I0408 19:18:24.449684 5931 upgrade_proto.cpp:1082] Attempting to upgrade input file specified using deprecated 'solver_type' field (enum)': /mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210408-191822-3c4c/solver.prototxt I0408 19:18:24.449854 5931 upgrade_proto.cpp:1089] Successfully upgraded file specified using deprecated 'solver_type' field (enum) to 'type' field (string). W0408 19:18:24.449860 5931 upgrade_proto.cpp:1091] Note that future Caffe releases will only support 'type' field (string) for a solver's type. I0408 19:18:24.449932 5931 caffe.cpp:218] Using GPUs 0 I0408 19:18:24.497622 5931 caffe.cpp:223] GPU 0: GeForce RTX 2080 I0408 19:18:24.941783 5931 solver.cpp:44] Initializing solver from parameters: test_iter: 51 test_interval: 102 base_lr: 0.01 display: 12 max_iter: 10200 lr_policy: "sigmoid" gamma: -0.0014705883 momentum: 0.9 weight_decay: 0.0001 stepsize: 5100 snapshot: 102 snapshot_prefix: "snapshot" solver_mode: GPU device_id: 0 net: "train_val.prototxt" train_state { level: 0 stage: "" } type: "SGD" I0408 19:18:24.942917 5931 solver.cpp:87] Creating training net from net file: train_val.prototxt I0408 19:18:24.944129 5931 net.cpp:294] The NetState phase (0) differed from the phase (1) specified by a rule in layer val-data I0408 19:18:24.944144 5931 net.cpp:294] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy I0408 19:18:24.944264 5931 net.cpp:51] Initializing net from parameters: state { phase: TRAIN level: 0 stage: "" } layer { name: "train-data" type: "Data" top: "data" top: "label" include { phase: TRAIN } transform_param { mirror: true crop_size: 227 mean_file: "/mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/mean.binaryproto" } data_param { source: "/mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/train_db" batch_size: 128 backend: LMDB } } layer { name: "conv1" type: "Convolution" bottom: "data" top: "conv1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 96 kernel_size: 11 stride: 4 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0 } } } layer { name: "relu1" type: "ReLU" bottom: "conv1" top: "conv1" } layer { name: "norm1" type: "LRN" bottom: "conv1" top: "norm1" lrn_param { local_size: 5 alpha: 0.0001 beta: 0.75 } } layer { name: "pool1" type: "Pooling" bottom: "norm1" top: "pool1" pooling_param { pool: MAX kernel_size: 3 stride: 2 } } layer { name: "conv2" type: "Convolution" bottom: "pool1" top: "conv2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 pad: 2 kernel_size: 5 group: 2 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0.1 } } } layer { name: "relu2" type: "ReLU" bottom: "conv2" top: "conv2" } layer { name: "norm2" type: "LRN" bottom: "conv2" top: "norm2" lrn_param { local_size: 5 alpha: 0.0001 beta: 0.75 } } layer { name: "pool2" type: "Pooling" bottom: "norm2" top: "pool2" pooling_param { pool: MAX kernel_size: 3 stride: 2 } } layer { name: "conv3" type: "Convolution" bottom: "pool2" top: "conv3" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 384 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0 } } } layer { name: "relu3" type: "ReLU" bottom: "conv3" top: "conv3" } layer { name: "conv4" type: "Convolution" bottom: "conv3" top: "conv4" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 384 pad: 1 kernel_size: 3 group: 2 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0.1 } } } layer { name: "relu4" type: "ReLU" bottom: "conv4" top: "conv4" } layer { name: "conv5" type: "Convolution" bottom: "conv4" top: "conv5" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 pad: 1 kernel_size: 3 group: 2 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0.1 } } } layer { name: "relu5" type: "ReLU" bottom: "conv5" top: "conv5" } layer { name: "pool5" type: "Pooling" bottom: "conv5" top: "pool5" pooling_param { pool: MAX kernel_size: 3 stride: 2 } } layer { name: "fc6" type: "InnerProduct" bottom: "pool5" top: "fc6" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } inner_product_param { num_output: 4096 weight_filler { type: "gaussian" std: 0.005 } bias_filler { type: "constant" value: 0.1 } } } layer { name: "relu6" type: "ReLU" bottom: "fc6" top: "fc6" } layer { name: "drop6" type: "Dropout" bottom: "fc6" top: "fc6" dropout_param { dropout_ratio: 0.5 } } layer { name: "fc7" type: "InnerProduct" bottom: "fc6" top: "fc7" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } inner_product_param { num_output: 4096 weight_filler { type: "gaussian" std: 0.005 } bias_filler { type: "constant" value: 0.1 } } } layer { name: "relu7" type: "ReLU" bottom: "fc7" top: "fc7" } layer { name: "drop7" type: "Dropout" bottom: "fc7" top: "fc7" dropout_param { dropout_ratio: 0.5 } } layer { name: "fc8" type: "InnerProduct" bottom: "fc7" top: "fc8" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } inner_product_param { num_output: 196 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0 } } } layer { name: "loss" type: "SoftmaxWithLoss" bottom: "fc8" bottom: "label" top: "loss" } I0408 19:18:24.944351 5931 layer_factory.hpp:77] Creating layer train-data I0408 19:18:25.053862 5931 db_lmdb.cpp:35] Opened lmdb /mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/train_db I0408 19:18:25.055430 5931 net.cpp:84] Creating Layer train-data I0408 19:18:25.055464 5931 net.cpp:380] train-data -> data I0408 19:18:25.055506 5931 net.cpp:380] train-data -> label I0408 19:18:25.055532 5931 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/mean.binaryproto I0408 19:18:25.065255 5931 data_layer.cpp:45] output data size: 128,3,227,227 I0408 19:18:25.220326 5931 net.cpp:122] Setting up train-data I0408 19:18:25.220352 5931 net.cpp:129] Top shape: 128 3 227 227 (19787136) I0408 19:18:25.220357 5931 net.cpp:129] Top shape: 128 (128) I0408 19:18:25.220360 5931 net.cpp:137] Memory required for data: 79149056 I0408 19:18:25.220371 5931 layer_factory.hpp:77] Creating layer conv1 I0408 19:18:25.220393 5931 net.cpp:84] Creating Layer conv1 I0408 19:18:25.220399 5931 net.cpp:406] conv1 <- data I0408 19:18:25.220412 5931 net.cpp:380] conv1 -> conv1 I0408 19:18:26.108603 5931 net.cpp:122] Setting up conv1 I0408 19:18:26.108624 5931 net.cpp:129] Top shape: 128 96 55 55 (37171200) I0408 19:18:26.108628 5931 net.cpp:137] Memory required for data: 227833856 I0408 19:18:26.108647 5931 layer_factory.hpp:77] Creating layer relu1 I0408 19:18:26.108656 5931 net.cpp:84] Creating Layer relu1 I0408 19:18:26.108660 5931 net.cpp:406] relu1 <- conv1 I0408 19:18:26.108665 5931 net.cpp:367] relu1 -> conv1 (in-place) I0408 19:18:26.108984 5931 net.cpp:122] Setting up relu1 I0408 19:18:26.108994 5931 net.cpp:129] Top shape: 128 96 55 55 (37171200) I0408 19:18:26.108996 5931 net.cpp:137] Memory required for data: 376518656 I0408 19:18:26.108999 5931 layer_factory.hpp:77] Creating layer norm1 I0408 19:18:26.109007 5931 net.cpp:84] Creating Layer norm1 I0408 19:18:26.109040 5931 net.cpp:406] norm1 <- conv1 I0408 19:18:26.109045 5931 net.cpp:380] norm1 -> norm1 I0408 19:18:26.109565 5931 net.cpp:122] Setting up norm1 I0408 19:18:26.109575 5931 net.cpp:129] Top shape: 128 96 55 55 (37171200) I0408 19:18:26.109577 5931 net.cpp:137] Memory required for data: 525203456 I0408 19:18:26.109580 5931 layer_factory.hpp:77] Creating layer pool1 I0408 19:18:26.109586 5931 net.cpp:84] Creating Layer pool1 I0408 19:18:26.109589 5931 net.cpp:406] pool1 <- norm1 I0408 19:18:26.109594 5931 net.cpp:380] pool1 -> pool1 I0408 19:18:26.109624 5931 net.cpp:122] Setting up pool1 I0408 19:18:26.109629 5931 net.cpp:129] Top shape: 128 96 27 27 (8957952) I0408 19:18:26.109632 5931 net.cpp:137] Memory required for data: 561035264 I0408 19:18:26.109634 5931 layer_factory.hpp:77] Creating layer conv2 I0408 19:18:26.109643 5931 net.cpp:84] Creating Layer conv2 I0408 19:18:26.109647 5931 net.cpp:406] conv2 <- pool1 I0408 19:18:26.109650 5931 net.cpp:380] conv2 -> conv2 I0408 19:18:26.117425 5931 net.cpp:122] Setting up conv2 I0408 19:18:26.117436 5931 net.cpp:129] Top shape: 128 256 27 27 (23887872) I0408 19:18:26.117439 5931 net.cpp:137] Memory required for data: 656586752 I0408 19:18:26.117447 5931 layer_factory.hpp:77] Creating layer relu2 I0408 19:18:26.117453 5931 net.cpp:84] Creating Layer relu2 I0408 19:18:26.117456 5931 net.cpp:406] relu2 <- conv2 I0408 19:18:26.117460 5931 net.cpp:367] relu2 -> conv2 (in-place) I0408 19:18:26.118005 5931 net.cpp:122] Setting up relu2 I0408 19:18:26.118014 5931 net.cpp:129] Top shape: 128 256 27 27 (23887872) I0408 19:18:26.118017 5931 net.cpp:137] Memory required for data: 752138240 I0408 19:18:26.118021 5931 layer_factory.hpp:77] Creating layer norm2 I0408 19:18:26.118027 5931 net.cpp:84] Creating Layer norm2 I0408 19:18:26.118031 5931 net.cpp:406] norm2 <- conv2 I0408 19:18:26.118034 5931 net.cpp:380] norm2 -> norm2 I0408 19:18:26.118404 5931 net.cpp:122] Setting up norm2 I0408 19:18:26.118413 5931 net.cpp:129] Top shape: 128 256 27 27 (23887872) I0408 19:18:26.118415 5931 net.cpp:137] Memory required for data: 847689728 I0408 19:18:26.118418 5931 layer_factory.hpp:77] Creating layer pool2 I0408 19:18:26.118427 5931 net.cpp:84] Creating Layer pool2 I0408 19:18:26.118429 5931 net.cpp:406] pool2 <- norm2 I0408 19:18:26.118433 5931 net.cpp:380] pool2 -> pool2 I0408 19:18:26.118459 5931 net.cpp:122] Setting up pool2 I0408 19:18:26.118464 5931 net.cpp:129] Top shape: 128 256 13 13 (5537792) I0408 19:18:26.118466 5931 net.cpp:137] Memory required for data: 869840896 I0408 19:18:26.118469 5931 layer_factory.hpp:77] Creating layer conv3 I0408 19:18:26.118477 5931 net.cpp:84] Creating Layer conv3 I0408 19:18:26.118480 5931 net.cpp:406] conv3 <- pool2 I0408 19:18:26.118484 5931 net.cpp:380] conv3 -> conv3 I0408 19:18:26.128641 5931 net.cpp:122] Setting up conv3 I0408 19:18:26.128651 5931 net.cpp:129] Top shape: 128 384 13 13 (8306688) I0408 19:18:26.128654 5931 net.cpp:137] Memory required for data: 903067648 I0408 19:18:26.128662 5931 layer_factory.hpp:77] Creating layer relu3 I0408 19:18:26.128667 5931 net.cpp:84] Creating Layer relu3 I0408 19:18:26.128670 5931 net.cpp:406] relu3 <- conv3 I0408 19:18:26.128676 5931 net.cpp:367] relu3 -> conv3 (in-place) I0408 19:18:26.129232 5931 net.cpp:122] Setting up relu3 I0408 19:18:26.129243 5931 net.cpp:129] Top shape: 128 384 13 13 (8306688) I0408 19:18:26.129245 5931 net.cpp:137] Memory required for data: 936294400 I0408 19:18:26.129248 5931 layer_factory.hpp:77] Creating layer conv4 I0408 19:18:26.129257 5931 net.cpp:84] Creating Layer conv4 I0408 19:18:26.129261 5931 net.cpp:406] conv4 <- conv3 I0408 19:18:26.129266 5931 net.cpp:380] conv4 -> conv4 I0408 19:18:26.140365 5931 net.cpp:122] Setting up conv4 I0408 19:18:26.140377 5931 net.cpp:129] Top shape: 128 384 13 13 (8306688) I0408 19:18:26.140380 5931 net.cpp:137] Memory required for data: 969521152 I0408 19:18:26.140386 5931 layer_factory.hpp:77] Creating layer relu4 I0408 19:18:26.140393 5931 net.cpp:84] Creating Layer relu4 I0408 19:18:26.140413 5931 net.cpp:406] relu4 <- conv4 I0408 19:18:26.140419 5931 net.cpp:367] relu4 -> conv4 (in-place) I0408 19:18:26.140949 5931 net.cpp:122] Setting up relu4 I0408 19:18:26.140956 5931 net.cpp:129] Top shape: 128 384 13 13 (8306688) I0408 19:18:26.140959 5931 net.cpp:137] Memory required for data: 1002747904 I0408 19:18:26.140962 5931 layer_factory.hpp:77] Creating layer conv5 I0408 19:18:26.140971 5931 net.cpp:84] Creating Layer conv5 I0408 19:18:26.140974 5931 net.cpp:406] conv5 <- conv4 I0408 19:18:26.140980 5931 net.cpp:380] conv5 -> conv5 I0408 19:18:26.150013 5931 net.cpp:122] Setting up conv5 I0408 19:18:26.150025 5931 net.cpp:129] Top shape: 128 256 13 13 (5537792) I0408 19:18:26.150028 5931 net.cpp:137] Memory required for data: 1024899072 I0408 19:18:26.150038 5931 layer_factory.hpp:77] Creating layer relu5 I0408 19:18:26.150043 5931 net.cpp:84] Creating Layer relu5 I0408 19:18:26.150046 5931 net.cpp:406] relu5 <- conv5 I0408 19:18:26.150053 5931 net.cpp:367] relu5 -> conv5 (in-place) I0408 19:18:26.150632 5931 net.cpp:122] Setting up relu5 I0408 19:18:26.150642 5931 net.cpp:129] Top shape: 128 256 13 13 (5537792) I0408 19:18:26.150645 5931 net.cpp:137] Memory required for data: 1047050240 I0408 19:18:26.150648 5931 layer_factory.hpp:77] Creating layer pool5 I0408 19:18:26.150653 5931 net.cpp:84] Creating Layer pool5 I0408 19:18:26.150656 5931 net.cpp:406] pool5 <- conv5 I0408 19:18:26.150663 5931 net.cpp:380] pool5 -> pool5 I0408 19:18:26.150697 5931 net.cpp:122] Setting up pool5 I0408 19:18:26.150702 5931 net.cpp:129] Top shape: 128 256 6 6 (1179648) I0408 19:18:26.150704 5931 net.cpp:137] Memory required for data: 1051768832 I0408 19:18:26.150707 5931 layer_factory.hpp:77] Creating layer fc6 I0408 19:18:26.150717 5931 net.cpp:84] Creating Layer fc6 I0408 19:18:26.150720 5931 net.cpp:406] fc6 <- pool5 I0408 19:18:26.150725 5931 net.cpp:380] fc6 -> fc6 I0408 19:18:26.492550 5931 net.cpp:122] Setting up fc6 I0408 19:18:26.492571 5931 net.cpp:129] Top shape: 128 4096 (524288) I0408 19:18:26.492574 5931 net.cpp:137] Memory required for data: 1053865984 I0408 19:18:26.492583 5931 layer_factory.hpp:77] Creating layer relu6 I0408 19:18:26.492590 5931 net.cpp:84] Creating Layer relu6 I0408 19:18:26.492594 5931 net.cpp:406] relu6 <- fc6 I0408 19:18:26.492599 5931 net.cpp:367] relu6 -> fc6 (in-place) I0408 19:18:26.493383 5931 net.cpp:122] Setting up relu6 I0408 19:18:26.493393 5931 net.cpp:129] Top shape: 128 4096 (524288) I0408 19:18:26.493396 5931 net.cpp:137] Memory required for data: 1055963136 I0408 19:18:26.493399 5931 layer_factory.hpp:77] Creating layer drop6 I0408 19:18:26.493405 5931 net.cpp:84] Creating Layer drop6 I0408 19:18:26.493408 5931 net.cpp:406] drop6 <- fc6 I0408 19:18:26.493412 5931 net.cpp:367] drop6 -> fc6 (in-place) I0408 19:18:26.493438 5931 net.cpp:122] Setting up drop6 I0408 19:18:26.493443 5931 net.cpp:129] Top shape: 128 4096 (524288) I0408 19:18:26.493444 5931 net.cpp:137] Memory required for data: 1058060288 I0408 19:18:26.493448 5931 layer_factory.hpp:77] Creating layer fc7 I0408 19:18:26.493454 5931 net.cpp:84] Creating Layer fc7 I0408 19:18:26.493458 5931 net.cpp:406] fc7 <- fc6 I0408 19:18:26.493461 5931 net.cpp:380] fc7 -> fc7 I0408 19:18:26.644878 5931 net.cpp:122] Setting up fc7 I0408 19:18:26.644897 5931 net.cpp:129] Top shape: 128 4096 (524288) I0408 19:18:26.644901 5931 net.cpp:137] Memory required for data: 1060157440 I0408 19:18:26.644909 5931 layer_factory.hpp:77] Creating layer relu7 I0408 19:18:26.644917 5931 net.cpp:84] Creating Layer relu7 I0408 19:18:26.644920 5931 net.cpp:406] relu7 <- fc7 I0408 19:18:26.644928 5931 net.cpp:367] relu7 -> fc7 (in-place) I0408 19:18:26.645399 5931 net.cpp:122] Setting up relu7 I0408 19:18:26.645408 5931 net.cpp:129] Top shape: 128 4096 (524288) I0408 19:18:26.645411 5931 net.cpp:137] Memory required for data: 1062254592 I0408 19:18:26.645413 5931 layer_factory.hpp:77] Creating layer drop7 I0408 19:18:26.645419 5931 net.cpp:84] Creating Layer drop7 I0408 19:18:26.645442 5931 net.cpp:406] drop7 <- fc7 I0408 19:18:26.645447 5931 net.cpp:367] drop7 -> fc7 (in-place) I0408 19:18:26.645468 5931 net.cpp:122] Setting up drop7 I0408 19:18:26.645474 5931 net.cpp:129] Top shape: 128 4096 (524288) I0408 19:18:26.645478 5931 net.cpp:137] Memory required for data: 1064351744 I0408 19:18:26.645479 5931 layer_factory.hpp:77] Creating layer fc8 I0408 19:18:26.645485 5931 net.cpp:84] Creating Layer fc8 I0408 19:18:26.645488 5931 net.cpp:406] fc8 <- fc7 I0408 19:18:26.645493 5931 net.cpp:380] fc8 -> fc8 I0408 19:18:26.652873 5931 net.cpp:122] Setting up fc8 I0408 19:18:26.652881 5931 net.cpp:129] Top shape: 128 196 (25088) I0408 19:18:26.652884 5931 net.cpp:137] Memory required for data: 1064452096 I0408 19:18:26.652889 5931 layer_factory.hpp:77] Creating layer loss I0408 19:18:26.652894 5931 net.cpp:84] Creating Layer loss I0408 19:18:26.652897 5931 net.cpp:406] loss <- fc8 I0408 19:18:26.652900 5931 net.cpp:406] loss <- label I0408 19:18:26.652906 5931 net.cpp:380] loss -> loss I0408 19:18:26.652915 5931 layer_factory.hpp:77] Creating layer loss I0408 19:18:26.653544 5931 net.cpp:122] Setting up loss I0408 19:18:26.653553 5931 net.cpp:129] Top shape: (1) I0408 19:18:26.653554 5931 net.cpp:132] with loss weight 1 I0408 19:18:26.653573 5931 net.cpp:137] Memory required for data: 1064452100 I0408 19:18:26.653575 5931 net.cpp:198] loss needs backward computation. I0408 19:18:26.653581 5931 net.cpp:198] fc8 needs backward computation. I0408 19:18:26.653584 5931 net.cpp:198] drop7 needs backward computation. I0408 19:18:26.653586 5931 net.cpp:198] relu7 needs backward computation. I0408 19:18:26.653589 5931 net.cpp:198] fc7 needs backward computation. I0408 19:18:26.653591 5931 net.cpp:198] drop6 needs backward computation. I0408 19:18:26.653594 5931 net.cpp:198] relu6 needs backward computation. I0408 19:18:26.653596 5931 net.cpp:198] fc6 needs backward computation. I0408 19:18:26.653599 5931 net.cpp:198] pool5 needs backward computation. I0408 19:18:26.653601 5931 net.cpp:198] relu5 needs backward computation. I0408 19:18:26.653604 5931 net.cpp:198] conv5 needs backward computation. I0408 19:18:26.653607 5931 net.cpp:198] relu4 needs backward computation. I0408 19:18:26.653609 5931 net.cpp:198] conv4 needs backward computation. I0408 19:18:26.653612 5931 net.cpp:198] relu3 needs backward computation. I0408 19:18:26.653615 5931 net.cpp:198] conv3 needs backward computation. I0408 19:18:26.653617 5931 net.cpp:198] pool2 needs backward computation. I0408 19:18:26.653620 5931 net.cpp:198] norm2 needs backward computation. I0408 19:18:26.653623 5931 net.cpp:198] relu2 needs backward computation. I0408 19:18:26.653625 5931 net.cpp:198] conv2 needs backward computation. I0408 19:18:26.653628 5931 net.cpp:198] pool1 needs backward computation. I0408 19:18:26.653632 5931 net.cpp:198] norm1 needs backward computation. I0408 19:18:26.653635 5931 net.cpp:198] relu1 needs backward computation. I0408 19:18:26.653637 5931 net.cpp:198] conv1 needs backward computation. I0408 19:18:26.653641 5931 net.cpp:200] train-data does not need backward computation. I0408 19:18:26.653643 5931 net.cpp:242] This network produces output loss I0408 19:18:26.653656 5931 net.cpp:255] Network initialization done. I0408 19:18:26.654724 5931 solver.cpp:172] Creating test net (#0) specified by net file: train_val.prototxt I0408 19:18:26.654752 5931 net.cpp:294] The NetState phase (1) differed from the phase (0) specified by a rule in layer train-data I0408 19:18:26.654878 5931 net.cpp:51] Initializing net from parameters: state { phase: TEST } layer { name: "val-data" type: "Data" top: "data" top: "label" include { phase: TEST } transform_param { crop_size: 227 mean_file: "/mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/mean.binaryproto" } data_param { source: "/mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/val_db" batch_size: 32 backend: LMDB } } layer { name: "conv1" type: "Convolution" bottom: "data" top: "conv1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 96 kernel_size: 11 stride: 4 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0 } } } layer { name: "relu1" type: "ReLU" bottom: "conv1" top: "conv1" } layer { name: "norm1" type: "LRN" bottom: "conv1" top: "norm1" lrn_param { local_size: 5 alpha: 0.0001 beta: 0.75 } } layer { name: "pool1" type: "Pooling" bottom: "norm1" top: "pool1" pooling_param { pool: MAX kernel_size: 3 stride: 2 } } layer { name: "conv2" type: "Convolution" bottom: "pool1" top: "conv2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 pad: 2 kernel_size: 5 group: 2 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0.1 } } } layer { name: "relu2" type: "ReLU" bottom: "conv2" top: "conv2" } layer { name: "norm2" type: "LRN" bottom: "conv2" top: "norm2" lrn_param { local_size: 5 alpha: 0.0001 beta: 0.75 } } layer { name: "pool2" type: "Pooling" bottom: "norm2" top: "pool2" pooling_param { pool: MAX kernel_size: 3 stride: 2 } } layer { name: "conv3" type: "Convolution" bottom: "pool2" top: "conv3" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 384 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0 } } } layer { name: "relu3" type: "ReLU" bottom: "conv3" top: "conv3" } layer { name: "conv4" type: "Convolution" bottom: "conv3" top: "conv4" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 384 pad: 1 kernel_size: 3 group: 2 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0.1 } } } layer { name: "relu4" type: "ReLU" bottom: "conv4" top: "conv4" } layer { name: "conv5" type: "Convolution" bottom: "conv4" top: "conv5" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 pad: 1 kernel_size: 3 group: 2 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0.1 } } } layer { name: "relu5" type: "ReLU" bottom: "conv5" top: "conv5" } layer { name: "pool5" type: "Pooling" bottom: "conv5" top: "pool5" pooling_param { pool: MAX kernel_size: 3 stride: 2 } } layer { name: "fc6" type: "InnerProduct" bottom: "pool5" top: "fc6" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } inner_product_param { num_output: 4096 weight_filler { type: "gaussian" std: 0.005 } bias_filler { type: "constant" value: 0.1 } } } layer { name: "relu6" type: "ReLU" bottom: "fc6" top: "fc6" } layer { name: "drop6" type: "Dropout" bottom: "fc6" top: "fc6" dropout_param { dropout_ratio: 0.5 } } layer { name: "fc7" type: "InnerProduct" bottom: "fc6" top: "fc7" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } inner_product_param { num_output: 4096 weight_filler { type: "gaussian" std: 0.005 } bias_filler { type: "constant" value: 0.1 } } } layer { name: "relu7" type: "ReLU" bottom: "fc7" top: "fc7" } layer { name: "drop7" type: "Dropout" bottom: "fc7" top: "fc7" dropout_param { dropout_ratio: 0.5 } } layer { name: "fc8" type: "InnerProduct" bottom: "fc7" top: "fc8" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } inner_product_param { num_output: 196 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0 } } } layer { name: "accuracy" type: "Accuracy" bottom: "fc8" bottom: "label" top: "accuracy" include { phase: TEST } } layer { name: "loss" type: "SoftmaxWithLoss" bottom: "fc8" bottom: "label" top: "loss" } I0408 19:18:26.654975 5931 layer_factory.hpp:77] Creating layer val-data I0408 19:18:26.679214 5931 db_lmdb.cpp:35] Opened lmdb /mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/val_db I0408 19:18:26.682032 5931 net.cpp:84] Creating Layer val-data I0408 19:18:26.682065 5931 net.cpp:380] val-data -> data I0408 19:18:26.682086 5931 net.cpp:380] val-data -> label I0408 19:18:26.682106 5931 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/mean.binaryproto I0408 19:18:26.689946 5931 data_layer.cpp:45] output data size: 32,3,227,227 I0408 19:18:26.726176 5931 net.cpp:122] Setting up val-data I0408 19:18:26.726198 5931 net.cpp:129] Top shape: 32 3 227 227 (4946784) I0408 19:18:26.726202 5931 net.cpp:129] Top shape: 32 (32) I0408 19:18:26.726204 5931 net.cpp:137] Memory required for data: 19787264 I0408 19:18:26.726210 5931 layer_factory.hpp:77] Creating layer label_val-data_1_split I0408 19:18:26.726222 5931 net.cpp:84] Creating Layer label_val-data_1_split I0408 19:18:26.726225 5931 net.cpp:406] label_val-data_1_split <- label I0408 19:18:26.726231 5931 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_0 I0408 19:18:26.726240 5931 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_1 I0408 19:18:26.726277 5931 net.cpp:122] Setting up label_val-data_1_split I0408 19:18:26.726282 5931 net.cpp:129] Top shape: 32 (32) I0408 19:18:26.726285 5931 net.cpp:129] Top shape: 32 (32) I0408 19:18:26.726287 5931 net.cpp:137] Memory required for data: 19787520 I0408 19:18:26.726289 5931 layer_factory.hpp:77] Creating layer conv1 I0408 19:18:26.726300 5931 net.cpp:84] Creating Layer conv1 I0408 19:18:26.726302 5931 net.cpp:406] conv1 <- data I0408 19:18:26.726307 5931 net.cpp:380] conv1 -> conv1 I0408 19:18:26.729629 5931 net.cpp:122] Setting up conv1 I0408 19:18:26.729640 5931 net.cpp:129] Top shape: 32 96 55 55 (9292800) I0408 19:18:26.729642 5931 net.cpp:137] Memory required for data: 56958720 I0408 19:18:26.729651 5931 layer_factory.hpp:77] Creating layer relu1 I0408 19:18:26.729657 5931 net.cpp:84] Creating Layer relu1 I0408 19:18:26.729660 5931 net.cpp:406] relu1 <- conv1 I0408 19:18:26.729665 5931 net.cpp:367] relu1 -> conv1 (in-place) I0408 19:18:26.729977 5931 net.cpp:122] Setting up relu1 I0408 19:18:26.729986 5931 net.cpp:129] Top shape: 32 96 55 55 (9292800) I0408 19:18:26.729990 5931 net.cpp:137] Memory required for data: 94129920 I0408 19:18:26.729992 5931 layer_factory.hpp:77] Creating layer norm1 I0408 19:18:26.730000 5931 net.cpp:84] Creating Layer norm1 I0408 19:18:26.730002 5931 net.cpp:406] norm1 <- conv1 I0408 19:18:26.730007 5931 net.cpp:380] norm1 -> norm1 I0408 19:18:26.730517 5931 net.cpp:122] Setting up norm1 I0408 19:18:26.730527 5931 net.cpp:129] Top shape: 32 96 55 55 (9292800) I0408 19:18:26.730530 5931 net.cpp:137] Memory required for data: 131301120 I0408 19:18:26.730532 5931 layer_factory.hpp:77] Creating layer pool1 I0408 19:18:26.730538 5931 net.cpp:84] Creating Layer pool1 I0408 19:18:26.730541 5931 net.cpp:406] pool1 <- norm1 I0408 19:18:26.730546 5931 net.cpp:380] pool1 -> pool1 I0408 19:18:26.730571 5931 net.cpp:122] Setting up pool1 I0408 19:18:26.730574 5931 net.cpp:129] Top shape: 32 96 27 27 (2239488) I0408 19:18:26.730577 5931 net.cpp:137] Memory required for data: 140259072 I0408 19:18:26.730579 5931 layer_factory.hpp:77] Creating layer conv2 I0408 19:18:26.730587 5931 net.cpp:84] Creating Layer conv2 I0408 19:18:26.730589 5931 net.cpp:406] conv2 <- pool1 I0408 19:18:26.730613 5931 net.cpp:380] conv2 -> conv2 I0408 19:18:26.740005 5931 net.cpp:122] Setting up conv2 I0408 19:18:26.740015 5931 net.cpp:129] Top shape: 32 256 27 27 (5971968) I0408 19:18:26.740018 5931 net.cpp:137] Memory required for data: 164146944 I0408 19:18:26.740026 5931 layer_factory.hpp:77] Creating layer relu2 I0408 19:18:26.740033 5931 net.cpp:84] Creating Layer relu2 I0408 19:18:26.740036 5931 net.cpp:406] relu2 <- conv2 I0408 19:18:26.740041 5931 net.cpp:367] relu2 -> conv2 (in-place) I0408 19:18:26.740607 5931 net.cpp:122] Setting up relu2 I0408 19:18:26.740615 5931 net.cpp:129] Top shape: 32 256 27 27 (5971968) I0408 19:18:26.740617 5931 net.cpp:137] Memory required for data: 188034816 I0408 19:18:26.740620 5931 layer_factory.hpp:77] Creating layer norm2 I0408 19:18:26.740628 5931 net.cpp:84] Creating Layer norm2 I0408 19:18:26.740631 5931 net.cpp:406] norm2 <- conv2 I0408 19:18:26.740638 5931 net.cpp:380] norm2 -> norm2 I0408 19:18:26.741400 5931 net.cpp:122] Setting up norm2 I0408 19:18:26.741410 5931 net.cpp:129] Top shape: 32 256 27 27 (5971968) I0408 19:18:26.741412 5931 net.cpp:137] Memory required for data: 211922688 I0408 19:18:26.741415 5931 layer_factory.hpp:77] Creating layer pool2 I0408 19:18:26.741421 5931 net.cpp:84] Creating Layer pool2 I0408 19:18:26.741425 5931 net.cpp:406] pool2 <- norm2 I0408 19:18:26.741428 5931 net.cpp:380] pool2 -> pool2 I0408 19:18:26.741456 5931 net.cpp:122] Setting up pool2 I0408 19:18:26.741461 5931 net.cpp:129] Top shape: 32 256 13 13 (1384448) I0408 19:18:26.741462 5931 net.cpp:137] Memory required for data: 217460480 I0408 19:18:26.741466 5931 layer_factory.hpp:77] Creating layer conv3 I0408 19:18:26.741474 5931 net.cpp:84] Creating Layer conv3 I0408 19:18:26.741477 5931 net.cpp:406] conv3 <- pool2 I0408 19:18:26.741482 5931 net.cpp:380] conv3 -> conv3 I0408 19:18:26.752660 5931 net.cpp:122] Setting up conv3 I0408 19:18:26.752671 5931 net.cpp:129] Top shape: 32 384 13 13 (2076672) I0408 19:18:26.752674 5931 net.cpp:137] Memory required for data: 225767168 I0408 19:18:26.752686 5931 layer_factory.hpp:77] Creating layer relu3 I0408 19:18:26.752691 5931 net.cpp:84] Creating Layer relu3 I0408 19:18:26.752694 5931 net.cpp:406] relu3 <- conv3 I0408 19:18:26.752699 5931 net.cpp:367] relu3 -> conv3 (in-place) I0408 19:18:26.753315 5931 net.cpp:122] Setting up relu3 I0408 19:18:26.753324 5931 net.cpp:129] Top shape: 32 384 13 13 (2076672) I0408 19:18:26.753327 5931 net.cpp:137] Memory required for data: 234073856 I0408 19:18:26.753330 5931 layer_factory.hpp:77] Creating layer conv4 I0408 19:18:26.753340 5931 net.cpp:84] Creating Layer conv4 I0408 19:18:26.753342 5931 net.cpp:406] conv4 <- conv3 I0408 19:18:26.753350 5931 net.cpp:380] conv4 -> conv4 I0408 19:18:26.763305 5931 net.cpp:122] Setting up conv4 I0408 19:18:26.763316 5931 net.cpp:129] Top shape: 32 384 13 13 (2076672) I0408 19:18:26.763319 5931 net.cpp:137] Memory required for data: 242380544 I0408 19:18:26.763325 5931 layer_factory.hpp:77] Creating layer relu4 I0408 19:18:26.763331 5931 net.cpp:84] Creating Layer relu4 I0408 19:18:26.763334 5931 net.cpp:406] relu4 <- conv4 I0408 19:18:26.763340 5931 net.cpp:367] relu4 -> conv4 (in-place) I0408 19:18:26.763721 5931 net.cpp:122] Setting up relu4 I0408 19:18:26.763729 5931 net.cpp:129] Top shape: 32 384 13 13 (2076672) I0408 19:18:26.763732 5931 net.cpp:137] Memory required for data: 250687232 I0408 19:18:26.763736 5931 layer_factory.hpp:77] Creating layer conv5 I0408 19:18:26.763747 5931 net.cpp:84] Creating Layer conv5 I0408 19:18:26.763751 5931 net.cpp:406] conv5 <- conv4 I0408 19:18:26.763756 5931 net.cpp:380] conv5 -> conv5 I0408 19:18:26.772959 5931 net.cpp:122] Setting up conv5 I0408 19:18:26.772970 5931 net.cpp:129] Top shape: 32 256 13 13 (1384448) I0408 19:18:26.772974 5931 net.cpp:137] Memory required for data: 256225024 I0408 19:18:26.772984 5931 layer_factory.hpp:77] Creating layer relu5 I0408 19:18:26.772989 5931 net.cpp:84] Creating Layer relu5 I0408 19:18:26.773010 5931 net.cpp:406] relu5 <- conv5 I0408 19:18:26.773015 5931 net.cpp:367] relu5 -> conv5 (in-place) I0408 19:18:26.773561 5931 net.cpp:122] Setting up relu5 I0408 19:18:26.773571 5931 net.cpp:129] Top shape: 32 256 13 13 (1384448) I0408 19:18:26.773573 5931 net.cpp:137] Memory required for data: 261762816 I0408 19:18:26.773576 5931 layer_factory.hpp:77] Creating layer pool5 I0408 19:18:26.773586 5931 net.cpp:84] Creating Layer pool5 I0408 19:18:26.773589 5931 net.cpp:406] pool5 <- conv5 I0408 19:18:26.773594 5931 net.cpp:380] pool5 -> pool5 I0408 19:18:26.773627 5931 net.cpp:122] Setting up pool5 I0408 19:18:26.773633 5931 net.cpp:129] Top shape: 32 256 6 6 (294912) I0408 19:18:26.773635 5931 net.cpp:137] Memory required for data: 262942464 I0408 19:18:26.773638 5931 layer_factory.hpp:77] Creating layer fc6 I0408 19:18:26.773643 5931 net.cpp:84] Creating Layer fc6 I0408 19:18:26.773646 5931 net.cpp:406] fc6 <- pool5 I0408 19:18:26.773651 5931 net.cpp:380] fc6 -> fc6 I0408 19:18:27.114794 5931 net.cpp:122] Setting up fc6 I0408 19:18:27.114814 5931 net.cpp:129] Top shape: 32 4096 (131072) I0408 19:18:27.114816 5931 net.cpp:137] Memory required for data: 263466752 I0408 19:18:27.114825 5931 layer_factory.hpp:77] Creating layer relu6 I0408 19:18:27.114833 5931 net.cpp:84] Creating Layer relu6 I0408 19:18:27.114837 5931 net.cpp:406] relu6 <- fc6 I0408 19:18:27.114842 5931 net.cpp:367] relu6 -> fc6 (in-place) I0408 19:18:27.115625 5931 net.cpp:122] Setting up relu6 I0408 19:18:27.115634 5931 net.cpp:129] Top shape: 32 4096 (131072) I0408 19:18:27.115638 5931 net.cpp:137] Memory required for data: 263991040 I0408 19:18:27.115640 5931 layer_factory.hpp:77] Creating layer drop6 I0408 19:18:27.115648 5931 net.cpp:84] Creating Layer drop6 I0408 19:18:27.115650 5931 net.cpp:406] drop6 <- fc6 I0408 19:18:27.115655 5931 net.cpp:367] drop6 -> fc6 (in-place) I0408 19:18:27.115677 5931 net.cpp:122] Setting up drop6 I0408 19:18:27.115681 5931 net.cpp:129] Top shape: 32 4096 (131072) I0408 19:18:27.115684 5931 net.cpp:137] Memory required for data: 264515328 I0408 19:18:27.115686 5931 layer_factory.hpp:77] Creating layer fc7 I0408 19:18:27.115694 5931 net.cpp:84] Creating Layer fc7 I0408 19:18:27.115696 5931 net.cpp:406] fc7 <- fc6 I0408 19:18:27.115700 5931 net.cpp:380] fc7 -> fc7 I0408 19:18:27.265542 5931 net.cpp:122] Setting up fc7 I0408 19:18:27.265564 5931 net.cpp:129] Top shape: 32 4096 (131072) I0408 19:18:27.265568 5931 net.cpp:137] Memory required for data: 265039616 I0408 19:18:27.265575 5931 layer_factory.hpp:77] Creating layer relu7 I0408 19:18:27.265583 5931 net.cpp:84] Creating Layer relu7 I0408 19:18:27.265588 5931 net.cpp:406] relu7 <- fc7 I0408 19:18:27.265594 5931 net.cpp:367] relu7 -> fc7 (in-place) I0408 19:18:27.266093 5931 net.cpp:122] Setting up relu7 I0408 19:18:27.266101 5931 net.cpp:129] Top shape: 32 4096 (131072) I0408 19:18:27.266103 5931 net.cpp:137] Memory required for data: 265563904 I0408 19:18:27.266106 5931 layer_factory.hpp:77] Creating layer drop7 I0408 19:18:27.266113 5931 net.cpp:84] Creating Layer drop7 I0408 19:18:27.266115 5931 net.cpp:406] drop7 <- fc7 I0408 19:18:27.266121 5931 net.cpp:367] drop7 -> fc7 (in-place) I0408 19:18:27.266142 5931 net.cpp:122] Setting up drop7 I0408 19:18:27.266147 5931 net.cpp:129] Top shape: 32 4096 (131072) I0408 19:18:27.266149 5931 net.cpp:137] Memory required for data: 266088192 I0408 19:18:27.266152 5931 layer_factory.hpp:77] Creating layer fc8 I0408 19:18:27.266160 5931 net.cpp:84] Creating Layer fc8 I0408 19:18:27.266162 5931 net.cpp:406] fc8 <- fc7 I0408 19:18:27.266167 5931 net.cpp:380] fc8 -> fc8 I0408 19:18:27.273520 5931 net.cpp:122] Setting up fc8 I0408 19:18:27.273530 5931 net.cpp:129] Top shape: 32 196 (6272) I0408 19:18:27.273532 5931 net.cpp:137] Memory required for data: 266113280 I0408 19:18:27.273537 5931 layer_factory.hpp:77] Creating layer fc8_fc8_0_split I0408 19:18:27.273542 5931 net.cpp:84] Creating Layer fc8_fc8_0_split I0408 19:18:27.273547 5931 net.cpp:406] fc8_fc8_0_split <- fc8 I0408 19:18:27.273569 5931 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_0 I0408 19:18:27.273576 5931 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_1 I0408 19:18:27.273602 5931 net.cpp:122] Setting up fc8_fc8_0_split I0408 19:18:27.273607 5931 net.cpp:129] Top shape: 32 196 (6272) I0408 19:18:27.273609 5931 net.cpp:129] Top shape: 32 196 (6272) I0408 19:18:27.273612 5931 net.cpp:137] Memory required for data: 266163456 I0408 19:18:27.273614 5931 layer_factory.hpp:77] Creating layer accuracy I0408 19:18:27.273620 5931 net.cpp:84] Creating Layer accuracy I0408 19:18:27.273622 5931 net.cpp:406] accuracy <- fc8_fc8_0_split_0 I0408 19:18:27.273627 5931 net.cpp:406] accuracy <- label_val-data_1_split_0 I0408 19:18:27.273631 5931 net.cpp:380] accuracy -> accuracy I0408 19:18:27.273638 5931 net.cpp:122] Setting up accuracy I0408 19:18:27.273640 5931 net.cpp:129] Top shape: (1) I0408 19:18:27.273643 5931 net.cpp:137] Memory required for data: 266163460 I0408 19:18:27.273645 5931 layer_factory.hpp:77] Creating layer loss I0408 19:18:27.273649 5931 net.cpp:84] Creating Layer loss I0408 19:18:27.273651 5931 net.cpp:406] loss <- fc8_fc8_0_split_1 I0408 19:18:27.273655 5931 net.cpp:406] loss <- label_val-data_1_split_1 I0408 19:18:27.273658 5931 net.cpp:380] loss -> loss I0408 19:18:27.273664 5931 layer_factory.hpp:77] Creating layer loss I0408 19:18:27.274297 5931 net.cpp:122] Setting up loss I0408 19:18:27.274305 5931 net.cpp:129] Top shape: (1) I0408 19:18:27.274308 5931 net.cpp:132] with loss weight 1 I0408 19:18:27.274317 5931 net.cpp:137] Memory required for data: 266163464 I0408 19:18:27.274320 5931 net.cpp:198] loss needs backward computation. I0408 19:18:27.274324 5931 net.cpp:200] accuracy does not need backward computation. I0408 19:18:27.274327 5931 net.cpp:198] fc8_fc8_0_split needs backward computation. I0408 19:18:27.274330 5931 net.cpp:198] fc8 needs backward computation. I0408 19:18:27.274333 5931 net.cpp:198] drop7 needs backward computation. I0408 19:18:27.274335 5931 net.cpp:198] relu7 needs backward computation. I0408 19:18:27.274338 5931 net.cpp:198] fc7 needs backward computation. I0408 19:18:27.274340 5931 net.cpp:198] drop6 needs backward computation. I0408 19:18:27.274343 5931 net.cpp:198] relu6 needs backward computation. I0408 19:18:27.274344 5931 net.cpp:198] fc6 needs backward computation. I0408 19:18:27.274348 5931 net.cpp:198] pool5 needs backward computation. I0408 19:18:27.274350 5931 net.cpp:198] relu5 needs backward computation. I0408 19:18:27.274353 5931 net.cpp:198] conv5 needs backward computation. I0408 19:18:27.274355 5931 net.cpp:198] relu4 needs backward computation. I0408 19:18:27.274358 5931 net.cpp:198] conv4 needs backward computation. I0408 19:18:27.274360 5931 net.cpp:198] relu3 needs backward computation. I0408 19:18:27.274363 5931 net.cpp:198] conv3 needs backward computation. I0408 19:18:27.274366 5931 net.cpp:198] pool2 needs backward computation. I0408 19:18:27.274369 5931 net.cpp:198] norm2 needs backward computation. I0408 19:18:27.274371 5931 net.cpp:198] relu2 needs backward computation. I0408 19:18:27.274374 5931 net.cpp:198] conv2 needs backward computation. I0408 19:18:27.274376 5931 net.cpp:198] pool1 needs backward computation. I0408 19:18:27.274379 5931 net.cpp:198] norm1 needs backward computation. I0408 19:18:27.274381 5931 net.cpp:198] relu1 needs backward computation. I0408 19:18:27.274384 5931 net.cpp:198] conv1 needs backward computation. I0408 19:18:27.274389 5931 net.cpp:200] label_val-data_1_split does not need backward computation. I0408 19:18:27.274392 5931 net.cpp:200] val-data does not need backward computation. I0408 19:18:27.274394 5931 net.cpp:242] This network produces output accuracy I0408 19:18:27.274397 5931 net.cpp:242] This network produces output loss I0408 19:18:27.274412 5931 net.cpp:255] Network initialization done. I0408 19:18:27.274475 5931 solver.cpp:56] Solver scaffolding done. I0408 19:18:27.274785 5931 caffe.cpp:248] Starting Optimization I0408 19:18:27.274792 5931 solver.cpp:272] Solving I0408 19:18:27.274803 5931 solver.cpp:273] Learning Rate Policy: sigmoid I0408 19:18:27.276445 5931 solver.cpp:330] Iteration 0, Testing net (#0) I0408 19:18:27.276455 5931 net.cpp:676] Ignoring source layer train-data I0408 19:18:27.361034 5931 blocking_queue.cpp:49] Waiting for data I0408 19:18:31.480471 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:18:31.524021 5931 solver.cpp:397] Test net output #0: accuracy = 0.00551471 I0408 19:18:31.524065 5931 solver.cpp:397] Test net output #1: loss = 5.28176 (* 1 = 5.28176 loss) I0408 19:18:31.622799 5931 solver.cpp:218] Iteration 0 (0 iter/s, 4.34797s/12 iters), loss = 5.28295 I0408 19:18:31.624333 5931 solver.cpp:237] Train net output #0: loss = 5.28295 (* 1 = 5.28295 loss) I0408 19:18:31.624364 5931 sgd_solver.cpp:105] Iteration 0, lr = 0.00999447 I0408 19:18:35.279364 5931 solver.cpp:218] Iteration 12 (3.28315 iter/s, 3.65502s/12 iters), loss = 5.27251 I0408 19:18:35.279397 5931 solver.cpp:237] Train net output #0: loss = 5.27251 (* 1 = 5.27251 loss) I0408 19:18:35.279403 5931 sgd_solver.cpp:105] Iteration 12, lr = 0.00999437 I0408 19:18:40.076592 5931 solver.cpp:218] Iteration 24 (2.50147 iter/s, 4.79718s/12 iters), loss = 5.28835 I0408 19:18:40.076625 5931 solver.cpp:237] Train net output #0: loss = 5.28835 (* 1 = 5.28835 loss) I0408 19:18:40.076632 5931 sgd_solver.cpp:105] Iteration 24, lr = 0.00999427 I0408 19:18:44.938189 5931 solver.cpp:218] Iteration 36 (2.46835 iter/s, 4.86155s/12 iters), loss = 5.28317 I0408 19:18:44.938223 5931 solver.cpp:237] Train net output #0: loss = 5.28317 (* 1 = 5.28317 loss) I0408 19:18:44.938231 5931 sgd_solver.cpp:105] Iteration 36, lr = 0.00999417 I0408 19:18:49.746843 5931 solver.cpp:218] Iteration 48 (2.49552 iter/s, 4.80861s/12 iters), loss = 5.2705 I0408 19:18:49.746876 5931 solver.cpp:237] Train net output #0: loss = 5.2705 (* 1 = 5.2705 loss) I0408 19:18:49.746883 5931 sgd_solver.cpp:105] Iteration 48, lr = 0.00999407 I0408 19:18:54.571940 5931 solver.cpp:218] Iteration 60 (2.48702 iter/s, 4.82506s/12 iters), loss = 5.28049 I0408 19:18:54.572134 5931 solver.cpp:237] Train net output #0: loss = 5.28049 (* 1 = 5.28049 loss) I0408 19:18:54.572144 5931 sgd_solver.cpp:105] Iteration 60, lr = 0.00999396 I0408 19:18:59.412802 5931 solver.cpp:218] Iteration 72 (2.479 iter/s, 4.84066s/12 iters), loss = 5.29263 I0408 19:18:59.412834 5931 solver.cpp:237] Train net output #0: loss = 5.29263 (* 1 = 5.29263 loss) I0408 19:18:59.412842 5931 sgd_solver.cpp:105] Iteration 72, lr = 0.00999385 I0408 19:19:04.212456 5931 solver.cpp:218] Iteration 84 (2.5002 iter/s, 4.79961s/12 iters), loss = 5.30485 I0408 19:19:04.212488 5931 solver.cpp:237] Train net output #0: loss = 5.30485 (* 1 = 5.30485 loss) I0408 19:19:04.212496 5931 sgd_solver.cpp:105] Iteration 84, lr = 0.00999375 I0408 19:19:09.074090 5931 solver.cpp:218] Iteration 96 (2.46833 iter/s, 4.86159s/12 iters), loss = 5.28237 I0408 19:19:09.074122 5931 solver.cpp:237] Train net output #0: loss = 5.28237 (* 1 = 5.28237 loss) I0408 19:19:09.074129 5931 sgd_solver.cpp:105] Iteration 96, lr = 0.00999363 I0408 19:19:10.680305 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:19:10.966989 