:42:31.706368 6895 solver.cpp:218] Iteration 6720 (2.54718 iter/s, 4.7111s/12 iters), loss = 5.27207
I0412 13:42:31.706411 6895 solver.cpp:237] Train net output #0: loss = 5.27207 (* 1 = 5.27207 loss)
I0412 13:42:31.706420 6895 sgd_solver.cpp:105] Iteration 6720, lr = 0.00264177
I0412 13:42:36.309515 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6732.caffemodel
I0412 13:42:39.940249 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6732.solverstate
I0412 13:42:43.281832 6895 solver.cpp:330] Iteration 6732, Testing net (#0)
I0412 13:42:43.281862 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:42:45.080494 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:42:47.720335 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:42:47.720364 6895 solver.cpp:397] Test net output #1: loss = 5.28555 (* 1 = 5.28555 loss)
I0412 13:42:47.801769 6895 solver.cpp:218] Iteration 6732 (0.745584 iter/s, 16.0948s/12 iters), loss = 5.26823
I0412 13:42:47.801810 6895 solver.cpp:237] Train net output #0: loss = 5.26823 (* 1 = 5.26823 loss)
I0412 13:42:47.801820 6895 sgd_solver.cpp:105] Iteration 6732, lr = 0.0026355
I0412 13:42:51.859930 6895 solver.cpp:218] Iteration 6744 (2.95715 iter/s, 4.05796s/12 iters), loss = 5.26029
I0412 13:42:51.859992 6895 solver.cpp:237] Train net output #0: loss = 5.26029 (* 1 = 5.26029 loss)
I0412 13:42:51.860006 6895 sgd_solver.cpp:105] Iteration 6744, lr = 0.00262924
I0412 13:42:56.664258 6895 solver.cpp:218] Iteration 6756 (2.49788 iter/s, 4.80407s/12 iters), loss = 5.29343
I0412 13:42:56.664330 6895 solver.cpp:237] Train net output #0: loss = 5.29343 (* 1 = 5.29343 loss)
I0412 13:42:56.664348 6895 sgd_solver.cpp:105] Iteration 6756, lr = 0.002623
I0412 13:43:01.420029 6895 solver.cpp:218] Iteration 6768 (2.52338 iter/s, 4.75552s/12 iters), loss = 5.27273
I0412 13:43:01.420080 6895 solver.cpp:237] Train net output #0: loss = 5.27273 (* 1 = 5.27273 loss)
I0412 13:43:01.420090 6895 sgd_solver.cpp:105] Iteration 6768, lr = 0.00261677
I0412 13:43:04.823473 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:43:06.310125 6895 solver.cpp:218] Iteration 6780 (2.45406 iter/s, 4.88986s/12 iters), loss = 5.27718
I0412 13:43:06.310235 6895 solver.cpp:237] Train net output #0: loss = 5.27718 (* 1 = 5.27718 loss)
I0412 13:43:06.310246 6895 sgd_solver.cpp:105] Iteration 6780, lr = 0.00261056
I0412 13:43:11.184474 6895 solver.cpp:218] Iteration 6792 (2.46202 iter/s, 4.87405s/12 iters), loss = 5.26161
I0412 13:43:11.184526 6895 solver.cpp:237] Train net output #0: loss = 5.26161 (* 1 = 5.26161 loss)
I0412 13:43:11.184538 6895 sgd_solver.cpp:105] Iteration 6792, lr = 0.00260436
I0412 13:43:15.996765 6895 solver.cpp:218] Iteration 6804 (2.49374 iter/s, 4.81205s/12 iters), loss = 5.26957
I0412 13:43:15.996819 6895 solver.cpp:237] Train net output #0: loss = 5.26957 (* 1 = 5.26957 loss)
I0412 13:43:15.996831 6895 sgd_solver.cpp:105] Iteration 6804, lr = 0.00259817
I0412 13:43:20.616869 6895 solver.cpp:218] Iteration 6816 (2.59748 iter/s, 4.61987s/12 iters), loss = 5.28215
I0412 13:43:20.616925 6895 solver.cpp:237] Train net output #0: loss = 5.28215 (* 1 = 5.28215 loss)
I0412 13:43:20.616940 6895 sgd_solver.cpp:105] Iteration 6816, lr = 0.00259201
I0412 13:43:25.517310 6895 solver.cpp:218] Iteration 6828 (2.44888 iter/s, 4.9002s/12 iters), loss = 5.26794
I0412 13:43:25.517362 6895 solver.cpp:237] Train net output #0: loss = 5.26794 (* 1 = 5.26794 loss)
I0412 13:43:25.517374 6895 sgd_solver.cpp:105] Iteration 6828, lr = 0.00258585
I0412 13:43:27.463867 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6834.caffemodel
I0412 13:43:30.380203 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6834.solverstate
I0412 13:43:33.506369 6895 solver.cpp:330] Iteration 6834, Testing net (#0)
I0412 13:43:33.506386 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:43:35.157727 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:43:38.002612 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:43:38.002787 6895 solver.cpp:397] Test net output #1: loss = 5.28628 (* 1 = 5.28628 loss)
I0412 13:43:40.008605 6895 solver.cpp:218] Iteration 6840 (0.828117 iter/s, 14.4907s/12 iters), loss = 5.27755
I0412 13:43:40.008656 6895 solver.cpp:237] Train net output #0: loss = 5.27755 (* 1 = 5.27755 loss)
I0412 13:43:40.008666 6895 sgd_solver.cpp:105] Iteration 6840, lr = 0.00257971
I0412 13:43:45.035717 6895 solver.cpp:218] Iteration 6852 (2.38717 iter/s, 5.02687s/12 iters), loss = 5.27518
I0412 13:43:45.035771 6895 solver.cpp:237] Train net output #0: loss = 5.27518 (* 1 = 5.27518 loss)
I0412 13:43:45.035784 6895 sgd_solver.cpp:105] Iteration 6852, lr = 0.00257359
I0412 13:43:49.680347 6895 solver.cpp:218] Iteration 6864 (2.58376 iter/s, 4.64439s/12 iters), loss = 5.2752
I0412 13:43:49.680404 6895 solver.cpp:237] Train net output #0: loss = 5.2752 (* 1 = 5.2752 loss)
I0412 13:43:49.680415 6895 sgd_solver.cpp:105] Iteration 6864, lr = 0.00256748
I0412 13:43:54.547785 6895 solver.cpp:218] Iteration 6876 (2.46548 iter/s, 4.8672s/12 iters), loss = 5.28706
I0412 13:43:54.547824 6895 solver.cpp:237] Train net output #0: loss = 5.28706 (* 1 = 5.28706 loss)
I0412 13:43:54.547834 6895 sgd_solver.cpp:105] Iteration 6876, lr = 0.00256138
I0412 13:43:55.132810 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:43:59.364207 6895 solver.cpp:218] Iteration 6888 (2.49159 iter/s, 4.81619s/12 iters), loss = 5.28294
I0412 13:43:59.364259 6895 solver.cpp:237] Train net output #0: loss = 5.28294 (* 1 = 5.28294 loss)
I0412 13:43:59.364271 6895 sgd_solver.cpp:105] Iteration 6888, lr = 0.0025553
I0412 13:44:04.263530 6895 solver.cpp:218] Iteration 6900 (2.44944 iter/s, 4.89908s/12 iters), loss = 5.2698
I0412 13:44:04.263583 6895 solver.cpp:237] Train net output #0: loss = 5.2698 (* 1 = 5.2698 loss)
I0412 13:44:04.263599 6895 sgd_solver.cpp:105] Iteration 6900, lr = 0.00254923
I0412 13:44:09.116158 6895 solver.cpp:218] Iteration 6912 (2.47301 iter/s, 4.85239s/12 iters), loss = 5.28973
I0412 13:44:09.116271 6895 solver.cpp:237] Train net output #0: loss = 5.28973 (* 1 = 5.28973 loss)
I0412 13:44:09.116284 6895 sgd_solver.cpp:105] Iteration 6912, lr = 0.00254318
I0412 13:44:13.977562 6895 solver.cpp:218] Iteration 6924 (2.46857 iter/s, 4.86111s/12 iters), loss = 5.28445
I0412 13:44:13.977617 6895 solver.cpp:237] Train net output #0: loss = 5.28445 (* 1 = 5.28445 loss)
I0412 13:44:13.977629 6895 sgd_solver.cpp:105] Iteration 6924, lr = 0.00253714
I0412 13:44:18.693773 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6936.caffemodel
I0412 13:44:21.970728 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6936.solverstate
I0412 13:44:24.203423 6895 solver.cpp:330] Iteration 6936, Testing net (#0)
I0412 13:44:24.203450 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:44:24.806660 6895 blocking_queue.cpp:49] Waiting for data
I0412 13:44:26.115306 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:44:28.866317 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:44:28.866364 6895 solver.cpp:397] Test net output #1: loss = 5.28602 (* 1 = 5.28602 loss)
I0412 13:44:28.949666 6895 solver.cpp:218] Iteration 6936 (0.801523 iter/s, 14.9715s/12 iters), loss = 5.28441
I0412 13:44:28.949710 6895 solver.cpp:237] Train net output #0: loss = 5.28441 (* 1 = 5.28441 loss)
I0412 13:44:28.949721 6895 sgd_solver.cpp:105] Iteration 6936, lr = 0.00253112
I0412 13:44:32.958045 6895 solver.cpp:218] Iteration 6948 (2.99388 iter/s, 4.00818s/12 iters), loss = 5.27363
I0412 13:44:32.958096 6895 solver.cpp:237] Train net output #0: loss = 5.27363 (* 1 = 5.27363 loss)
I0412 13:44:32.958108 6895 sgd_solver.cpp:105] Iteration 6948, lr = 0.00252511
I0412 13:44:37.808761 6895 solver.cpp:218] Iteration 6960 (2.47398 iter/s, 4.85047s/12 iters), loss = 5.26304
I0412 13:44:37.808828 6895 solver.cpp:237] Train net output #0: loss = 5.26304 (* 1 = 5.26304 loss)
I0412 13:44:37.808843 6895 sgd_solver.cpp:105] Iteration 6960, lr = 0.00251911
I0412 13:44:42.692117 6895 solver.cpp:218] Iteration 6972 (2.45746 iter/s, 4.8831s/12 iters), loss = 5.26772
I0412 13:44:42.692260 6895 solver.cpp:237] Train net output #0: loss = 5.26772 (* 1 = 5.26772 loss)
I0412 13:44:42.692274 6895 sgd_solver.cpp:105] Iteration 6972, lr = 0.00251313
I0412 13:44:45.395277 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:44:47.572077 6895 solver.cpp:218] Iteration 6984 (2.4592 iter/s, 4.87964s/12 iters), loss = 5.27758
I0412 13:44:47.572126 6895 solver.cpp:237] Train net output #0: loss = 5.27758 (* 1 = 5.27758 loss)
I0412 13:44:47.572137 6895 sgd_solver.cpp:105] Iteration 6984, lr = 0.00250717
I0412 13:44:52.570802 6895 solver.cpp:218] Iteration 6996 (2.40073 iter/s, 4.99849s/12 iters), loss = 5.25957
I0412 13:44:52.570852 6895 solver.cpp:237] Train net output #0: loss = 5.25957 (* 1 = 5.25957 loss)
I0412 13:44:52.570864 6895 sgd_solver.cpp:105] Iteration 6996, lr = 0.00250121
I0412 13:44:57.547106 6895 solver.cpp:218] Iteration 7008 (2.41155 iter/s, 4.97606s/12 iters), loss = 5.25857
I0412 13:44:57.547153 6895 solver.cpp:237] Train net output #0: loss = 5.25857 (* 1 = 5.25857 loss)
I0412 13:44:57.547163 6895 sgd_solver.cpp:105] Iteration 7008, lr = 0.00249528
I0412 13:45:02.396675 6895 solver.cpp:218] Iteration 7020 (2.47457 iter/s, 4.84933s/12 iters), loss = 5.26369
I0412 13:45:02.396721 6895 solver.cpp:237] Train net output #0: loss = 5.26369 (* 1 = 5.26369 loss)
I0412 13:45:02.396731 6895 sgd_solver.cpp:105] Iteration 7020, lr = 0.00248935
I0412 13:45:07.197185 6895 solver.cpp:218] Iteration 7032 (2.49986 iter/s, 4.80027s/12 iters), loss = 5.30196
I0412 13:45:07.197242 6895 solver.cpp:237] Train net output #0: loss = 5.30196 (* 1 = 5.30196 loss)
I0412 13:45:07.197254 6895 sgd_solver.cpp:105] Iteration 7032, lr = 0.00248344
I0412 13:45:09.187597 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7038.caffemodel
I0412 13:45:11.801023 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7038.solverstate
I0412 13:45:16.303122 6895 solver.cpp:330] Iteration 7038, Testing net (#0)
I0412 13:45:16.303182 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:45:18.124492 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:45:21.245050 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:45:21.245081 6895 solver.cpp:397] Test net output #1: loss = 5.28583 (* 1 = 5.28583 loss)
I0412 13:45:23.066139 6895 solver.cpp:218] Iteration 7044 (0.756224 iter/s, 15.8683s/12 iters), loss = 5.27244
I0412 13:45:23.066195 6895 solver.cpp:237] Train net output #0: loss = 5.27244 (* 1 = 5.27244 loss)
I0412 13:45:23.066207 6895 sgd_solver.cpp:105] Iteration 7044, lr = 0.00247755
I0412 13:45:28.039779 6895 solver.cpp:218] Iteration 7056 (2.41284 iter/s, 4.97339s/12 iters), loss = 5.27173
I0412 13:45:28.039827 6895 solver.cpp:237] Train net output #0: loss = 5.27173 (* 1 = 5.27173 loss)
I0412 13:45:28.039839 6895 sgd_solver.cpp:105] Iteration 7056, lr = 0.00247166
I0412 13:45:32.890240 6895 solver.cpp:218] Iteration 7068 (2.47411 iter/s, 4.85022s/12 iters), loss = 5.26719
I0412 13:45:32.890292 6895 solver.cpp:237] Train net output #0: loss = 5.26719 (* 1 = 5.26719 loss)
I0412 13:45:32.890303 6895 sgd_solver.cpp:105] Iteration 7068, lr = 0.0024658
I0412 13:45:37.773720 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:45:37.886708 6895 solver.cpp:218] Iteration 7080 (2.40182 iter/s, 4.99621s/12 iters), loss = 5.24708
I0412 13:45:37.886772 6895 solver.cpp:237] Train net output #0: loss = 5.24708 (* 1 = 5.24708 loss)
I0412 13:45:37.886786 6895 sgd_solver.cpp:105] Iteration 7080, lr = 0.00245994
I0412 13:45:42.794708 6895 solver.cpp:218] Iteration 7092 (2.44511 iter/s, 4.90775s/12 iters), loss = 5.2718
I0412 13:45:42.794765 6895 solver.cpp:237] Train net output #0: loss = 5.2718 (* 1 = 5.2718 loss)
I0412 13:45:42.794777 6895 sgd_solver.cpp:105] Iteration 7092, lr = 0.0024541
I0412 13:45:47.575938 6895 solver.cpp:218] Iteration 7104 (2.50994 iter/s, 4.78099s/12 iters), loss = 5.29432
I0412 13:45:47.576054 6895 solver.cpp:237] Train net output #0: loss = 5.29432 (* 1 = 5.29432 loss)
I0412 13:45:47.576067 6895 sgd_solver.cpp:105] Iteration 7104, lr = 0.00244827
I0412 13:45:52.397755 6895 solver.cpp:218] Iteration 7116 (2.48885 iter/s, 4.82151s/12 iters), loss = 5.2757
I0412 13:45:52.397809 6895 solver.cpp:237] Train net output #0: loss = 5.2757 (* 1 = 5.2757 loss)
I0412 13:45:52.397819 6895 sgd_solver.cpp:105] Iteration 7116, lr = 0.00244246
I0412 13:45:57.266101 6895 solver.cpp:218] Iteration 7128 (2.46503 iter/s, 4.8681s/12 iters), loss = 5.2744
I0412 13:45:57.266160 6895 solver.cpp:237] Train net output #0: loss = 5.2744 (* 1 = 5.2744 loss)
I0412 13:45:57.266173 6895 sgd_solver.cpp:105] Iteration 7128, lr = 0.00243666
I0412 13:46:01.742245 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7140.caffemodel
I0412 13:46:03.394018 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7140.solverstate
I0412 13:46:04.577915 6895 solver.cpp:330] Iteration 7140, Testing net (#0)
I0412 13:46:04.577945 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:46:06.220700 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:46:09.034777 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:46:09.034824 6895 solver.cpp:397] Test net output #1: loss = 5.28601 (* 1 = 5.28601 loss)
I0412 13:46:09.118556 6895 solver.cpp:218] Iteration 7140 (1.01249 iter/s, 11.852s/12 iters), loss = 5.26295
