DIGITS-CNN/cars/split-investigations/split.ipynb

75 lines
1.5 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib as mpl\n",
"from matplotlib import pyplot as plt"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Different Train/Validation/Test Splits\n",
"\n",
"## Index\n",
"0. train prop\n",
"1. val prop\n",
"2. test prop\n",
"3. top-1 accuracy\n",
"4. top-5 accuracy\n",
"5. last val loss\n",
"6. last val accuracy"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"split_results = np.array([\n",
" [50, 5, 45, 8.14, 20.7, 5.77, 8.29],\n",
" [50, 25, 25, 7.91, 20.9, 5.59, 8.41],\n",
" [70, 15, 15, 15.81, 34.62, 4.92, 16.82],\n",
" [80, 10, 10, 20.94, 44.1, 4.39, 24.45],\n",
" [90, 5, 5, 20.62, 45.19, 4.17, 30.29]\n",
"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.2"
}
},
"nbformat": 4,
"nbformat_minor": 4
}