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_102.caffemodel I0408 19:19:14.918813 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_102.solverstate I0408 19:19:18.626622 5931 solver.cpp:330] Iteration 102, Testing net (#0) I0408 19:19:18.626652 5931 net.cpp:676] Ignoring source layer train-data I0408 19:19:23.331385 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:19:23.418673 5931 solver.cpp:397] Test net output #0: accuracy = 0.00551471 I0408 19:19:23.418720 5931 solver.cpp:397] Test net output #1: loss = 5.2855 (* 1 = 5.2855 loss) I0408 19:19:25.223667 5931 solver.cpp:218] Iteration 108 (0.743056 iter/s, 16.1495s/12 iters), loss = 5.29071 I0408 19:19:25.223839 5931 solver.cpp:237] Train net output #0: loss = 5.29071 (* 1 = 5.29071 loss) I0408 19:19:25.223847 5931 sgd_solver.cpp:105] Iteration 108, lr = 0.00999352 I0408 19:19:30.006146 5931 solver.cpp:218] Iteration 120 (2.50926 iter/s, 4.78229s/12 iters), loss = 5.26548 I0408 19:19:30.006178 5931 solver.cpp:237] Train net output #0: loss = 5.26548 (* 1 = 5.26548 loss) I0408 19:19:30.006186 5931 sgd_solver.cpp:105] Iteration 120, lr = 0.00999341 I0408 19:19:34.754223 5931 solver.cpp:218] Iteration 132 (2.52736 iter/s, 4.74803s/12 iters), loss = 5.28124 I0408 19:19:34.754256 5931 solver.cpp:237] Train net output #0: loss = 5.28124 (* 1 = 5.28124 loss) I0408 19:19:34.754262 5931 sgd_solver.cpp:105] Iteration 132, lr = 0.00999329 I0408 19:19:39.628005 5931 solver.cpp:218] Iteration 144 (2.46218 iter/s, 4.87374s/12 iters), loss = 5.25093 I0408 19:19:39.628041 5931 solver.cpp:237] Train net output #0: loss = 5.25093 (* 1 = 5.25093 loss) I0408 19:19:39.628048 5931 sgd_solver.cpp:105] Iteration 144, lr = 0.00999317 I0408 19:19:44.452972 5931 solver.cpp:218] Iteration 156 (2.48709 iter/s, 4.82492s/12 iters), loss = 5.20436 I0408 19:19:44.453006 5931 solver.cpp:237] Train net output #0: loss = 5.20436 (* 1 = 5.20436 loss) I0408 19:19:44.453013 5931 sgd_solver.cpp:105] Iteration 156, lr = 0.00999305 I0408 19:19:49.198729 5931 solver.cpp:218] Iteration 168 (2.5286 iter/s, 4.74571s/12 iters), loss = 5.24019 I0408 19:19:49.198760 5931 solver.cpp:237] Train net output #0: loss = 5.24019 (* 1 = 5.24019 loss) I0408 19:19:49.198768 5931 sgd_solver.cpp:105] Iteration 168, lr = 0.00999292 I0408 19:19:53.912940 5931 solver.cpp:218] Iteration 180 (2.54552 iter/s, 4.71416s/12 iters), loss = 5.29033 I0408 19:19:53.912971 5931 solver.cpp:237] Train net output #0: loss = 5.29033 (* 1 = 5.29033 loss) I0408 19:19:53.912979 5931 sgd_solver.cpp:105] Iteration 180, lr = 0.0099928 I0408 19:19:58.812431 5931 solver.cpp:218] Iteration 192 (2.44926 iter/s, 4.89944s/12 iters), loss = 5.28427 I0408 19:19:58.812494 5931 solver.cpp:237] Train net output #0: loss = 5.28427 (* 1 = 5.28427 loss) I0408 19:19:58.812501 5931 sgd_solver.cpp:105] Iteration 192, lr = 0.00999267 I0408 19:20:02.444236 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:20:03.076654 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_204.caffemodel I0408 19:20:06.254990 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_204.solverstate I0408 19:20:11.386488 5931 solver.cpp:330] Iteration 204, Testing net (#0) I0408 19:20:11.386515 5931 net.cpp:676] Ignoring source layer train-data I0408 19:20:16.055007 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:20:16.190394 5931 solver.cpp:397] Test net output #0: accuracy = 0.00796569 I0408 19:20:16.190443 5931 solver.cpp:397] Test net output #1: loss = 5.18632 (* 1 = 5.18632 loss) I0408 19:20:16.287061 5931 solver.cpp:218] Iteration 204 (0.686714 iter/s, 17.4745s/12 iters), loss = 5.23933 I0408 19:20:16.287097 5931 solver.cpp:237] Train net output #0: loss = 5.23933 (* 1 = 5.23933 loss) I0408 19:20:16.287104 5931 sgd_solver.cpp:105] Iteration 204, lr = 0.00999254 I0408 19:20:20.233229 5931 solver.cpp:218] Iteration 216 (3.04097 iter/s, 3.94611s/12 iters), loss = 5.22555 I0408 19:20:20.233261 5931 solver.cpp:237] Train net output #0: loss = 5.22555 (* 1 = 5.22555 loss) I0408 19:20:20.233269 5931 sgd_solver.cpp:105] Iteration 216, lr = 0.00999241 I0408 19:20:25.074522 5931 solver.cpp:218] Iteration 228 (2.4787 iter/s, 4.84124s/12 iters), loss = 5.16378 I0408 19:20:25.074554 5931 solver.cpp:237] Train net output #0: loss = 5.16378 (* 1 = 5.16378 loss) I0408 19:20:25.074561 5931 sgd_solver.cpp:105] Iteration 228, lr = 0.00999227 I0408 19:20:29.879467 5931 solver.cpp:218] Iteration 240 (2.49745 iter/s, 4.8049s/12 iters), loss = 5.17308 I0408 19:20:29.879568 5931 solver.cpp:237] Train net output #0: loss = 5.17308 (* 1 = 5.17308 loss) I0408 19:20:29.879577 5931 sgd_solver.cpp:105] Iteration 240, lr = 0.00999213 I0408 19:20:34.743187 5931 solver.cpp:218] Iteration 252 (2.46731 iter/s, 4.8636s/12 iters), loss = 5.17189 I0408 19:20:34.743230 5931 solver.cpp:237] Train net output #0: loss = 5.17189 (* 1 = 5.17189 loss) I0408 19:20:34.743238 5931 sgd_solver.cpp:105] Iteration 252, lr = 0.00999199 I0408 19:20:39.547736 5931 solver.cpp:218] Iteration 264 (2.49766 iter/s, 4.80449s/12 iters), loss = 5.16305 I0408 19:20:39.547771 5931 solver.cpp:237] Train net output #0: loss = 5.16305 (* 1 = 5.16305 loss) I0408 19:20:39.547778 5931 sgd_solver.cpp:105] Iteration 264, lr = 0.00999185 I0408 19:20:44.371253 5931 solver.cpp:218] Iteration 276 (2.48784 iter/s, 4.82347s/12 iters), loss = 5.10665 I0408 19:20:44.371286 5931 solver.cpp:237] Train net output #0: loss = 5.10665 (* 1 = 5.10665 loss) I0408 19:20:44.371294 5931 sgd_solver.cpp:105] Iteration 276, lr = 0.00999171 I0408 19:20:49.226384 5931 solver.cpp:218] Iteration 288 (2.47164 iter/s, 4.85508s/12 iters), loss = 5.14506 I0408 19:20:49.226415 5931 solver.cpp:237] Train net output #0: loss = 5.14506 (* 1 = 5.14506 loss) I0408 19:20:49.226423 5931 sgd_solver.cpp:105] Iteration 288, lr = 0.00999156 I0408 19:20:54.035475 5931 solver.cpp:218] Iteration 300 (2.4953 iter/s, 4.80904s/12 iters), loss = 5.10509 I0408 19:20:54.035509 5931 solver.cpp:237] Train net output #0: loss = 5.10509 (* 1 = 5.10509 loss) I0408 19:20:54.035517 5931 sgd_solver.cpp:105] Iteration 300, lr = 0.00999141 I0408 19:20:54.972564 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:20:55.973624 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_306.caffemodel I0408 19:20:59.798215 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_306.solverstate I0408 19:21:03.743253 5931 solver.cpp:330] Iteration 306, Testing net (#0) I0408 19:21:03.743312 5931 net.cpp:676] Ignoring source layer train-data I0408 19:21:08.346855 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:21:08.521420 5931 solver.cpp:397] Test net output #0: accuracy = 0.0104167 I0408 19:21:08.521468 5931 solver.cpp:397] Test net output #1: loss = 5.13568 (* 1 = 5.13568 loss) I0408 19:21:10.260635 5931 solver.cpp:218] Iteration 312 (0.739595 iter/s, 16.2251s/12 iters), loss = 5.16162 I0408 19:21:10.260668 5931 solver.cpp:237] Train net output #0: loss = 5.16162 (* 1 = 5.16162 loss) I0408 19:21:10.260676 5931 sgd_solver.cpp:105] Iteration 312, lr = 0.00999126 I0408 19:21:15.022380 5931 solver.cpp:218] Iteration 324 (2.52011 iter/s, 4.7617s/12 iters), loss = 5.08379 I0408 19:21:15.022413 5931 solver.cpp:237] Train net output #0: loss = 5.08379 (* 1 = 5.08379 loss) I0408 19:21:15.022420 5931 sgd_solver.cpp:105] Iteration 324, lr = 0.0099911 I0408 19:21:19.710613 5931 solver.cpp:218] Iteration 336 (2.55963 iter/s, 4.68818s/12 iters), loss = 5.11962 I0408 19:21:19.710644 5931 solver.cpp:237] Train net output #0: loss = 5.11962 (* 1 = 5.11962 loss) I0408 19:21:19.710652 5931 sgd_solver.cpp:105] Iteration 336, lr = 0.00999094 I0408 19:21:24.437058 5931 solver.cpp:218] Iteration 348 (2.53893 iter/s, 4.72639s/12 iters), loss = 5.13996 I0408 19:21:24.437091 5931 solver.cpp:237] Train net output #0: loss = 5.13996 (* 1 = 5.13996 loss) I0408 19:21:24.437098 5931 sgd_solver.cpp:105] Iteration 348, lr = 0.00999078 I0408 19:21:29.245507 5931 solver.cpp:218] Iteration 360 (2.49563 iter/s, 4.8084s/12 iters), loss = 5.07686 I0408 19:21:29.245541 5931 solver.cpp:237] Train net output #0: loss = 5.07686 (* 1 = 5.07686 loss) I0408 19:21:29.245548 5931 sgd_solver.cpp:105] Iteration 360, lr = 0.00999062 I0408 19:21:34.064729 5931 solver.cpp:218] Iteration 372 (2.49006 iter/s, 4.81917s/12 iters), loss = 5.18514 I0408 19:21:34.064841 5931 solver.cpp:237] Train net output #0: loss = 5.18514 (* 1 = 5.18514 loss) I0408 19:21:34.064849 5931 sgd_solver.cpp:105] Iteration 372, lr = 0.00999045 I0408 19:21:38.920732 5931 solver.cpp:218] Iteration 384 (2.47123 iter/s, 4.85588s/12 iters), loss = 5.086 I0408 19:21:38.920764 5931 solver.cpp:237] Train net output #0: loss = 5.086 (* 1 = 5.086 loss) I0408 19:21:38.920773 5931 sgd_solver.cpp:105] Iteration 384, lr = 0.00999028 I0408 19:21:43.717406 5931 solver.cpp:218] Iteration 396 (2.50176 iter/s, 4.79662s/12 iters), loss = 5.20769 I0408 19:21:43.717439 5931 solver.cpp:237] Train net output #0: loss = 5.20769 (* 1 = 5.20769 loss) I0408 19:21:43.717447 5931 sgd_solver.cpp:105] Iteration 396, lr = 0.00999011 I0408 19:21:46.675863 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:21:47.996348 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_408.caffemodel I0408 19:21:51.933189 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_408.solverstate I0408 19:21:55.538669 5931 solver.cpp:330] Iteration 408, Testing net (#0) I0408 19:21:55.538694 5931 net.cpp:676] Ignoring source layer train-data I0408 19:22:00.023007 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:22:00.220916 5931 solver.cpp:397] Test net output #0: accuracy = 0.0171569 I0408 19:22:00.220963 5931 solver.cpp:397] Test net output #1: loss = 5.0719 (* 1 = 5.0719 loss) I0408 19:22:00.317713 5931 solver.cpp:218] Iteration 408 (0.722881 iter/s, 16.6002s/12 iters), loss = 5.11971 I0408 19:22:00.317749 5931 solver.cpp:237] Train net output #0: loss = 5.11971 (* 1 = 5.11971 loss) I0408 19:22:00.317757 5931 sgd_solver.cpp:105] Iteration 408, lr = 0.00998993 I0408 19:22:04.270629 5931 solver.cpp:218] Iteration 420 (3.03577 iter/s, 3.95286s/12 iters), loss = 4.97193 I0408 19:22:04.270743 5931 solver.cpp:237] Train net output #0: loss = 4.97193 (* 1 = 4.97193 loss) I0408 19:22:04.270751 5931 sgd_solver.cpp:105] Iteration 420, lr = 0.00998975 I0408 19:22:09.049351 5931 solver.cpp:218] Iteration 432 (2.5112 iter/s, 4.77859s/12 iters), loss = 5.19053 I0408 19:22:09.049384 5931 solver.cpp:237] Train net output #0: loss = 5.19053 (* 1 = 5.19053 loss) I0408 19:22:09.049391 5931 sgd_solver.cpp:105] Iteration 432, lr = 0.00998957 I0408 19:22:13.900709 5931 solver.cpp:218] Iteration 444 (2.47356 iter/s, 4.8513s/12 iters), loss = 4.94635 I0408 19:22:13.900743 5931 solver.cpp:237] Train net output #0: loss = 4.94635 (* 1 = 4.94635 loss) I0408 19:22:13.900749 5931 sgd_solver.cpp:105] Iteration 444, lr = 0.00998939 I0408 19:22:18.695047 5931 solver.cpp:218] Iteration 456 (2.50298 iter/s, 4.79428s/12 iters), loss = 5.04596 I0408 19:22:18.695080 5931 solver.cpp:237] Train net output #0: loss = 5.04596 (* 1 = 5.04596 loss) I0408 19:22:18.695088 5931 sgd_solver.cpp:105] Iteration 456, lr = 0.0099892 I0408 19:22:23.567930 5931 solver.cpp:218] Iteration 468 (2.46263 iter/s, 4.87283s/12 iters), loss = 5.18983 I0408 19:22:23.567965 5931 solver.cpp:237] Train net output #0: loss = 5.18983 (* 1 = 5.18983 loss) I0408 19:22:23.567972 5931 sgd_solver.cpp:105] Iteration 468, lr = 0.009989 I0408 19:22:28.354305 5931 solver.cpp:218] Iteration 480 (2.50715 iter/s, 4.78632s/12 iters), loss = 5.14115 I0408 19:22:28.354339 5931 solver.cpp:237] Train net output #0: loss = 5.14115 (* 1 = 5.14115 loss) I0408 19:22:28.354346 5931 sgd_solver.cpp:105] Iteration 480, lr = 0.00998881 I0408 19:22:33.187806 5931 solver.cpp:218] Iteration 492 (2.4827 iter/s, 4.83345s/12 iters), loss = 4.98217 I0408 19:22:33.187840 5931 solver.cpp:237] Train net output #0: loss = 4.98217 (* 1 = 4.98217 loss) I0408 19:22:33.187849 5931 sgd_solver.cpp:105] Iteration 492, lr = 0.00998861 I0408 19:22:37.910627 5931 solver.cpp:218] Iteration 504 (2.54088 iter/s, 4.72277s/12 iters), loss = 5.09303 I0408 19:22:37.910740 5931 solver.cpp:237] Train net output #0: loss = 5.09303 (* 1 = 5.09303 loss) I0408 19:22:37.910749 5931 sgd_solver.cpp:105] Iteration 504, lr = 0.00998841 I0408 19:22:38.143754 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:22:39.814267 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_510.caffemodel I0408 19:22:42.878676 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_510.solverstate I0408 19:22:45.222062 5931 solver.cpp:330] Iteration 510, Testing net (#0) I0408 19:22:45.222088 5931 net.cpp:676] Ignoring source layer train-data I0408 19:22:49.748190 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:22:50.006605 5931 solver.cpp:397] Test net output #0: accuracy = 0.0202206 I0408 19:22:50.006655 5931 solver.cpp:397] Test net output #1: loss = 5.0364 (* 1 = 5.0364 loss) I0408 19:22:51.750349 5931 solver.cpp:218] Iteration 516 (0.867079 iter/s, 13.8396s/12 iters), loss = 5.03107 I0408 19:22:51.750383 5931 solver.cpp:237] Train net output #0: loss = 5.03107 (* 1 = 5.03107 loss) I0408 19:22:51.750391 5931 sgd_solver.cpp:105] Iteration 516, lr = 0.0099882 I0408 19:22:56.681389 5931 solver.cpp:218] Iteration 528 (2.43359 iter/s, 4.93099s/12 iters), loss = 5.02173 I0408 19:22:56.681422 5931 solver.cpp:237] Train net output #0: loss = 5.02173 (* 1 = 5.02173 loss) I0408 19:22:56.681429 5931 sgd_solver.cpp:105] Iteration 528, lr = 0.00998799 I0408 19:23:01.372756 5931 solver.cpp:218] Iteration 540 (2.55792 iter/s, 4.69132s/12 iters), loss = 4.91073 I0408 19:23:01.372787 5931 solver.cpp:237] Train net output #0: loss = 4.91073 (* 1 = 4.91073 loss) I0408 19:23:01.372794 5931 sgd_solver.cpp:105] Iteration 540, lr = 0.00998778 I0408 19:23:06.196326 5931 solver.cpp:218] Iteration 552 (2.48781 iter/s, 4.82352s/12 iters), loss = 4.9294 I0408 19:23:06.196359 5931 solver.cpp:237] Train net output #0: loss = 4.9294 (* 1 = 4.9294 loss) I0408 19:23:06.196367 5931 sgd_solver.cpp:105] Iteration 552, lr = 0.00998756 I0408 19:23:11.011468 5931 solver.cpp:218] Iteration 564 (2.49217 iter/s, 4.81509s/12 iters), loss = 4.97653 I0408 19:23:11.011628 5931 solver.cpp:237] Train net output #0: loss = 4.97653 (* 1 = 4.97653 loss) I0408 19:23:11.011638 5931 sgd_solver.cpp:105] Iteration 564, lr = 0.00998734 I0408 19:23:15.825018 5931 solver.cpp:218] Iteration 576 (2.49305 iter/s, 4.81337s/12 iters), loss = 5.0284 I0408 19:23:15.825050 5931 solver.cpp:237] Train net output #0: loss = 5.0284 (* 1 = 5.0284 loss) I0408 19:23:15.825057 5931 sgd_solver.cpp:105] Iteration 576, lr = 0.00998711 I0408 19:23:20.682231 5931 solver.cpp:218] Iteration 588 (2.47058 iter/s, 4.85716s/12 iters), loss = 5.00584 I0408 19:23:20.682265 5931 solver.cpp:237] Train net output #0: loss = 5.00584 (* 1 = 5.00584 loss) I0408 19:23:20.682272 5931 sgd_solver.cpp:105] Iteration 588, lr = 0.00998688 I0408 19:23:25.456974 5931 solver.cpp:218] Iteration 600 (2.51325 iter/s, 4.77469s/12 iters), loss = 4.98288 I0408 19:23:25.457005 5931 solver.cpp:237] Train net output #0: loss = 4.98288 (* 1 = 4.98288 loss) I0408 19:23:25.457012 5931 sgd_solver.cpp:105] Iteration 600, lr = 0.00998665 I0408 19:23:27.761816 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:23:29.842723 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_612.caffemodel I0408 19:23:32.922132 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_612.solverstate I0408 19:23:35.313571 5931 solver.cpp:330] Iteration 612, Testing net (#0) I0408 19:23:35.313597 5931 net.cpp:676] Ignoring source layer train-data I0408 19:23:39.431644 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:23:39.706440 5931 solver.cpp:397] Test net output #0: accuracy = 0.0294118 I0408 19:23:39.706486 5931 solver.cpp:397] Test net output #1: loss = 4.974 (* 1 = 4.974 loss) I0408 19:23:39.802424 5931 solver.cpp:218] Iteration 612 (0.836506 iter/s, 14.3454s/12 iters), loss = 4.9078 I0408 19:23:39.802459 5931 solver.cpp:237] Train net output #0: loss = 4.9078 (* 1 = 4.9078 loss) I0408 19:23:39.802465 5931 sgd_solver.cpp:105] Iteration 612, lr = 0.00998641 I0408 19:23:43.752210 5931 solver.cpp:218] Iteration 624 (3.03818 iter/s, 3.94974s/12 iters), loss = 4.96202 I0408 19:23:43.752331 5931 solver.cpp:237] Train net output #0: loss = 4.96202 (* 1 = 4.96202 loss) I0408 19:23:43.752339 5931 sgd_solver.cpp:105] Iteration 624, lr = 0.00998617 I0408 19:23:48.610968 5931 solver.cpp:218] Iteration 636 (2.46984 iter/s, 4.85862s/12 iters), loss = 4.91441 I0408 19:23:48.611001 5931 solver.cpp:237] Train net output #0: loss = 4.91441 (* 1 = 4.91441 loss) I0408 19:23:48.611008 5931 sgd_solver.cpp:105] Iteration 636, lr = 0.00998593 I0408 19:23:53.405874 5931 solver.cpp:218] Iteration 648 (2.50268 iter/s, 4.79485s/12 iters), loss = 4.86356 I0408 19:23:53.405907 5931 solver.cpp:237] Train net output #0: loss = 4.86356 (* 1 = 4.86356 loss) I0408 19:23:53.405915 5931 sgd_solver.cpp:105] Iteration 648, lr = 0.00998568 I0408 19:23:58.145263 5931 solver.cpp:218] Iteration 660 (2.532 iter/s, 4.73934s/12 iters), loss = 4.92028 I0408 19:23:58.145295 5931 solver.cpp:237] Train net output #0: loss = 4.92028 (* 1 = 4.92028 loss) I0408 19:23:58.145303 5931 sgd_solver.cpp:105] Iteration 660, lr = 0.00998542 I0408 19:24:02.881536 5931 solver.cpp:218] Iteration 672 (2.53367 iter/s, 4.73622s/12 iters), loss = 5.03567 I0408 19:24:02.881568 5931 solver.cpp:237] Train net output #0: loss = 5.03567 (* 1 = 5.03567 loss) I0408 19:24:02.881575 5931 sgd_solver.cpp:105] Iteration 672, lr = 0.00998516 I0408 19:24:07.724680 5931 solver.cpp:218] Iteration 684 (2.47776 iter/s, 4.84309s/12 iters), loss = 4.91484 I0408 19:24:07.724710 5931 solver.cpp:237] Train net output #0: loss = 4.91484 (* 1 = 4.91484 loss) I0408 19:24:07.724718 5931 sgd_solver.cpp:105] Iteration 684, lr = 0.0099849 I0408 19:24:08.479023 5931 blocking_queue.cpp:49] Waiting for data I0408 19:24:12.546566 5931 solver.cpp:218] Iteration 696 (2.48868 iter/s, 4.82183s/12 iters), loss = 4.79349 I0408 19:24:12.546597 5931 solver.cpp:237] Train net output #0: loss = 4.79349 (* 1 = 4.79349 loss) I0408 19:24:12.546605 5931 sgd_solver.cpp:105] Iteration 696, lr = 0.00998463 I0408 19:24:16.985522 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:24:17.344061 5931 solver.cpp:218] Iteration 708 (2.50133 iter/s, 4.79745s/12 iters), loss = 4.92898 I0408 19:24:17.344095 5931 solver.cpp:237] Train net output #0: loss = 4.92898 (* 1 = 4.92898 loss) I0408 19:24:17.344102 5931 sgd_solver.cpp:105] Iteration 708, lr = 0.00998436 I0408 19:24:19.250128 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_714.caffemodel I0408 19:24:22.327769 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_714.solverstate I0408 19:24:24.716590 5931 solver.cpp:330] Iteration 714, Testing net (#0) I0408 19:24:24.716616 5931 net.cpp:676] Ignoring source layer train-data I0408 19:24:29.146328 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:24:29.492427 5931 solver.cpp:397] Test net output #0: accuracy = 0.0379902 I0408 19:24:29.492476 5931 solver.cpp:397] Test net output #1: loss = 4.8577 (* 1 = 4.8577 loss) I0408 19:24:31.225651 5931 solver.cpp:218] Iteration 720 (0.864459 iter/s, 13.8815s/12 iters), loss = 4.90879 I0408 19:24:31.225687 5931 solver.cpp:237] Train net output #0: loss = 4.90879 (* 1 = 4.90879 loss) I0408 19:24:31.225693 5931 sgd_solver.cpp:105] Iteration 720, lr = 0.00998408 I0408 19:24:36.191231 5931 solver.cpp:218] Iteration 732 (2.41666 iter/s, 4.96553s/12 iters), loss = 4.87671 I0408 19:24:36.191263 5931 solver.cpp:237] Train net output #0: loss = 4.87671 (* 1 = 4.87671 loss) I0408 19:24:36.191272 5931 sgd_solver.cpp:105] Iteration 732, lr = 0.0099838 I0408 19:24:40.888144 5931 solver.cpp:218] Iteration 744 (2.5549 iter/s, 4.69686s/12 iters), loss = 4.79004 I0408 19:24:40.888176 5931 solver.cpp:237] Train net output #0: loss = 4.79004 (* 1 = 4.79004 loss) I0408 19:24:40.888185 5931 sgd_solver.cpp:105] Iteration 744, lr = 0.00998351 I0408 19:24:45.717201 5931 solver.cpp:218] Iteration 756 (2.48498 iter/s, 4.82901s/12 iters), loss = 4.66244 I0408 19:24:45.717236 5931 solver.cpp:237] Train net output #0: loss = 4.66244 (* 1 = 4.66244 loss) I0408 19:24:45.717242 5931 sgd_solver.cpp:105] Iteration 756, lr = 0.00998322 I0408 19:24:50.528672 5931 solver.cpp:218] Iteration 768 (2.49407 iter/s, 4.81142s/12 iters), loss = 4.77981 I0408 19:24:50.528767 5931 solver.cpp:237] Train net output #0: loss = 4.77981 (* 1 = 4.77981 loss) I0408 19:24:50.528776 5931 sgd_solver.cpp:105] Iteration 768, lr = 0.00998292 I0408 19:24:55.357666 5931 solver.cpp:218] Iteration 780 (2.48505 iter/s, 4.82888s/12 iters), loss = 4.63616 I0408 19:24:55.357698 5931 solver.cpp:237] Train net output #0: loss = 4.63616 (* 1 = 4.63616 loss) I0408 19:24:55.357705 5931 sgd_solver.cpp:105] Iteration 780, lr = 0.00998261 I0408 19:25:00.137574 5931 solver.cpp:218] Iteration 792 (2.51054 iter/s, 4.77986s/12 iters), loss = 4.91283 I0408 19:25:00.137607 5931 solver.cpp:237] Train net output #0: loss = 4.91283 (* 1 = 4.91283 loss) I0408 19:25:00.137615 5931 sgd_solver.cpp:105] Iteration 792, lr = 0.0099823 I0408 19:25:04.845707 5931 solver.cpp:218] Iteration 804 (2.54881 iter/s, 4.70808s/12 iters), loss = 4.5747 I0408 19:25:04.845741 5931 solver.cpp:237] Train net output #0: loss = 4.5747 (* 1 = 4.5747 loss) I0408 19:25:04.845748 5931 sgd_solver.cpp:105] Iteration 804, lr = 0.00998199 I0408 19:25:06.497603 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:25:09.153486 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_816.caffemodel I0408 19:25:12.720693 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_816.solverstate I0408 19:25:15.837437 5931 solver.cpp:330] Iteration 816, Testing net (#0) I0408 19:25:15.837462 5931 net.cpp:676] Ignoring source layer train-data I0408 19:25:20.236233 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:25:20.625757 5931 solver.cpp:397] Test net output #0: accuracy = 0.0484069 I0408 19:25:20.625912 5931 solver.cpp:397] Test net output #1: loss = 4.7259 (* 1 = 4.7259 loss) I0408 19:25:20.722509 5931 solver.cpp:218] Iteration 816 (0.755823 iter/s, 15.8767s/12 iters), loss = 4.54968 I0408 19:25:20.722545 5931 solver.cpp:237] Train net output #0: loss = 4.54968 (* 1 = 4.54968 loss) I0408 19:25:20.722553 5931 sgd_solver.cpp:105] Iteration 816, lr = 0.00998167 I0408 19:25:24.725463 5931 solver.cpp:218] Iteration 828 (2.99783 iter/s, 4.0029s/12 iters), loss = 4.72748 I0408 19:25:24.725497 5931 solver.cpp:237] Train net output #0: loss = 4.72748 (* 1 = 4.72748 loss) I0408 19:25:24.725503 5931 sgd_solver.cpp:105] Iteration 828, lr = 0.00998134 I0408 19:25:29.566557 5931 solver.cpp:218] Iteration 840 (2.47881 iter/s, 4.84104s/12 iters), loss = 4.75735 I0408 19:25:29.566589 5931 solver.cpp:237] Train net output #0: loss = 4.75735 (* 1 = 4.75735 loss) I0408 19:25:29.566597 5931 sgd_solver.cpp:105] Iteration 840, lr = 0.00998101 I0408 19:25:34.401502 5931 solver.cpp:218] Iteration 852 (2.48196 iter/s, 4.83489s/12 iters), loss = 4.60554 I0408 19:25:34.401535 5931 solver.cpp:237] Train net output #0: loss = 4.60554 (* 1 = 4.60554 loss) I0408 19:25:34.401541 5931 sgd_solver.cpp:105] Iteration 852, lr = 0.00998068 I0408 19:25:39.185503 5931 solver.cpp:218] Iteration 864 (2.50838 iter/s, 4.78396s/12 iters), loss = 4.61728 I0408 19:25:39.185534 5931 solver.cpp:237] Train net output #0: loss = 4.61728 (* 1 = 4.61728 loss) I0408 19:25:39.185542 5931 sgd_solver.cpp:105] Iteration 864, lr = 0.00998033 I0408 19:25:44.053187 5931 solver.cpp:218] Iteration 876 (2.46526 iter/s, 4.86764s/12 iters), loss = 4.79955 I0408 19:25:44.053221 5931 solver.cpp:237] Train net output #0: loss = 4.79955 (* 1 = 4.79955 loss) I0408 19:25:44.053228 5931 sgd_solver.cpp:105] Iteration 876, lr = 0.00997998 I0408 19:25:48.871539 5931 solver.cpp:218] Iteration 888 (2.4905 iter/s, 4.81831s/12 iters), loss = 4.68932 I0408 19:25:48.871577 5931 solver.cpp:237] Train net output #0: loss = 4.68932 (* 1 = 4.68932 loss) I0408 19:25:48.871583 5931 sgd_solver.cpp:105] Iteration 888, lr = 0.00997963 I0408 19:25:53.694054 5931 solver.cpp:218] Iteration 900 (2.48835 iter/s, 4.82246s/12 iters), loss = 4.69012 I0408 19:25:53.694150 5931 solver.cpp:237] Train net output #0: loss = 4.69012 (* 1 = 4.69012 loss) I0408 19:25:53.694159 5931 sgd_solver.cpp:105] Iteration 900, lr = 0.00997927 I0408 19:25:57.404742 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:25:58.480036 5931 solver.cpp:218] Iteration 912 (2.50738 iter/s, 4.78587s/12 iters), loss = 4.74772 I0408 19:25:58.480067 5931 solver.cpp:237] Train net output #0: loss = 4.74772 (* 1 = 4.74772 loss) I0408 19:25:58.480073 5931 sgd_solver.cpp:105] Iteration 912, lr = 0.0099789 I0408 19:26:00.446987 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_918.caffemodel I0408 19:26:04.944500 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_918.solverstate I0408 19:26:08.822530 5931 solver.cpp:330] Iteration 918, Testing net (#0) I0408 19:26:08.822556 5931 net.cpp:676] Ignoring source layer train-data I0408 19:26:13.159917 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:26:13.597429 5931 solver.cpp:397] Test net output #0: accuracy = 0.0594363 I0408 19:26:13.597478 5931 solver.cpp:397] Test net output #1: loss = 4.59275 (* 1 = 4.59275 loss) I0408 19:26:15.348654 5931 solver.cpp:218] Iteration 924 (0.711382 iter/s, 16.8686s/12 iters), loss = 4.54142 I0408 19:26:15.348688 5931 solver.cpp:237] Train net output #0: loss = 4.54142 (* 1 = 4.54142 loss) I0408 19:26:15.348696 5931 sgd_solver.cpp:105] Iteration 924, lr = 0.00997852 I0408 19:26:20.200681 5931 solver.cpp:218] Iteration 936 (2.47322 iter/s, 4.85198s/12 iters), loss = 4.51866 I0408 19:26:20.200713 5931 solver.cpp:237] Train net output #0: loss = 4.51866 (* 1 = 4.51866 loss) I0408 19:26:20.200721 5931 sgd_solver.cpp:105] Iteration 936, lr = 0.00997814 I0408 19:26:25.017448 5931 solver.cpp:218] Iteration 948 (2.49132 iter/s, 4.81672s/12 iters), loss = 4.6412 I0408 19:26:25.017563 5931 solver.cpp:237] Train net output #0: loss = 4.6412 (* 1 = 4.6412 loss) I0408 19:26:25.017572 5931 sgd_solver.cpp:105] Iteration 948, lr = 0.00997775 I0408 19:26:29.824128 5931 solver.cpp:218] Iteration 960 (2.49659 iter/s, 4.80655s/12 iters), loss = 4.44454 I0408 19:26:29.824162 5931 solver.cpp:237] Train net output #0: loss = 4.44454 (* 1 = 4.44454 loss) I0408 19:26:29.824168 5931 sgd_solver.cpp:105] Iteration 960, lr = 0.00997736 I0408 19:26:34.682168 5931 solver.cpp:218] Iteration 972 (2.47016 iter/s, 4.85799s/12 iters), loss = 4.76845 I0408 19:26:34.682201 5931 solver.cpp:237] Train net output #0: loss = 4.76845 (* 1 = 4.76845 loss) I0408 19:26:34.682209 5931 sgd_solver.cpp:105] Iteration 972, lr = 0.00997696 I0408 19:26:39.445036 5931 solver.cpp:218] Iteration 984 (2.51952 iter/s, 4.76282s/12 iters), loss = 4.44885 I0408 19:26:39.445070 5931 solver.cpp:237] Train net output #0: loss = 4.44885 (* 1 = 4.44885 loss) I0408 19:26:39.445076 5931 sgd_solver.cpp:105] Iteration 984, lr = 0.00997655 I0408 19:26:44.169898 5931 solver.cpp:218] Iteration 996 (2.53978 iter/s, 4.72481s/12 iters), loss = 4.53855 I0408 19:26:44.169931 5931 solver.cpp:237] Train net output #0: loss = 4.53855 (* 1 = 4.53855 loss) I0408 19:26:44.169939 5931 sgd_solver.cpp:105] Iteration 996, lr = 0.00997613 I0408 19:26:48.878381 5931 solver.cpp:218] Iteration 1008 (2.54862 iter/s, 4.70843s/12 iters), loss = 4.18505 I0408 19:26:48.878413 5931 solver.cpp:237] Train net output #0: loss = 4.18505 (* 1 = 4.18505 loss) I0408 19:26:48.878420 5931 sgd_solver.cpp:105] Iteration 1008, lr = 0.00997571 I0408 19:26:49.816838 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:26:53.120780 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1020.caffemodel I0408 19:26:57.055611 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1020.solverstate I0408 19:27:00.477900 5931 solver.cpp:330] Iteration 1020, Testing net (#0) I0408 19:27:00.477926 5931 net.cpp:676] Ignoring source layer train-data I0408 19:27:04.784061 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:27:05.260186 5931 solver.cpp:397] Test net output #0: accuracy = 0.0747549 I0408 19:27:05.260236 5931 solver.cpp:397] Test net output #1: loss = 4.40519 (* 1 = 4.40519 loss) I0408 19:27:05.356878 5931 solver.cpp:218] Iteration 1020 (0.728225 iter/s, 16.4784s/12 iters), loss = 4.49982 I0408 19:27:05.356943 5931 solver.cpp:237] Train net output #0: loss = 4.49982 (* 1 = 4.49982 loss) I0408 19:27:05.356959 5931 sgd_solver.cpp:105] Iteration 1020, lr = 0.00997527 I0408 19:27:09.317698 5931 solver.cpp:218] Iteration 1032 (3.02973 iter/s, 3.96075s/12 iters), loss = 4.26781 I0408 19:27:09.317731 5931 solver.cpp:237] Train net output #0: loss = 4.26781 (* 1 = 4.26781 loss) I0408 19:27:09.317739 5931 sgd_solver.cpp:105] Iteration 1032, lr = 0.00997483 I0408 19:27:14.076663 5931 solver.cpp:218] Iteration 1044 (2.52158 iter/s, 4.75892s/12 iters), loss = 4.45317 I0408 19:27:14.076696 5931 solver.cpp:237] Train net output #0: loss = 4.45317 (* 1 = 4.45317 loss) I0408 19:27:14.076704 5931 sgd_solver.cpp:105] Iteration 1044, lr = 0.00997439 I0408 19:27:18.810415 5931 solver.cpp:218] Iteration 1056 (2.53501 iter/s, 4.7337s/12 iters), loss = 4.21486 I0408 19:27:18.810446 5931 solver.cpp:237] Train net output #0: loss = 4.21486 (* 1 = 4.21486 loss) I0408 19:27:18.810453 5931 sgd_solver.cpp:105] Iteration 1056, lr = 0.00997393 I0408 19:27:23.534380 5931 solver.cpp:218] Iteration 1068 (2.54026 iter/s, 4.72392s/12 iters), loss = 4.14842 I0408 19:27:23.534413 5931 solver.cpp:237] Train net output #0: loss = 4.14842 (* 1 = 4.14842 loss) I0408 19:27:23.534420 5931 sgd_solver.cpp:105] Iteration 1068, lr = 0.00997347 I0408 19:27:28.362879 5931 solver.cpp:218] Iteration 1080 (2.48527 iter/s, 4.82845s/12 iters), loss = 4.40467 I0408 19:27:28.363003 5931 solver.cpp:237] Train net output #0: loss = 4.40467 (* 1 = 4.40467 loss) I0408 19:27:28.363013 5931 sgd_solver.cpp:105] Iteration 1080, lr = 0.009973 I0408 19:27:33.067231 5931 solver.cpp:218] Iteration 1092 (2.5509 iter/s, 4.70422s/12 iters), loss = 3.98863 I0408 19:27:33.067265 5931 solver.cpp:237] Train net output #0: loss = 3.98863 (* 1 = 3.98863 loss) I0408 19:27:33.067271 5931 sgd_solver.cpp:105] Iteration 1092, lr = 0.00997252 I0408 19:27:37.823047 5931 solver.cpp:218] Iteration 1104 (2.52325 iter/s, 4.75577s/12 iters), loss = 4.40003 I0408 19:27:37.823081 5931 solver.cpp:237] Train net output #0: loss = 4.40003 (* 1 = 4.40003 loss) I0408 19:27:37.823087 5931 sgd_solver.cpp:105] Iteration 1104, lr = 0.00997203 I0408 19:27:40.877550 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:27:42.666611 5931 solver.cpp:218] Iteration 1116 (2.47754 iter/s, 4.84352s/12 iters), loss = 4.22214 I0408 19:27:42.666643 5931 solver.cpp:237] Train net output #0: loss = 4.22214 (* 1 = 4.22214 loss) I0408 19:27:42.666651 5931 sgd_solver.cpp:105] Iteration 1116, lr = 0.00997153 I0408 19:27:44.644829 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1122.caffemodel I0408 19:27:47.716501 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1122.solverstate I0408 19:27:50.066706 5931 solver.cpp:330] Iteration 1122, Testing net (#0) I0408 19:27:50.066731 5931 net.cpp:676] Ignoring source layer train-data I0408 19:27:54.317313 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:27:54.843360 5931 solver.cpp:397] Test net output #0: accuracy = 0.0784314 I0408 19:27:54.843410 5931 solver.cpp:397] Test net output #1: loss = 4.3162 (* 1 = 4.3162 loss) I0408 19:27:56.585356 5931 solver.cpp:218] Iteration 1128 (0.86215 iter/s, 13.9187s/12 iters), loss = 4.01441 I0408 19:27:56.585391 5931 solver.cpp:237] Train net output #0: loss = 4.01441 (* 1 = 4.01441 loss) I0408 19:27:56.585398 5931 sgd_solver.cpp:105] Iteration 1128, lr = 0.00997103 I0408 19:28:01.254228 5931 solver.cpp:218] Iteration 1140 (2.57024 iter/s, 4.66882s/12 iters), loss = 4.28376 I0408 19:28:01.254341 5931 solver.cpp:237] Train net output #0: loss = 4.28376 (* 1 = 4.28376 loss) I0408 19:28:01.254350 5931 sgd_solver.cpp:105] Iteration 1140, lr = 0.00997052 I0408 19:28:05.964165 5931 solver.cpp:218] Iteration 1152 (2.54787 iter/s, 4.70981s/12 iters), loss = 4.05672 I0408 19:28:05.964198 5931 solver.cpp:237] Train net output #0: loss = 4.05672 (* 1 = 4.05672 loss) I0408 19:28:05.964206 5931 sgd_solver.cpp:105] Iteration 1152, lr = 0.00996999 I0408 19:28:10.807466 5931 solver.cpp:218] Iteration 1164 (2.47767 iter/s, 4.84325s/12 iters), loss = 3.97635 I0408 19:28:10.807499 5931 solver.cpp:237] Train net output #0: loss = 3.97635 (* 1 = 3.97635 loss) I0408 19:28:10.807507 5931 sgd_solver.cpp:105] Iteration 1164, lr = 0.00996946 I0408 19:28:15.634007 5931 solver.cpp:218] Iteration 1176 (2.48628 iter/s, 4.82649s/12 iters), loss = 4.24351 I0408 19:28:15.634042 5931 solver.cpp:237] Train net output #0: loss = 4.24351 (* 1 = 4.24351 loss) I0408 19:28:15.634048 5931 sgd_solver.cpp:105] Iteration 1176, lr = 0.00996892 I0408 19:28:20.310830 5931 solver.cpp:218] Iteration 1188 (2.56587 iter/s, 4.67678s/12 iters), loss = 4.11137 I0408 19:28:20.310863 5931 solver.cpp:237] Train net output #0: loss = 4.11137 (* 1 = 4.11137 loss) I0408 19:28:20.310870 5931 sgd_solver.cpp:105] Iteration 1188, lr = 0.00996837 I0408 19:28:25.095845 5931 solver.cpp:218] Iteration 1200 (2.50785 iter/s, 4.78497s/12 iters), loss = 4.17805 I0408 19:28:25.095880 5931 solver.cpp:237] Train net output #0: loss = 4.17805 (* 1 = 4.17805 loss) I0408 19:28:25.095886 5931 sgd_solver.cpp:105] Iteration 1200, lr = 0.0099678 I0408 19:28:29.917023 5931 solver.cpp:218] Iteration 1212 (2.48904 iter/s, 4.82113s/12 iters), loss = 4.00441 I0408 19:28:29.917057 5931 solver.cpp:237] Train net output #0: loss = 4.00441 (* 1 = 4.00441 loss) I0408 19:28:29.917065 5931 sgd_solver.cpp:105] Iteration 1212, lr = 0.00996723 I0408 19:28:30.167395 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:28:34.273356 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1224.caffemodel I0408 19:28:37.399178 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1224.solverstate I0408 19:28:40.098701 5931 solver.cpp:330] Iteration 1224, Testing net (#0) I0408 19:28:40.098726 5931 net.cpp:676] Ignoring source layer train-data I0408 19:28:44.134161 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:28:44.632582 5931 solver.cpp:397] Test net output #0: accuracy = 0.0992647 I0408 19:28:44.632620 5931 solver.cpp:397] Test net output #1: loss = 4.12533 (* 1 = 4.12533 loss) I0408 19:28:44.726790 5931 solver.cpp:218] Iteration 1224 (0.810279 iter/s, 14.8097s/12 iters), loss = 3.99823 I0408 19:28:44.726825 5931 solver.cpp:237] Train net output #0: loss = 3.99823 (* 1 = 3.99823 loss) I0408 19:28:44.726833 5931 sgd_solver.cpp:105] Iteration 1224, lr = 0.00996665 I0408 19:28:48.689040 5931 solver.cpp:218] Iteration 1236 (3.02862 iter/s, 3.9622s/12 iters), loss = 4.017 I0408 19:28:48.689074 5931 solver.cpp:237] Train net output #0: loss = 4.017 (* 1 = 4.017 loss) I0408 19:28:48.689081 5931 sgd_solver.cpp:105] Iteration 1236, lr = 0.00996606 I0408 19:28:53.398548 5931 solver.cpp:218] Iteration 1248 (2.54807 iter/s, 4.70946s/12 iters), loss = 3.93097 I0408 19:28:53.398581 5931 solver.cpp:237] Train net output #0: loss = 3.93097 (* 1 = 3.93097 loss) I0408 19:28:53.398589 5931 sgd_solver.cpp:105] Iteration 1248, lr = 0.00996546 I0408 19:28:58.114282 5931 solver.cpp:218] Iteration 1260 (2.5447 iter/s, 4.71568s/12 iters), loss = 3.84744 I0408 19:28:58.114315 5931 solver.cpp:237] Train net output #0: loss = 3.84744 (* 1 = 3.84744 loss) I0408 19:28:58.114323 5931 sgd_solver.cpp:105] Iteration 1260, lr = 0.00996485 I0408 19:29:02.877190 5931 solver.cpp:218] Iteration 1272 (2.5195 iter/s, 4.76286s/12 iters), loss = 3.93239 I0408 19:29:02.877223 5931 solver.cpp:237] Train net output #0: loss = 3.93239 (* 1 = 3.93239 loss) I0408 19:29:02.877231 5931 sgd_solver.cpp:105] Iteration 1272, lr = 0.00996422 I0408 19:29:07.687041 5931 solver.cpp:218] Iteration 1284 (2.49491 iter/s, 4.80979s/12 iters), loss = 3.95677 I0408 19:29:07.687211 5931 solver.cpp:237] Train net output #0: loss = 3.95677 (* 1 = 3.95677 loss) I0408 19:29:07.687220 5931 sgd_solver.cpp:105] Iteration 1284, lr = 0.00996359 I0408 19:29:12.539284 5931 solver.cpp:218] Iteration 1296 (2.47317 iter/s, 4.85206s/12 iters), loss = 3.9259 I0408 19:29:12.539316 5931 solver.cpp:237] Train net output #0: loss = 3.9259 (* 1 = 3.9259 loss) I0408 19:29:12.539324 5931 sgd_solver.cpp:105] Iteration 1296, lr = 0.00996294 I0408 19:29:17.358345 5931 solver.cpp:218] Iteration 1308 (2.49014 iter/s, 4.81901s/12 iters), loss = 4.21108 I0408 19:29:17.358376 5931 solver.cpp:237] Train net output #0: loss = 4.21108 (* 1 = 4.21108 loss) I0408 19:29:17.358384 5931 sgd_solver.cpp:105] Iteration 1308, lr = 0.00996228 I0408 19:29:19.779569 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:29:22.175256 5931 solver.cpp:218] Iteration 1320 (2.49125 iter/s, 4.81686s/12 iters), loss = 3.90153 I0408 19:29:22.175287 5931 solver.cpp:237] Train net output #0: loss = 3.90153 (* 1 = 3.90153 loss) I0408 19:29:22.175295 5931 sgd_solver.cpp:105] Iteration 1320, lr = 0.00996161 I0408 19:29:24.158465 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1326.caffemodel I0408 19:29:27.417311 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1326.solverstate I0408 19:29:29.780164 5931 solver.cpp:330] Iteration 1326, Testing net (#0) I0408 19:29:29.780189 5931 net.cpp:676] Ignoring source layer train-data I0408 19:29:33.940455 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:29:34.560994 5931 solver.cpp:397] Test net output #0: accuracy = 0.110907 I0408 19:29:34.561043 5931 solver.cpp:397] Test net output #1: loss = 4.0578 (* 1 = 4.0578 loss) I0408 19:29:36.313087 5931 solver.cpp:218] Iteration 1332 (0.84879 iter/s, 14.1378s/12 iters), loss = 3.98789 I0408 19:29:36.313122 5931 solver.cpp:237] Train net output #0: loss = 3.98789 (* 1 = 3.98789 loss) I0408 19:29:36.313129 5931 sgd_solver.cpp:105] Iteration 1332, lr = 0.00996093 I0408 19:29:41.041668 5931 solver.cpp:218] Iteration 1344 (2.53779 iter/s, 4.72853s/12 iters), loss = 3.82301 I0408 19:29:41.041780 5931 solver.cpp:237] Train net output #0: loss = 3.82301 (* 1 = 3.82301 loss) I0408 19:29:41.041788 5931 sgd_solver.cpp:105] Iteration 1344, lr = 0.00996024 I0408 19:29:45.875771 5931 solver.cpp:218] Iteration 1356 (2.48243 iter/s, 4.83398s/12 iters), loss = 3.95784 I0408 19:29:45.875804 5931 solver.cpp:237] Train net output #0: loss = 3.95784 (* 1 = 3.95784 loss) I0408 19:29:45.875811 5931 sgd_solver.cpp:105] Iteration 1356, lr = 0.00995954 I0408 19:29:50.694695 5931 solver.cpp:218] Iteration 1368 (2.49021 iter/s, 4.81887s/12 iters), loss = 3.92292 I0408 19:29:50.694728 5931 solver.cpp:237] Train net output #0: loss = 3.92292 (* 1 = 3.92292 loss) I0408 19:29:50.694736 5931 sgd_solver.cpp:105] Iteration 1368, lr = 0.00995882 I0408 19:29:51.847590 5931 blocking_queue.cpp:49] Waiting for data I0408 19:29:55.541841 5931 solver.cpp:218] Iteration 1380 (2.47571 iter/s, 4.8471s/12 iters), loss = 3.93092 I0408 19:29:55.541872 5931 solver.cpp:237] Train net output #0: loss = 3.93092 (* 1 = 3.93092 loss) I0408 19:29:55.541879 5931 sgd_solver.cpp:105] Iteration 1380, lr = 0.00995809 I0408 19:30:00.364908 5931 solver.cpp:218] Iteration 1392 (2.48807 iter/s, 4.82302s/12 iters), loss = 3.91716 I0408 19:30:00.364941 5931 solver.cpp:237] Train net output #0: loss = 3.91716 (* 1 = 3.91716 loss) I0408 19:30:00.364949 5931 sgd_solver.cpp:105] Iteration 1392, lr = 0.00995735 I0408 19:30:05.166183 5931 solver.cpp:218] Iteration 1404 (2.49936 iter/s, 4.80123s/12 iters), loss = 3.8919 I0408 19:30:05.166216 5931 solver.cpp:237] Train net output #0: loss = 3.8919 (* 1 = 3.8919 loss) I0408 19:30:05.166224 5931 sgd_solver.cpp:105] Iteration 1404, lr = 0.00995659 I0408 19:30:09.664080 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:30:09.995765 5931 solver.cpp:218] Iteration 1416 (2.48471 iter/s, 4.82954s/12 iters), loss = 3.79788 I0408 19:30:09.995796 5931 solver.cpp:237] Train net output #0: loss = 3.79788 (* 1 = 3.79788 loss) I0408 19:30:09.995805 5931 sgd_solver.cpp:105] Iteration 1416, lr = 0.00995582 I0408 19:30:14.373322 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1428.caffemodel I0408 19:30:17.932387 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1428.solverstate I0408 19:30:21.376196 5931 solver.cpp:330] Iteration 1428, Testing net (#0) I0408 19:30:21.376222 5931 net.cpp:676] Ignoring source layer train-data I0408 19:30:25.092309 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:30:25.672089 5931 solver.cpp:397] Test net output #0: accuracy = 0.147672 I0408 19:30:25.672135 5931 solver.cpp:397] Test net output #1: loss = 3.93032 (* 1 = 3.93032 loss) I0408 19:30:25.768970 5931 solver.cpp:218] Iteration 1428 (0.760787 iter/s, 15.7732s/12 iters), loss = 3.58445 I0408 19:30:25.769007 5931 solver.cpp:237] Train net output #0: loss = 3.58445 (* 1 = 