I0412 13:46:09.118607 6895 solver.cpp:237] Train net output #0: loss = 5.26295 (* 1 = 5.26295 loss)
I0412 13:46:09.118618 6895 sgd_solver.cpp:105] Iteration 7140, lr = 0.00243088
I0412 13:46:13.317937 6895 solver.cpp:218] Iteration 7152 (2.85771 iter/s, 4.19916s/12 iters), loss = 5.24562
I0412 13:46:13.318008 6895 solver.cpp:237] Train net output #0: loss = 5.24562 (* 1 = 5.24562 loss)
I0412 13:46:13.318020 6895 sgd_solver.cpp:105] Iteration 7152, lr = 0.00242511
I0412 13:46:18.558890 6895 solver.cpp:218] Iteration 7164 (2.28978 iter/s, 5.24068s/12 iters), loss = 5.27473
I0412 13:46:18.558982 6895 solver.cpp:237] Train net output #0: loss = 5.27473 (* 1 = 5.27473 loss)
I0412 13:46:18.558992 6895 sgd_solver.cpp:105] Iteration 7164, lr = 0.00241935
I0412 13:46:23.470068 6895 solver.cpp:218] Iteration 7176 (2.44355 iter/s, 4.9109s/12 iters), loss = 5.25762
I0412 13:46:23.470122 6895 solver.cpp:237] Train net output #0: loss = 5.25762 (* 1 = 5.25762 loss)
I0412 13:46:23.470135 6895 sgd_solver.cpp:105] Iteration 7176, lr = 0.0024136
I0412 13:46:25.416138 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:46:28.219134 6895 solver.cpp:218] Iteration 7188 (2.52694 iter/s, 4.74883s/12 iters), loss = 5.27708
I0412 13:46:28.219195 6895 solver.cpp:237] Train net output #0: loss = 5.27708 (* 1 = 5.27708 loss)
I0412 13:46:28.219210 6895 sgd_solver.cpp:105] Iteration 7188, lr = 0.00240787
I0412 13:46:32.974514 6895 solver.cpp:218] Iteration 7200 (2.52359 iter/s, 4.75514s/12 iters), loss = 5.26986
I0412 13:46:32.974560 6895 solver.cpp:237] Train net output #0: loss = 5.26986 (* 1 = 5.26986 loss)
I0412 13:46:32.974570 6895 sgd_solver.cpp:105] Iteration 7200, lr = 0.00240216
I0412 13:46:37.668282 6895 solver.cpp:218] Iteration 7212 (2.55671 iter/s, 4.69354s/12 iters), loss = 5.28129
I0412 13:46:37.668339 6895 solver.cpp:237] Train net output #0: loss = 5.28129 (* 1 = 5.28129 loss)
I0412 13:46:37.668351 6895 sgd_solver.cpp:105] Iteration 7212, lr = 0.00239645
I0412 13:46:42.574501 6895 solver.cpp:218] Iteration 7224 (2.446 iter/s, 4.90596s/12 iters), loss = 5.26338
I0412 13:46:42.574555 6895 solver.cpp:237] Train net output #0: loss = 5.26338 (* 1 = 5.26338 loss)
I0412 13:46:42.574568 6895 sgd_solver.cpp:105] Iteration 7224, lr = 0.00239076
I0412 13:46:47.579756 6895 solver.cpp:218] Iteration 7236 (2.3976 iter/s, 5.00501s/12 iters), loss = 5.27396
I0412 13:46:47.579823 6895 solver.cpp:237] Train net output #0: loss = 5.27396 (* 1 = 5.27396 loss)
I0412 13:46:47.579838 6895 sgd_solver.cpp:105] Iteration 7236, lr = 0.00238509
I0412 13:46:49.503324 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7242.caffemodel
I0412 13:46:51.354133 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7242.solverstate
I0412 13:46:53.141826 6895 solver.cpp:330] Iteration 7242, Testing net (#0)
I0412 13:46:53.141855 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:46:54.801981 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:46:57.677028 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:46:57.677079 6895 solver.cpp:397] Test net output #1: loss = 5.28578 (* 1 = 5.28578 loss)
I0412 13:46:59.513290 6895 solver.cpp:218] Iteration 7248 (1.00561 iter/s, 11.933s/12 iters), loss = 5.27335
I0412 13:46:59.513351 6895 solver.cpp:237] Train net output #0: loss = 5.27335 (* 1 = 5.27335 loss)
I0412 13:46:59.513366 6895 sgd_solver.cpp:105] Iteration 7248, lr = 0.00237942
I0412 13:47:04.443645 6895 solver.cpp:218] Iteration 7260 (2.43403 iter/s, 4.9301s/12 iters), loss = 5.27501
I0412 13:47:04.443693 6895 solver.cpp:237] Train net output #0: loss = 5.27501 (* 1 = 5.27501 loss)
I0412 13:47:04.443704 6895 sgd_solver.cpp:105] Iteration 7260, lr = 0.00237378
I0412 13:47:09.516691 6895 solver.cpp:218] Iteration 7272 (2.36556 iter/s, 5.0728s/12 iters), loss = 5.253
I0412 13:47:09.516736 6895 solver.cpp:237] Train net output #0: loss = 5.253 (* 1 = 5.253 loss)
I0412 13:47:09.516743 6895 sgd_solver.cpp:105] Iteration 7272, lr = 0.00236814
I0412 13:47:13.579887 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:47:14.375769 6895 solver.cpp:218] Iteration 7284 (2.46972 iter/s, 4.85884s/12 iters), loss = 5.25803
I0412 13:47:14.375815 6895 solver.cpp:237] Train net output #0: loss = 5.25803 (* 1 = 5.25803 loss)
I0412 13:47:14.375825 6895 sgd_solver.cpp:105] Iteration 7284, lr = 0.00236252
I0412 13:47:19.226809 6895 solver.cpp:218] Iteration 7296 (2.47382 iter/s, 4.85081s/12 iters), loss = 5.28207
I0412 13:47:19.226864 6895 solver.cpp:237] Train net output #0: loss = 5.28207 (* 1 = 5.28207 loss)
I0412 13:47:19.226876 6895 sgd_solver.cpp:105] Iteration 7296, lr = 0.00235691
I0412 13:47:23.940492 6895 solver.cpp:218] Iteration 7308 (2.54591 iter/s, 4.71344s/12 iters), loss = 5.28026
I0412 13:47:23.940623 6895 solver.cpp:237] Train net output #0: loss = 5.28026 (* 1 = 5.28026 loss)
I0412 13:47:23.940635 6895 sgd_solver.cpp:105] Iteration 7308, lr = 0.00235131
I0412 13:47:28.823060 6895 solver.cpp:218] Iteration 7320 (2.45788 iter/s, 4.88225s/12 iters), loss = 5.29223
I0412 13:47:28.823108 6895 solver.cpp:237] Train net output #0: loss = 5.29223 (* 1 = 5.29223 loss)
I0412 13:47:28.823117 6895 sgd_solver.cpp:105] Iteration 7320, lr = 0.00234573
I0412 13:47:33.720101 6895 solver.cpp:218] Iteration 7332 (2.45058 iter/s, 4.8968s/12 iters), loss = 5.26847
I0412 13:47:33.720160 6895 solver.cpp:237] Train net output #0: loss = 5.26847 (* 1 = 5.26847 loss)
I0412 13:47:33.720175 6895 sgd_solver.cpp:105] Iteration 7332, lr = 0.00234016
I0412 13:47:38.076009 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7344.caffemodel
I0412 13:47:42.023764 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7344.solverstate
I0412 13:47:47.565821 6895 solver.cpp:330] Iteration 7344, Testing net (#0)
I0412 13:47:47.565852 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:47:49.143286 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:47:52.304919 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:47:52.304958 6895 solver.cpp:397] Test net output #1: loss = 5.28667 (* 1 = 5.28667 loss)
I0412 13:47:52.388525 6895 solver.cpp:218] Iteration 7344 (0.642822 iter/s, 18.6677s/12 iters), loss = 5.28007
I0412 13:47:52.388583 6895 solver.cpp:237] Train net output #0: loss = 5.28007 (* 1 = 5.28007 loss)
I0412 13:47:52.388597 6895 sgd_solver.cpp:105] Iteration 7344, lr = 0.0023346
I0412 13:47:56.689085 6895 solver.cpp:218] Iteration 7356 (2.79048 iter/s, 4.30033s/12 iters), loss = 5.27919
I0412 13:47:56.689230 6895 solver.cpp:237] Train net output #0: loss = 5.27919 (* 1 = 5.27919 loss)
I0412 13:47:56.689242 6895 sgd_solver.cpp:105] Iteration 7356, lr = 0.00232906
I0412 13:48:01.514361 6895 solver.cpp:218] Iteration 7368 (2.48708 iter/s, 4.82494s/12 iters), loss = 5.27634
I0412 13:48:01.514418 6895 solver.cpp:237] Train net output #0: loss = 5.27634 (* 1 = 5.27634 loss)
I0412 13:48:01.514430 6895 sgd_solver.cpp:105] Iteration 7368, lr = 0.00232353
I0412 13:48:06.327016 6895 solver.cpp:218] Iteration 7380 (2.49355 iter/s, 4.81241s/12 iters), loss = 5.26414
I0412 13:48:06.327064 6895 solver.cpp:237] Train net output #0: loss = 5.26414 (* 1 = 5.26414 loss)
I0412 13:48:06.327077 6895 sgd_solver.cpp:105] Iteration 7380, lr = 0.00231802
I0412 13:48:07.666481 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:48:11.122071 6895 solver.cpp:218] Iteration 7392 (2.5027 iter/s, 4.79482s/12 iters), loss = 5.27584
I0412 13:48:11.122117 6895 solver.cpp:237] Train net output #0: loss = 5.27584 (* 1 = 5.27584 loss)
I0412 13:48:11.122126 6895 sgd_solver.cpp:105] Iteration 7392, lr = 0.00231251
I0412 13:48:15.948315 6895 solver.cpp:218] Iteration 7404 (2.48653 iter/s, 4.82601s/12 iters), loss = 5.2663
I0412 13:48:15.948365 6895 solver.cpp:237] Train net output #0: loss = 5.2663 (* 1 = 5.2663 loss)
I0412 13:48:15.948376 6895 sgd_solver.cpp:105] Iteration 7404, lr = 0.00230702
I0412 13:48:20.835816 6895 solver.cpp:218] Iteration 7416 (2.45536 iter/s, 4.88726s/12 iters), loss = 5.26561
I0412 13:48:20.835861 6895 solver.cpp:237] Train net output #0: loss = 5.26561 (* 1 = 5.26561 loss)
I0412 13:48:20.835870 6895 sgd_solver.cpp:105] Iteration 7416, lr = 0.00230154
I0412 13:48:25.656749 6895 solver.cpp:218] Iteration 7428 (2.48926 iter/s, 4.8207s/12 iters), loss = 5.27881
I0412 13:48:25.656788 6895 solver.cpp:237] Train net output #0: loss = 5.27881 (* 1 = 5.27881 loss)
I0412 13:48:25.656798 6895 sgd_solver.cpp:105] Iteration 7428, lr = 0.00229608
I0412 13:48:30.519243 6895 solver.cpp:218] Iteration 7440 (2.46799 iter/s, 4.86227s/12 iters), loss = 5.25924
I0412 13:48:30.520064 6895 solver.cpp:237] Train net output #0: loss = 5.25924 (* 1 = 5.25924 loss)
I0412 13:48:30.520076 6895 sgd_solver.cpp:105] Iteration 7440, lr = 0.00229063
I0412 13:48:32.468983 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7446.caffemodel
I0412 13:48:34.702786 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7446.solverstate
I0412 13:48:36.798013 6895 solver.cpp:330] Iteration 7446, Testing net (#0)
I0412 13:48:36.798041 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:48:38.348562 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:48:41.346982 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:48:41.347031 6895 solver.cpp:397] Test net output #1: loss = 5.28593 (* 1 = 5.28593 loss)
I0412 13:48:43.228009 6895 solver.cpp:218] Iteration 7452 (0.944326 iter/s, 12.7075s/12 iters), loss = 5.26598
I0412 13:48:43.228063 6895 solver.cpp:237] Train net output #0: loss = 5.26598 (* 1 = 5.26598 loss)
I0412 13:48:43.228076 6895 sgd_solver.cpp:105] Iteration 7452, lr = 0.00228519
I0412 13:48:48.183297 6895 solver.cpp:218] Iteration 7464 (2.42178 iter/s, 4.95504s/12 iters), loss = 5.28774
I0412 13:48:48.183341 6895 solver.cpp:237] Train net output #0: loss = 5.28774 (* 1 = 5.28774 loss)
I0412 13:48:48.183351 6895 sgd_solver.cpp:105] Iteration 7464, lr = 0.00227976
I0412 13:48:52.994237 6895 solver.cpp:218] Iteration 7476 (2.49443 iter/s, 4.81071s/12 iters), loss = 5.27543
I0412 13:48:52.994282 6895 solver.cpp:237] Train net output #0: loss = 5.27543 (* 1 = 5.27543 loss)
I0412 13:48:52.994289 6895 sgd_solver.cpp:105] Iteration 7476, lr = 0.00227435
I0412 13:48:56.296856 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:48:57.760563 6895 solver.cpp:218] Iteration 7488 (2.51778 iter/s, 4.7661s/12 iters), loss = 5.2688
I0412 13:48:57.760613 6895 solver.cpp:237] Train net output #0: loss = 5.2688 (* 1 = 5.2688 loss)
I0412 13:48:57.760627 6895 sgd_solver.cpp:105] Iteration 7488, lr = 0.00226895
I0412 13:49:02.460621 6895 solver.cpp:218] Iteration 7500 (2.55329 iter/s, 4.69983s/12 iters), loss = 5.26266
I0412 13:49:02.460778 6895 solver.cpp:237] Train net output #0: loss = 5.26266 (* 1 = 5.26266 loss)
I0412 13:49:02.460793 6895 sgd_solver.cpp:105] Iteration 7500, lr = 0.00226357
I0412 13:49:07.582257 6895 solver.cpp:218] Iteration 7512 (2.34316 iter/s, 5.12129s/12 iters), loss = 5.26313
I0412 13:49:07.582307 6895 solver.cpp:237] Train net output #0: loss = 5.26313 (* 1 = 5.26313 loss)
I0412 13:49:07.582319 6895 sgd_solver.cpp:105] Iteration 7512, lr = 0.00225819
I0412 13:49:12.456634 6895 solver.cpp:218] Iteration 7524 (2.46197 iter/s, 4.87414s/12 iters), loss = 5.26963
I0412 13:49:12.456687 6895 solver.cpp:237] Train net output #0: loss = 5.26963 (* 1 = 5.26963 loss)
I0412 13:49:12.456699 6895 sgd_solver.cpp:105] Iteration 7524, lr = 0.00225283
I0412 13:49:17.575781 6895 solver.cpp:218] Iteration 7536 (2.34425 iter/s, 5.1189s/12 iters), loss = 5.26416
I0412 13:49:17.575826 6895 solver.cpp:237] Train net output #0: loss = 5.26416 (* 1 = 5.26416 loss)
I0412 13:49:17.575836 6895 sgd_solver.cpp:105] Iteration 7536, lr = 0.00224748
I0412 13:49:22.155987 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7548.caffemodel
I0412 13:49:24.116559 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7548.solverstate
I0412 13:49:25.323973 6895 solver.cpp:330] Iteration 7548, Testing net (#0)
I0412 13:49:25.323999 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:49:26.869134 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:49:29.874447 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:49:29.874486 6895 solver.cpp:397] Test net output #1: loss = 5.28607 (* 1 = 5.28607 loss)
I0412 13:49:29.957892 6895 solver.cpp:218] Iteration 7548 (0.96918 iter/s, 12.3816s/12 iters), loss = 5.27968
I0412 13:49:29.957949 6895 solver.cpp:237] Train net output #0: loss = 5.27968 (* 1 = 5.27968 loss)
I0412 13:49:29.957984 6895 sgd_solver.cpp:105] Iteration 7548, lr = 0.00224215
I0412 13:49:34.491776 6895 solver.cpp:218] Iteration 7560 (2.64687 iter/s, 4.53365s/12 iters), loss = 5.269
I0412 13:49:34.491869 6895 solver.cpp:237] Train net output #0: loss = 5.269 (* 1 = 5.269 loss)
I0412 13:49:34.491879 6895 sgd_solver.cpp:105] Iteration 7560, lr = 0.00223682
I0412 13:49:39.607399 6895 solver.cpp:218] Iteration 7572 (2.34589 iter/s, 5.11533s/12 iters), loss = 5.28169
I0412 13:49:39.607462 6895 solver.cpp:237] Train net output #0: loss = 5.28169 (* 1 = 5.28169 loss)
I0412 13:49:39.607477 6895 sgd_solver.cpp:105] Iteration 7572, lr = 0.00223151
I0412 13:49:44.334208 6895 solver.cpp:218] Iteration 7584 (2.53884 iter/s, 4.72656s/12 iters), loss = 5.2913
I0412 13:49:44.334259 6895 solver.cpp:237] Train net output #0: loss = 5.2913 (* 1 = 5.2913 loss)
