{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib as mpl\n", "from matplotlib import pyplot as plt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Different Train/Validation/Test Splits\n", "\n", "## Index\n", "0. train prop\n", "1. val prop\n", "2. test prop\n", "3. top-1 accuracy\n", "4. top-5 accuracy\n", "5. last val loss\n", "6. last val accuracy" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "split_results = np.array([\n", " [50, 5, 45, 8.14, 20.7, 5.77, 8.29],\n", " [50, 25, 25, 7.91, 20.9, 5.59, 8.41],\n", " [70, 15, 15, 15.81, 34.62, 4.92, 16.82],\n", " [80, 10, 10, 20.94, 44.1, 4.39, 24.45],\n", " [90, 5, 5, 20.62, 45.19, 4.17, 30.29]\n", "])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.2" } }, "nbformat": 4, "nbformat_minor": 4 }