3.58445 loss) I0408 19:30:25.769016 5931 sgd_solver.cpp:105] Iteration 1428, lr = 0.00995504 I0408 19:30:29.690510 5931 solver.cpp:218] Iteration 1440 (3.06006 iter/s, 3.92149s/12 iters), loss = 3.86636 I0408 19:30:29.690541 5931 solver.cpp:237] Train net output #0: loss = 3.86636 (* 1 = 3.86636 loss) I0408 19:30:29.690548 5931 sgd_solver.cpp:105] Iteration 1440, lr = 0.00995424 I0408 19:30:34.516654 5931 solver.cpp:218] Iteration 1452 (2.48648 iter/s, 4.8261s/12 iters), loss = 3.72832 I0408 19:30:34.516685 5931 solver.cpp:237] Train net output #0: loss = 3.72832 (* 1 = 3.72832 loss) I0408 19:30:34.516692 5931 sgd_solver.cpp:105] Iteration 1452, lr = 0.00995343 I0408 19:30:39.351946 5931 solver.cpp:218] Iteration 1464 (2.48178 iter/s, 4.83525s/12 iters), loss = 3.48909 I0408 19:30:39.351979 5931 solver.cpp:237] Train net output #0: loss = 3.48909 (* 1 = 3.48909 loss) I0408 19:30:39.351986 5931 sgd_solver.cpp:105] Iteration 1464, lr = 0.0099526 I0408 19:30:44.138279 5931 solver.cpp:218] Iteration 1476 (2.50716 iter/s, 4.78628s/12 iters), loss = 3.24151 I0408 19:30:44.138309 5931 solver.cpp:237] Train net output #0: loss = 3.24151 (* 1 = 3.24151 loss) I0408 19:30:44.138316 5931 sgd_solver.cpp:105] Iteration 1476, lr = 0.00995176 I0408 19:30:48.998698 5931 solver.cpp:218] Iteration 1488 (2.46895 iter/s, 4.86037s/12 iters), loss = 3.81638 I0408 19:30:48.998778 5931 solver.cpp:237] Train net output #0: loss = 3.81638 (* 1 = 3.81638 loss) I0408 19:30:48.998787 5931 sgd_solver.cpp:105] Iteration 1488, lr = 0.00995091 I0408 19:30:53.806434 5931 solver.cpp:218] Iteration 1500 (2.49603 iter/s, 4.80764s/12 iters), loss = 3.75439 I0408 19:30:53.806466 5931 solver.cpp:237] Train net output #0: loss = 3.75439 (* 1 = 3.75439 loss) I0408 19:30:53.806473 5931 sgd_solver.cpp:105] Iteration 1500, lr = 0.00995004 I0408 19:30:58.645150 5931 solver.cpp:218] Iteration 1512 (2.48002 iter/s, 4.83867s/12 iters), loss = 3.55017 I0408 19:30:58.645182 5931 solver.cpp:237] Train net output #0: loss = 3.55017 (* 1 = 3.55017 loss) I0408 19:30:58.645190 5931 sgd_solver.cpp:105] Iteration 1512, lr = 0.00994916 I0408 19:31:00.358456 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:31:03.461797 5931 solver.cpp:218] Iteration 1524 (2.49138 iter/s, 4.8166s/12 iters), loss = 3.38095 I0408 19:31:03.461830 5931 solver.cpp:237] Train net output #0: loss = 3.38095 (* 1 = 3.38095 loss) I0408 19:31:03.461838 5931 sgd_solver.cpp:105] Iteration 1524, lr = 0.00994825 I0408 19:31:05.401121 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1530.caffemodel I0408 19:31:08.559868 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1530.solverstate I0408 19:31:11.015883 5931 solver.cpp:330] Iteration 1530, Testing net (#0) I0408 19:31:11.015908 5931 net.cpp:676] Ignoring source layer train-data I0408 19:31:15.093099 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:31:15.801059 5931 solver.cpp:397] Test net output #0: accuracy = 0.151348 I0408 19:31:15.801107 5931 solver.cpp:397] Test net output #1: loss = 3.8383 (* 1 = 3.8383 loss) I0408 19:31:17.549612 5931 solver.cpp:218] Iteration 1536 (0.851803 iter/s, 14.0878s/12 iters), loss = 3.32331 I0408 19:31:17.549647 5931 solver.cpp:237] Train net output #0: loss = 3.32331 (* 1 = 3.32331 loss) I0408 19:31:17.549655 5931 sgd_solver.cpp:105] Iteration 1536, lr = 0.00994734 I0408 19:31:22.316493 5931 solver.cpp:218] Iteration 1548 (2.5174 iter/s, 4.76683s/12 iters), loss = 3.63964 I0408 19:31:22.316589 5931 solver.cpp:237] Train net output #0: loss = 3.63964 (* 1 = 3.63964 loss) I0408 19:31:22.316597 5931 sgd_solver.cpp:105] Iteration 1548, lr = 0.00994641 I0408 19:31:27.176549 5931 solver.cpp:218] Iteration 1560 (2.46916 iter/s, 4.85994s/12 iters), loss = 3.61762 I0408 19:31:27.176589 5931 solver.cpp:237] Train net output #0: loss = 3.61762 (* 1 = 3.61762 loss) I0408 19:31:27.176599 5931 sgd_solver.cpp:105] Iteration 1560, lr = 0.00994546 I0408 19:31:31.988277 5931 solver.cpp:218] Iteration 1572 (2.49393 iter/s, 4.81168s/12 iters), loss = 3.54953 I0408 19:31:31.988310 5931 solver.cpp:237] Train net output #0: loss = 3.54953 (* 1 = 3.54953 loss) I0408 19:31:31.988317 5931 sgd_solver.cpp:105] Iteration 1572, lr = 0.00994449 I0408 19:31:36.815892 5931 solver.cpp:218] Iteration 1584 (2.48572 iter/s, 4.82757s/12 iters), loss = 3.58744 I0408 19:31:36.815925 5931 solver.cpp:237] Train net output #0: loss = 3.58744 (* 1 = 3.58744 loss) I0408 19:31:36.815932 5931 sgd_solver.cpp:105] Iteration 1584, lr = 0.00994351 I0408 19:31:41.654845 5931 solver.cpp:218] Iteration 1596 (2.4799 iter/s, 4.8389s/12 iters), loss = 3.3441 I0408 19:31:41.654878 5931 solver.cpp:237] Train net output #0: loss = 3.3441 (* 1 = 3.3441 loss) I0408 19:31:41.654886 5931 sgd_solver.cpp:105] Iteration 1596, lr = 0.00994251 I0408 19:31:46.467761 5931 solver.cpp:218] Iteration 1608 (2.49332 iter/s, 4.81287s/12 iters), loss = 3.51845 I0408 19:31:46.467793 5931 solver.cpp:237] Train net output #0: loss = 3.51845 (* 1 = 3.51845 loss) I0408 19:31:46.467800 5931 sgd_solver.cpp:105] Iteration 1608, lr = 0.00994149 I0408 19:31:50.230473 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:31:51.266613 5931 solver.cpp:218] Iteration 1620 (2.50062 iter/s, 4.7988s/12 iters), loss = 3.50903 I0408 19:31:51.266644 5931 solver.cpp:237] Train net output #0: loss = 3.50903 (* 1 = 3.50903 loss) I0408 19:31:51.266650 5931 sgd_solver.cpp:105] Iteration 1620, lr = 0.00994046 I0408 19:31:55.654479 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1632.caffemodel I0408 19:31:59.062194 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1632.solverstate I0408 19:32:01.440238 5931 solver.cpp:330] Iteration 1632, Testing net (#0) I0408 19:32:01.440263 5931 net.cpp:676] Ignoring source layer train-data I0408 19:32:05.372561 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:32:06.031466 5931 solver.cpp:397] Test net output #0: accuracy = 0.169118 I0408 19:32:06.031518 5931 solver.cpp:397] Test net output #1: loss = 3.69719 (* 1 = 3.69719 loss) I0408 19:32:06.128342 5931 solver.cpp:218] Iteration 1632 (0.807446 iter/s, 14.8617s/12 iters), loss = 3.43845 I0408 19:32:06.128376 5931 solver.cpp:237] Train net output #0: loss = 3.43845 (* 1 = 3.43845 loss) I0408 19:32:06.128383 5931 sgd_solver.cpp:105] Iteration 1632, lr = 0.0099394 I0408 19:32:10.138854 5931 solver.cpp:218] Iteration 1644 (2.99217 iter/s, 4.01046s/12 iters), loss = 3.37178 I0408 19:32:10.138888 5931 solver.cpp:237] Train net output #0: loss = 3.37178 (* 1 = 3.37178 loss) I0408 19:32:10.138895 5931 sgd_solver.cpp:105] Iteration 1644, lr = 0.00993833 I0408 19:32:14.988745 5931 solver.cpp:218] Iteration 1656 (2.47431 iter/s, 4.84984s/12 iters), loss = 3.56193 I0408 19:32:14.988777 5931 solver.cpp:237] Train net output #0: loss = 3.56193 (* 1 = 3.56193 loss) I0408 19:32:14.988785 5931 sgd_solver.cpp:105] Iteration 1656, lr = 0.00993724 I0408 19:32:19.787761 5931 solver.cpp:218] Iteration 1668 (2.50054 iter/s, 4.79897s/12 iters), loss = 3.47631 I0408 19:32:19.787796 5931 solver.cpp:237] Train net output #0: loss = 3.47631 (* 1 = 3.47631 loss) I0408 19:32:19.787802 5931 sgd_solver.cpp:105] Iteration 1668, lr = 0.00993613 I0408 19:32:24.646354 5931 solver.cpp:218] Iteration 1680 (2.46988 iter/s, 4.85854s/12 iters), loss = 3.37645 I0408 19:32:24.646387 5931 solver.cpp:237] Train net output #0: loss = 3.37645 (* 1 = 3.37645 loss) I0408 19:32:24.646394 5931 sgd_solver.cpp:105] Iteration 1680, lr = 0.009935 I0408 19:32:29.447304 5931 solver.cpp:218] Iteration 1692 (2.49953 iter/s, 4.80091s/12 iters), loss = 3.39719 I0408 19:32:29.447455 5931 solver.cpp:237] Train net output #0: loss = 3.39719 (* 1 = 3.39719 loss) I0408 19:32:29.447464 5931 sgd_solver.cpp:105] Iteration 1692, lr = 0.00993385 I0408 19:32:34.264837 5931 solver.cpp:218] Iteration 1704 (2.49099 iter/s, 4.81737s/12 iters), loss = 3.34932 I0408 19:32:34.264868 5931 solver.cpp:237] Train net output #0: loss = 3.34932 (* 1 = 3.34932 loss) I0408 19:32:34.264876 5931 sgd_solver.cpp:105] Iteration 1704, lr = 0.00993268 I0408 19:32:39.113759 5931 solver.cpp:218] Iteration 1716 (2.4748 iter/s, 4.84888s/12 iters), loss = 3.22958 I0408 19:32:39.113791 5931 solver.cpp:237] Train net output #0: loss = 3.22958 (* 1 = 3.22958 loss) I0408 19:32:39.113799 5931 sgd_solver.cpp:105] Iteration 1716, lr = 0.00993149 I0408 19:32:40.085196 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:32:43.809278 5931 solver.cpp:218] Iteration 1728 (2.55565 iter/s, 4.69547s/12 iters), loss = 3.49653 I0408 19:32:43.809309 5931 solver.cpp:237] Train net output #0: loss = 3.49653 (* 1 = 3.49653 loss) I0408 19:32:43.809316 5931 sgd_solver.cpp:105] Iteration 1728, lr = 0.00993028 I0408 19:32:45.728770 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1734.caffemodel I0408 19:32:49.598235 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1734.solverstate I0408 19:32:52.771811 5931 solver.cpp:330] Iteration 1734, Testing net (#0) I0408 19:32:52.771843 5931 net.cpp:676] Ignoring source layer train-data I0408 19:32:56.773375 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:32:57.491618 5931 solver.cpp:397] Test net output #0: accuracy = 0.171569 I0408 19:32:57.491664 5931 solver.cpp:397] Test net output #1: loss = 3.65161 (* 1 = 3.65161 loss) I0408 19:32:59.232687 5931 solver.cpp:218] Iteration 1740 (0.778041 iter/s, 15.4233s/12 iters), loss = 3.07183 I0408 19:32:59.232722 5931 solver.cpp:237] Train net output #0: loss = 3.07183 (* 1 = 3.07183 loss) I0408 19:32:59.232728 5931 sgd_solver.cpp:105] Iteration 1740, lr = 0.00992905 I0408 19:33:04.007655 5931 solver.cpp:218] Iteration 1752 (2.51313 iter/s, 4.77492s/12 iters), loss = 3.11234 I0408 19:33:04.007719 5931 solver.cpp:237] Train net output #0: loss = 3.11234 (* 1 = 3.11234 loss) I0408 19:33:04.007726 5931 sgd_solver.cpp:105] Iteration 1752, lr = 0.00992779 I0408 19:33:08.821727 5931 solver.cpp:218] Iteration 1764 (2.49273 iter/s, 4.81399s/12 iters), loss = 3.10957 I0408 19:33:08.821759 5931 solver.cpp:237] Train net output #0: loss = 3.10957 (* 1 = 3.10957 loss) I0408 19:33:08.821768 5931 sgd_solver.cpp:105] Iteration 1764, lr = 0.00992651 I0408 19:33:13.658185 5931 solver.cpp:218] Iteration 1776 (2.48118 iter/s, 4.8364s/12 iters), loss = 3.0906 I0408 19:33:13.658222 5931 solver.cpp:237] Train net output #0: loss = 3.0906 (* 1 = 3.0906 loss) I0408 19:33:13.658232 5931 sgd_solver.cpp:105] Iteration 1776, lr = 0.00992522 I0408 19:33:18.465909 5931 solver.cpp:218] Iteration 1788 (2.49601 iter/s, 4.80767s/12 iters), loss = 3.15253 I0408 19:33:18.465941 5931 solver.cpp:237] Train net output #0: loss = 3.15253 (* 1 = 3.15253 loss) I0408 19:33:18.465948 5931 sgd_solver.cpp:105] Iteration 1788, lr = 0.00992389 I0408 19:33:23.173699 5931 solver.cpp:218] Iteration 1800 (2.54899 iter/s, 4.70774s/12 iters), loss = 3.20365 I0408 19:33:23.173732 5931 solver.cpp:237] Train net output #0: loss = 3.20365 (* 1 = 3.20365 loss) I0408 19:33:23.173739 5931 sgd_solver.cpp:105] Iteration 1800, lr = 0.00992255 I0408 19:33:27.911000 5931 solver.cpp:218] Iteration 1812 (2.53311 iter/s, 4.73725s/12 iters), loss = 3.05909 I0408 19:33:27.911033 5931 solver.cpp:237] Train net output #0: loss = 3.05909 (* 1 = 3.05909 loss) I0408 19:33:27.911041 5931 sgd_solver.cpp:105] Iteration 1812, lr = 0.00992118 I0408 19:33:30.985661 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:33:32.758126 5931 solver.cpp:218] Iteration 1824 (2.47572 iter/s, 4.84707s/12 iters), loss = 3.19891 I0408 19:33:32.758165 5931 solver.cpp:237] Train net output #0: loss = 3.19891 (* 1 = 3.19891 loss) I0408 19:33:32.758174 5931 sgd_solver.cpp:105] Iteration 1824, lr = 0.00991979 I0408 19:33:37.122134 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1836.caffemodel I0408 19:33:40.229362 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1836.solverstate I0408 19:33:42.619299 5931 solver.cpp:330] Iteration 1836, Testing net (#0) I0408 19:33:42.619326 5931 net.cpp:676] Ignoring source layer train-data I0408 19:33:46.569561 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:33:47.401554 5931 solver.cpp:397] Test net output #0: accuracy = 0.215074 I0408 19:33:47.401603 5931 solver.cpp:397] Test net output #1: loss = 3.46741 (* 1 = 3.46741 loss) I0408 19:33:47.498178 5931 solver.cpp:218] Iteration 1836 (0.814112 iter/s, 14.74s/12 iters), loss = 2.86189 I0408 19:33:47.498212 5931 solver.cpp:237] Train net output #0: loss = 2.86189 (* 1 = 2.86189 loss) I0408 19:33:47.498220 5931 sgd_solver.cpp:105] Iteration 1836, lr = 0.00991837 I0408 19:33:51.509824 5931 solver.cpp:218] Iteration 1848 (2.99133 iter/s, 4.01159s/12 iters), loss = 3.34784 I0408 19:33:51.509856 5931 solver.cpp:237] Train net output #0: loss = 3.34784 (* 1 = 3.34784 loss) I0408 19:33:51.509863 5931 sgd_solver.cpp:105] Iteration 1848, lr = 0.00991693 I0408 19:33:56.234838 5931 solver.cpp:218] Iteration 1860 (2.5397 iter/s, 4.72496s/12 iters), loss = 2.74712 I0408 19:33:56.234870 5931 solver.cpp:237] Train net output #0: loss = 2.74712 (* 1 = 2.74712 loss) I0408 19:33:56.234877 5931 sgd_solver.cpp:105] Iteration 1860, lr = 0.00991547 I0408 19:34:01.099488 5931 solver.cpp:218] Iteration 1872 (2.4668 iter/s, 4.8646s/12 iters), loss = 3.01523 I0408 19:34:01.099522 5931 solver.cpp:237] Train net output #0: loss = 3.01523 (* 1 = 3.01523 loss) I0408 19:34:01.099529 5931 sgd_solver.cpp:105] Iteration 1872, lr = 0.00991397 I0408 19:34:05.898860 5931 solver.cpp:218] Iteration 1884 (2.50035 iter/s, 4.79932s/12 iters), loss = 2.90075 I0408 19:34:05.898892 5931 solver.cpp:237] Train net output #0: loss = 2.90075 (* 1 = 2.90075 loss) I0408 19:34:05.898900 5931 sgd_solver.cpp:105] Iteration 1884, lr = 0.00991246 I0408 19:34:10.701092 5931 solver.cpp:218] Iteration 1896 (2.49886 iter/s, 4.80218s/12 iters), loss = 3.16211 I0408 19:34:10.701175 5931 solver.cpp:237] Train net output #0: loss = 3.16211 (* 1 = 3.16211 loss) I0408 19:34:10.701184 5931 sgd_solver.cpp:105] Iteration 1896, lr = 0.00991091 I0408 19:34:15.439218 5931 solver.cpp:218] Iteration 1908 (2.5327 iter/s, 4.73802s/12 iters), loss = 2.95688 I0408 19:34:15.439251 5931 solver.cpp:237] Train net output #0: loss = 2.95688 (* 1 = 2.95688 loss) I0408 19:34:15.439258 5931 sgd_solver.cpp:105] Iteration 1908, lr = 0.00990934 I0408 19:34:20.175232 5931 solver.cpp:218] Iteration 1920 (2.5338 iter/s, 4.73597s/12 iters), loss = 2.60159 I0408 19:34:20.175266 5931 solver.cpp:237] Train net output #0: loss = 2.60159 (* 1 = 2.60159 loss) I0408 19:34:20.175273 5931 sgd_solver.cpp:105] Iteration 1920, lr = 0.00990774 I0408 19:34:20.454672 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:34:24.921419 5931 solver.cpp:218] Iteration 1932 (2.52837 iter/s, 4.74614s/12 iters), loss = 2.84615 I0408 19:34:24.921450 5931 solver.cpp:237] Train net output #0: loss = 2.84615 (* 1 = 2.84615 loss) I0408 19:34:24.921458 5931 sgd_solver.cpp:105] Iteration 1932, lr = 0.00990611 I0408 19:34:26.842355 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1938.caffemodel I0408 19:34:31.252169 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1938.solverstate I0408 19:34:34.107241 5931 solver.cpp:330] Iteration 1938, Testing net (#0) I0408 19:34:34.107267 5931 net.cpp:676] Ignoring source layer train-data I0408 19:34:37.813169 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:34:38.583055 5931 solver.cpp:397] Test net output #0: accuracy = 0.250613 I0408 19:34:38.583102 5931 solver.cpp:397] Test net output #1: loss = 3.32955 (* 1 = 3.32955 loss) I0408 19:34:40.330612 5931 solver.cpp:218] Iteration 1944 (0.778759 iter/s, 15.4091s/12 iters), loss = 2.86624 I0408 19:34:40.330647 5931 solver.cpp:237] Train net output #0: loss = 2.86624 (* 1 = 2.86624 loss) I0408 19:34:40.330655 5931 sgd_solver.cpp:105] Iteration 1944, lr = 0.00990446 I0408 19:34:45.128799 5931 solver.cpp:218] Iteration 1956 (2.50097 iter/s, 4.79813s/12 iters), loss = 2.95158 I0408 19:34:45.128897 5931 solver.cpp:237] Train net output #0: loss = 2.95158 (* 1 = 2.95158 loss) I0408 19:34:45.128906 5931 sgd_solver.cpp:105] Iteration 1956, lr = 0.00990277 I0408 19:34:49.935156 5931 solver.cpp:218] Iteration 1968 (2.49675 iter/s, 4.80624s/12 iters), loss = 2.89945 I0408 19:34:49.935189 5931 solver.cpp:237] Train net output #0: loss = 2.89945 (* 1 = 2.89945 loss) I0408 19:34:49.935201 5931 sgd_solver.cpp:105] Iteration 1968, lr = 0.00990106 I0408 19:34:54.782119 5931 solver.cpp:218] Iteration 1980 (2.4758 iter/s, 4.84691s/12 iters), loss = 3.08024 I0408 19:34:54.782150 5931 solver.cpp:237] Train net output #0: loss = 3.08024 (* 1 = 3.08024 loss) I0408 19:34:54.782157 5931 sgd_solver.cpp:105] Iteration 1980, lr = 0.00989932 I0408 19:34:59.596925 5931 solver.cpp:218] Iteration 1992 (2.49234 iter/s, 4.81476s/12 iters), loss = 2.72169 I0408 19:34:59.596957 5931 solver.cpp:237] Train net output #0: loss = 2.72169 (* 1 = 2.72169 loss) I0408 19:34:59.596964 5931 sgd_solver.cpp:105] Iteration 1992, lr = 0.00989754 I0408 19:35:04.417912 5931 solver.cpp:218] Iteration 2004 (2.48914 iter/s, 4.82094s/12 iters), loss = 3.02805 I0408 19:35:04.417945 5931 solver.cpp:237] Train net output #0: loss = 3.02805 (* 1 = 3.02805 loss) I0408 19:35:04.417953 5931 sgd_solver.cpp:105] Iteration 2004, lr = 0.00989574 I0408 19:35:09.239106 5931 solver.cpp:218] Iteration 2016 (2.48904 iter/s, 4.82114s/12 iters), loss = 2.80974 I0408 19:35:09.239137 5931 solver.cpp:237] Train net output #0: loss = 2.80974 (* 1 = 2.80974 loss) I0408 19:35:09.239145 5931 sgd_solver.cpp:105] Iteration 2016, lr = 0.0098939 I0408 19:35:11.691733 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:35:14.059460 5931 solver.cpp:218] Iteration 2028 (2.48947 iter/s, 4.82031s/12 iters), loss = 2.81692 I0408 19:35:14.059494 5931 solver.cpp:237] Train net output #0: loss = 2.81692 (* 1 = 2.81692 loss) I0408 19:35:14.059501 5931 sgd_solver.cpp:105] Iteration 2028, lr = 0.00989203 I0408 19:35:18.420747 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2040.caffemodel I0408 19:35:21.535476 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2040.solverstate I0408 19:35:23.890939 5931 solver.cpp:330] Iteration 2040, Testing net (#0) I0408 19:35:23.890964 5931 net.cpp:676] Ignoring source layer train-data I0408 19:35:27.673660 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:35:28.489058 5931 solver.cpp:397] Test net output #0: accuracy = 0.247549 I0408 19:35:28.489105 5931 solver.cpp:397] Test net output #1: loss = 3.2654 (* 1 = 3.2654 loss) I0408 19:35:28.585580 5931 solver.cpp:218] Iteration 2040 (0.826102 iter/s, 14.5261s/12 iters), loss = 2.46278 I0408 19:35:28.585616 5931 solver.cpp:237] Train net output #0: loss = 2.46278 (* 1 = 2.46278 loss) I0408 19:35:28.585624 5931 sgd_solver.cpp:105] Iteration 2040, lr = 0.00989013 I0408 19:35:32.526542 5931 solver.cpp:218] Iteration 2052 (3.04498 iter/s, 3.94091s/12 iters), loss = 2.50297 I0408 19:35:32.526576 5931 solver.cpp:237] Train net output #0: loss = 2.50297 (* 1 = 2.50297 loss) I0408 19:35:32.526583 5931 sgd_solver.cpp:105] Iteration 2052, lr = 0.0098882 I0408 19:35:34.071233 5931 blocking_queue.cpp:49] Waiting for data I0408 19:35:37.352569 5931 solver.cpp:218] Iteration 2064 (2.48654 iter/s, 4.82597s/12 iters), loss = 2.77328 I0408 19:35:37.352603 5931 solver.cpp:237] Train net output #0: loss = 2.77328 (* 1 = 2.77328 loss) I0408 19:35:37.352612 5931 sgd_solver.cpp:105] Iteration 2064, lr = 0.00988623 I0408 19:35:42.184135 5931 solver.cpp:218] Iteration 2076 (2.48369 iter/s, 4.83151s/12 iters), loss = 3.06107 I0408 19:35:42.184167 5931 solver.cpp:237] Train net output #0: loss = 3.06107 (* 1 = 3.06107 loss) I0408 19:35:42.184175 5931 sgd_solver.cpp:105] Iteration 2076, lr = 0.00988423 I0408 19:35:47.002928 5931 solver.cpp:218] Iteration 2088 (2.49028 iter/s, 4.81874s/12 iters), loss = 2.7561 I0408 19:35:47.002959 5931 solver.cpp:237] Train net output #0: loss = 2.7561 (* 1 = 2.7561 loss) I0408 19:35:47.002966 5931 sgd_solver.cpp:105] Iteration 2088, lr = 0.00988219 I0408 19:35:51.845197 5931 solver.cpp:218] Iteration 2100 (2.4782 iter/s, 4.84222s/12 iters), loss = 3.08235 I0408 19:35:51.845311 5931 solver.cpp:237] Train net output #0: loss = 3.08235 (* 1 = 3.08235 loss) I0408 19:35:51.845320 5931 sgd_solver.cpp:105] Iteration 2100, lr = 0.00988012 I0408 19:35:56.654162 5931 solver.cpp:218] Iteration 2112 (2.49541 iter/s, 4.80884s/12 iters), loss = 2.67728 I0408 19:35:56.654194 5931 solver.cpp:237] Train net output #0: loss = 2.67728 (* 1 = 2.67728 loss) I0408 19:35:56.654202 