I0412 13:49:44.334270 6895 sgd_solver.cpp:105] Iteration 7584, lr = 0.00222621
I0412 13:49:44.986033 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:49:49.369832 6895 solver.cpp:218] Iteration 7596 (2.38314 iter/s, 5.03538s/12 iters), loss = 5.2791
I0412 13:49:49.369879 6895 solver.cpp:237] Train net output #0: loss = 5.2791 (* 1 = 5.2791 loss)
I0412 13:49:49.369887 6895 sgd_solver.cpp:105] Iteration 7596, lr = 0.00222093
I0412 13:49:54.390898 6895 solver.cpp:218] Iteration 7608 (2.39005 iter/s, 5.02082s/12 iters), loss = 5.2647
I0412 13:49:54.390955 6895 solver.cpp:237] Train net output #0: loss = 5.2647 (* 1 = 5.2647 loss)
I0412 13:49:54.390966 6895 sgd_solver.cpp:105] Iteration 7608, lr = 0.00221565
I0412 13:49:59.158041 6895 solver.cpp:218] Iteration 7620 (2.51736 iter/s, 4.7669s/12 iters), loss = 5.28114
I0412 13:49:59.158097 6895 solver.cpp:237] Train net output #0: loss = 5.28114 (* 1 = 5.28114 loss)
I0412 13:49:59.158110 6895 sgd_solver.cpp:105] Iteration 7620, lr = 0.00221039
I0412 13:50:01.039858 6895 blocking_queue.cpp:49] Waiting for data
I0412 13:50:03.881630 6895 solver.cpp:218] Iteration 7632 (2.54057 iter/s, 4.72336s/12 iters), loss = 5.28041
I0412 13:50:03.881671 6895 solver.cpp:237] Train net output #0: loss = 5.28041 (* 1 = 5.28041 loss)
I0412 13:50:03.881680 6895 sgd_solver.cpp:105] Iteration 7632, lr = 0.00220515
I0412 13:50:08.739374 6895 solver.cpp:218] Iteration 7644 (2.4704 iter/s, 4.85751s/12 iters), loss = 5.28373
I0412 13:50:08.740674 6895 solver.cpp:237] Train net output #0: loss = 5.28373 (* 1 = 5.28373 loss)
I0412 13:50:08.740684 6895 sgd_solver.cpp:105] Iteration 7644, lr = 0.00219991
I0412 13:50:10.724889 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7650.caffemodel
I0412 13:50:12.690685 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7650.solverstate
I0412 13:50:13.864956 6895 solver.cpp:330] Iteration 7650, Testing net (#0)
I0412 13:50:13.864979 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:50:15.358454 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:50:18.442598 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:50:18.442642 6895 solver.cpp:397] Test net output #1: loss = 5.28616 (* 1 = 5.28616 loss)
I0412 13:50:20.242432 6895 solver.cpp:218] Iteration 7656 (1.04336 iter/s, 11.5013s/12 iters), loss = 5.26982
I0412 13:50:20.242478 6895 solver.cpp:237] Train net output #0: loss = 5.26982 (* 1 = 5.26982 loss)
I0412 13:50:20.242487 6895 sgd_solver.cpp:105] Iteration 7656, lr = 0.00219469
I0412 13:50:25.240496 6895 solver.cpp:218] Iteration 7668 (2.40104 iter/s, 4.99782s/12 iters), loss = 5.26882
I0412 13:50:25.240548 6895 solver.cpp:237] Train net output #0: loss = 5.26882 (* 1 = 5.26882 loss)
I0412 13:50:25.240561 6895 sgd_solver.cpp:105] Iteration 7668, lr = 0.00218948
I0412 13:50:30.271891 6895 solver.cpp:218] Iteration 7680 (2.38514 iter/s, 5.03115s/12 iters), loss = 5.26135
I0412 13:50:30.271935 6895 solver.cpp:237] Train net output #0: loss = 5.26135 (* 1 = 5.26135 loss)
I0412 13:50:30.271945 6895 sgd_solver.cpp:105] Iteration 7680, lr = 0.00218428
I0412 13:50:33.042707 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:50:35.083130 6895 solver.cpp:218] Iteration 7692 (2.49428 iter/s, 4.811s/12 iters), loss = 5.26901
I0412 13:50:35.083181 6895 solver.cpp:237] Train net output #0: loss = 5.26901 (* 1 = 5.26901 loss)
I0412 13:50:35.083190 6895 sgd_solver.cpp:105] Iteration 7692, lr = 0.00217909
I0412 13:50:39.969347 6895 solver.cpp:218] Iteration 7704 (2.45601 iter/s, 4.88597s/12 iters), loss = 5.25554
I0412 13:50:39.969449 6895 solver.cpp:237] Train net output #0: loss = 5.25554 (* 1 = 5.25554 loss)
I0412 13:50:39.969458 6895 sgd_solver.cpp:105] Iteration 7704, lr = 0.00217392
I0412 13:50:44.869741 6895 solver.cpp:218] Iteration 7716 (2.44893 iter/s, 4.9001s/12 iters), loss = 5.25456
I0412 13:50:44.869783 6895 solver.cpp:237] Train net output #0: loss = 5.25456 (* 1 = 5.25456 loss)
I0412 13:50:44.869791 6895 sgd_solver.cpp:105] Iteration 7716, lr = 0.00216876
I0412 13:50:49.902920 6895 solver.cpp:218] Iteration 7728 (2.3843 iter/s, 5.03293s/12 iters), loss = 5.2559
I0412 13:50:49.902974 6895 solver.cpp:237] Train net output #0: loss = 5.2559 (* 1 = 5.2559 loss)
I0412 13:50:49.902987 6895 sgd_solver.cpp:105] Iteration 7728, lr = 0.00216361
I0412 13:50:54.645223 6895 solver.cpp:218] Iteration 7740 (2.53054 iter/s, 4.74206s/12 iters), loss = 5.29742
I0412 13:50:54.645272 6895 solver.cpp:237] Train net output #0: loss = 5.29742 (* 1 = 5.29742 loss)
I0412 13:50:54.645280 6895 sgd_solver.cpp:105] Iteration 7740, lr = 0.00215847
I0412 13:50:59.173408 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7752.caffemodel
I0412 13:51:03.488209 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7752.solverstate
I0412 13:51:11.722757 6895 solver.cpp:330] Iteration 7752, Testing net (#0)
I0412 13:51:11.722909 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:51:13.137830 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:51:16.169492 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:51:16.169541 6895 solver.cpp:397] Test net output #1: loss = 5.28578 (* 1 = 5.28578 loss)
I0412 13:51:16.253087 6895 solver.cpp:218] Iteration 7752 (0.555375 iter/s, 21.607s/12 iters), loss = 5.2692
I0412 13:51:16.253135 6895 solver.cpp:237] Train net output #0: loss = 5.2692 (* 1 = 5.2692 loss)
I0412 13:51:16.253146 6895 sgd_solver.cpp:105] Iteration 7752, lr = 0.00215335
I0412 13:51:20.297562 6895 solver.cpp:218] Iteration 7764 (2.96716 iter/s, 4.04427s/12 iters), loss = 5.2748
I0412 13:51:20.297600 6895 solver.cpp:237] Train net output #0: loss = 5.2748 (* 1 = 5.2748 loss)
I0412 13:51:20.297607 6895 sgd_solver.cpp:105] Iteration 7764, lr = 0.00214823
I0412 13:51:25.069334 6895 solver.cpp:218] Iteration 7776 (2.51491 iter/s, 4.77155s/12 iters), loss = 5.27194
I0412 13:51:25.069386 6895 solver.cpp:237] Train net output #0: loss = 5.27194 (* 1 = 5.27194 loss)
I0412 13:51:25.069396 6895 sgd_solver.cpp:105] Iteration 7776, lr = 0.00214313
I0412 13:51:29.815487 6895 solver.cpp:218] Iteration 7788 (2.52849 iter/s, 4.74592s/12 iters), loss = 5.25146
I0412 13:51:29.815541 6895 solver.cpp:237] Train net output #0: loss = 5.25146 (* 1 = 5.25146 loss)
I0412 13:51:29.815551 6895 sgd_solver.cpp:105] Iteration 7788, lr = 0.00213805
I0412 13:51:29.830240 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:51:34.803009 6895 solver.cpp:218] Iteration 7800 (2.40612 iter/s, 4.98728s/12 iters), loss = 5.27061
I0412 13:51:34.803048 6895 solver.cpp:237] Train net output #0: loss = 5.27061 (* 1 = 5.27061 loss)
I0412 13:51:34.803056 6895 sgd_solver.cpp:105] Iteration 7800, lr = 0.00213297
I0412 13:51:39.543275 6895 solver.cpp:218] Iteration 7812 (2.53162 iter/s, 4.74004s/12 iters), loss = 5.29486
I0412 13:51:39.543327 6895 solver.cpp:237] Train net output #0: loss = 5.29486 (* 1 = 5.29486 loss)
I0412 13:51:39.543339 6895 sgd_solver.cpp:105] Iteration 7812, lr = 0.00212791
I0412 13:51:44.193210 6895 solver.cpp:218] Iteration 7824 (2.58081 iter/s, 4.6497s/12 iters), loss = 5.27482
I0412 13:51:44.193322 6895 solver.cpp:237] Train net output #0: loss = 5.27482 (* 1 = 5.27482 loss)
I0412 13:51:44.193334 6895 sgd_solver.cpp:105] Iteration 7824, lr = 0.00212285
I0412 13:51:49.167780 6895 solver.cpp:218] Iteration 7836 (2.41242 iter/s, 4.97426s/12 iters), loss = 5.2734
I0412 13:51:49.167819 6895 solver.cpp:237] Train net output #0: loss = 5.2734 (* 1 = 5.2734 loss)
I0412 13:51:49.167829 6895 sgd_solver.cpp:105] Iteration 7836, lr = 0.00211781
I0412 13:51:54.074474 6895 solver.cpp:218] Iteration 7848 (2.44576 iter/s, 4.90646s/12 iters), loss = 5.25774
I0412 13:51:54.074524 6895 solver.cpp:237] Train net output #0: loss = 5.25774 (* 1 = 5.25774 loss)
I0412 13:51:54.074535 6895 sgd_solver.cpp:105] Iteration 7848, lr = 0.00211279
I0412 13:51:56.049593 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7854.caffemodel
I0412 13:51:57.640872 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7854.solverstate
I0412 13:52:00.966084 6895 solver.cpp:330] Iteration 7854, Testing net (#0)
I0412 13:52:00.966114 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:52:02.348839 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:52:05.584295 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:52:05.584345 6895 solver.cpp:397] Test net output #1: loss = 5.2857 (* 1 = 5.2857 loss)
I0412 13:52:07.384863 6895 solver.cpp:218] Iteration 7860 (0.901589 iter/s, 13.3098s/12 iters), loss = 5.24252
I0412 13:52:07.384928 6895 solver.cpp:237] Train net output #0: loss = 5.24252 (* 1 = 5.24252 loss)
I0412 13:52:07.384941 6895 sgd_solver.cpp:105] Iteration 7860, lr = 0.00210777
I0412 13:52:11.890730 6895 solver.cpp:218] Iteration 7872 (2.66334 iter/s, 4.50563s/12 iters), loss = 5.26246
I0412 13:52:11.890784 6895 solver.cpp:237] Train net output #0: loss = 5.26246 (* 1 = 5.26246 loss)
I0412 13:52:11.890797 6895 sgd_solver.cpp:105] Iteration 7872, lr = 0.00210277
I0412 13:52:16.661075 6895 solver.cpp:218] Iteration 7884 (2.51567 iter/s, 4.7701s/12 iters), loss = 5.25943
I0412 13:52:16.666049 6895 solver.cpp:237] Train net output #0: loss = 5.25943 (* 1 = 5.25943 loss)
I0412 13:52:16.666066 6895 sgd_solver.cpp:105] Iteration 7884, lr = 0.00209777
I0412 13:52:18.643133 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:52:21.446820 6895 solver.cpp:218] Iteration 7896 (2.51015 iter/s, 4.78059s/12 iters), loss = 5.27795
I0412 13:52:21.446877 6895 solver.cpp:237] Train net output #0: loss = 5.27795 (* 1 = 5.27795 loss)
I0412 13:52:21.446890 6895 sgd_solver.cpp:105] Iteration 7896, lr = 0.00209279
I0412 13:52:26.455686 6895 solver.cpp:218] Iteration 7908 (2.39587 iter/s, 5.00862s/12 iters), loss = 5.26905
I0412 13:52:26.455731 6895 solver.cpp:237] Train net output #0: loss = 5.26905 (* 1 = 5.26905 loss)
I0412 13:52:26.455740 6895 sgd_solver.cpp:105] Iteration 7908, lr = 0.00208782
I0412 13:52:31.236488 6895 solver.cpp:218] Iteration 7920 (2.51017 iter/s, 4.78056s/12 iters), loss = 5.284
I0412 13:52:31.236544 6895 solver.cpp:237] Train net output #0: loss = 5.284 (* 1 = 5.284 loss)
I0412 13:52:31.236558 6895 sgd_solver.cpp:105] Iteration 7920, lr = 0.00208287
I0412 13:52:36.033643 6895 solver.cpp:218] Iteration 7932 (2.50161 iter/s, 4.79692s/12 iters), loss = 5.2661
I0412 13:52:36.033702 6895 solver.cpp:237] Train net output #0: loss = 5.2661 (* 1 = 5.2661 loss)
I0412 13:52:36.033715 6895 sgd_solver.cpp:105] Iteration 7932, lr = 0.00207792
I0412 13:52:40.822343 6895 solver.cpp:218] Iteration 7944 (2.50603 iter/s, 4.78846s/12 iters), loss = 5.26427
I0412 13:52:40.822391 6895 solver.cpp:237] Train net output #0: loss = 5.26427 (* 1 = 5.26427 loss)
I0412 13:52:40.822399 6895 sgd_solver.cpp:105] Iteration 7944, lr = 0.00207299
I0412 13:52:45.220860 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7956.caffemodel
I0412 13:52:46.711261 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7956.solverstate
I0412 13:52:47.913400 6895 solver.cpp:330] Iteration 7956, Testing net (#0)
I0412 13:52:47.913429 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:52:49.187041 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:52:52.542606 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:52:52.542644 6895 solver.cpp:397] Test net output #1: loss = 5.2863 (* 1 = 5.2863 loss)
I0412 13:52:52.625980 6895 solver.cpp:218] Iteration 7956 (1.01668 iter/s, 11.8031s/12 iters), loss = 5.2776
I0412 13:52:52.626029 6895 solver.cpp:237] Train net output #0: loss = 5.2776 (* 1 = 5.2776 loss)
I0412 13:52:52.626039 6895 sgd_solver.cpp:105] Iteration 7956, lr = 0.00206807
I0412 13:52:56.772485 6895 solver.cpp:218] Iteration 7968 (2.89415 iter/s, 4.14629s/12 iters), loss = 5.27333
I0412 13:52:56.772537 6895 solver.cpp:237] Train net output #0: loss = 5.27333 (* 1 = 5.27333 loss)
I0412 13:52:56.772549 6895 sgd_solver.cpp:105] Iteration 7968, lr = 0.00206316
I0412 13:53:01.630728 6895 solver.cpp:218] Iteration 7980 (2.47015 iter/s, 4.858s/12 iters), loss = 5.25501
I0412 13:53:01.630774 6895 solver.cpp:237] Train net output #0: loss = 5.25501 (* 1 = 5.25501 loss)
I0412 13:53:01.630785 6895 sgd_solver.cpp:105] Iteration 7980, lr = 0.00205826
I0412 13:53:05.784674 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:53:06.497023 6895 solver.cpp:218] Iteration 7992 (2.46606 iter/s, 4.86606s/12 iters), loss = 5.26038
I0412 13:53:06.497077 6895 solver.cpp:237] Train net output #0: loss = 5.26038 (* 1 = 5.26038 loss)
I0412 13:53:06.497088 6895 sgd_solver.cpp:105] Iteration 7992, lr = 0.00205337
I0412 13:53:11.517572 6895 solver.cpp:218] Iteration 8004 (2.39029 iter/s, 5.0203s/12 iters), loss = 5.27624
I0412 13:53:11.517616 6895 solver.cpp:237] Train net output #0: loss = 5.27624 (* 1 = 5.27624 loss)
I0412 13:53:11.517625 6895 sgd_solver.cpp:105] Iteration 8004, lr = 0.0020485
I0412 13:53:16.223840 6895 solver.cpp:218] Iteration 8016 (2.54992 iter/s, 4.70604s/12 iters), loss = 5.27876
I0412 13:53:16.223883 6895 solver.cpp:237] Train net output #0: loss = 5.27876 (* 1 = 5.27876 loss)
I0412 13:53:16.223892 6895 sgd_solver.cpp:105] Iteration 8016, lr = 0.00204363
I0412 13:53:21.104040 6895 solver.cpp:218] Iteration 8028 (2.45903 iter/s, 4.87996s/12 iters), loss = 5.29329
I0412 13:53:21.104163 6895 solver.cpp:237] Train net output #0: loss = 5.29329 (* 1 = 5.29329 loss)