5931 sgd_solver.cpp:105] Iteration 2112, lr = 0.00987801 I0408 19:36:01.161051 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:36:01.465315 5931 solver.cpp:218] Iteration 2124 (2.49423 iter/s, 4.8111s/12 iters), loss = 2.80512 I0408 19:36:01.465348 5931 solver.cpp:237] Train net output #0: loss = 2.80512 (* 1 = 2.80512 loss) I0408 19:36:01.465355 5931 sgd_solver.cpp:105] Iteration 2124, lr = 0.00987586 I0408 19:36:06.319355 5931 solver.cpp:218] Iteration 2136 (2.47219 iter/s, 4.85399s/12 iters), loss = 2.77417 I0408 19:36:06.319389 5931 solver.cpp:237] Train net output #0: loss = 2.77417 (* 1 = 2.77417 loss) I0408 19:36:06.319397 5931 sgd_solver.cpp:105] Iteration 2136, lr = 0.00987368 I0408 19:36:08.286396 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2142.caffemodel I0408 19:36:12.828195 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2142.solverstate I0408 19:36:16.146903 5931 solver.cpp:330] Iteration 2142, Testing net (#0) I0408 19:36:16.146927 5931 net.cpp:676] Ignoring source layer train-data I0408 19:36:19.974332 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:36:20.933254 5931 solver.cpp:397] Test net output #0: accuracy = 0.260417 I0408 19:36:20.933305 5931 solver.cpp:397] Test net output #1: loss = 3.20332 (* 1 = 3.20332 loss) I0408 19:36:22.666127 5931 solver.cpp:218] Iteration 2148 (0.734093 iter/s, 16.3467s/12 iters), loss = 2.68131 I0408 19:36:22.666224 5931 solver.cpp:237] Train net output #0: loss = 2.68131 (* 1 = 2.68131 loss) I0408 19:36:22.666231 5931 sgd_solver.cpp:105] Iteration 2148, lr = 0.00987146 I0408 19:36:27.497283 5931 solver.cpp:218] Iteration 2160 (2.48394 iter/s, 4.83104s/12 iters), loss = 2.86201 I0408 19:36:27.497313 5931 solver.cpp:237] Train net output #0: loss = 2.86201 (* 1 = 2.86201 loss) I0408 19:36:27.497321 5931 sgd_solver.cpp:105] Iteration 2160, lr = 0.0098692 I0408 19:36:32.218503 5931 solver.cpp:218] Iteration 2172 (2.54174 iter/s, 4.72117s/12 iters), loss = 2.36904 I0408 19:36:32.218535 5931 solver.cpp:237] Train net output #0: loss = 2.36904 (* 1 = 2.36904 loss) I0408 19:36:32.218542 5931 sgd_solver.cpp:105] Iteration 2172, lr = 0.00986691 I0408 19:36:37.064347 5931 solver.cpp:218] Iteration 2184 (2.47637 iter/s, 4.8458s/12 iters), loss = 2.74273 I0408 19:36:37.064381 5931 solver.cpp:237] Train net output #0: loss = 2.74273 (* 1 = 2.74273 loss) I0408 19:36:37.064388 5931 sgd_solver.cpp:105] Iteration 2184, lr = 0.00986457 I0408 19:36:41.861943 5931 solver.cpp:218] Iteration 2196 (2.50128 iter/s, 4.79754s/12 iters), loss = 2.70727 I0408 19:36:41.861982 5931 solver.cpp:237] Train net output #0: loss = 2.70727 (* 1 = 2.70727 loss) I0408 19:36:41.861989 5931 sgd_solver.cpp:105] Iteration 2196, lr = 0.00986219 I0408 19:36:46.725137 5931 solver.cpp:218] Iteration 2208 (2.46754 iter/s, 4.86314s/12 iters), loss = 2.45504 I0408 19:36:46.725169 5931 solver.cpp:237] Train net output #0: loss = 2.45504 (* 1 = 2.45504 loss) I0408 19:36:46.725176 5931 sgd_solver.cpp:105] Iteration 2208, lr = 0.00985977 I0408 19:36:51.556500 5931 solver.cpp:218] Iteration 2220 (2.4838 iter/s, 4.83131s/12 iters), loss = 2.17187 I0408 19:36:51.556535 5931 solver.cpp:237] Train net output #0: loss = 2.17187 (* 1 = 2.17187 loss) I0408 19:36:51.556541 5931 sgd_solver.cpp:105] Iteration 2220, lr = 0.00985731 I0408 19:36:53.334318 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:36:56.352470 5931 solver.cpp:218] Iteration 2232 (2.50213 iter/s, 4.79592s/12 iters), loss = 2.53691 I0408 19:36:56.352502 5931 solver.cpp:237] Train net output #0: loss = 2.53691 (* 1 = 2.53691 loss) I0408 19:36:56.352510 5931 sgd_solver.cpp:105] Iteration 2232, lr = 0.00985481 I0408 19:37:00.755615 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2244.caffemodel I0408 19:37:04.455587 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2244.solverstate I0408 19:37:08.158442 5931 solver.cpp:330] Iteration 2244, Testing net (#0) I0408 19:37:08.158468 5931 net.cpp:676] Ignoring source layer train-data I0408 19:37:11.810256 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:37:12.704125 5931 solver.cpp:397] Test net output #0: accuracy = 0.268382 I0408 19:37:12.704172 5931 solver.cpp:397] Test net output #1: loss = 3.21659 (* 1 = 3.21659 loss) I0408 19:37:12.800781 5931 solver.cpp:218] Iteration 2244 (0.729561 iter/s, 16.4482s/12 iters), loss = 2.4143 I0408 19:37:12.800817 5931 solver.cpp:237] Train net output #0: loss = 2.4143 (* 1 = 2.4143 loss) I0408 19:37:12.800823 5931 sgd_solver.cpp:105] Iteration 2244, lr = 0.00985226 I0408 19:37:16.744585 5931 solver.cpp:218] Iteration 2256 (3.04279 iter/s, 3.94375s/12 iters), loss = 2.91359 I0408 19:37:16.744616 5931 solver.cpp:237] Train net output #0: loss = 2.91359 (* 1 = 2.91359 loss) I0408 19:37:16.744623 5931 sgd_solver.cpp:105] Iteration 2256, lr = 0.00984967 I0408 19:37:21.441716 5931 solver.cpp:218] Iteration 2268 (2.55478 iter/s, 4.69709s/12 iters), loss = 2.59858 I0408 19:37:21.441749 5931 solver.cpp:237] Train net output #0: loss = 2.59858 (* 1 = 2.59858 loss) I0408 19:37:21.441757 5931 sgd_solver.cpp:105] Iteration 2268, lr = 0.00984703 I0408 19:37:26.183737 5931 solver.cpp:218] Iteration 2280 (2.53059 iter/s, 4.74197s/12 iters), loss = 2.49528 I0408 19:37:26.183881 5931 solver.cpp:237] Train net output #0: loss = 2.49528 (* 1 = 2.49528 loss) I0408 19:37:26.183888 5931 sgd_solver.cpp:105] Iteration 2280, lr = 0.00984435 I0408 19:37:30.962338 5931 solver.cpp:218] Iteration 2292 (2.51128 iter/s, 4.77844s/12 iters), loss = 2.65525 I0408 19:37:30.962371 5931 solver.cpp:237] Train net output #0: loss = 2.65525 (* 1 = 2.65525 loss) I0408 19:37:30.962378 5931 sgd_solver.cpp:105] Iteration 2292, lr = 0.00984162 I0408 19:37:35.800585 5931 solver.cpp:218] Iteration 2304 (2.48026 iter/s, 4.83819s/12 iters), loss = 2.33193 I0408 19:37:35.800616 5931 solver.cpp:237] Train net output #0: loss = 2.33193 (* 1 = 2.33193 loss) I0408 19:37:35.800623 5931 sgd_solver.cpp:105] Iteration 2304, lr = 0.00983885 I0408 19:37:40.615244 5931 solver.cpp:218] Iteration 2316 (2.49241 iter/s, 4.81461s/12 iters), loss = 2.69005 I0408 19:37:40.615276 5931 solver.cpp:237] Train net output #0: loss = 2.69005 (* 1 = 2.69005 loss) I0408 19:37:40.615283 5931 sgd_solver.cpp:105] Iteration 2316, lr = 0.00983603 I0408 19:37:44.414597 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:37:45.413044 5931 solver.cpp:218] Iteration 2328 (2.50117 iter/s, 4.79775s/12 iters), loss = 2.54279 I0408 19:37:45.413077 5931 solver.cpp:237] Train net output #0: loss = 2.54279 (* 1 = 2.54279 loss) I0408 19:37:45.413085 5931 sgd_solver.cpp:105] Iteration 2328, lr = 0.00983316 I0408 19:37:50.190591 5931 solver.cpp:218] Iteration 2340 (2.51178 iter/s, 4.7775s/12 iters), loss = 2.13108 I0408 19:37:50.190623 5931 solver.cpp:237] Train net output #0: loss = 2.13108 (* 1 = 2.13108 loss) I0408 19:37:50.190631 5931 sgd_solver.cpp:105] Iteration 2340, lr = 0.00983024 I0408 19:37:52.105490 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2346.caffemodel I0408 19:37:56.466341 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2346.solverstate I0408 19:38:00.425770 5931 solver.cpp:330] Iteration 2346, Testing net (#0) I0408 19:38:00.425797 5931 net.cpp:676] Ignoring source layer train-data I0408 19:38:04.165217 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:38:05.218755 5931 solver.cpp:397] Test net output #0: accuracy = 0.291054 I0408 19:38:05.218803 5931 solver.cpp:397] Test net output #1: loss = 3.09828 (* 1 = 3.09828 loss) I0408 19:38:06.946848 5931 solver.cpp:218] Iteration 2352 (0.716153 iter/s, 16.7562s/12 iters), loss = 2.09273 I0408 19:38:06.946883 5931 solver.cpp:237] Train net output #0: loss = 2.09273 (* 1 = 2.09273 loss) I0408 19:38:06.946890 5931 sgd_solver.cpp:105] Iteration 2352, lr = 0.00982727 I0408 19:38:11.682466 5931 solver.cpp:218] Iteration 2364 (2.53401 iter/s, 4.73557s/12 iters), loss = 2.62565 I0408 19:38:11.682499 5931 solver.cpp:237] Train net output #0: loss = 2.62565 (* 1 = 2.62565 loss) I0408 19:38:11.682507 5931 sgd_solver.cpp:105] Iteration 2364, lr = 0.00982425 I0408 19:38:16.418247 5931 solver.cpp:218] Iteration 2376 (2.53393 iter/s, 4.73573s/12 iters), loss = 2.42592 I0408 19:38:16.418280 5931 solver.cpp:237] Train net output #0: loss = 2.42592 (* 1 = 2.42592 loss) I0408 19:38:16.418288 5931 sgd_solver.cpp:105] Iteration 2376, lr = 0.00982117 I0408 19:38:21.135447 5931 solver.cpp:218] Iteration 2388 (2.54391 iter/s, 4.71715s/12 iters), loss = 2.04437 I0408 19:38:21.135479 5931 solver.cpp:237] Train net output #0: loss = 2.04437 (* 1 = 2.04437 loss) I0408 19:38:21.135488 5931 sgd_solver.cpp:105] Iteration 2388, lr = 0.00981805 I0408 19:38:25.843243 5931 solver.cpp:218] Iteration 2400 (2.54899 iter/s, 4.70775s/12 iters), loss = 2.67607 I0408 19:38:25.843276 5931 solver.cpp:237] Train net output #0: loss = 2.67607 (* 1 = 2.67607 loss) I0408 19:38:25.843282 5931 sgd_solver.cpp:105] Iteration 2400, lr = 0.00981487 I0408 19:38:30.684999 5931 solver.cpp:218] Iteration 2412 (2.47846 iter/s, 4.84171s/12 iters), loss = 2.51547 I0408 19:38:30.685060 5931 solver.cpp:237] Train net output #0: loss = 2.51547 (* 1 = 2.51547 loss) I0408 19:38:30.685068 5931 sgd_solver.cpp:105] Iteration 2412, lr = 0.00981163 I0408 19:38:35.506407 5931 solver.cpp:218] Iteration 2424 (2.48894 iter/s, 4.82133s/12 iters), loss = 2.0959 I0408 19:38:35.506438 5931 solver.cpp:237] Train net output #0: loss = 2.0959 (* 1 = 2.0959 loss) I0408 19:38:35.506446 5931 sgd_solver.cpp:105] Iteration 2424, lr = 0.00980834 I0408 19:38:36.524883 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:38:40.325289 5931 solver.cpp:218] Iteration 2436 (2.49023 iter/s, 4.81883s/12 iters), loss = 2.52854 I0408 19:38:40.325320 5931 solver.cpp:237] Train net output #0: loss = 2.52854 (* 1 = 2.52854 loss) I0408 19:38:40.325327 5931 sgd_solver.cpp:105] Iteration 2436, lr = 0.009805 I0408 19:38:44.699910 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2448.caffemodel I0408 19:38:47.811446 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2448.solverstate I0408 19:38:51.583385 5931 solver.cpp:330] Iteration 2448, Testing net (#0) I0408 19:38:51.583411 5931 net.cpp:676] Ignoring source layer train-data I0408 19:38:55.286252 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:38:56.372520 5931 solver.cpp:397] Test net output #0: accuracy = 0.261029 I0408 19:38:56.372570 5931 solver.cpp:397] Test net output #1: loss = 3.26117 (* 1 = 3.26117 loss) I0408 19:38:56.469086 5931 solver.cpp:218] Iteration 2448 (0.743322 iter/s, 16.1437s/12 iters), loss = 2.36564 I0408 19:38:56.469121 5931 solver.cpp:237] Train net output #0: loss = 2.36564 (* 1 = 2.36564 loss) I0408 19:38:56.469130 5931 sgd_solver.cpp:105] Iteration 2448, lr = 0.0098016 I0408 19:39:00.398000 5931 solver.cpp:218] Iteration 2460 (3.05432 iter/s, 3.92886s/12 iters), loss = 2.11892 I0408 19:39:00.398033 5931 solver.cpp:237] Train net output #0: loss = 2.11892 (* 1 = 2.11892 loss) I0408 19:39:00.398041 5931 sgd_solver.cpp:105] Iteration 2460, lr = 0.00979814 I0408 19:39:05.224330 5931 solver.cpp:218] Iteration 2472 (2.48639 iter/s, 4.82628s/12 iters), loss = 2.2783 I0408 19:39:05.224480 5931 solver.cpp:237] Train net output #0: loss = 2.2783 (* 1 = 2.2783 loss) I0408 19:39:05.224489 5931 sgd_solver.cpp:105] Iteration 2472, lr = 0.00979462 I0408 19:39:10.044690 5931 solver.cpp:218] Iteration 2484 (2.48953 iter/s, 4.8202s/12 iters), loss = 2.22805 I0408 19:39:10.044723 5931 solver.cpp:237] Train net output #0: loss = 2.22805 (* 1 = 2.22805 loss) I0408 19:39:10.044731 5931 sgd_solver.cpp:105] Iteration 2484, lr = 0.00979104 I0408 19:39:14.883322 5931 solver.cpp:218] Iteration 2496 (2.48007 iter/s, 4.83858s/12 iters), loss = 2.4572 I0408 19:39:14.883355 5931 solver.cpp:237] Train net output #0: loss = 2.4572 (* 1 = 2.4572 loss) I0408 19:39:14.883363 5931 sgd_solver.cpp:105] Iteration 2496, lr = 0.00978739 I0408 19:39:19.597734 5931 solver.cpp:218] Iteration 2508 (2.54541 iter/s, 4.71436s/12 iters), loss = 2.26248 I0408 19:39:19.597765 5931 solver.cpp:237] Train net output #0: loss = 2.26248 (* 1 = 2.26248 loss) I0408 19:39:19.597774 5931 sgd_solver.cpp:105] Iteration 2508, lr = 0.00978369 I0408 19:39:24.329479 5931 solver.cpp:218] Iteration 2520 (2.53609 iter/s, 4.7317s/12 iters), loss = 2.41503 I0408 19:39:24.329511 5931 solver.cpp:237] Train net output #0: loss = 2.41503 (* 1 = 2.41503 loss) I0408 19:39:24.329519 5931 sgd_solver.cpp:105] Iteration 2520, lr = 0.00977992 I0408 19:39:27.438206 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:39:29.116416 5931 solver.cpp:218] Iteration 2532 (2.50685 iter/s, 4.78689s/12 iters), loss = 2.17744 I0408 19:39:29.116447 5931 solver.cpp:237] Train net output #0: loss = 2.17744 (* 1 = 2.17744 loss) I0408 19:39:29.116456 5931 sgd_solver.cpp:105] Iteration 2532, lr = 0.00977609 I0408 19:39:33.828629 5931 solver.cpp:218] Iteration 2544 (2.5466 iter/s, 4.71216s/12 iters), loss = 2.1308 I0408 19:39:33.828660 5931 solver.cpp:237] Train net output #0: loss = 2.1308 (* 1 = 2.1308 loss) I0408 19:39:33.828668 5931 sgd_solver.cpp:105] Iteration 2544, lr = 0.0097722 I0408 19:39:35.752049 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2550.caffemodel I0408 19:39:39.296643 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2550.solverstate I0408 19:39:43.053663 5931 solver.cpp:330] Iteration 2550, Testing net (#0) I0408 19:39:43.053689 5931 net.cpp:676] Ignoring source layer train-data I0408 19:39:46.706526 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:39:47.837779 5931 solver.cpp:397] Test net output #0: accuracy = 0.279412 I0408 19:39:47.837814 5931 solver.cpp:397] Test net output #1: loss = 3.14504 (* 1 = 3.14504 loss) I0408 19:39:49.572825 5931 solver.cpp:218] Iteration 2556 (0.762189 iter/s, 15.7441s/12 iters), loss = 2.27666 I0408 19:39:49.572860 5931 solver.cpp:237] Train net output #0: loss = 2.27666 (* 1 = 2.27666 loss) I0408 19:39:49.572866 5931 sgd_solver.cpp:105] Iteration 2556, lr = 0.00976824 I0408 19:39:54.265280 5931 solver.cpp:218] Iteration 2568 (2.55733 iter/s, 4.6924s/12 iters), loss = 1.93333 I0408 19:39:54.265313 5931 solver.cpp:237] Train net output #0: loss = 1.93333 (* 1 = 1.93333 loss) I0408 19:39:54.265321 5931 sgd_solver.cpp:105] Iteration 2568, lr = 0.00976421 I0408 19:39:59.105406 5931 solver.cpp:218] Iteration 2580 (2.4793 iter/s, 4.84008s/12 iters), loss = 2.34647 I0408 19:39:59.105438 5931 solver.cpp:237] Train net output #0: loss = 2.34647 (* 1 = 2.34647 loss) I0408 19:39:59.105446 5931 sgd_solver.cpp:105] Iteration 2580, lr = 0.00976011 I0408 19:40:03.930449 5931 solver.cpp:218] Iteration 2592 (2.48705 iter/s, 4.82499s/12 iters), loss = 2.18032 I0408 19:40:03.930482 5931 solver.cpp:237] Train net output #0: loss = 2.18032 (* 1 = 2.18032 loss) I0408 19:40:03.930490 5931 sgd_solver.cpp:105] Iteration 2592, lr = 0.00975594 I0408 19:40:08.696230 5931 solver.cpp:218] Iteration 2604 (2.51798 iter/s, 4.76573s/12 iters), loss = 1.88009 I0408 19:40:08.696292 5931 solver.cpp:237] Train net output #0: loss = 1.88009 (* 1 = 1.88009 loss) I0408 19:40:08.696300 5931 sgd_solver.cpp:105] Iteration 2604, lr = 0.00975171 I0408 19:40:13.425879 5931 solver.cpp:218] Iteration 2616 (2.53723 iter/s, 4.72957s/12 iters), loss = 2.32095 I0408 19:40:13.425911 5931 solver.cpp:237] Train net output #0: loss = 2.32095 (* 1 = 2.32095 loss) I0408 19:40:13.425920 5931 sgd_solver.cpp:105] Iteration 2616, lr = 0.0097474 I0408 19:40:18.192402 5931 solver.cpp:218] Iteration 2628 (2.51759 iter/s, 4.76647s/12 iters), loss = 1.6661 I0408 19:40:18.192435 5931 solver.cpp:237] Train net output #0: loss = 1.6661 (* 1 = 1.6661 loss) I0408 19:40:18.192445 5931 sgd_solver.cpp:105] Iteration 2628, lr = 0.00974302 I0408 19:40:18.605332 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:40:22.923465 5931 solver.cpp:218] Iteration 2640 (2.53645 iter/s, 4.73101s/12 iters), loss = 2.2403 I0408 19:40:22.923498 5931 solver.cpp:237] Train net output #0: loss = 2.2403 (* 1 = 2.2403 loss) I0408 19:40:22.923506 5931 sgd_solver.cpp:105] Iteration 2640, lr = 0.00973856 I0408 19:40:27.205996 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2652.caffemodel I0408 19:40:30.316349 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2652.solverstate I0408 19:40:32.719694 5931 solver.cpp:330] Iteration 2652, Testing net (#0) I0408 19:40:32.719720 5931 net.cpp:676] Ignoring source layer train-data I0408 19:40:36.343957 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:40:37.515556 5931 solver.cpp:397] Test net output #0: accuracy = 0.299632 I0408 19:40:37.515604 5931 solver.cpp:397] Test net output #1: loss = 3.10295 (* 1 = 3.10295 loss) I0408 19:40:37.612187 5931 solver.cpp:218] Iteration 2652 (0.816957 iter/s, 14.6887s/12 iters), loss = 2.08837 I0408 19:40:37.612224 5931 solver.cpp:237] Train net output #0: loss = 2.08837 (* 1 = 2.08837 loss) I0408 19:40:37.612233 5931 sgd_solver.cpp:105] Iteration 2652, lr = 0.00973403 I0408 19:40:41.535809 5931 solver.cpp:218] Iteration 2664 (3.05844 iter/s, 3.92357s/12 iters), loss = 2.09268 I0408 19:40:41.535895 5931 solver.cpp:237] Train net output #0: loss = 2.09268 (* 1 = 2.09268 loss) I0408 19:40:41.535904 5931 sgd_solver.cpp:105] Iteration 2664, lr = 0.00972942 I0408 19:40:46.220741 5931 solver.cpp:218] Iteration 2676 (2.56146 iter/s, 4.68483s/12 iters), loss = 2.20134 I0408 19:40:46.220779 5931 solver.cpp:237] Train net output #0: loss = 2.20134 (* 1 = 2.20134 loss) I0408 19:40:46.220786 5931 sgd_solver.cpp:105] Iteration 2676, lr = 0.00972474 I0408 19:40:50.991250 5931 solver.cpp:218] Iteration 2688 (2.51548 iter/s, 4.77045s/12 iters), loss = 1.93849 I0408 19:40:50.991283 5931 solver.cpp:237] Train net output #0: loss = 1.93849 (* 1 = 1.93849 loss) I0408 19:40:50.991290 5931 sgd_solver.cpp:105] Iteration 2688, lr = 0.00971997 I0408 19:40:55.791440 5931 solver.cpp:218] Iteration 2700 (2.49993 iter/s, 4.80014s/12 iters), loss = 2.49127 I0408 19:40:55.791472 5931 solver.cpp:237] Train net output #0: loss = 2.49127 (* 1 = 2.49127 loss) I0408 19:40:55.791481 5931 sgd_solver.cpp:105] Iteration 2700, lr = 0.00971513 I0408 19:41:00.645083 5931 solver.cpp:218] Iteration 2712 (2.4724 iter/s, 4.85359s/12 iters), loss = 1.76925 I0408 19:41:00.645114 5931 solver.cpp:237] Train net output #0: loss = 1.76925 (* 1 = 1.76925 loss) I0408 19:41:00.645121 5931 sgd_solver.cpp:105] Iteration 2712, lr = 0.00971021 I0408 19:41:05.480443 5931 solver.cpp:218] Iteration 2724 (2.48174 iter/s, 4.83531s/12 iters), loss = 2.10723 I0408 19:41:05.480477 5931 solver.cpp:237] Train net output #0: loss = 2.10723 (* 1 = 2.10723 loss) I0408 19:41:05.480485 5931 sgd_solver.cpp:105] Iteration 2724, lr = 0.0097052 I0408 19:41:07.949951 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:41:10.299273 5931 solver.cpp:218] Iteration 2736 (2.49026 iter/s, 4.81878s/12 iters), loss = 2.00742 I0408 19:41:10.299306 5931 solver.cpp:237] Train net output #0: loss = 2.00742 (* 1 = 2.00742 loss) I0408 19:41:10.299314 5931 sgd_solver.cpp:105] Iteration 2736, lr = 0.00970011 I0408 19:41:15.002141 5931 solver.cpp:218] Iteration 2748 (2.55166 iter/s, 4.70282s/12 iters), loss = 2.10363 I0408 19:41:15.002265 5931 solver.cpp:237] Train net output #0: loss = 2.10363 (* 1 = 2.10363 loss) I0408 19:41:15.002276 5931 sgd_solver.cpp:105] Iteration 2748, lr = 0.00969493 I0408 19:41:16.908144 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2754.caffemodel I0408 19:41:20.002602 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2754.solverstate I0408 19:41:22.363296 5931 solver.cpp:330] Iteration 2754, Testing net (#0) I0408 19:41:22.363322 5931 net.cpp:676] Ignoring source layer train-data I0408 19:41:25.672354 5931 blocking_queue.cpp:49] Waiting for data I0408 19:41:25.941510 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:41:27.165488 5931 solver.cpp:397] Test net output #0: accuracy = 0.304534 I0408 19:41:27.165537 5931 solver.cpp:397] Test net output #1: loss = 3.14128 (* 1 = 3.14128 loss) I0408 19:41:28.895112 5931 solver.cpp:218] Iteration 2760 (0.863755 iter/s, 13.8928s/12 iters), loss = 2.21353 I0408 19:41:28.895148 5931 solver.cpp:237] Train net output #0: loss = 2.21353 (* 1 = 2.21353 loss) I0408 19:41:28.895156 5931 sgd_solver.cpp:105] Iteration 2760, lr = 0.00968967 I0408 19:41:33.600862 5931 solver.cpp:218] Iteration 2772 (2.5501 iter/s, 4.70569s/12 iters), loss = 2.35685 I0408 19:41:33.600893 5931 solver.cpp:237] Train net output #0: loss = 2.35685 (* 1 = 