I0412 13:53:21.104173 6895 sgd_solver.cpp:105] Iteration 8028, lr = 0.00203878
I0412 13:53:26.086529 6895 solver.cpp:218] Iteration 8040 (2.40859 iter/s, 4.98217s/12 iters), loss = 5.26177
I0412 13:53:26.086585 6895 solver.cpp:237] Train net output #0: loss = 5.26177 (* 1 = 5.26177 loss)
I0412 13:53:26.086597 6895 sgd_solver.cpp:105] Iteration 8040, lr = 0.00203394
I0412 13:53:31.231204 6895 solver.cpp:218] Iteration 8052 (2.33263 iter/s, 5.14441s/12 iters), loss = 5.28011
I0412 13:53:31.231256 6895 solver.cpp:237] Train net output #0: loss = 5.28011 (* 1 = 5.28011 loss)
I0412 13:53:31.231267 6895 sgd_solver.cpp:105] Iteration 8052, lr = 0.00202911
I0412 13:53:33.294613 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8058.caffemodel
I0412 13:53:34.873067 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8058.solverstate
I0412 13:53:36.041915 6895 solver.cpp:330] Iteration 8058, Testing net (#0)
I0412 13:53:36.041937 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:53:37.518946 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:53:40.738130 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:53:40.738178 6895 solver.cpp:397] Test net output #1: loss = 5.28633 (* 1 = 5.28633 loss)
I0412 13:53:42.346940 6895 solver.cpp:218] Iteration 8064 (1.0796 iter/s, 11.1153s/12 iters), loss = 5.28074
I0412 13:53:42.346992 6895 solver.cpp:237] Train net output #0: loss = 5.28074 (* 1 = 5.28074 loss)
I0412 13:53:42.347003 6895 sgd_solver.cpp:105] Iteration 8064, lr = 0.00202429
I0412 13:53:47.258992 6895 solver.cpp:218] Iteration 8076 (2.44309 iter/s, 4.9118s/12 iters), loss = 5.27681
I0412 13:53:47.259047 6895 solver.cpp:237] Train net output #0: loss = 5.27681 (* 1 = 5.27681 loss)
I0412 13:53:47.259060 6895 sgd_solver.cpp:105] Iteration 8076, lr = 0.00201949
I0412 13:53:52.139669 6895 solver.cpp:218] Iteration 8088 (2.4588 iter/s, 4.88043s/12 iters), loss = 5.26327
I0412 13:53:52.139763 6895 solver.cpp:237] Train net output #0: loss = 5.26327 (* 1 = 5.26327 loss)
I0412 13:53:52.139775 6895 sgd_solver.cpp:105] Iteration 8088, lr = 0.00201469
I0412 13:53:53.517424 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:53:57.009359 6895 solver.cpp:218] Iteration 8100 (2.46436 iter/s, 4.86941s/12 iters), loss = 5.2624
I0412 13:53:57.009407 6895 solver.cpp:237] Train net output #0: loss = 5.2624 (* 1 = 5.2624 loss)
I0412 13:53:57.009418 6895 sgd_solver.cpp:105] Iteration 8100, lr = 0.00200991
I0412 13:54:01.877969 6895 solver.cpp:218] Iteration 8112 (2.4649 iter/s, 4.86835s/12 iters), loss = 5.26618
I0412 13:54:01.878021 6895 solver.cpp:237] Train net output #0: loss = 5.26618 (* 1 = 5.26618 loss)
I0412 13:54:01.878031 6895 sgd_solver.cpp:105] Iteration 8112, lr = 0.00200514
I0412 13:54:06.809301 6895 solver.cpp:218] Iteration 8124 (2.43354 iter/s, 4.93109s/12 iters), loss = 5.27239
I0412 13:54:06.809355 6895 solver.cpp:237] Train net output #0: loss = 5.27239 (* 1 = 5.27239 loss)
I0412 13:54:06.809366 6895 sgd_solver.cpp:105] Iteration 8124, lr = 0.00200038
I0412 13:54:11.889226 6895 solver.cpp:218] Iteration 8136 (2.36236 iter/s, 5.07967s/12 iters), loss = 5.28654
I0412 13:54:11.889283 6895 solver.cpp:237] Train net output #0: loss = 5.28654 (* 1 = 5.28654 loss)
I0412 13:54:11.889297 6895 sgd_solver.cpp:105] Iteration 8136, lr = 0.00199563
I0412 13:54:16.829643 6895 solver.cpp:218] Iteration 8148 (2.42907 iter/s, 4.94017s/12 iters), loss = 5.2531
I0412 13:54:16.829703 6895 solver.cpp:237] Train net output #0: loss = 5.2531 (* 1 = 5.2531 loss)
I0412 13:54:16.829720 6895 sgd_solver.cpp:105] Iteration 8148, lr = 0.00199089
I0412 13:54:21.241431 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8160.caffemodel
I0412 13:54:22.832423 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8160.solverstate
I0412 13:54:24.001875 6895 solver.cpp:330] Iteration 8160, Testing net (#0)
I0412 13:54:24.001902 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:54:25.196887 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:54:28.391182 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:54:28.391238 6895 solver.cpp:397] Test net output #1: loss = 5.28607 (* 1 = 5.28607 loss)
I0412 13:54:28.474520 6895 solver.cpp:218] Iteration 8160 (1.03054 iter/s, 11.6444s/12 iters), loss = 5.26173
I0412 13:54:28.474578 6895 solver.cpp:237] Train net output #0: loss = 5.26173 (* 1 = 5.26173 loss)
I0412 13:54:28.474591 6895 sgd_solver.cpp:105] Iteration 8160, lr = 0.00198616
I0412 13:54:32.645289 6895 solver.cpp:218] Iteration 8172 (2.87732 iter/s, 4.17055s/12 iters), loss = 5.28225
I0412 13:54:32.645339 6895 solver.cpp:237] Train net output #0: loss = 5.28225 (* 1 = 5.28225 loss)
I0412 13:54:32.645349 6895 sgd_solver.cpp:105] Iteration 8172, lr = 0.00198145
I0412 13:54:37.586998 6895 solver.cpp:218] Iteration 8184 (2.42843 iter/s, 4.94146s/12 iters), loss = 5.27621
I0412 13:54:37.587052 6895 solver.cpp:237] Train net output #0: loss = 5.27621 (* 1 = 5.27621 loss)
I0412 13:54:37.587064 6895 sgd_solver.cpp:105] Iteration 8184, lr = 0.00197674
I0412 13:54:40.856401 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:54:42.195384 6895 solver.cpp:218] Iteration 8196 (2.60408 iter/s, 4.60815s/12 iters), loss = 5.27519
I0412 13:54:42.195441 6895 solver.cpp:237] Train net output #0: loss = 5.27519 (* 1 = 5.27519 loss)
I0412 13:54:42.195456 6895 sgd_solver.cpp:105] Iteration 8196, lr = 0.00197205
I0412 13:54:46.929869 6895 solver.cpp:218] Iteration 8208 (2.53472 iter/s, 4.73424s/12 iters), loss = 5.26049
I0412 13:54:46.929924 6895 solver.cpp:237] Train net output #0: loss = 5.26049 (* 1 = 5.26049 loss)
I0412 13:54:46.929936 6895 sgd_solver.cpp:105] Iteration 8208, lr = 0.00196737
I0412 13:54:51.645166 6895 solver.cpp:218] Iteration 8220 (2.54504 iter/s, 4.71506s/12 iters), loss = 5.26297
I0412 13:54:51.645211 6895 solver.cpp:237] Train net output #0: loss = 5.26297 (* 1 = 5.26297 loss)
I0412 13:54:51.645221 6895 sgd_solver.cpp:105] Iteration 8220, lr = 0.0019627
I0412 13:54:56.527123 6895 solver.cpp:218] Iteration 8232 (2.45815 iter/s, 4.88172s/12 iters), loss = 5.27041
I0412 13:54:56.527225 6895 solver.cpp:237] Train net output #0: loss = 5.27041 (* 1 = 5.27041 loss)
I0412 13:54:56.527235 6895 sgd_solver.cpp:105] Iteration 8232, lr = 0.00195804
I0412 13:55:01.407006 6895 solver.cpp:218] Iteration 8244 (2.45922 iter/s, 4.87959s/12 iters), loss = 5.25487
I0412 13:55:01.407045 6895 solver.cpp:237] Train net output #0: loss = 5.25487 (* 1 = 5.25487 loss)
I0412 13:55:01.407054 6895 sgd_solver.cpp:105] Iteration 8244, lr = 0.00195339
I0412 13:55:06.152940 6895 solver.cpp:218] Iteration 8256 (2.5286 iter/s, 4.74571s/12 iters), loss = 5.272
I0412 13:55:06.152981 6895 solver.cpp:237] Train net output #0: loss = 5.272 (* 1 = 5.272 loss)
I0412 13:55:06.152988 6895 sgd_solver.cpp:105] Iteration 8256, lr = 0.00194875
I0412 13:55:08.392889 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8262.caffemodel
I0412 13:55:10.754648 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8262.solverstate
I0412 13:55:11.930734 6895 solver.cpp:330] Iteration 8262, Testing net (#0)
I0412 13:55:11.930764 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:55:13.229131 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:55:16.451663 6895 solver.cpp:397] Test net output #0: accuracy = 0.00612745
I0412 13:55:16.451715 6895 solver.cpp:397] Test net output #1: loss = 5.28614 (* 1 = 5.28614 loss)
I0412 13:55:18.192137 6895 solver.cpp:218] Iteration 8268 (0.996785 iter/s, 12.0387s/12 iters), loss = 5.27749
I0412 13:55:18.192193 6895 solver.cpp:237] Train net output #0: loss = 5.27749 (* 1 = 5.27749 loss)
I0412 13:55:18.192204 6895 sgd_solver.cpp:105] Iteration 8268, lr = 0.00194412
I0412 13:55:23.057708 6895 solver.cpp:218] Iteration 8280 (2.46643 iter/s, 4.86533s/12 iters), loss = 5.28437
I0412 13:55:23.057767 6895 solver.cpp:237] Train net output #0: loss = 5.28437 (* 1 = 5.28437 loss)
I0412 13:55:23.057781 6895 sgd_solver.cpp:105] Iteration 8280, lr = 0.00193951
I0412 13:55:28.108237 6895 solver.cpp:218] Iteration 8292 (2.37611 iter/s, 5.05028s/12 iters), loss = 5.28943
I0412 13:55:28.108377 6895 solver.cpp:237] Train net output #0: loss = 5.28943 (* 1 = 5.28943 loss)
I0412 13:55:28.108390 6895 sgd_solver.cpp:105] Iteration 8292, lr = 0.0019349
I0412 13:55:28.759721 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:55:33.011799 6895 solver.cpp:218] Iteration 8304 (2.44737 iter/s, 4.90323s/12 iters), loss = 5.28139
I0412 13:55:33.011863 6895 solver.cpp:237] Train net output #0: loss = 5.28139 (* 1 = 5.28139 loss)
I0412 13:55:33.011875 6895 sgd_solver.cpp:105] Iteration 8304, lr = 0.00193031
I0412 13:55:35.429648 6895 blocking_queue.cpp:49] Waiting for data
I0412 13:55:37.923743 6895 solver.cpp:218] Iteration 8316 (2.44315 iter/s, 4.91169s/12 iters), loss = 5.26961
I0412 13:55:37.923789 6895 solver.cpp:237] Train net output #0: loss = 5.26961 (* 1 = 5.26961 loss)
I0412 13:55:37.923799 6895 sgd_solver.cpp:105] Iteration 8316, lr = 0.00192573
I0412 13:55:42.838413 6895 solver.cpp:218] Iteration 8328 (2.44179 iter/s, 4.91443s/12 iters), loss = 5.28417
I0412 13:55:42.838470 6895 solver.cpp:237] Train net output #0: loss = 5.28417 (* 1 = 5.28417 loss)
I0412 13:55:42.838483 6895 sgd_solver.cpp:105] Iteration 8328, lr = 0.00192115
I0412 13:55:47.743691 6895 solver.cpp:218] Iteration 8340 (2.44647 iter/s, 4.90503s/12 iters), loss = 5.27314
I0412 13:55:47.743747 6895 solver.cpp:237] Train net output #0: loss = 5.27314 (* 1 = 5.27314 loss)
I0412 13:55:47.743758 6895 sgd_solver.cpp:105] Iteration 8340, lr = 0.00191659
I0412 13:55:52.672011 6895 solver.cpp:218] Iteration 8352 (2.43503 iter/s, 4.92807s/12 iters), loss = 5.29015
I0412 13:55:52.672070 6895 solver.cpp:237] Train net output #0: loss = 5.29015 (* 1 = 5.29015 loss)
I0412 13:55:52.672083 6895 sgd_solver.cpp:105] Iteration 8352, lr = 0.00191204
I0412 13:55:57.193881 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8364.caffemodel
I0412 13:56:02.021500 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8364.solverstate
I0412 13:56:05.930052 6895 solver.cpp:330] Iteration 8364, Testing net (#0)
I0412 13:56:05.930076 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:56:07.119941 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:56:10.421284 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:56:10.421348 6895 solver.cpp:397] Test net output #1: loss = 5.28592 (* 1 = 5.28592 loss)
I0412 13:56:10.505388 6895 solver.cpp:218] Iteration 8364 (0.672923 iter/s, 17.8327s/12 iters), loss = 5.26528
I0412 13:56:10.505456 6895 solver.cpp:237] Train net output #0: loss = 5.26528 (* 1 = 5.26528 loss)
I0412 13:56:10.505471 6895 sgd_solver.cpp:105] Iteration 8364, lr = 0.0019075
I0412 13:56:14.530707 6895 solver.cpp:218] Iteration 8376 (2.98129 iter/s, 4.0251s/12 iters), loss = 5.26562
I0412 13:56:14.530746 6895 solver.cpp:237] Train net output #0: loss = 5.26562 (* 1 = 5.26562 loss)
I0412 13:56:14.530755 6895 sgd_solver.cpp:105] Iteration 8376, lr = 0.00190297
I0412 13:56:19.424808 6895 solver.cpp:218] Iteration 8388 (2.45205 iter/s, 4.89387s/12 iters), loss = 5.25957
I0412 13:56:19.424856 6895 solver.cpp:237] Train net output #0: loss = 5.25957 (* 1 = 5.25957 loss)
I0412 13:56:19.424867 6895 sgd_solver.cpp:105] Iteration 8388, lr = 0.00189846
I0412 13:56:22.235360 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:56:24.285811 6895 solver.cpp:218] Iteration 8400 (2.46875 iter/s, 4.86076s/12 iters), loss = 5.26424
I0412 13:56:24.285857 6895 solver.cpp:237] Train net output #0: loss = 5.26424 (* 1 = 5.26424 loss)
I0412 13:56:24.285866 6895 sgd_solver.cpp:105] Iteration 8400, lr = 0.00189395
I0412 13:56:29.182428 6895 solver.cpp:218] Iteration 8412 (2.45079 iter/s, 4.89638s/12 iters), loss = 5.2519
I0412 13:56:29.182478 6895 solver.cpp:237] Train net output #0: loss = 5.2519 (* 1 = 5.2519 loss)
I0412 13:56:29.182492 6895 sgd_solver.cpp:105] Iteration 8412, lr = 0.00188945
I0412 13:56:33.804435 6895 solver.cpp:218] Iteration 8424 (2.59641 iter/s, 4.62177s/12 iters), loss = 5.2571
I0412 13:56:33.804556 6895 solver.cpp:237] Train net output #0: loss = 5.2571 (* 1 = 5.2571 loss)
I0412 13:56:33.804566 6895 sgd_solver.cpp:105] Iteration 8424, lr = 0.00188497
I0412 13:56:38.511951 6895 solver.cpp:218] Iteration 8436 (2.54928 iter/s, 4.70721s/12 iters), loss = 5.25287
I0412 13:56:38.512006 6895 solver.cpp:237] Train net output #0: loss = 5.25287 (* 1 = 5.25287 loss)
I0412 13:56:38.512018 6895 sgd_solver.cpp:105] Iteration 8436, lr = 0.00188049
I0412 13:56:43.213505 6895 solver.cpp:218] Iteration 8448 (2.55248 iter/s, 4.70132s/12 iters), loss = 5.29485
I0412 13:56:43.213553 6895 solver.cpp:237] Train net output #0: loss = 5.29485 (* 1 = 5.29485 loss)
I0412 13:56:43.213564 6895 sgd_solver.cpp:105] Iteration 8448, lr = 0.00187603
I0412 13:56:47.959874 6895 solver.cpp:218] Iteration 8460 (2.52838 iter/s, 4.74613s/12 iters), loss = 5.27038
I0412 13:56:47.959931 6895 solver.cpp:237] Train net output #0: loss = 5.27038 (* 1 = 5.27038 loss)
I0412 13:56:47.959945 6895 sgd_solver.cpp:105] Iteration 8460, lr = 0.00187157
I0412 13:56:49.957319 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8466.caffemodel
I0412 13:56:51.545280 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8466.solverstate