2.35685 loss) I0408 19:41:33.600899 5931 sgd_solver.cpp:105] Iteration 2772, lr = 0.00968432 I0408 19:41:38.433198 5931 solver.cpp:218] Iteration 2784 (2.4833 iter/s, 4.83229s/12 iters), loss = 2.39505 I0408 19:41:38.433231 5931 solver.cpp:237] Train net output #0: loss = 2.39505 (* 1 = 2.39505 loss) I0408 19:41:38.433239 5931 sgd_solver.cpp:105] Iteration 2784, lr = 0.00967888 I0408 19:41:43.245333 5931 solver.cpp:218] Iteration 2796 (2.49372 iter/s, 4.81208s/12 iters), loss = 2.36989 I0408 19:41:43.245365 5931 solver.cpp:237] Train net output #0: loss = 2.36989 (* 1 = 2.36989 loss) I0408 19:41:43.245373 5931 sgd_solver.cpp:105] Iteration 2796, lr = 0.00967335 I0408 19:41:48.024652 5931 solver.cpp:218] Iteration 2808 (2.51084 iter/s, 4.77927s/12 iters), loss = 2.06494 I0408 19:41:48.024744 5931 solver.cpp:237] Train net output #0: loss = 2.06494 (* 1 = 2.06494 loss) I0408 19:41:48.024751 5931 sgd_solver.cpp:105] Iteration 2808, lr = 0.00966773 I0408 19:41:52.757622 5931 solver.cpp:218] Iteration 2820 (2.53546 iter/s, 4.73286s/12 iters), loss = 1.86764 I0408 19:41:52.757655 5931 solver.cpp:237] Train net output #0: loss = 1.86764 (* 1 = 1.86764 loss) I0408 19:41:52.757663 5931 sgd_solver.cpp:105] Iteration 2820, lr = 0.00966201 I0408 19:41:57.236042 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:41:57.524037 5931 solver.cpp:218] Iteration 2832 (2.51764 iter/s, 4.76636s/12 iters), loss = 2.05133 I0408 19:41:57.524070 5931 solver.cpp:237] Train net output #0: loss = 2.05133 (* 1 = 2.05133 loss) I0408 19:41:57.524078 5931 sgd_solver.cpp:105] Iteration 2832, lr = 0.0096562 I0408 19:42:02.363499 5931 solver.cpp:218] Iteration 2844 (2.47964 iter/s, 4.83941s/12 iters), loss = 1.95991 I0408 19:42:02.363533 5931 solver.cpp:237] Train net output #0: loss = 1.95991 (* 1 = 1.95991 loss) I0408 19:42:02.363539 5931 sgd_solver.cpp:105] Iteration 2844, lr = 0.00965029 I0408 19:42:06.726016 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2856.caffemodel I0408 19:42:09.833176 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2856.solverstate I0408 19:42:12.193868 5931 solver.cpp:330] Iteration 2856, Testing net (#0) I0408 19:42:12.193894 5931 net.cpp:676] Ignoring source layer train-data I0408 19:42:15.723096 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:42:16.981695 5931 solver.cpp:397] Test net output #0: accuracy = 0.297181 I0408 19:42:16.981742 5931 solver.cpp:397] Test net output #1: loss = 3.13355 (* 1 = 3.13355 loss) I0408 19:42:17.078207 5931 solver.cpp:218] Iteration 2856 (0.815514 iter/s, 14.7146s/12 iters), loss = 2.0758 I0408 19:42:17.078250 5931 solver.cpp:237] Train net output #0: loss = 2.0758 (* 1 = 2.0758 loss) I0408 19:42:17.078258 5931 sgd_solver.cpp:105] Iteration 2856, lr = 0.00964429 I0408 19:42:21.052358 5931 solver.cpp:218] Iteration 2868 (3.01956 iter/s, 3.97409s/12 iters), loss = 1.90546 I0408 19:42:21.052421 5931 solver.cpp:237] Train net output #0: loss = 1.90546 (* 1 = 1.90546 loss) I0408 19:42:21.052429 5931 sgd_solver.cpp:105] Iteration 2868, lr = 0.00963818 I0408 19:42:25.862953 5931 solver.cpp:218] Iteration 2880 (2.49453 iter/s, 4.81052s/12 iters), loss = 1.88721 I0408 19:42:25.862985 5931 solver.cpp:237] Train net output #0: loss = 1.88721 (* 1 = 1.88721 loss) I0408 19:42:25.862993 5931 sgd_solver.cpp:105] Iteration 2880, lr = 0.00963198 I0408 19:42:30.681690 5931 solver.cpp:218] Iteration 2892 (2.49031 iter/s, 4.81869s/12 iters), loss = 2.44913 I0408 19:42:30.681722 5931 solver.cpp:237] Train net output #0: loss = 2.44913 (* 1 = 2.44913 loss) I0408 19:42:30.681730 5931 sgd_solver.cpp:105] Iteration 2892, lr = 0.00962567 I0408 19:42:35.491722 5931 solver.cpp:218] Iteration 2904 (2.49481 iter/s, 4.80998s/12 iters), loss = 1.8989 I0408 19:42:35.491755 5931 solver.cpp:237] Train net output #0: loss = 1.8989 (* 1 = 1.8989 loss) I0408 19:42:35.491762 5931 sgd_solver.cpp:105] Iteration 2904, lr = 0.00961926 I0408 19:42:40.336444 5931 solver.cpp:218] Iteration 2916 (2.47695 iter/s, 4.84467s/12 iters), loss = 1.77333 I0408 19:42:40.336477 5931 solver.cpp:237] Train net output #0: loss = 1.77333 (* 1 = 1.77333 loss) I0408 19:42:40.336484 5931 sgd_solver.cpp:105] Iteration 2916, lr = 0.00961275 I0408 19:42:45.114996 5931 solver.cpp:218] Iteration 2928 (2.51125 iter/s, 4.7785s/12 iters), loss = 1.6426 I0408 19:42:45.115029 5931 solver.cpp:237] Train net output #0: loss = 1.6426 (* 1 = 1.6426 loss) I0408 19:42:45.115037 5931 sgd_solver.cpp:105] Iteration 2928, lr = 0.00960612 I0408 19:42:46.835109 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:42:49.806344 5931 solver.cpp:218] Iteration 2940 (2.55793 iter/s, 4.6913s/12 iters), loss = 1.95866 I0408 19:42:49.806378 5931 solver.cpp:237] Train net output #0: loss = 1.95866 (* 1 = 1.95866 loss) I0408 19:42:49.806385 5931 sgd_solver.cpp:105] Iteration 2940, lr = 0.00959939 I0408 19:42:54.622810 5931 solver.cpp:218] Iteration 2952 (2.49148 iter/s, 4.81641s/12 iters), loss = 1.89963 I0408 19:42:54.622961 5931 solver.cpp:237] Train net output #0: loss = 1.89963 (* 1 = 1.89963 loss) I0408 19:42:54.622969 5931 sgd_solver.cpp:105] Iteration 2952, lr = 0.00959255 I0408 19:42:56.586161 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2958.caffemodel I0408 19:43:01.326535 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2958.solverstate I0408 19:43:05.371796 5931 solver.cpp:330] Iteration 2958, Testing net (#0) I0408 19:43:05.371821 5931 net.cpp:676] Ignoring source layer train-data I0408 19:43:08.856606 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:43:10.169764 5931 solver.cpp:397] Test net output #0: accuracy = 0.315564 I0408 19:43:10.169813 5931 solver.cpp:397] Test net output #1: loss = 3.04869 (* 1 = 3.04869 loss) I0408 19:43:11.911417 5931 solver.cpp:218] Iteration 2964 (0.694106 iter/s, 17.2884s/12 iters), loss = 2.17748 I0408 19:43:11.911453 5931 solver.cpp:237] Train net output #0: loss = 2.17748 (* 1 = 2.17748 loss) I0408 19:43:11.911459 5931 sgd_solver.cpp:105] Iteration 2964, lr = 0.0095856 I0408 19:43:16.705067 5931 solver.cpp:218] Iteration 2976 (2.50334 iter/s, 4.7936s/12 iters), loss = 1.79911 I0408 19:43:16.705098 5931 solver.cpp:237] Train net output #0: loss = 1.79911 (* 1 = 1.79911 loss) I0408 19:43:16.705106 5931 sgd_solver.cpp:105] Iteration 2976, lr = 0.00957853 I0408 19:43:21.536164 5931 solver.cpp:218] Iteration 2988 (2.48393 iter/s, 4.83105s/12 iters), loss = 2.20402 I0408 19:43:21.536198 5931 solver.cpp:237] Train net output #0: loss = 2.20402 (* 1 = 2.20402 loss) I0408 19:43:21.536206 5931 sgd_solver.cpp:105] Iteration 2988, lr = 0.00957135 I0408 19:43:26.366717 5931 solver.cpp:218] Iteration 3000 (2.48422 iter/s, 4.8305s/12 iters), loss = 2.03664 I0408 19:43:26.366832 5931 solver.cpp:237] Train net output #0: loss = 2.03664 (* 1 = 2.03664 loss) I0408 19:43:26.366840 5931 sgd_solver.cpp:105] Iteration 3000, lr = 0.00956405 I0408 19:43:31.202358 5931 solver.cpp:218] Iteration 3012 (2.48164 iter/s, 4.83551s/12 iters), loss = 1.75509 I0408 19:43:31.202389 5931 solver.cpp:237] Train net output #0: loss = 1.75509 (* 1 = 1.75509 loss) I0408 19:43:31.202395 5931 sgd_solver.cpp:105] Iteration 3012, lr = 0.00955663 I0408 19:43:36.020627 5931 solver.cpp:218] Iteration 3024 (2.49055 iter/s, 4.81822s/12 iters), loss = 2.015 I0408 19:43:36.020660 5931 solver.cpp:237] Train net output #0: loss = 2.015 (* 1 = 2.015 loss) I0408 19:43:36.020668 5931 sgd_solver.cpp:105] Iteration 3024, lr = 0.00954909 I0408 19:43:39.807835 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:43:40.797749 5931 solver.cpp:218] Iteration 3036 (2.512 iter/s, 4.77707s/12 iters), loss = 1.56338 I0408 19:43:40.797780 5931 solver.cpp:237] Train net output #0: loss = 1.56338 (* 1 = 1.56338 loss) I0408 19:43:40.797787 5931 sgd_solver.cpp:105] Iteration 3036, lr = 0.00954143 I0408 19:43:45.662631 5931 solver.cpp:218] Iteration 3048 (2.46668 iter/s, 4.86483s/12 iters), loss = 1.99556 I0408 19:43:45.662663 5931 solver.cpp:237] Train net output #0: loss = 1.99556 (* 1 = 1.99556 loss) I0408 19:43:45.662670 5931 sgd_solver.cpp:105] Iteration 3048, lr = 0.00953365 I0408 19:43:50.008245 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3060.caffemodel I0408 19:43:53.197582 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3060.solverstate I0408 19:43:55.828387 5931 solver.cpp:330] Iteration 3060, Testing net (#0) I0408 19:43:55.828413 5931 net.cpp:676] Ignoring source layer train-data I0408 19:43:59.266371 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:44:00.614713 5931 solver.cpp:397] Test net output #0: accuracy = 0.304534 I0408 19:44:00.614761 5931 solver.cpp:397] Test net output #1: loss = 3.11495 (* 1 = 3.11495 loss) I0408 19:44:00.711243 5931 solver.cpp:218] Iteration 3060 (0.797419 iter/s, 15.0485s/12 iters), loss = 1.87507 I0408 19:44:00.711282 5931 solver.cpp:237] Train net output #0: loss = 1.87507 (* 1 = 1.87507 loss) I0408 19:44:00.711289 5931 sgd_solver.cpp:105] Iteration 3060, lr = 0.00952574 I0408 19:44:04.732054 5931 solver.cpp:218] Iteration 3072 (2.98451 iter/s, 4.02076s/12 iters), loss = 1.79878 I0408 19:44:04.732087 5931 solver.cpp:237] Train net output #0: loss = 1.79878 (* 1 = 1.79878 loss) I0408 19:44:04.732095 5931 sgd_solver.cpp:105] Iteration 3072, lr = 0.00951771 I0408 19:44:09.751900 5931 solver.cpp:218] Iteration 3084 (2.39054 iter/s, 5.0198s/12 iters), loss = 1.55169 I0408 19:44:09.751935 5931 solver.cpp:237] Train net output #0: loss = 1.55169 (* 1 = 1.55169 loss) I0408 19:44:09.751942 5931 sgd_solver.cpp:105] Iteration 3084, lr = 0.00950954 I0408 19:44:14.572896 5931 solver.cpp:218] Iteration 3096 (2.48914 iter/s, 4.82094s/12 iters), loss = 1.60376 I0408 19:44:14.572928 5931 solver.cpp:237] Train net output #0: loss = 1.60376 (* 1 = 1.60376 loss) I0408 19:44:14.572935 5931 sgd_solver.cpp:105] Iteration 3096, lr = 0.00950124 I0408 19:44:19.430220 5931 solver.cpp:218] Iteration 3108 (2.47052 iter/s, 4.85727s/12 iters), loss = 1.71824 I0408 19:44:19.430253 5931 solver.cpp:237] Train net output #0: loss = 1.71824 (* 1 = 1.71824 loss) I0408 19:44:19.430259 5931 sgd_solver.cpp:105] Iteration 3108, lr = 0.00949281 I0408 19:44:24.271450 5931 solver.cpp:218] Iteration 3120 (2.47873 iter/s, 4.84118s/12 iters), loss = 1.6159 I0408 19:44:24.271484 5931 solver.cpp:237] Train net output #0: loss = 1.6159 (* 1 = 1.6159 loss) I0408 19:44:24.271492 5931 sgd_solver.cpp:105] Iteration 3120, lr = 0.00948425 I0408 19:44:29.070111 5931 solver.cpp:218] Iteration 3132 (2.50073 iter/s, 4.79861s/12 iters), loss = 1.71648 I0408 19:44:29.070153 5931 solver.cpp:237] Train net output #0: loss = 1.71648 (* 1 = 1.71648 loss) I0408 19:44:29.070164 5931 sgd_solver.cpp:105] Iteration 3132, lr = 0.00947555 I0408 19:44:30.114615 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:44:33.914194 5931 solver.cpp:218] Iteration 3144 (2.47728 iter/s, 4.84402s/12 iters), loss = 1.68917 I0408 19:44:33.914227 5931 solver.cpp:237] Train net output #0: loss = 1.68917 (* 1 = 1.68917 loss) I0408 19:44:33.914234 5931 sgd_solver.cpp:105] Iteration 3144, lr = 0.00946671 I0408 19:44:38.717455 5931 solver.cpp:218] Iteration 3156 (2.49833 iter/s, 4.80321s/12 iters), loss = 1.64058 I0408 19:44:38.717487 5931 solver.cpp:237] Train net output #0: loss = 1.64058 (* 1 = 1.64058 loss) I0408 19:44:38.717495 5931 sgd_solver.cpp:105] Iteration 3156, lr = 0.00945773 I0408 19:44:40.669191 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3162.caffemodel I0408 19:44:43.773061 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3162.solverstate I0408 19:44:46.127104 5931 solver.cpp:330] Iteration 3162, Testing net (#0) I0408 19:44:46.127130 5931 net.cpp:676] Ignoring source layer train-data I0408 19:44:49.515609 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:44:50.915791 5931 solver.cpp:397] Test net output #0: accuracy = 0.302696 I0408 19:44:50.915838 5931 solver.cpp:397] Test net output #1: loss = 3.20776 (* 1 = 3.20776 loss) I0408 19:44:52.678568 5931 solver.cpp:218] Iteration 3168 (0.859534 iter/s, 13.961s/12 iters), loss = 1.9325 I0408 19:44:52.678601 5931 solver.cpp:237] Train net output #0: loss = 1.9325 (* 1 = 1.9325 loss) I0408 19:44:52.678608 5931 sgd_solver.cpp:105] Iteration 3168, lr = 0.00944861 I0408 19:44:57.391702 5931 solver.cpp:218] Iteration 3180 (2.5461 iter/s, 4.71308s/12 iters), loss = 1.52427 I0408 19:44:57.391734 5931 solver.cpp:237] Train net output #0: loss = 1.52427 (* 1 = 1.52427 loss) I0408 19:44:57.391742 5931 sgd_solver.cpp:105] Iteration 3180, lr = 0.00943934 I0408 19:45:02.252027 5931 solver.cpp:218] Iteration 3192 (2.469 iter/s, 4.86028s/12 iters), loss = 1.31882 I0408 19:45:02.252187 5931 solver.cpp:237] Train net output #0: loss = 1.31882 (* 1 = 1.31882 loss) I0408 19:45:02.252197 5931 sgd_solver.cpp:105] Iteration 3192, lr = 0.00942993 I0408 19:45:07.063972 5931 solver.cpp:218] Iteration 3204 (2.49388 iter/s, 4.81177s/12 iters), loss = 1.77936 I0408 19:45:07.064008 5931 solver.cpp:237] Train net output #0: loss = 1.77936 (* 1 = 1.77936 loss) I0408 19:45:07.064016 5931 sgd_solver.cpp:105] Iteration 3204, lr = 0.00942037 I0408 19:45:11.773883 5931 solver.cpp:218] Iteration 3216 (2.54785 iter/s, 4.70986s/12 iters), loss = 2.16366 I0408 19:45:11.773916 5931 solver.cpp:237] Train net output #0: loss = 2.16366 (* 1 = 2.16366 loss) I0408 19:45:11.773922 5931 sgd_solver.cpp:105] Iteration 3216, lr = 0.00941066 I0408 19:45:16.527292 5931 solver.cpp:218] Iteration 3228 (2.52453 iter/s, 4.75336s/12 iters), loss = 1.4334 I0408 19:45:16.527325 5931 solver.cpp:237] Train net output #0: loss = 1.4334 (* 1 = 1.4334 loss) I0408 19:45:16.527333 5931 sgd_solver.cpp:105] Iteration 3228, lr = 0.00940079 I0408 19:45:19.651507 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:45:21.341858 5931 solver.cpp:218] Iteration 3240 (2.49246 iter/s, 4.81451s/12 iters), loss = 1.77559 I0408 19:45:21.341892 5931 solver.cpp:237] Train net output #0: loss = 1.77559 (* 1 = 1.77559 loss) I0408 19:45:21.341899 5931 sgd_solver.cpp:105] Iteration 3240, lr = 0.00939077 I0408 19:45:26.192190 5931 solver.cpp:218] Iteration 3252 (2.47408 iter/s, 4.85028s/12 iters), loss = 1.76575 I0408 19:45:26.192222 5931 solver.cpp:237] Train net output #0: loss = 1.76575 (* 1 = 1.76575 loss) I0408 19:45:26.192229 5931 sgd_solver.cpp:105] Iteration 3252, lr = 0.0093806 I0408 19:45:30.558578 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3264.caffemodel I0408 19:45:33.679528 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3264.solverstate I0408 19:45:36.046247 5931 solver.cpp:330] Iteration 3264, Testing net (#0) I0408 19:45:36.046272 5931 net.cpp:676] Ignoring source layer train-data I0408 19:45:39.288388 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:45:40.548239 5931 solver.cpp:397] Test net output #0: accuracy = 0.305147 I0408 19:45:40.548285 5931 solver.cpp:397] Test net output #1: loss = 3.17492 (* 1 = 3.17492 loss) I0408 19:45:40.644657 5931 solver.cpp:218] Iteration 3264 (0.830312 iter/s, 14.4524s/12 iters), loss = 1.67337 I0408 19:45:40.644690 5931 solver.cpp:237] Train net output #0: loss = 1.67337 (* 1 = 1.67337 loss) I0408 19:45:40.644698 5931 sgd_solver.cpp:105] Iteration 3264, lr = 0.00937027 I0408 19:45:44.655725 5931 solver.cpp:218] Iteration 3276 (2.99176 iter/s, 4.01102s/12 iters), loss = 1.63598 I0408 19:45:44.655757 5931 solver.cpp:237] Train net output #0: loss = 1.63598 (* 1 = 1.63598 loss) I0408 19:45:44.655766 5931 sgd_solver.cpp:105] Iteration 3276, lr = 0.00935977 I0408 19:45:49.491142 5931 solver.cpp:218] Iteration 3288 (2.48172 iter/s, 4.83536s/12 iters), loss = 2.06538 I0408 19:45:49.491174 5931 solver.cpp:237] Train net output #0: loss = 2.06538 (* 1 = 2.06538 loss) I0408 19:45:49.491183 5931 sgd_solver.cpp:105] Iteration 3288, lr = 0.00934912 I0408 19:45:54.329195 5931 solver.cpp:218] Iteration 3300 (2.48036 iter/s, 4.838s/12 iters), loss = 1.66721 I0408 19:45:54.329227 5931 solver.cpp:237] Train net output #0: loss = 1.66721 (* 1 = 1.66721 loss) I0408 19:45:54.329234 5931 sgd_solver.cpp:105] Iteration 3300, lr = 0.0093383 I0408 19:45:59.100371 5931 solver.cpp:218] Iteration 3312 (2.51513 iter/s, 4.77113s/12 iters), loss = 1.60572 I0408 19:45:59.100404 5931 solver.cpp:237] Train net output #0: loss = 1.60572 (* 1 = 1.60572 loss) I0408 19:45:59.100411 5931 sgd_solver.cpp:105] Iteration 3312, lr = 0.00932731 I0408 19:46:03.838589 5931 solver.cpp:218] Iteration 3324 (2.53263 iter/s, 4.73817s/12 iters), loss = 1.81534 I0408 19:46:03.838733 5931 solver.cpp:237] Train net output #0: loss = 1.81534 (* 1 = 1.81534 loss) I0408 19:46:03.838742 5931 sgd_solver.cpp:105] Iteration 3324, lr = 0.00931615 I0408 19:46:08.586114 5931 solver.cpp:218] Iteration 3336 (2.52772 iter/s, 4.74736s/12 iters), loss = 1.4701 I0408 19:46:08.586148 5931 solver.cpp:237] Train net output #0: loss = 1.4701 (* 1 = 1.4701 loss) I0408 19:46:08.586154 5931 sgd_solver.cpp:105] Iteration 3336, lr = 0.00930482 I0408 19:46:09.028456 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:46:13.432662 5931 solver.cpp:218] Iteration 3348 (2.47602 iter/s, 4.8465s/12 iters), loss = 1.9405 I0408 19:46:13.432693 5931 solver.cpp:237] Train net output #0: loss = 1.9405 (* 1 = 1.9405 loss) I0408 19:46:13.432701 5931 sgd_solver.cpp:105] Iteration 3348, lr = 0.00929332 I0408 19:46:18.253808 5931 solver.cpp:218] Iteration 3360 (2.48906 iter/s, 4.8211s/12 iters), loss = 1.74063 I0408 19:46:18.253841 5931 solver.cpp:237] Train net output #0: loss = 1.74063 (* 1 = 1.74063 loss) I0408 19:46:18.253849 5931 sgd_solver.cpp:105] Iteration 3360, lr = 0.00928164 I0408 19:46:20.218148 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3366.caffemodel I0408 19:46:25.278501 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3366.solverstate I0408 19:46:27.712607 5931 solver.cpp:330] Iteration 3366, Testing net (#0) I0408 19:46:27.712633 5931 net.cpp:676] Ignoring source layer train-data I0408 19:46:31.026484 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:46:32.495137 5931 solver.cpp:397] Test net output #0: accuracy = 0.326593 I0408 19:46:32.495187 5931 solver.cpp:397] Test net output #1: loss = 3.11988 (* 1 = 3.11988 loss) I0408 19:46:34.225756 5931 solver.cpp:218] Iteration 3372 (0.75132 iter/s, 15.9719s/12 iters), loss = 1.5596 I0408 19:46:34.225870 5931 solver.cpp:237] Train net output #0: loss = 1.5596 (* 1 = 1.5596 loss) I0408 19:46:34.225879 5931 sgd_solver.cpp:105] Iteration 3372, lr = 0.00926979 I0408 19:46:38.943619 5931 solver.cpp:218] Iteration 3384 (2.54359 iter/s, 4.71773s/12 iters), loss = 1.47987 I0408 19:46:38.943650 5931 solver.cpp:237] Train net output #0: loss = 1.47987 (* 1 = 1.47987 loss) I0408 19:46:38.943658 5931 sgd_solver.cpp:105] Iteration 3384, lr = 0.00925775 I0408 19:46:43.769683 5931 solver.cpp:218] Iteration 3396 (2.48652 iter/s, 4.82601s/12 iters), loss = 1.71752 I0408 19:46:43.769716 5931 solver.cpp:237] Train net output #0: loss = 1.71752 (* 1 = 1.71752 loss) I0408 19:46:43.769723 5931 sgd_solver.cpp:105] Iteration 3396, lr = 0.00924553 I0408 19:46:48.562824 5931 solver.cpp:218] Iteration 3408 (2.50361 iter/s, 4.79309s/12 iters), loss = 1.7134 I0408 19:46:48.562856 5931 solver.cpp:237] Train net output #0: loss = 1.7134 (* 1 = 1.7134 loss) I0408 19:46:48.562865 5931 sgd_solver.cpp:105] Iteration 3408, lr = 0.00923313 I0408 19:46:53.416544 5931 solver.cpp:218] Iteration 3420 (2.47236 iter/s, 4.85367s/12 iters), loss = 1.47257 I0408 19:46:53.416576 5931 solver.cpp:237] Train net output #0: loss = 1.47257 (* 1 = 1.47257 loss) I0408 19:46:53.416584 5931 sgd_solver.cpp:105] Iteration 3420, lr = 0.00922054 I0408 19:46:58.229673 5931 solver.cpp:218] Iteration 3432 (2.49321 iter/s, 4.81308s/12 iters), loss = 1.59194 I0408 19:46:58.229705 5931 solver.cpp:237] Train net output #0: loss = 1.59194 (* 1 = 1.59194 loss) I0408 19:46:58.229712 5931 sgd_solver.cpp:105] Iteration 3432, lr = 0.00920776 I0408 19:47:00.729575 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:47:03.033624 5931 solver.cpp:218] Iteration 3444 (2.49797 iter/s, 4.8039s/12 iters), loss = 1.63615 I0408 19:47:03.033656 5931 solver.cpp:237] Train net output #0: loss = 1.63615 (* 1 = 1.63615 loss) I0408 19:47:03.033664 5931 sgd_solver.cpp:105] Iteration 3444, lr = 0.00919479 I0408 19:47:07.872620 5931 solver.cpp:218] Iteration 3456 (2.47988 iter/s, 4.83894s/12 iters), loss = 1.51587 I0408 19:47:07.872754 5931 solver.cpp:237] Train net output #0: loss = 1.51587 (* 1 = 1.51587 loss) I0408 19:47:07.872764 5931 sgd_solver.cpp:105] Iteration 