I0412 13:56:52.866905 6895 solver.cpp:330] Iteration 8466, Testing net (#0)
I0412 13:56:52.866927 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:56:54.018832 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:56:57.647240 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:56:57.647290 6895 solver.cpp:397] Test net output #1: loss = 5.2859 (* 1 = 5.2859 loss)
I0412 13:56:59.398983 6895 solver.cpp:218] Iteration 8472 (1.04908 iter/s, 11.4386s/12 iters), loss = 5.27302
I0412 13:56:59.399034 6895 solver.cpp:237] Train net output #0: loss = 5.27302 (* 1 = 5.27302 loss)
I0412 13:56:59.399047 6895 sgd_solver.cpp:105] Iteration 8472, lr = 0.00186713
I0412 13:57:04.232232 6895 solver.cpp:218] Iteration 8484 (2.48293 iter/s, 4.83301s/12 iters), loss = 5.27292
I0412 13:57:04.232314 6895 solver.cpp:237] Train net output #0: loss = 5.27292 (* 1 = 5.27292 loss)
I0412 13:57:04.232326 6895 sgd_solver.cpp:105] Iteration 8484, lr = 0.0018627
I0412 13:57:08.794899 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:57:08.800038 6895 solver.cpp:218] Iteration 8496 (2.62723 iter/s, 4.56755s/12 iters), loss = 5.25399
I0412 13:57:08.800088 6895 solver.cpp:237] Train net output #0: loss = 5.25399 (* 1 = 5.25399 loss)
I0412 13:57:08.800101 6895 sgd_solver.cpp:105] Iteration 8496, lr = 0.00185827
I0412 13:57:13.585752 6895 solver.cpp:218] Iteration 8508 (2.50758 iter/s, 4.78548s/12 iters), loss = 5.2783
I0412 13:57:13.585796 6895 solver.cpp:237] Train net output #0: loss = 5.2783 (* 1 = 5.2783 loss)
I0412 13:57:13.585806 6895 sgd_solver.cpp:105] Iteration 8508, lr = 0.00185386
I0412 13:57:18.436664 6895 solver.cpp:218] Iteration 8520 (2.47388 iter/s, 4.85067s/12 iters), loss = 5.29403
I0412 13:57:18.436714 6895 solver.cpp:237] Train net output #0: loss = 5.29403 (* 1 = 5.29403 loss)
I0412 13:57:18.436726 6895 sgd_solver.cpp:105] Iteration 8520, lr = 0.00184946
I0412 13:57:23.328593 6895 solver.cpp:218] Iteration 8532 (2.45314 iter/s, 4.89168s/12 iters), loss = 5.27193
I0412 13:57:23.328647 6895 solver.cpp:237] Train net output #0: loss = 5.27193 (* 1 = 5.27193 loss)
I0412 13:57:23.328660 6895 sgd_solver.cpp:105] Iteration 8532, lr = 0.00184507
I0412 13:57:28.197592 6895 solver.cpp:218] Iteration 8544 (2.4647 iter/s, 4.86875s/12 iters), loss = 5.27025
I0412 13:57:28.197650 6895 solver.cpp:237] Train net output #0: loss = 5.27025 (* 1 = 5.27025 loss)
I0412 13:57:28.197661 6895 sgd_solver.cpp:105] Iteration 8544, lr = 0.00184069
I0412 13:57:33.047590 6895 solver.cpp:218] Iteration 8556 (2.47436 iter/s, 4.84975s/12 iters), loss = 5.25946
I0412 13:57:33.047648 6895 solver.cpp:237] Train net output #0: loss = 5.25946 (* 1 = 5.25946 loss)
I0412 13:57:33.047662 6895 sgd_solver.cpp:105] Iteration 8556, lr = 0.00183632
I0412 13:57:37.457422 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8568.caffemodel
I0412 13:57:39.069005 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8568.solverstate
I0412 13:57:41.246692 6895 solver.cpp:330] Iteration 8568, Testing net (#0)
I0412 13:57:41.246726 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:57:42.380555 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:57:45.982030 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:57:45.982067 6895 solver.cpp:397] Test net output #1: loss = 5.28607 (* 1 = 5.28607 loss)
I0412 13:57:46.065095 6895 solver.cpp:218] Iteration 8568 (0.921874 iter/s, 13.017s/12 iters), loss = 5.24846
I0412 13:57:46.065148 6895 solver.cpp:237] Train net output #0: loss = 5.24846 (* 1 = 5.24846 loss)
I0412 13:57:46.065160 6895 sgd_solver.cpp:105] Iteration 8568, lr = 0.00183196
I0412 13:57:50.141383 6895 solver.cpp:218] Iteration 8580 (2.94401 iter/s, 4.07607s/12 iters), loss = 5.26334
I0412 13:57:50.141439 6895 solver.cpp:237] Train net output #0: loss = 5.26334 (* 1 = 5.26334 loss)
I0412 13:57:50.141453 6895 sgd_solver.cpp:105] Iteration 8580, lr = 0.00182761
I0412 13:57:54.903246 6895 solver.cpp:218] Iteration 8592 (2.52015 iter/s, 4.76162s/12 iters), loss = 5.25269
I0412 13:57:54.903295 6895 solver.cpp:237] Train net output #0: loss = 5.25269 (* 1 = 5.25269 loss)
I0412 13:57:54.903308 6895 sgd_solver.cpp:105] Iteration 8592, lr = 0.00182327
I0412 13:57:57.052623 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:57:59.915854 6895 solver.cpp:218] Iteration 8604 (2.39408 iter/s, 5.01236s/12 iters), loss = 5.27001
I0412 13:57:59.915899 6895 solver.cpp:237] Train net output #0: loss = 5.27001 (* 1 = 5.27001 loss)
I0412 13:57:59.915907 6895 sgd_solver.cpp:105] Iteration 8604, lr = 0.00181894
I0412 13:58:04.871568 6895 solver.cpp:218] Iteration 8616 (2.42156 iter/s, 4.95548s/12 iters), loss = 5.26689
I0412 13:58:04.871620 6895 solver.cpp:237] Train net output #0: loss = 5.26689 (* 1 = 5.26689 loss)
I0412 13:58:04.871631 6895 sgd_solver.cpp:105] Iteration 8616, lr = 0.00181462
I0412 13:58:09.666465 6895 solver.cpp:218] Iteration 8628 (2.50278 iter/s, 4.79466s/12 iters), loss = 5.28315
I0412 13:58:09.666607 6895 solver.cpp:237] Train net output #0: loss = 5.28315 (* 1 = 5.28315 loss)
I0412 13:58:09.666618 6895 sgd_solver.cpp:105] Iteration 8628, lr = 0.00181031
I0412 13:58:14.614894 6895 solver.cpp:218] Iteration 8640 (2.42517 iter/s, 4.9481s/12 iters), loss = 5.26307
I0412 13:58:14.614940 6895 solver.cpp:237] Train net output #0: loss = 5.26307 (* 1 = 5.26307 loss)
I0412 13:58:14.614949 6895 sgd_solver.cpp:105] Iteration 8640, lr = 0.00180602
I0412 13:58:19.455391 6895 solver.cpp:218] Iteration 8652 (2.47921 iter/s, 4.84026s/12 iters), loss = 5.26726
I0412 13:58:19.455447 6895 solver.cpp:237] Train net output #0: loss = 5.26726 (* 1 = 5.26726 loss)
I0412 13:58:19.455462 6895 sgd_solver.cpp:105] Iteration 8652, lr = 0.00180173
I0412 13:58:24.273077 6895 solver.cpp:218] Iteration 8664 (2.49095 iter/s, 4.81745s/12 iters), loss = 5.27197
I0412 13:58:24.273116 6895 solver.cpp:237] Train net output #0: loss = 5.27197 (* 1 = 5.27197 loss)
I0412 13:58:24.273125 6895 sgd_solver.cpp:105] Iteration 8664, lr = 0.00179745
I0412 13:58:26.289510 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8670.caffemodel
I0412 13:58:27.842685 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8670.solverstate
I0412 13:58:29.027827 6895 solver.cpp:330] Iteration 8670, Testing net (#0)
I0412 13:58:29.027858 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:58:30.036929 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:58:33.492323 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:58:33.492372 6895 solver.cpp:397] Test net output #1: loss = 5.28628 (* 1 = 5.28628 loss)
I0412 13:58:35.369246 6895 solver.cpp:218] Iteration 8676 (1.0815 iter/s, 11.0957s/12 iters), loss = 5.2779
I0412 13:58:35.369292 6895 solver.cpp:237] Train net output #0: loss = 5.2779 (* 1 = 5.2779 loss)
I0412 13:58:35.369302 6895 sgd_solver.cpp:105] Iteration 8676, lr = 0.00179318
I0412 13:58:40.305694 6895 solver.cpp:218] Iteration 8688 (2.43102 iter/s, 4.9362s/12 iters), loss = 5.25972
I0412 13:58:40.305809 6895 solver.cpp:237] Train net output #0: loss = 5.25972 (* 1 = 5.25972 loss)
I0412 13:58:40.305824 6895 sgd_solver.cpp:105] Iteration 8688, lr = 0.00178893
I0412 13:58:44.401408 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:58:45.089488 6895 solver.cpp:218] Iteration 8700 (2.50863 iter/s, 4.78349s/12 iters), loss = 5.26437
I0412 13:58:45.089531 6895 solver.cpp:237] Train net output #0: loss = 5.26437 (* 1 = 5.26437 loss)
I0412 13:58:45.089540 6895 sgd_solver.cpp:105] Iteration 8700, lr = 0.00178468
I0412 13:58:49.905366 6895 solver.cpp:218] Iteration 8712 (2.49188 iter/s, 4.81564s/12 iters), loss = 5.27965
I0412 13:58:49.905421 6895 solver.cpp:237] Train net output #0: loss = 5.27965 (* 1 = 5.27965 loss)
I0412 13:58:49.905432 6895 sgd_solver.cpp:105] Iteration 8712, lr = 0.00178044
I0412 13:58:54.742022 6895 solver.cpp:218] Iteration 8724 (2.48118 iter/s, 4.8364s/12 iters), loss = 5.2812
I0412 13:58:54.742081 6895 solver.cpp:237] Train net output #0: loss = 5.2812 (* 1 = 5.2812 loss)
I0412 13:58:54.742094 6895 sgd_solver.cpp:105] Iteration 8724, lr = 0.00177621
I0412 13:58:59.729355 6895 solver.cpp:218] Iteration 8736 (2.40622 iter/s, 4.98708s/12 iters), loss = 5.296
I0412 13:58:59.729409 6895 solver.cpp:237] Train net output #0: loss = 5.296 (* 1 = 5.296 loss)
I0412 13:58:59.729423 6895 sgd_solver.cpp:105] Iteration 8736, lr = 0.001772
I0412 13:59:04.742345 6895 solver.cpp:218] Iteration 8748 (2.3939 iter/s, 5.01275s/12 iters), loss = 5.271
I0412 13:59:04.742384 6895 solver.cpp:237] Train net output #0: loss = 5.271 (* 1 = 5.271 loss)
I0412 13:59:04.742393 6895 sgd_solver.cpp:105] Iteration 8748, lr = 0.00176779
I0412 13:59:09.652722 6895 solver.cpp:218] Iteration 8760 (2.44392 iter/s, 4.91014s/12 iters), loss = 5.27809
I0412 13:59:09.652781 6895 solver.cpp:237] Train net output #0: loss = 5.27809 (* 1 = 5.27809 loss)
I0412 13:59:09.652792 6895 sgd_solver.cpp:105] Iteration 8760, lr = 0.00176359
I0412 13:59:14.129209 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8772.caffemodel
I0412 13:59:15.763473 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8772.solverstate
I0412 13:59:16.929361 6895 solver.cpp:330] Iteration 8772, Testing net (#0)
I0412 13:59:16.929383 6895 net.cpp:676] Ignoring source layer train-data
I0412 13:59:17.828729 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:59:21.295648 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 13:59:21.295684 6895 solver.cpp:397] Test net output #1: loss = 5.28627 (* 1 = 5.28627 loss)
I0412 13:59:21.379056 6895 solver.cpp:218] Iteration 8772 (1.02338 iter/s, 11.7258s/12 iters), loss = 5.27986
I0412 13:59:21.379102 6895 solver.cpp:237] Train net output #0: loss = 5.27986 (* 1 = 5.27986 loss)
I0412 13:59:21.379112 6895 sgd_solver.cpp:105] Iteration 8772, lr = 0.00175941
I0412 13:59:25.250411 6895 solver.cpp:218] Iteration 8784 (3.09985 iter/s, 3.87115s/12 iters), loss = 5.27674
I0412 13:59:25.250471 6895 solver.cpp:237] Train net output #0: loss = 5.27674 (* 1 = 5.27674 loss)
I0412 13:59:25.250488 6895 sgd_solver.cpp:105] Iteration 8784, lr = 0.00175523
I0412 13:59:30.346683 6895 solver.cpp:218] Iteration 8796 (2.35478 iter/s, 5.09602s/12 iters), loss = 5.25927
I0412 13:59:30.346733 6895 solver.cpp:237] Train net output #0: loss = 5.25927 (* 1 = 5.25927 loss)
I0412 13:59:30.346746 6895 sgd_solver.cpp:105] Iteration 8796, lr = 0.00175106
I0412 13:59:31.686198 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 13:59:34.951014 6895 solver.cpp:218] Iteration 8808 (2.60637 iter/s, 4.6041s/12 iters), loss = 5.26355
I0412 13:59:34.951072 6895 solver.cpp:237] Train net output #0: loss = 5.26355 (* 1 = 5.26355 loss)
I0412 13:59:34.951086 6895 sgd_solver.cpp:105] Iteration 8808, lr = 0.0017469
I0412 13:59:39.673128 6895 solver.cpp:218] Iteration 8820 (2.54137 iter/s, 4.72187s/12 iters), loss = 5.2636
I0412 13:59:39.673182 6895 solver.cpp:237] Train net output #0: loss = 5.2636 (* 1 = 5.2636 loss)
I0412 13:59:39.673192 6895 sgd_solver.cpp:105] Iteration 8820, lr = 0.00174276
I0412 13:59:44.581624 6895 solver.cpp:218] Iteration 8832 (2.44486 iter/s, 4.90825s/12 iters), loss = 5.26716
I0412 13:59:44.581739 6895 solver.cpp:237] Train net output #0: loss = 5.26716 (* 1 = 5.26716 loss)
I0412 13:59:44.581751 6895 sgd_solver.cpp:105] Iteration 8832, lr = 0.00173862
I0412 13:59:49.661067 6895 solver.cpp:218] Iteration 8844 (2.36261 iter/s, 5.07912s/12 iters), loss = 5.29651
I0412 13:59:49.661123 6895 solver.cpp:237] Train net output #0: loss = 5.29651 (* 1 = 5.29651 loss)
I0412 13:59:49.661135 6895 sgd_solver.cpp:105] Iteration 8844, lr = 0.00173449
I0412 13:59:54.617926 6895 solver.cpp:218] Iteration 8856 (2.42101 iter/s, 4.95661s/12 iters), loss = 5.25659
I0412 13:59:54.617975 6895 solver.cpp:237] Train net output #0: loss = 5.25659 (* 1 = 5.25659 loss)
I0412 13:59:54.617985 6895 sgd_solver.cpp:105] Iteration 8856, lr = 0.00173037
I0412 13:59:59.408306 6895 solver.cpp:218] Iteration 8868 (2.50515 iter/s, 4.79014s/12 iters), loss = 5.25871
I0412 13:59:59.408358 6895 solver.cpp:237] Train net output #0: loss = 5.25871 (* 1 = 5.25871 loss)
I0412 13:59:59.408370 6895 sgd_solver.cpp:105] Iteration 8868, lr = 0.00172626
I0412 14:00:01.264096 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8874.caffemodel
I0412 14:00:02.781251 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8874.solverstate
I0412 14:00:03.947259 6895 solver.cpp:330] Iteration 8874, Testing net (#0)
I0412 14:00:03.947284 6895 net.cpp:676] Ignoring source layer train-data
I0412 14:00:04.912485 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 14:00:08.472772 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 14:00:08.472812 6895 solver.cpp:397] Test net output #1: loss = 5.28609 (* 1 = 5.28609 loss)
I0412 14:00:10.333828 6895 solver.cpp:218] Iteration 8880 (1.09839 iter/s, 10.9251s/12 iters), loss = 5.28247
I0412 14:00:10.333882 6895 solver.cpp:237] Train net output #0: loss = 5.28247 (* 1 = 5.28247 loss)
I0412 14:00:10.333894 6895 sgd_solver.cpp:105] Iteration 8880, lr = 0.00172217
I0412 14:00:14.968832 6895 solver.cpp:218] Iteration 8892 (2.58913 iter/s, 4.63476s/12 iters), loss = 5.27922
I0412 14:00:14.971603 6895 solver.cpp:237] Train net output #0: loss = 5.27922 (* 1 = 5.27922 loss)
I0412 14:00:14.971619 6895 sgd_solver.cpp:105] Iteration 8892, lr = 0.00171808
I0412 14:00:18.454833 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 14:00:19.858413 6895 solver.cpp:218] Iteration 8904 (2.45568 iter/s, 4.88662s/12 iters), loss = 5.27618
I0412 14:00:19.858464 6895 solver.cpp:237] Train net output #0: loss = 5.27618 (* 1 = 5.27618 loss)
I0412 14:00:19.858476 6895 sgd_solver.cpp:105] Iteration 8904, lr = 0.001714
I0412 14:00:24.895975 6895 solver.cpp:218] Iteration 8916 (2.38222 iter/s, 5.03731s/12 iters), loss = 5.26606
I0412 14:00:24.896029 6895 solver.cpp:237] Train net output #0: loss = 5.26606 (* 1 = 5.26606 loss)
I0412 14:00:24.896041 6895 sgd_solver.cpp:105] Iteration 8916, lr = 0.00170993
I0412 14:00:29.402613 6895 solver.cpp:218] Iteration 8928 (2.66288 iter/s, 4.50641s/12 iters), loss = 5.2653
I0412 14:00:29.402667 6895 solver.cpp:237] Train net output #0: loss = 5.2653 (* 1 = 5.2653 loss)
I0412 14:00:29.402678 6895 sgd_solver.cpp:105] Iteration 8928, lr = 0.00170587
I0412 14:00:33.906747 6895 solver.cpp:218] Iteration 8940 (2.66436 iter/s, 4.5039s/12 iters), loss = 5.26472
I0412 14:00:33.906800 6895 solver.cpp:237] Train net output #0: loss = 5.26472 (* 1 = 5.26472 loss)
I0412 14:00:33.906812 6895 sgd_solver.cpp:105] Iteration 8940, lr = 0.00170182
I0412 14:00:38.721276 6895 solver.cpp:218] Iteration 8952 (2.49258 iter/s, 4.81429s/12 iters), loss = 5.25802
I0412 14:00:38.721328 6895 solver.cpp:237] Train net output #0: loss = 5.25802 (* 1 = 5.25802 loss)
I0412 14:00:38.721341 6895 sgd_solver.cpp:105] Iteration 8952, lr = 0.00169778
I0412 14:00:43.568697 6895 solver.cpp:218] Iteration 8964 (2.47567 iter/s, 4.84718s/12 iters), loss = 5.27838
I0412 14:00:43.568754 6895 solver.cpp:237] Train net output #0: loss = 5.27838 (* 1 = 5.27838 loss)
I0412 14:00:43.568768 6895 sgd_solver.cpp:105] Iteration 8964, lr = 0.00169375
I0412 14:00:47.945242 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8976.caffemodel
I0412 14:00:49.443064 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8976.solverstate
I0412 14:00:50.629087 6895 solver.cpp:330] Iteration 8976, Testing net (#0)
I0412 14:00:50.629117 6895 net.cpp:676] Ignoring source layer train-data
I0412 14:00:51.581163 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 14:00:55.185050 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 14:00:55.185081 6895 solver.cpp:397] Test net output #1: loss = 5.28611 (* 1 = 5.28611 loss)
I0412 14:00:55.268640 6895 solver.cpp:218] Iteration 8976 (1.02569 iter/s, 11.6994s/12 iters), loss = 5.27515
I0412 14:00:55.268705 6895 solver.cpp:237] Train net output #0: loss = 5.27515 (* 1 = 5.27515 loss)
I0412 14:00:55.268720 6895 sgd_solver.cpp:105] Iteration 8976, lr = 0.00168973
I0412 14:00:59.312255 6895 solver.cpp:218] Iteration 8988 (2.9678 iter/s, 4.0434s/12 iters), loss = 5.28493
I0412 14:00:59.312297 6895 solver.cpp:237] Train net output #0: loss = 5.28493 (* 1 = 5.28493 loss)
I0412 14:00:59.312305 6895 sgd_solver.cpp:105] Iteration 8988, lr = 0.00168571
I0412 14:01:02.161823 6895 blocking_queue.cpp:49] Waiting for data
I0412 14:01:04.254540 6895 solver.cpp:218] Iteration 9000 (2.42814 iter/s, 4.94204s/12 iters), loss = 5.28722
I0412 14:01:04.254585 6895 solver.cpp:237] Train net output #0: loss = 5.28722 (* 1 = 5.28722 loss)
I0412 14:01:04.254595 6895 sgd_solver.cpp:105] Iteration 9000, lr = 0.00168171
I0412 14:01:04.869381 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 14:01:08.976487 6895 solver.cpp:218] Iteration 9012 (2.54145 iter/s, 4.72171s/12 iters), loss = 5.2816
I0412 14:01:08.976537 6895 solver.cpp:237] Train net output #0: loss = 5.2816 (* 1 = 5.2816 loss)
I0412 14:01:08.976549 6895 sgd_solver.cpp:105] Iteration 9012, lr = 0.00167772
I0412 14:01:14.082024 6895 solver.cpp:218] Iteration 9024 (2.3505 iter/s, 5.10529s/12 iters), loss = 5.2658
I0412 14:01:14.082074 6895 solver.cpp:237] Train net output #0: loss = 5.2658 (* 1 = 5.2658 loss)
I0412 14:01:14.082087 6895 sgd_solver.cpp:105] Iteration 9024, lr = 0.00167374
I0412 14:01:18.761260 6895 solver.cpp:218] Iteration 9036 (2.56465 iter/s, 4.679s/12 iters), loss = 5.2695
I0412 14:01:18.761358 6895 solver.cpp:237] Train net output #0: loss = 5.2695 (* 1 = 5.2695 loss)
I0412 14:01:18.761368 6895 sgd_solver.cpp:105] Iteration 9036, lr = 0.00166976
I0412 14:01:23.602421 6895 solver.cpp:218] Iteration 9048 (2.47889 iter/s, 4.84088s/12 iters), loss = 5.27734
I0412 14:01:23.602476 6895 solver.cpp:237] Train net output #0: loss = 5.27734 (* 1 = 5.27734 loss)
I0412 14:01:23.602490 6895 sgd_solver.cpp:105] Iteration 9048, lr = 0.0016658
I0412 14:01:28.492296 6895 solver.cpp:218] Iteration 9060 (2.45418 iter/s, 4.88962s/12 iters), loss = 5.28905
I0412 14:01:28.492359 6895 solver.cpp:237] Train net output #0: loss = 5.28905 (* 1 = 5.28905 loss)
I0412 14:01:28.492373 6895 sgd_solver.cpp:105] Iteration 9060, lr = 0.00166184
I0412 14:01:33.316336 6895 solver.cpp:218] Iteration 9072 (2.48767 iter/s, 4.8238s/12 iters), loss = 5.27064
I0412 14:01:33.316378 6895 solver.cpp:237] Train net output #0: loss = 5.27064 (* 1 = 5.27064 loss)
I0412 14:01:33.316387 6895 sgd_solver.cpp:105] Iteration 9072, lr = 0.0016579
I0412 14:01:35.351325 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9078.caffemodel
I0412 14:01:37.235088 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9078.solverstate
I0412 14:01:38.941272 6895 solver.cpp:330] Iteration 9078, Testing net (#0)
I0412 14:01:38.941303 6895 net.cpp:676] Ignoring source layer train-data
I0412 14:01:39.831404 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 14:01:43.525174 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 14:01:43.525211 6895 solver.cpp:397] Test net output #1: loss = 5.28632 (* 1 = 5.28632 loss)
I0412 14:01:45.362283 6895 solver.cpp:218] Iteration 9084 (0.996226 iter/s, 12.0455s/12 iters), loss = 5.26161
I0412 14:01:45.362330 6895 solver.cpp:237] Train net output #0: loss = 5.26161 (* 1 = 5.26161 loss)
I0412 14:01:45.362339 6895 sgd_solver.cpp:105] Iteration 9084, lr = 0.00165396
I0412 14:01:50.592792 6895 solver.cpp:218] Iteration 9096 (2.29434 iter/s, 5.23026s/12 iters), loss = 5.2651
I0412 14:01:50.592881 6895 solver.cpp:237] Train net output #0: loss = 5.2651 (* 1 = 5.2651 loss)
I0412 14:01:50.592891 6895 sgd_solver.cpp:105] Iteration 9096, lr = 0.00165003
I0412 14:01:53.683817 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 14:01:55.690172 6895 solver.cpp:218] Iteration 9108 (2.35428 iter/s, 5.0971s/12 iters), loss = 5.26439
I0412 14:01:55.690208 6895 solver.cpp:237] Train net output #0: loss = 5.26439 (* 1 = 5.26439 loss)
I0412 14:01:55.690217 6895 sgd_solver.cpp:105] Iteration 9108, lr = 0.00164612
I0412 14:02:00.559689 6895 solver.cpp:218] Iteration 9120 (2.46442 iter/s, 4.86929s/12 iters), loss = 5.2516
I0412 14:02:00.559741 6895 solver.cpp:237] Train net output #0: loss = 5.2516 (* 1 = 5.2516 loss)
I0412 14:02:00.559751 6895 sgd_solver.cpp:105] Iteration 9120, lr = 0.00164221
I0412 14:02:05.328681 6895 solver.cpp:218] Iteration 9132 (2.51638 iter/s, 4.76875s/12 iters), loss = 5.25046
I0412 14:02:05.328734 6895 solver.cpp:237] Train net output #0: loss = 5.25046 (* 1 = 5.25046 loss)
I0412 14:02:05.328747 6895 sgd_solver.cpp:105] Iteration 9132, lr = 0.00163831
I0412 14:02:10.285162 6895 solver.cpp:218] Iteration 9144 (2.42119 iter/s, 4.95623s/12 iters), loss = 5.25657
I0412 14:02:10.285207 6895 solver.cpp:237] Train net output #0: loss = 5.25657 (* 1 = 5.25657 loss)
I0412 14:02:10.285215 6895 sgd_solver.cpp:105] Iteration 9144, lr = 0.00163442
I0412 14:02:15.425302 6895 solver.cpp:218] Iteration 9156 (2.33468 iter/s, 5.13989s/12 iters), loss = 5.28946
I0412 14:02:15.425352 6895 solver.cpp:237] Train net output #0: loss = 5.28946 (* 1 = 5.28946 loss)
I0412 14:02:15.425364 6895 sgd_solver.cpp:105] Iteration 9156, lr = 0.00163054
I0412 14:02:20.562469 6895 solver.cpp:218] Iteration 9168 (2.33603 iter/s, 5.13692s/12 iters), loss = 5.27259
I0412 14:02:20.562510 6895 solver.cpp:237] Train net output #0: loss = 5.27259 (* 1 = 5.27259 loss)
I0412 14:02:20.562517 6895 sgd_solver.cpp:105] Iteration 9168, lr = 0.00162667
I0412 14:02:25.107215 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9180.caffemodel
I0412 14:02:26.686632 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9180.solverstate
I0412 14:02:27.855561 6895 solver.cpp:330] Iteration 9180, Testing net (#0)
I0412 14:02:27.855588 6895 net.cpp:676] Ignoring source layer train-data
I0412 14:02:28.714917 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 14:02:32.766023 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 14:02:32.766070 6895 solver.cpp:397] Test net output #1: loss = 5.28658 (* 1 = 5.28658 loss)
I0412 14:02:32.849570 6895 solver.cpp:218] Iteration 9180 (0.976674 iter/s, 12.2866s/12 iters), loss = 5.27561
I0412 14:02:32.849620 6895 solver.cpp:237] Train net output #0: loss = 5.27561 (* 1 = 5.27561 loss)
I0412 14:02:32.849632 6895 sgd_solver.cpp:105] Iteration 9180, lr = 0.00162281
I0412 14:02:37.216248 6895 solver.cpp:218] Iteration 9192 (2.74823 iter/s, 4.36645s/12 iters), loss = 5.27095
I0412 14:02:37.216295 6895 solver.cpp:237] Train net output #0: loss = 5.27095 (* 1 = 5.27095 loss)
I0412 14:02:37.216307 6895 sgd_solver.cpp:105] Iteration 9192, lr = 0.00161895
I0412 14:02:42.047582 6895 solver.cpp:218] Iteration 9204 (2.48391 iter/s, 4.8311s/12 iters), loss = 5.26625
I0412 14:02:42.047628 6895 solver.cpp:237] Train net output #0: loss = 5.26625 (* 1 = 5.26625 loss)
I0412 14:02:42.047637 6895 sgd_solver.cpp:105] Iteration 9204, lr = 0.00161511
I0412 14:02:42.115339 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 14:02:46.784288 6895 solver.cpp:218] Iteration 9216 (2.53353 iter/s, 4.73647s/12 iters), loss = 5.2825
I0412 14:02:46.784341 6895 solver.cpp:237] Train net output #0: loss = 5.2825 (* 1 = 5.2825 loss)
I0412 14:02:46.784354 6895 sgd_solver.cpp:105] Iteration 9216, lr = 0.00161128
I0412 14:02:51.551497 6895 solver.cpp:218] Iteration 9228 (2.51732 iter/s, 4.76697s/12 iters), loss = 5.28485
I0412 14:02:51.551542 6895 solver.cpp:237] Train net output #0: loss = 5.28485 (* 1 = 5.28485 loss)
I0412 14:02:51.551551 6895 sgd_solver.cpp:105] Iteration 9228, lr = 0.00160745
I0412 14:02:56.309630 6895 solver.cpp:218] Iteration 9240 (2.52212 iter/s, 4.7579s/12 iters), loss = 5.26234
I0412 14:02:56.310108 6895 solver.cpp:237] Train net output #0: loss = 5.26234 (* 1 = 5.26234 loss)
I0412 14:02:56.310123 6895 sgd_solver.cpp:105] Iteration 9240, lr = 0.00160363
I0412 14:03:01.097316 6895 solver.cpp:218] Iteration 9252 (2.50678 iter/s, 4.78702s/12 iters), loss = 5.27441
I0412 14:03:01.097378 6895 solver.cpp:237] Train net output #0: loss = 5.27441 (* 1 = 5.27441 loss)
I0412 14:03:01.097389 6895 sgd_solver.cpp:105] Iteration 9252, lr = 0.00159983
I0412 14:03:05.839190 6895 solver.cpp:218] Iteration 9264 (2.53078 iter/s, 4.74163s/12 iters), loss = 5.26444
I0412 14:03:05.839238 6895 solver.cpp:237] Train net output #0: loss = 5.26444 (* 1 = 5.26444 loss)
I0412 14:03:05.839247 6895 sgd_solver.cpp:105] Iteration 9264, lr = 0.00159603
I0412 14:03:10.539399 6895 solver.cpp:218] Iteration 9276 (2.5532 iter/s, 4.69998s/12 iters), loss = 5.25081
I0412 14:03:10.539449 6895 solver.cpp:237] Train net output #0: loss = 5.25081 (* 1 = 5.25081 loss)
I0412 14:03:10.539461 6895 sgd_solver.cpp:105] Iteration 9276, lr = 0.00159224
I0412 14:03:12.524883 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9282.caffemodel
I0412 14:03:14.058107 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9282.solverstate
I0412 14:03:15.226205 6895 solver.cpp:330] Iteration 9282, Testing net (#0)
I0412 14:03:15.226231 6895 net.cpp:676] Ignoring source layer train-data
I0412 14:03:16.054260 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 14:03:19.685003 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 14:03:19.685055 6895 solver.cpp:397] Test net output #1: loss = 5.28614 (* 1 = 5.28614 loss)
I0412 14:03:21.457249 6895 solver.cpp:218] Iteration 9288 (1.09916 iter/s, 10.9174s/12 iters), loss = 5.26794
I0412 14:03:21.457305 6895 solver.cpp:237] Train net output #0: loss = 5.26794 (* 1 = 5.26794 loss)
I0412 14:03:21.457316 6895 sgd_solver.cpp:105] Iteration 9288, lr = 0.00158846
I0412 14:03:26.289068 6895 solver.cpp:218] Iteration 9300 (2.48366 iter/s, 4.83157s/12 iters), loss = 5.25084
I0412 14:03:26.289119 6895 solver.cpp:237] Train net output #0: loss = 5.25084 (* 1 = 5.25084 loss)
I0412 14:03:26.289129 6895 sgd_solver.cpp:105] Iteration 9300, lr = 0.00158469
I0412 14:03:28.352903 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 14:03:31.027040 6895 solver.cpp:218] Iteration 9312 (2.53286 iter/s, 4.73774s/12 iters), loss = 5.27142
I0412 14:03:31.027096 6895 solver.cpp:237] Train net output #0: loss = 5.27142 (* 1 = 5.27142 loss)
I0412 14:03:31.027112 6895 sgd_solver.cpp:105] Iteration 9312, lr = 0.00158092
I0412 14:03:35.686501 6895 solver.cpp:218] Iteration 9324 (2.57554 iter/s, 4.65922s/12 iters), loss = 5.27779
I0412 14:03:35.686553 6895 solver.cpp:237] Train net output #0: loss = 5.27779 (* 1 = 5.27779 loss)
I0412 14:03:35.686564 6895 sgd_solver.cpp:105] Iteration 9324, lr = 0.00157717
I0412 14:03:40.421555 6895 solver.cpp:218] Iteration 9336 (2.53442 iter/s, 4.73481s/12 iters), loss = 5.28474
I0412 14:03:40.421610 6895 solver.cpp:237] Train net output #0: loss = 5.28474 (* 1 = 5.28474 loss)
I0412 14:03:40.421622 6895 sgd_solver.cpp:105] Iteration 9336, lr = 0.00157343
I0412 14:03:45.073496 6895 solver.cpp:218] Iteration 9348 (2.5797 iter/s, 4.6517s/12 iters), loss = 5.27016
I0412 14:03:45.073550 6895 solver.cpp:237] Train net output #0: loss = 5.27016 (* 1 = 5.27016 loss)
I0412 14:03:45.073562 6895 sgd_solver.cpp:105] Iteration 9348, lr = 0.00156969
I0412 14:03:49.863976 6895 solver.cpp:218] Iteration 9360 (2.5051 iter/s, 4.79024s/12 iters), loss = 5.27044
I0412 14:03:49.864032 6895 solver.cpp:237] Train net output #0: loss = 5.27044 (* 1 = 5.27044 loss)
I0412 14:03:49.864045 6895 sgd_solver.cpp:105] Iteration 9360, lr = 0.00156596
I0412 14:03:54.590582 6895 solver.cpp:218] Iteration 9372 (2.53895 iter/s, 4.72637s/12 iters), loss = 5.27196
I0412 14:03:54.590627 6895 solver.cpp:237] Train net output #0: loss = 5.27196 (* 1 = 5.27196 loss)
I0412 14:03:54.590636 6895 sgd_solver.cpp:105] Iteration 9372, lr = 0.00156225
I0412 14:03:59.208885 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9384.caffemodel
I0412 14:04:02.628093 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9384.solverstate
I0412 14:04:05.268959 6895 solver.cpp:330] Iteration 9384, Testing net (#0)
I0412 14:04:05.268988 6895 net.cpp:676] Ignoring source layer train-data
I0412 14:04:06.050433 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 14:04:09.731938 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 14:04:09.731984 6895 solver.cpp:397] Test net output #1: loss = 5.2862 (* 1 = 5.2862 loss)
I0412 14:04:09.816174 6895 solver.cpp:218] Iteration 9384 (0.788178 iter/s, 15.225s/12 iters), loss = 5.27892
I0412 14:04:09.816221 6895 solver.cpp:237] Train net output #0: loss = 5.27892 (* 1 = 5.27892 loss)
I0412 14:04:09.816232 6895 sgd_solver.cpp:105] Iteration 9384, lr = 0.00155854
I0412 14:04:13.912302 6895 solver.cpp:218] Iteration 9396 (2.92975 iter/s, 4.09591s/12 iters), loss = 5.27065
I0412 14:04:13.912353 6895 solver.cpp:237] Train net output #0: loss = 5.27065 (* 1 = 5.27065 loss)
I0412 14:04:13.912364 6895 sgd_solver.cpp:105] Iteration 9396, lr = 0.00155484
I0412 14:04:18.055383 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 14:04:18.660358 6895 solver.cpp:218] Iteration 9408 (2.52748 iter/s, 4.74782s/12 iters), loss = 5.27024
I0412 14:04:18.660410 6895 solver.cpp:237] Train net output #0: loss = 5.27024 (* 1 = 5.27024 loss)
I0412 14:04:18.660424 6895 sgd_solver.cpp:105] Iteration 9408, lr = 0.00155114
I0412 14:04:23.428915 6895 solver.cpp:218] Iteration 9420 (2.51661 iter/s, 4.76832s/12 iters), loss = 5.2792
I0412 14:04:23.428968 6895 solver.cpp:237] Train net output #0: loss = 5.2792 (* 1 = 5.2792 loss)
I0412 14:04:23.428980 6895 sgd_solver.cpp:105] Iteration 9420, lr = 0.00154746
I0412 14:04:28.318486 6895 solver.cpp:218] Iteration 9432 (2.45432 iter/s, 4.88933s/12 iters), loss = 5.28252
I0412 14:04:28.318518 6895 solver.cpp:237] Train net output #0: loss = 5.28252 (* 1 = 5.28252 loss)
I0412 14:04:28.318526 6895 sgd_solver.cpp:105] Iteration 9432, lr = 0.00154379
I0412 14:04:33.225458 6895 solver.cpp:218] Iteration 9444 (2.44562 iter/s, 4.90674s/12 iters), loss = 5.28256
I0412 14:04:33.225601 6895 solver.cpp:237] Train net output #0: loss = 5.28256 (* 1 = 5.28256 loss)
I0412 14:04:33.225615 6895 sgd_solver.cpp:105] Iteration 9444, lr = 0.00154012
I0412 14:04:38.208076 6895 solver.cpp:218] Iteration 9456 (2.40854 iter/s, 4.98228s/12 iters), loss = 5.26837
I0412 14:04:38.208129 6895 solver.cpp:237] Train net output #0: loss = 5.26837 (* 1 = 5.26837 loss)
I0412 14:04:38.208142 6895 sgd_solver.cpp:105] Iteration 9456, lr = 0.00153647
I0412 14:04:42.980568 6895 solver.cpp:218] Iteration 9468 (2.51454 iter/s, 4.77225s/12 iters), loss = 5.27849
I0412 14:04:42.980620 6895 solver.cpp:237] Train net output #0: loss = 5.27849 (* 1 = 5.27849 loss)
I0412 14:04:42.980631 6895 sgd_solver.cpp:105] Iteration 9468, lr = 0.00153282
I0412 14:04:47.892031 6895 solver.cpp:218] Iteration 9480 (2.44339 iter/s, 4.91122s/12 iters), loss = 5.27857
I0412 14:04:47.892076 6895 solver.cpp:237] Train net output #0: loss = 5.27857 (* 1 = 5.27857 loss)
I0412 14:04:47.892084 6895 sgd_solver.cpp:105] Iteration 9480, lr = 0.00152918
I0412 14:04:49.955716 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9486.caffemodel
I0412 14:04:52.115504 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9486.solverstate
I0412 14:04:53.881454 6895 solver.cpp:330] Iteration 9486, Testing net (#0)
I0412 14:04:53.881481 6895 net.cpp:676] Ignoring source layer train-data
I0412 14:04:54.605304 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 14:04:58.639210 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 14:04:58.639254 6895 solver.cpp:397] Test net output #1: loss = 5.28576 (* 1 = 5.28576 loss)
I0412 14:05:00.541237 6895 solver.cpp:218] Iteration 9492 (0.948716 iter/s, 12.6487s/12 iters), loss = 5.27409
I0412 14:05:00.541299 6895 solver.cpp:237] Train net output #0: loss = 5.27409 (* 1 = 5.27409 loss)
I0412 14:05:00.541311 6895 sgd_solver.cpp:105] Iteration 9492, lr = 0.00152555
I0412 14:05:05.306069 6895 solver.cpp:218] Iteration 9504 (2.51858 iter/s, 4.76458s/12 iters), loss = 5.26169
I0412 14:05:05.306171 6895 solver.cpp:237] Train net output #0: loss = 5.26169 (* 1 = 5.26169 loss)
I0412 14:05:05.306182 6895 sgd_solver.cpp:105] Iteration 9504, lr = 0.00152193
I0412 14:05:06.725997 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 14:05:10.182499 6895 solver.cpp:218] Iteration 9516 (2.46097 iter/s, 4.87613s/12 iters), loss = 5.2585
I0412 14:05:10.182554 6895 solver.cpp:237] Train net output #0: loss = 5.2585 (* 1 = 5.2585 loss)
I0412 14:05:10.182566 6895 sgd_solver.cpp:105] Iteration 9516, lr = 0.00151831
I0412 14:05:15.252249 6895 solver.cpp:218] Iteration 9528 (2.3671 iter/s, 5.0695s/12 iters), loss = 5.26417
I0412 14:05:15.252298 6895 solver.cpp:237] Train net output #0: loss = 5.26417 (* 1 = 5.26417 loss)
I0412 14:05:15.252310 6895 sgd_solver.cpp:105] Iteration 9528, lr = 0.00151471
I0412 14:05:20.050700 6895 solver.cpp:218] Iteration 9540 (2.50093 iter/s, 4.79821s/12 iters), loss = 5.24573
I0412 14:05:20.050746 6895 solver.cpp:237] Train net output #0: loss = 5.24573 (* 1 = 5.24573 loss)
I0412 14:05:20.050755 6895 sgd_solver.cpp:105] Iteration 9540, lr = 0.00151111
I0412 14:05:24.895658 6895 solver.cpp:218] Iteration 9552 (2.47692 iter/s, 4.84472s/12 iters), loss = 5.30126
I0412 14:05:24.895714 6895 solver.cpp:237] Train net output #0: loss = 5.30126 (* 1 = 5.30126 loss)
I0412 14:05:24.895726 6895 sgd_solver.cpp:105] Iteration 9552, lr = 0.00150752
I0412 14:05:29.568173 6895 solver.cpp:218] Iteration 9564 (2.56834 iter/s, 4.67228s/12 iters), loss = 5.25637
I0412 14:05:29.568224 6895 solver.cpp:237] Train net output #0: loss = 5.25637 (* 1 = 5.25637 loss)
I0412 14:05:29.568235 6895 sgd_solver.cpp:105] Iteration 9564, lr = 0.00150395
I0412 14:05:34.494477 6895 solver.cpp:218] Iteration 9576 (2.43603 iter/s, 4.92605s/12 iters), loss = 5.26477
I0412 14:05:34.494524 6895 solver.cpp:237] Train net output #0: loss = 5.26477 (* 1 = 5.26477 loss)
I0412 14:05:34.494531 6895 sgd_solver.cpp:105] Iteration 9576, lr = 0.00150037
I0412 14:05:38.829020 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9588.caffemodel
I0412 14:05:40.364568 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9588.solverstate
I0412 14:05:41.548887 6895 solver.cpp:330] Iteration 9588, Testing net (#0)
I0412 14:05:41.548907 6895 net.cpp:676] Ignoring source layer train-data
I0412 14:05:42.234930 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 14:05:45.999662 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 14:05:45.999699 6895 solver.cpp:397] Test net output #1: loss = 5.28599 (* 1 = 5.28599 loss)
I0412 14:05:46.083097 6895 solver.cpp:218] Iteration 9588 (1.03554 iter/s, 11.5881s/12 iters), loss = 5.27283
I0412 14:05:46.083151 6895 solver.cpp:237] Train net output #0: loss = 5.27283 (* 1 = 5.27283 loss)
I0412 14:05:46.083163 6895 sgd_solver.cpp:105] Iteration 9588, lr = 0.00149681
I0412 14:05:50.222406 6895 solver.cpp:218] Iteration 9600 (2.89922 iter/s, 4.13905s/12 iters), loss = 5.27258
I0412 14:05:50.222468 6895 solver.cpp:237] Train net output #0: loss = 5.27258 (* 1 = 5.27258 loss)
I0412 14:05:50.222483 6895 sgd_solver.cpp:105] Iteration 9600, lr = 0.00149326
I0412 14:05:53.760013 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 14:05:55.041533 6895 solver.cpp:218] Iteration 9612 (2.49021 iter/s, 4.81888s/12 iters), loss = 5.27352
I0412 14:05:55.041589 6895 solver.cpp:237] Train net output #0: loss = 5.27352 (* 1 = 5.27352 loss)
I0412 14:05:55.041604 6895 sgd_solver.cpp:105] Iteration 9612, lr = 0.00148971
I0412 14:05:59.844254 6895 solver.cpp:218] Iteration 9624 (2.49871 iter/s, 4.80248s/12 iters), loss = 5.27061
I0412 14:05:59.844298 6895 solver.cpp:237] Train net output #0: loss = 5.27061 (* 1 = 5.27061 loss)
I0412 14:05:59.844307 6895 sgd_solver.cpp:105] Iteration 9624, lr = 0.00148618
I0412 14:06:04.711362 6895 solver.cpp:218] Iteration 9636 (2.46565 iter/s, 4.86687s/12 iters), loss = 5.25582
I0412 14:06:04.711405 6895 solver.cpp:237] Train net output #0: loss = 5.25582 (* 1 = 5.25582 loss)
I0412 14:06:04.711413 6895 sgd_solver.cpp:105] Iteration 9636, lr = 0.00148265
I0412 14:06:09.467833 6895 solver.cpp:218] Iteration 9648 (2.523 iter/s, 4.75624s/12 iters), loss = 5.26755
I0412 14:06:09.467991 6895 solver.cpp:237] Train net output #0: loss = 5.26755 (* 1 = 5.26755 loss)
I0412 14:06:09.468003 6895 sgd_solver.cpp:105] Iteration 9648, lr = 0.00147913
I0412 14:06:14.240170 6895 solver.cpp:218] Iteration 9660 (2.51467 iter/s, 4.77199s/12 iters), loss = 5.25292
I0412 14:06:14.240226 6895 solver.cpp:237] Train net output #0: loss = 5.25292 (* 1 = 5.25292 loss)
I0412 14:06:14.240237 6895 sgd_solver.cpp:105] Iteration 9660, lr = 0.00147562
I0412 14:06:19.206460 6895 solver.cpp:218] Iteration 9672 (2.41641 iter/s, 4.96604s/12 iters), loss = 5.27516
I0412 14:06:19.206514 6895 solver.cpp:237] Train net output #0: loss = 5.27516 (* 1 = 5.27516 loss)
I0412 14:06:19.206526 6895 sgd_solver.cpp:105] Iteration 9672, lr = 0.00147211
I0412 14:06:23.832448 6895 solver.cpp:218] Iteration 9684 (2.59417 iter/s, 4.62575s/12 iters), loss = 5.29085
I0412 14:06:23.832500 6895 solver.cpp:237] Train net output #0: loss = 5.29085 (* 1 = 5.29085 loss)
I0412 14:06:23.832511 6895 sgd_solver.cpp:105] Iteration 9684, lr = 0.00146862
I0412 14:06:25.804827 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9690.caffemodel
I0412 14:06:27.360313 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9690.solverstate
I0412 14:06:30.524413 6895 solver.cpp:330] Iteration 9690, Testing net (#0)
I0412 14:06:30.524437 6895 net.cpp:676] Ignoring source layer train-data
I0412 14:06:31.146186 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 14:06:33.942443 6895 blocking_queue.cpp:49] Waiting for data
I0412 14:06:35.035110 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 14:06:35.035156 6895 solver.cpp:397] Test net output #1: loss = 5.28617 (* 1 = 5.28617 loss)
I0412 14:06:36.974064 6895 solver.cpp:218] Iteration 9696 (0.913167 iter/s, 13.1411s/12 iters), loss = 5.28591
I0412 14:06:36.974109 6895 solver.cpp:237] Train net output #0: loss = 5.28591 (* 1 = 5.28591 loss)
I0412 14:06:36.974118 6895 sgd_solver.cpp:105] Iteration 9696, lr = 0.00146513
I0412 14:06:41.672984 6895 solver.cpp:218] Iteration 9708 (2.5539 iter/s, 4.69869s/12 iters), loss = 5.28653
I0412 14:06:41.673100 6895 solver.cpp:237] Train net output #0: loss = 5.28653 (* 1 = 5.28653 loss)
I0412 14:06:41.673115 6895 sgd_solver.cpp:105] Iteration 9708, lr = 0.00146165
I0412 14:06:42.423601 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 14:06:46.765426 6895 solver.cpp:218] Iteration 9720 (2.35658 iter/s, 5.09213s/12 iters), loss = 5.28855
I0412 14:06:46.765478 6895 solver.cpp:237] Train net output #0: loss = 5.28855 (* 1 = 5.28855 loss)
I0412 14:06:46.765489 6895 sgd_solver.cpp:105] Iteration 9720, lr = 0.00145818
I0412 14:06:51.795089 6895 solver.cpp:218] Iteration 9732 (2.38596 iter/s, 5.02942s/12 iters), loss = 5.26073
I0412 14:06:51.795135 6895 solver.cpp:237] Train net output #0: loss = 5.26073 (* 1 = 5.26073 loss)
I0412 14:06:51.795145 6895 sgd_solver.cpp:105] Iteration 9732, lr = 0.00145472
I0412 14:06:56.717200 6895 solver.cpp:218] Iteration 9744 (2.4381 iter/s, 4.92186s/12 iters), loss = 5.26712
I0412 14:06:56.717260 6895 solver.cpp:237] Train net output #0: loss = 5.26712 (* 1 = 5.26712 loss)
I0412 14:06:56.717274 6895 sgd_solver.cpp:105] Iteration 9744, lr = 0.00145127
I0412 14:07:01.815263 6895 solver.cpp:218] Iteration 9756 (2.35395 iter/s, 5.09781s/12 iters), loss = 5.27444
I0412 14:07:01.815306 6895 solver.cpp:237] Train net output #0: loss = 5.27444 (* 1 = 5.27444 loss)
I0412 14:07:01.815315 6895 sgd_solver.cpp:105] Iteration 9756, lr = 0.00144782
I0412 14:07:06.720201 6895 solver.cpp:218] Iteration 9768 (2.44663 iter/s, 4.9047s/12 iters), loss = 5.28765
I0412 14:07:06.720257 6895 solver.cpp:237] Train net output #0: loss = 5.28765 (* 1 = 5.28765 loss)
I0412 14:07:06.720270 6895 sgd_solver.cpp:105] Iteration 9768, lr = 0.00144438
I0412 14:07:11.657441 6895 solver.cpp:218] Iteration 9780 (2.43063 iter/s, 4.93699s/12 iters), loss = 5.27152
I0412 14:07:11.657490 6895 solver.cpp:237] Train net output #0: loss = 5.27152 (* 1 = 5.27152 loss)
I0412 14:07:11.657501 6895 sgd_solver.cpp:105] Iteration 9780, lr = 0.00144095
I0412 14:07:16.567344 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9792.caffemodel
I0412 14:07:18.141345 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9792.solverstate
I0412 14:07:19.324884 6895 solver.cpp:330] Iteration 9792, Testing net (#0)
I0412 14:07:19.324910 6895 net.cpp:676] Ignoring source layer train-data
I0412 14:07:19.926959 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 14:07:23.905114 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 14:07:23.905164 6895 solver.cpp:397] Test net output #1: loss = 5.28591 (* 1 = 5.28591 loss)
I0412 14:07:23.988752 6895 solver.cpp:218] Iteration 9792 (0.973173 iter/s, 12.3308s/12 iters), loss = 5.25703
I0412 14:07:23.988802 6895 solver.cpp:237] Train net output #0: loss = 5.25703 (* 1 = 5.25703 loss)
I0412 14:07:23.988814 6895 sgd_solver.cpp:105] Iteration 9792, lr = 0.00143753
I0412 14:07:27.965528 6895 solver.cpp:218] Iteration 9804 (3.01768 iter/s, 3.97656s/12 iters), loss = 5.27349
I0412 14:07:27.965574 6895 solver.cpp:237] Train net output #0: loss = 5.27349 (* 1 = 5.27349 loss)
I0412 14:07:27.965584 6895 sgd_solver.cpp:105] Iteration 9804, lr = 0.00143412
I0412 14:07:30.901583 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 14:07:32.761798 6895 solver.cpp:218] Iteration 9816 (2.50207 iter/s, 4.79604s/12 iters), loss = 5.26231
I0412 14:07:32.761844 6895 solver.cpp:237] Train net output #0: loss = 5.26231 (* 1 = 5.26231 loss)
I0412 14:07:32.761854 6895 sgd_solver.cpp:105] Iteration 9816, lr = 0.00143072
I0412 14:07:37.433879 6895 solver.cpp:218] Iteration 9828 (2.56858 iter/s, 4.67185s/12 iters), loss = 5.25568
I0412 14:07:37.433928 6895 solver.cpp:237] Train net output #0: loss = 5.25568 (* 1 = 5.25568 loss)
I0412 14:07:37.433938 6895 sgd_solver.cpp:105] Iteration 9828, lr = 0.00142732
I0412 14:07:42.276036 6895 solver.cpp:218] Iteration 9840 (2.47836 iter/s, 4.84192s/12 iters), loss = 5.2522
I0412 14:07:42.276085 6895 solver.cpp:237] Train net output #0: loss = 5.2522 (* 1 = 5.2522 loss)
I0412 14:07:42.276098 6895 sgd_solver.cpp:105] Iteration 9840, lr = 0.00142393
I0412 14:07:47.061462 6895 solver.cpp:218] Iteration 9852 (2.50774 iter/s, 4.78519s/12 iters), loss = 5.26635
I0412 14:07:47.061578 6895 solver.cpp:237] Train net output #0: loss = 5.26635 (* 1 = 5.26635 loss)
I0412 14:07:47.061591 6895 sgd_solver.cpp:105] Iteration 9852, lr = 0.00142055
I0412 14:07:51.819720 6895 solver.cpp:218] Iteration 9864 (2.52209 iter/s, 4.75796s/12 iters), loss = 5.28957
I0412 14:07:51.819774 6895 solver.cpp:237] Train net output #0: loss = 5.28957 (* 1 = 5.28957 loss)
I0412 14:07:51.819787 6895 sgd_solver.cpp:105] Iteration 9864, lr = 0.00141718
I0412 14:07:56.449129 6895 solver.cpp:218] Iteration 9876 (2.59226 iter/s, 4.62917s/12 iters), loss = 5.27225
I0412 14:07:56.449187 6895 solver.cpp:237] Train net output #0: loss = 5.27225 (* 1 = 5.27225 loss)
I0412 14:07:56.449199 6895 sgd_solver.cpp:105] Iteration 9876, lr = 0.00141381
I0412 14:08:01.277518 6895 solver.cpp:218] Iteration 9888 (2.48543 iter/s, 4.82814s/12 iters), loss = 5.27776
I0412 14:08:01.277561 6895 solver.cpp:237] Train net output #0: loss = 5.27776 (* 1 = 5.27776 loss)
I0412 14:08:01.277570 6895 sgd_solver.cpp:105] Iteration 9888, lr = 0.00141045
I0412 14:08:03.245429 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9894.caffemodel
I0412 14:08:04.788544 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9894.solverstate
I0412 14:08:05.970425 6895 solver.cpp:330] Iteration 9894, Testing net (#0)
I0412 14:08:05.970453 6895 net.cpp:676] Ignoring source layer train-data
I0412 14:08:06.486641 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 14:08:10.339149 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 14:08:10.339190 6895 solver.cpp:397] Test net output #1: loss = 5.2863 (* 1 = 5.2863 loss)
I0412 14:08:12.163872 6895 solver.cpp:218] Iteration 9900 (1.10234 iter/s, 10.8859s/12 iters), loss = 5.27487
I0412 14:08:12.163921 6895 solver.cpp:237] Train net output #0: loss = 5.27487 (* 1 = 5.27487 loss)
I0412 14:08:12.163933 6895 sgd_solver.cpp:105] Iteration 9900, lr = 0.00140711
I0412 14:08:17.054008 6895 solver.cpp:218] Iteration 9912 (2.45404 iter/s, 4.88989s/12 iters), loss = 5.25538
I0412 14:08:17.054056 6895 solver.cpp:237] Train net output #0: loss = 5.25538 (* 1 = 5.25538 loss)
I0412 14:08:17.054067 6895 sgd_solver.cpp:105] Iteration 9912, lr = 0.00140377
I0412 14:08:17.167474 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 14:08:21.887282 6895 solver.cpp:218] Iteration 9924 (2.48291 iter/s, 4.83304s/12 iters), loss = 5.27403
I0412 14:08:21.887326 6895 solver.cpp:237] Train net output #0: loss = 5.27403 (* 1 = 5.27403 loss)
I0412 14:08:21.887336 6895 sgd_solver.cpp:105] Iteration 9924, lr = 0.00140043
I0412 14:08:26.785801 6895 solver.cpp:218] Iteration 9936 (2.44984 iter/s, 4.89828s/12 iters), loss = 5.28879
I0412 14:08:26.785845 6895 solver.cpp:237] Train net output #0: loss = 5.28879 (* 1 = 5.28879 loss)
I0412 14:08:26.785853 6895 sgd_solver.cpp:105] Iteration 9936, lr = 0.00139711
I0412 14:08:31.860167 6895 solver.cpp:218] Iteration 9948 (2.36494 iter/s, 5.07412s/12 iters), loss = 5.26243
I0412 14:08:31.860220 6895 solver.cpp:237] Train net output #0: loss = 5.26243 (* 1 = 5.26243 loss)
I0412 14:08:31.860232 6895 sgd_solver.cpp:105] Iteration 9948, lr = 0.00139379
I0412 14:08:36.763972 6895 solver.cpp:218] Iteration 9960 (2.4472 iter/s, 4.90356s/12 iters), loss = 5.2702
I0412 14:08:36.764024 6895 solver.cpp:237] Train net output #0: loss = 5.2702 (* 1 = 5.2702 loss)
I0412 14:08:36.764034 6895 sgd_solver.cpp:105] Iteration 9960, lr = 0.00139048
I0412 14:08:41.565717 6895 solver.cpp:218] Iteration 9972 (2.49922 iter/s, 4.8015s/12 iters), loss = 5.26456
I0412 14:08:41.565773 6895 solver.cpp:237] Train net output #0: loss = 5.26456 (* 1 = 5.26456 loss)
I0412 14:08:41.565784 6895 sgd_solver.cpp:105] Iteration 9972, lr = 0.00138718
I0412 14:08:46.402190 6895 solver.cpp:218] Iteration 9984 (2.48127 iter/s, 4.83623s/12 iters), loss = 5.24642
I0412 14:08:46.402245 6895 solver.cpp:237] Train net output #0: loss = 5.24642 (* 1 = 5.24642 loss)
I0412 14:08:46.402256 6895 sgd_solver.cpp:105] Iteration 9984, lr = 0.00138389
I0412 14:08:50.676620 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9996.caffemodel
I0412 14:08:52.232292 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9996.solverstate
I0412 14:08:53.821022 6895 solver.cpp:330] Iteration 9996, Testing net (#0)
I0412 14:08:53.821049 6895 net.cpp:676] Ignoring source layer train-data
I0412 14:08:54.245645 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 14:08:58.255112 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 14:08:58.255146 6895 solver.cpp:397] Test net output #1: loss = 5.28671 (* 1 = 5.28671 loss)
I0412 14:08:58.338891 6895 solver.cpp:218] Iteration 9996 (1.00534 iter/s, 11.9362s/12 iters), loss = 5.27174
I0412 14:08:58.338930 6895 solver.cpp:237] Train net output #0: loss = 5.27174 (* 1 = 5.27174 loss)
I0412 14:08:58.338938 6895 sgd_solver.cpp:105] Iteration 9996, lr = 0.0013806
I0412 14:09:02.410925 6895 solver.cpp:218] Iteration 10008 (2.94708 iter/s, 4.07183s/12 iters), loss = 5.24456
I0412 14:09:02.410985 6895 solver.cpp:237] Train net output #0: loss = 5.24456 (* 1 = 5.24456 loss)
I0412 14:09:02.410998 6895 sgd_solver.cpp:105] Iteration 10008, lr = 0.00137732
I0412 14:09:04.606178 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 14:09:07.333307 6895 solver.cpp:218] Iteration 10020 (2.43797 iter/s, 4.92213s/12 iters), loss = 5.27106
I0412 14:09:07.333360 6895 solver.cpp:237] Train net output #0: loss = 5.27106 (* 1 = 5.27106 loss)
I0412 14:09:07.333372 6895 sgd_solver.cpp:105] Iteration 10020, lr = 0.00137405
I0412 14:09:12.243618 6895 solver.cpp:218] Iteration 10032 (2.44396 iter/s, 4.91006s/12 iters), loss = 5.27406
I0412 14:09:12.243665 6895 solver.cpp:237] Train net output #0: loss = 5.27406 (* 1 = 5.27406 loss)
I0412 14:09:12.243674 6895 sgd_solver.cpp:105] Iteration 10032, lr = 0.00137079
I0412 14:09:17.076911 6895 solver.cpp:218] Iteration 10044 (2.4829 iter/s, 4.83306s/12 iters), loss = 5.2869
I0412 14:09:17.076961 6895 solver.cpp:237] Train net output #0: loss = 5.2869 (* 1 = 5.2869 loss)
I0412 14:09:17.076970 6895 sgd_solver.cpp:105] Iteration 10044, lr = 0.00136754
I0412 14:09:21.897241 6895 solver.cpp:218] Iteration 10056 (2.48958 iter/s, 4.82009s/12 iters), loss = 5.27646
I0412 14:09:21.897403 6895 solver.cpp:237] Train net output #0: loss = 5.27646 (* 1 = 5.27646 loss)
I0412 14:09:21.897418 6895 sgd_solver.cpp:105] Iteration 10056, lr = 0.00136429
I0412 14:09:26.749213 6895 solver.cpp:218] Iteration 10068 (2.4734 iter/s, 4.85163s/12 iters), loss = 5.27452
I0412 14:09:26.749254 6895 solver.cpp:237] Train net output #0: loss = 5.27452 (* 1 = 5.27452 loss)
I0412 14:09:26.749265 6895 sgd_solver.cpp:105] Iteration 10068, lr = 0.00136105
I0412 14:09:31.469902 6895 solver.cpp:218] Iteration 10080 (2.54213 iter/s, 4.72046s/12 iters), loss = 5.26021
I0412 14:09:31.469949 6895 solver.cpp:237] Train net output #0: loss = 5.26021 (* 1 = 5.26021 loss)
I0412 14:09:31.469975 6895 sgd_solver.cpp:105] Iteration 10080, lr = 0.00135782
I0412 14:09:36.479442 6895 solver.cpp:218] Iteration 10092 (2.39555 iter/s, 5.00929s/12 iters), loss = 5.28163
I0412 14:09:36.479490 6895 solver.cpp:237] Train net output #0: loss = 5.28163 (* 1 = 5.28163 loss)
I0412 14:09:36.479498 6895 sgd_solver.cpp:105] Iteration 10092, lr = 0.0013546
I0412 14:09:38.409736 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10098.caffemodel
I0412 14:09:39.878976 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10098.solverstate
I0412 14:09:41.057657 6895 solver.cpp:330] Iteration 10098, Testing net (#0)
I0412 14:09:41.057684 6895 net.cpp:676] Ignoring source layer train-data
I0412 14:09:41.522097 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 14:09:45.456266 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 14:09:45.456315 6895 solver.cpp:397] Test net output #1: loss = 5.28635 (* 1 = 5.28635 loss)
I0412 14:09:47.385298 6895 solver.cpp:218] Iteration 10104 (1.10037 iter/s, 10.9054s/12 iters), loss = 5.27108
I0412 14:09:47.385344 6895 solver.cpp:237] Train net output #0: loss = 5.27108 (* 1 = 5.27108 loss)
I0412 14:09:47.385354 6895 sgd_solver.cpp:105] Iteration 10104, lr = 0.00135138
I0412 14:09:51.650411 6899 data_layer.cpp:73] Restarting data prefetching from start.
I0412 14:09:52.259723 6895 solver.cpp:218] Iteration 10116 (2.46195 iter/s, 4.87418s/12 iters), loss = 5.26313
I0412 14:09:52.259865 6895 solver.cpp:237] Train net output #0: loss = 5.26313 (* 1 = 5.26313 loss)
I0412 14:09:52.259879 6895 sgd_solver.cpp:105] Iteration 10116, lr = 0.00134817
I0412 14:09:57.200206 6895 solver.cpp:218] Iteration 10128 (2.42908 iter/s, 4.94015s/12 iters), loss = 5.27258
I0412 14:09:57.200249 6895 solver.cpp:237] Train net output #0: loss = 5.27258 (* 1 = 5.27258 loss)
I0412 14:09:57.200258 6895 sgd_solver.cpp:105] Iteration 10128, lr = 0.00134497
I0412 14:10:02.192194 6895 solver.cpp:218] Iteration 10140 (2.40397 iter/s, 4.99174s/12 iters), loss = 5.2843
I0412 14:10:02.192246 6895 solver.cpp:237] Train net output #0: loss = 5.2843 (* 1 = 5.2843 loss)
I0412 14:10:02.192258 6895 sgd_solver.cpp:105] Iteration 10140, lr = 0.00134178
I0412 14:10:07.054286 6895 solver.cpp:218] Iteration 10152 (2.4682 iter/s, 4.86185s/12 iters), loss = 5.27533
I0412 14:10:07.054349 6895 solver.cpp:237] Train net output #0: loss = 5.27533 (* 1 = 5.27533 loss)
I0412 14:10:07.054363 6895 sgd_solver.cpp:105] Iteration 10152, lr = 0.00133859
I0412 14:10:12.190455 6895 solver.cpp:218] Iteration 10164 (2.33649 iter/s, 5.13592s/12 iters), loss = 5.26199
I0412 14:10:12.190511 6895 solver.cpp:237] Train net output #0: loss = 5.26199 (* 1 = 5.26199 loss)
I0412 14:10:12.190522 6895 sgd_solver.cpp:105] Iteration 10164, lr = 0.00133541
I0412 14:10:17.162938 6895 solver.cpp:218] Iteration 10176 (2.4134 iter/s, 4.97223s/12 iters), loss = 5.27811
I0412 14:10:17.162986 6895 solver.cpp:237] Train net output #0: loss = 5.27811 (* 1 = 5.27811 loss)
I0412 14:10:17.162999 6895 sgd_solver.cpp:105] Iteration 10176, lr = 0.00133224
I0412 14:10:21.988860 6895 solver.cpp:218] Iteration 10188 (2.48669 iter/s, 4.82568s/12 iters), loss = 5.27792
I0412 14:10:21.988901 6895 solver.cpp:237] Train net output #0: loss = 5.27792 (* 1 = 5.27792 loss)
I0412 14:10:21.988910 6895 sgd_solver.cpp:105] Iteration 10188, lr = 0.00132908
I0412 14:10:26.571506 6895 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10200.caffemodel
I0412 14:10:28.122284 6895 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10200.solverstate
I0412 14:10:29.338454 6895 solver.cpp:310] Iteration 10200, loss = 5.2636
I0412 14:10:29.338490 6895 solver.cpp:330] Iteration 10200, Testing net (#0)
I0412 14:10:29.338496 6895 net.cpp:676] Ignoring source layer train-data
I0412 14:10:29.761833 6900 data_layer.cpp:73] Restarting data prefetching from start.
I0412 14:10:33.839372 6895 solver.cpp:397] Test net output #0: accuracy = 0.00551471
I0412 14:10:33.839423 6895 solver.cpp:397] Test net output #1: loss = 5.28572 (* 1 = 5.28572 loss)
I0412 14:10:33.839433 6895 solver.cpp:315] Optimization Done.
I0412 14:10:33.839440 6895 caffe.cpp:259] Optimization Done.