3456, lr = 0.00918163 I0408 19:47:12.244850 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3468.caffemodel I0408 19:47:15.369820 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3468.solverstate I0408 19:47:18.078097 5931 solver.cpp:330] Iteration 3468, Testing net (#0) I0408 19:47:18.078123 5931 net.cpp:676] Ignoring source layer train-data I0408 19:47:18.488811 5931 blocking_queue.cpp:49] Waiting for data I0408 19:47:21.336710 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:47:22.859947 5931 solver.cpp:397] Test net output #0: accuracy = 0.307598 I0408 19:47:22.859997 5931 solver.cpp:397] Test net output #1: loss = 3.1532 (* 1 = 3.1532 loss) I0408 19:47:22.956562 5931 solver.cpp:218] Iteration 3468 (0.795557 iter/s, 15.0838s/12 iters), loss = 1.41851 I0408 19:47:22.956595 5931 solver.cpp:237] Train net output #0: loss = 1.41851 (* 1 = 1.41851 loss) I0408 19:47:22.956604 5931 sgd_solver.cpp:105] Iteration 3468, lr = 0.00916827 I0408 19:47:26.932937 5931 solver.cpp:218] Iteration 3480 (3.01786 iter/s, 3.97632s/12 iters), loss = 1.7508 I0408 19:47:26.932971 5931 solver.cpp:237] Train net output #0: loss = 1.7508 (* 1 = 1.7508 loss) I0408 19:47:26.932978 5931 sgd_solver.cpp:105] Iteration 3480, lr = 0.00915472 I0408 19:47:31.775795 5931 solver.cpp:218] Iteration 3492 (2.4779 iter/s, 4.84281s/12 iters), loss = 1.47012 I0408 19:47:31.775828 5931 solver.cpp:237] Train net output #0: loss = 1.47012 (* 1 = 1.47012 loss) I0408 19:47:31.775835 5931 sgd_solver.cpp:105] Iteration 3492, lr = 0.00914096 I0408 19:47:36.610395 5931 solver.cpp:218] Iteration 3504 (2.48213 iter/s, 4.83455s/12 iters), loss = 1.83011 I0408 19:47:36.610428 5931 solver.cpp:237] Train net output #0: loss = 1.83011 (* 1 = 1.83011 loss) I0408 19:47:36.610436 5931 sgd_solver.cpp:105] Iteration 3504, lr = 0.009127 I0408 19:47:41.412057 5931 solver.cpp:218] Iteration 3516 (2.49916 iter/s, 4.80161s/12 iters), loss = 1.63459 I0408 19:47:41.412117 5931 solver.cpp:237] Train net output #0: loss = 1.63459 (* 1 = 1.63459 loss) I0408 19:47:41.412125 5931 sgd_solver.cpp:105] Iteration 3516, lr = 0.00911284 I0408 19:47:46.240335 5931 solver.cpp:218] Iteration 3528 (2.4854 iter/s, 4.8282s/12 iters), loss = 1.61359 I0408 19:47:46.240367 5931 solver.cpp:237] Train net output #0: loss = 1.61359 (* 1 = 1.61359 loss) I0408 19:47:46.240375 5931 sgd_solver.cpp:105] Iteration 3528, lr = 0.00909847 I0408 19:47:50.826333 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:47:51.086673 5931 solver.cpp:218] Iteration 3540 (2.47612 iter/s, 4.84628s/12 iters), loss = 1.62708 I0408 19:47:51.086705 5931 solver.cpp:237] Train net output #0: loss = 1.62708 (* 1 = 1.62708 loss) I0408 19:47:51.086712 5931 sgd_solver.cpp:105] Iteration 3540, lr = 0.00908389 I0408 19:47:55.882212 5931 solver.cpp:218] Iteration 3552 (2.50235 iter/s, 4.79549s/12 iters), loss = 1.44678 I0408 19:47:55.882243 5931 solver.cpp:237] Train net output #0: loss = 1.44678 (* 1 = 1.44678 loss) I0408 19:47:55.882251 5931 sgd_solver.cpp:105] Iteration 3552, lr = 0.0090691 I0408 19:48:00.728989 5931 solver.cpp:218] Iteration 3564 (2.4759 iter/s, 4.84673s/12 iters), loss = 1.43815 I0408 19:48:00.729022 5931 solver.cpp:237] Train net output #0: loss = 1.43815 (* 1 = 1.43815 loss) I0408 19:48:00.729029 5931 sgd_solver.cpp:105] Iteration 3564, lr = 0.00905409 I0408 19:48:02.638224 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3570.caffemodel I0408 19:48:05.781563 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3570.solverstate I0408 19:48:08.133029 5931 solver.cpp:330] Iteration 3570, Testing net (#0) I0408 19:48:08.133054 5931 net.cpp:676] Ignoring source layer train-data I0408 19:48:11.157994 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:48:12.570896 5931 solver.cpp:397] Test net output #0: accuracy = 0.310049 I0408 19:48:12.571038 5931 solver.cpp:397] Test net output #1: loss = 3.2581 (* 1 = 3.2581 loss) I0408 19:48:14.329645 5931 solver.cpp:218] Iteration 3576 (0.882315 iter/s, 13.6006s/12 iters), loss = 1.72021 I0408 19:48:14.329681 5931 solver.cpp:237] Train net output #0: loss = 1.72021 (* 1 = 1.72021 loss) I0408 19:48:14.329689 5931 sgd_solver.cpp:105] Iteration 3576, lr = 0.00903887 I0408 19:48:19.218842 5931 solver.cpp:218] Iteration 3588 (2.45442 iter/s, 4.88914s/12 iters), loss = 1.27849 I0408 19:48:19.218873 5931 solver.cpp:237] Train net output #0: loss = 1.27849 (* 1 = 1.27849 loss) I0408 19:48:19.218881 5931 sgd_solver.cpp:105] Iteration 3588, lr = 0.00902343 I0408 19:48:24.058223 5931 solver.cpp:218] Iteration 3600 (2.47968 iter/s, 4.83933s/12 iters), loss = 1.77975 I0408 19:48:24.058259 5931 solver.cpp:237] Train net output #0: loss = 1.77975 (* 1 = 1.77975 loss) I0408 19:48:24.058267 5931 sgd_solver.cpp:105] Iteration 3600, lr = 0.00900776 I0408 19:48:28.948431 5931 solver.cpp:218] Iteration 3612 (2.45391 iter/s, 4.89015s/12 iters), loss = 1.53952 I0408 19:48:28.948463 5931 solver.cpp:237] Train net output #0: loss = 1.53952 (* 1 = 1.53952 loss) I0408 19:48:28.948470 5931 sgd_solver.cpp:105] Iteration 3612, lr = 0.00899188 I0408 19:48:33.720458 5931 solver.cpp:218] Iteration 3624 (2.51468 iter/s, 4.77198s/12 iters), loss = 1.45971 I0408 19:48:33.720490 5931 solver.cpp:237] Train net output #0: loss = 1.45971 (* 1 = 1.45971 loss) I0408 19:48:33.720499 5931 sgd_solver.cpp:105] Iteration 3624, lr = 0.00897577 I0408 19:48:38.524768 5931 solver.cpp:218] Iteration 3636 (2.49778 iter/s, 4.80426s/12 iters), loss = 1.53678 I0408 19:48:38.524801 5931 solver.cpp:237] Train net output #0: loss = 1.53678 (* 1 = 1.53678 loss) I0408 19:48:38.524809 5931 sgd_solver.cpp:105] Iteration 3636, lr = 0.00895943 I0408 19:48:40.311872 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:48:43.320030 5931 solver.cpp:218] Iteration 3648 (2.5025 iter/s, 4.79521s/12 iters), loss = 1.70507 I0408 19:48:43.320152 5931 solver.cpp:237] Train net output #0: loss = 1.70507 (* 1 = 1.70507 loss) I0408 19:48:43.320160 5931 sgd_solver.cpp:105] Iteration 3648, lr = 0.00894287 I0408 19:48:48.164324 5931 solver.cpp:218] Iteration 3660 (2.47721 iter/s, 4.84416s/12 iters), loss = 1.51504 I0408 19:48:48.164356 5931 solver.cpp:237] Train net output #0: loss = 1.51504 (* 1 = 1.51504 loss) I0408 19:48:48.164364 5931 sgd_solver.cpp:105] Iteration 3660, lr = 0.00892607 I0408 19:48:52.532120 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3672.caffemodel I0408 19:48:55.760816 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3672.solverstate I0408 19:48:59.361902 5931 solver.cpp:330] Iteration 3672, Testing net (#0) I0408 19:48:59.361930 5931 net.cpp:676] Ignoring source layer train-data I0408 19:49:02.542757 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:49:04.150705 5931 solver.cpp:397] Test net output #0: accuracy = 0.301471 I0408 19:49:04.150753 5931 solver.cpp:397] Test net output #1: loss = 3.16574 (* 1 = 3.16574 loss) I0408 19:49:04.247330 5931 solver.cpp:218] Iteration 3672 (0.746132 iter/s, 16.0829s/12 iters), loss = 1.50581 I0408 19:49:04.247367 5931 solver.cpp:237] Train net output #0: loss = 1.50581 (* 1 = 1.50581 loss) I0408 19:49:04.247375 5931 sgd_solver.cpp:105] Iteration 3672, lr = 0.00890903 I0408 19:49:08.198350 5931 solver.cpp:218] Iteration 3684 (3.03723 iter/s, 3.95097s/12 iters), loss = 1.53007 I0408 19:49:08.198383 5931 solver.cpp:237] Train net output #0: loss = 1.53007 (* 1 = 1.53007 loss) I0408 19:49:08.198390 5931 sgd_solver.cpp:105] Iteration 3684, lr = 0.00889176 I0408 19:49:13.105240 5931 solver.cpp:218] Iteration 3696 (2.44557 iter/s, 4.90684s/12 iters), loss = 1.48696 I0408 19:49:13.105274 5931 solver.cpp:237] Train net output #0: loss = 1.48696 (* 1 = 1.48696 loss) I0408 19:49:13.105281 5931 sgd_solver.cpp:105] Iteration 3696, lr = 0.00887425 I0408 19:49:18.319669 5931 solver.cpp:218] Iteration 3708 (2.30133 iter/s, 5.21438s/12 iters), loss = 1.29337 I0408 19:49:18.319816 5931 solver.cpp:237] Train net output #0: loss = 1.29337 (* 1 = 1.29337 loss) I0408 19:49:18.319825 5931 sgd_solver.cpp:105] Iteration 3708, lr = 0.0088565 I0408 19:49:23.147174 5931 solver.cpp:218] Iteration 3720 (2.48584 iter/s, 4.82734s/12 iters), loss = 1.27008 I0408 19:49:23.147210 5931 solver.cpp:237] Train net output #0: loss = 1.27008 (* 1 = 1.27008 loss) I0408 19:49:23.147218 5931 sgd_solver.cpp:105] Iteration 3720, lr = 0.00883851 I0408 19:49:28.101531 5931 solver.cpp:218] Iteration 3732 (2.42214 iter/s, 4.9543s/12 iters), loss = 1.60349 I0408 19:49:28.101565 5931 solver.cpp:237] Train net output #0: loss = 1.60349 (* 1 = 1.60349 loss) I0408 19:49:28.101572 5931 sgd_solver.cpp:105] Iteration 3732, lr = 0.00882027 I0408 19:49:32.338606 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:49:33.317809 5931 solver.cpp:218] Iteration 3744 (2.30051 iter/s, 5.21622s/12 iters), loss = 1.43698 I0408 19:49:33.317842 5931 solver.cpp:237] Train net output #0: loss = 1.43698 (* 1 = 1.43698 loss) I0408 19:49:33.317848 5931 sgd_solver.cpp:105] Iteration 3744, lr = 0.00880178 I0408 19:49:38.240744 5931 solver.cpp:218] Iteration 3756 (2.4376 iter/s, 4.92288s/12 iters), loss = 1.32667 I0408 19:49:38.240777 5931 solver.cpp:237] Train net output #0: loss = 1.32667 (* 1 = 1.32667 loss) I0408 19:49:38.240784 5931 sgd_solver.cpp:105] Iteration 3756, lr = 0.00878304 I0408 19:49:43.331405 5931 solver.cpp:218] Iteration 3768 (2.35728 iter/s, 5.09061s/12 iters), loss = 1.68272 I0408 19:49:43.331440 5931 solver.cpp:237] Train net output #0: loss = 1.68272 (* 1 = 1.68272 loss) I0408 19:49:43.331449 5931 sgd_solver.cpp:105] Iteration 3768, lr = 0.00876406 I0408 19:49:45.337543 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3774.caffemodel I0408 19:49:48.459075 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3774.solverstate I0408 19:49:50.860807 5931 solver.cpp:330] Iteration 3774, Testing net (#0) I0408 19:49:50.860832 5931 net.cpp:676] Ignoring source layer train-data I0408 19:49:53.999948 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:49:55.646855 5931 solver.cpp:397] Test net output #0: accuracy = 0.311274 I0408 19:49:55.646905 5931 solver.cpp:397] Test net output #1: loss = 3.21819 (* 1 = 3.21819 loss) I0408 19:49:57.460376 5931 solver.cpp:218] Iteration 3780 (0.849323 iter/s, 14.1289s/12 iters), loss = 1.88812 I0408 19:49:57.460409 5931 solver.cpp:237] Train net output #0: loss = 1.88812 (* 1 = 1.88812 loss) I0408 19:49:57.460417 5931 sgd_solver.cpp:105] Iteration 3780, lr = 0.00874481 I0408 19:50:02.648438 5931 solver.cpp:218] Iteration 3792 (2.31303 iter/s, 5.18801s/12 iters), loss = 1.4342 I0408 19:50:02.648470 5931 solver.cpp:237] Train net output #0: loss = 1.4342 (* 1 = 1.4342 loss) I0408 19:50:02.648478 5931 sgd_solver.cpp:105] Iteration 3792, lr = 0.00872531 I0408 19:50:07.744280 5931 solver.cpp:218] Iteration 3804 (2.35489 iter/s, 5.09579s/12 iters), loss = 1.38925 I0408 19:50:07.744313 5931 solver.cpp:237] Train net output #0: loss = 1.38925 (* 1 = 1.38925 loss) I0408 19:50:07.744320 5931 sgd_solver.cpp:105] Iteration 3804, lr = 0.00870556 I0408 19:50:12.683784 5931 solver.cpp:218] Iteration 3816 (2.42942 iter/s, 4.93945s/12 iters), loss = 1.59515 I0408 19:50:12.683817 5931 solver.cpp:237] Train net output #0: loss = 1.59515 (* 1 = 1.59515 loss) I0408 19:50:12.683825 5931 sgd_solver.cpp:105] Iteration 3816, lr = 0.00868554 I0408 19:50:17.720166 5931 solver.cpp:218] Iteration 3828 (2.38269 iter/s, 5.03633s/12 iters), loss = 1.28719 I0408 19:50:17.720198 5931 solver.cpp:237] Train net output #0: loss = 1.28719 (* 1 = 1.28719 loss) I0408 19:50:17.720206 5931 sgd_solver.cpp:105] Iteration 3828, lr = 0.00866526 I0408 19:50:22.454062 5931 solver.cpp:218] Iteration 3840 (2.53494 iter/s, 4.73385s/12 iters), loss = 1.09634 I0408 19:50:22.454161 5931 solver.cpp:237] Train net output #0: loss = 1.09634 (* 1 = 1.09634 loss) I0408 19:50:22.454170 5931 sgd_solver.cpp:105] Iteration 3840, lr = 0.00864472 I0408 19:50:23.531124 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:50:27.468495 5931 solver.cpp:218] Iteration 3852 (2.39315 iter/s, 5.01432s/12 iters), loss = 1.3781 I0408 19:50:27.468528 5931 solver.cpp:237] Train net output #0: loss = 1.3781 (* 1 = 1.3781 loss) I0408 19:50:27.468535 5931 sgd_solver.cpp:105] Iteration 3852, lr = 0.00862391 I0408 19:50:32.496354 5931 solver.cpp:218] Iteration 3864 (2.38673 iter/s, 5.02781s/12 iters), loss = 1.64849 I0408 19:50:32.496387 5931 solver.cpp:237] Train net output #0: loss = 1.64849 (* 1 = 1.64849 loss) I0408 19:50:32.496393 5931 sgd_solver.cpp:105] Iteration 3864, lr = 0.00860284 I0408 19:50:36.962940 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3876.caffemodel I0408 19:50:43.248865 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3876.solverstate I0408 19:50:46.601116 5931 solver.cpp:330] Iteration 3876, Testing net (#0) I0408 19:50:46.601143 5931 net.cpp:676] Ignoring source layer train-data I0408 19:50:49.554091 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:50:51.058842 5931 solver.cpp:397] Test net output #0: accuracy = 0.309436 I0408 19:50:51.058890 5931 solver.cpp:397] Test net output #1: loss = 3.10056 (* 1 = 3.10056 loss) I0408 19:50:51.154953 5931 solver.cpp:218] Iteration 3876 (0.643138 iter/s, 18.6585s/12 iters), loss = 1.65166 I0408 19:50:51.154989 5931 solver.cpp:237] Train net output #0: loss = 1.65166 (* 1 = 1.65166 loss) I0408 19:50:51.154996 5931 sgd_solver.cpp:105] Iteration 3876, lr = 0.00858149 I0408 19:50:55.377822 5931 solver.cpp:218] Iteration 3888 (2.84171 iter/s, 4.22282s/12 iters), loss = 1.34599 I0408 19:50:55.377936 5931 solver.cpp:237] Train net output #0: loss = 1.34599 (* 1 = 1.34599 loss) I0408 19:50:55.377945 5931 sgd_solver.cpp:105] Iteration 3888, lr = 0.00855987 I0408 19:51:00.326395 5931 solver.cpp:218] Iteration 3900 (2.42501 iter/s, 4.94844s/12 iters), loss = 1.4676 I0408 19:51:00.326428 5931 solver.cpp:237] Train net output #0: loss = 1.4676 (* 1 = 1.4676 loss) I0408 19:51:00.326436 5931 sgd_solver.cpp:105] Iteration 3900, lr = 0.00853798 I0408 19:51:05.088506 5931 solver.cpp:218] Iteration 3912 (2.51992 iter/s, 4.76206s/12 iters), loss = 1.47221 I0408 19:51:05.088539 5931 solver.cpp:237] Train net output #0: loss = 1.47221 (* 1 = 1.47221 loss) I0408 19:51:05.088547 5931 sgd_solver.cpp:105] Iteration 3912, lr = 0.00851581 I0408 19:51:09.952258 5931 solver.cpp:218] Iteration 3924 (2.46726 iter/s, 4.8637s/12 iters), loss = 1.06335 I0408 19:51:09.952292 5931 solver.cpp:237] Train net output #0: loss = 1.06335 (* 1 = 1.06335 loss) I0408 19:51:09.952299 5931 sgd_solver.cpp:105] Iteration 3924, lr = 0.00849337 I0408 19:51:14.762267 5931 solver.cpp:218] Iteration 3936 (2.49483 iter/s, 4.80996s/12 iters), loss = 1.12105 I0408 19:51:14.762300 5931 solver.cpp:237] Train net output #0: loss = 1.12105 (* 1 = 1.12105 loss) I0408 19:51:14.762306 5931 sgd_solver.cpp:105] Iteration 3936, lr = 0.00847065 I0408 19:51:18.042289 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:51:19.569290 5931 solver.cpp:218] Iteration 3948 (2.49638 iter/s, 4.80697s/12 iters), loss = 1.08098 I0408 19:51:19.569322 5931 solver.cpp:237] Train net output #0: loss = 1.08098 (* 1 = 1.08098 loss) I0408 19:51:19.569329 5931 sgd_solver.cpp:105] Iteration 3948, lr = 0.00844765 I0408 19:51:24.511744 5931 solver.cpp:218] Iteration 3960 (2.42797 iter/s, 4.9424s/12 iters), loss = 1.03392 I0408 19:51:24.511776 5931 solver.cpp:237] Train net output #0: loss = 1.03392 (* 1 = 1.03392 loss) I0408 19:51:24.511785 5931 sgd_solver.cpp:105] Iteration 3960, lr = 0.00842437 I0408 19:51:29.277631 5931 solver.cpp:218] Iteration 3972 (2.51792 iter/s, 4.76583s/12 iters), loss = 1.32092 I0408 19:51:29.277729 5931 solver.cpp:237] Train net output #0: loss = 1.32092 (* 1 = 1.32092 loss) I0408 19:51:29.277737 5931 sgd_solver.cpp:105] Iteration 3972, lr = 0.0084008 I0408 19:51:31.184481 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3978.caffemodel I0408 19:51:35.462579 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3978.solverstate I0408 19:51:39.070483 5931 solver.cpp:330] Iteration 3978, Testing net (#0) I0408 19:51:39.070508 5931 net.cpp:676] Ignoring source layer train-data I0408 19:51:42.083915 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:51:43.615447 5931 solver.cpp:397] Test net output #0: accuracy = 0.319853 I0408 19:51:43.615491 5931 solver.cpp:397] Test net output #1: loss = 3.16041 (* 1 = 3.16041 loss) I0408 19:51:45.347700 5931 solver.cpp:218] Iteration 3984 (0.746736 iter/s, 16.0699s/12 iters), loss = 1.26151 I0408 19:51:45.347735 5931 solver.cpp:237] Train net output #0: loss = 1.26151 (* 1 = 1.26151 loss) I0408 19:51:45.347743 5931 sgd_solver.cpp:105] Iteration 3984, lr = 0.00837695 I0408 19:51:50.108656 5931 solver.cpp:218] Iteration 3996 (2.52053 iter/s, 4.7609s/12 iters), loss = 1.12289 I0408 19:51:50.108688 5931 solver.cpp:237] Train net output #0: loss = 1.12289 (* 1 = 1.12289 loss) I0408 19:51:50.108697 5931 sgd_solver.cpp:105] Iteration 3996, lr = 0.00835281 I0408 19:51:54.968400 5931 solver.cpp:218] Iteration 4008 (2.46929 iter/s, 4.85969s/12 iters), loss = 1.05794 I0408 19:51:54.968433 5931 solver.cpp:237] Train net output #0: loss = 1.05794 (* 1 = 1.05794 loss) I0408 19:51:54.968441 5931 sgd_solver.cpp:105] Iteration 4008, lr = 0.00832839 I0408 19:51:59.785013 5931 solver.cpp:218] Iteration 4020 (2.49141 iter/s, 4.81655s/12 iters), loss = 1.72157 I0408 19:51:59.785156 5931 solver.cpp:237] Train net output #0: loss = 1.72157 (* 1 = 1.72157 loss) I0408 19:51:59.785166 5931 sgd_solver.cpp:105] Iteration 4020, lr = 0.00830368 I0408 19:52:04.579777 5931 solver.cpp:218] Iteration 4032 (2.50281 iter/s, 4.79461s/12 iters), loss = 1.51982 I0408 19:52:04.579810 5931 solver.cpp:237] Train net output #0: loss = 1.51982 (* 1 = 1.51982 loss) I0408 19:52:04.579818 5931 sgd_solver.cpp:105] Iteration 4032, lr = 0.00827867 I0408 19:52:09.430395 5931 solver.cpp:218] Iteration 4044 (2.47394 iter/s, 4.85057s/12 iters), loss = 1.51046 I0408 19:52:09.430428 5931 solver.cpp:237] Train net output #0: loss = 1.51046 (* 1 = 1.51046 loss) I0408 19:52:09.430436 5931 sgd_solver.cpp:105] Iteration 4044, lr = 0.00825338 I0408 19:52:09.891220 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:52:14.253439 5931 solver.cpp:218] Iteration 4056 (2.48808 iter/s, 4.82299s/12 iters), loss = 1.26421 I0408 19:52:14.253471 5931 solver.cpp:237] Train net output #0: loss = 1.26421 (* 1 = 1.26421 loss) I0408 19:52:14.253479 5931 sgd_solver.cpp:105] Iteration 4056, lr = 0.0082278 I0408 19:52:19.074704 5931 solver.cpp:218] Iteration 4068 (2.489 iter/s, 4.82121s/12 iters), loss = 1.41095 I0408 19:52:19.074736 5931 solver.cpp:237] Train net output #0: loss = 1.41095 (* 1 = 1.41095 loss) I0408 19:52:19.074743 5931 sgd_solver.cpp:105] Iteration 4068, lr = 0.00820192 I0408 19:52:23.444603 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4080.caffemodel I0408 19:52:27.382596 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4080.solverstate I0408 19:52:30.613588 5931 solver.cpp:330] Iteration 4080, Testing net (#0) I0408 19:52:30.613692 5931 net.cpp:676] Ignoring source layer train-data I0408 19:52:33.622864 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:52:35.396471 5931 solver.cpp:397] Test net output #0: accuracy = 0.318627 I0408 19:52:35.396518 5931 solver.cpp:397] Test net output #1: loss = 3.22433 (* 1 = 3.22433 loss) I0408 19:52:35.491971 5931 solver.cpp:218] Iteration 4080 (0.730941 iter/s, 16.4172s/12 iters), loss = 1.20716 I0408 19:52:35.492003 5931 solver.cpp:237] Train net output #0: loss = 1.20716 (* 1 = 1.20716 loss) I0408 19:52:35.492012 5931 sgd_solver.cpp:105] Iteration 4080, lr = 0.00817574 I0408 19:52:39.484777 5931 solver.cpp:218] Iteration 4092 (3.00544 iter/s, 3.99276s/12 iters), loss = 1.16726 I0408 19:52:39.484810 5931 solver.cpp:237] Train net output #0: loss = 1.16726 (* 1 = 1.16726 loss) I0408 19:52:39.484817 5931 sgd_solver.cpp:105] Iteration 4092, lr = 0.00814928 I0408 19:52:44.207520 5931 solver.cpp:218] Iteration 4104 (2.54092 iter/s, 4.72269s/12 iters), loss = 1.12696 I0408 19:52:44.207551 5931 solver.cpp:237] Train net output #0: loss = 1.12696 (* 1 = 1.12696 loss) I0408 19:52:44.207558 5931 sgd_solver.cpp:105] Iteration 4104, lr = 0.00812251 I0408 19:52:49.030146 5931 solver.cpp:218] Iteration 4116 (2.4883 iter/s, 4.82258s/12 iters), loss = 1.44622 I0408 19:52:49.030179 5931 solver.cpp:237] Train net output #0: loss = 1.44622 (* 1 = 1.44622 loss) I0408 19:52:49.030186 5931 sgd_solver.cpp:105] Iteration 4116, lr = 0.00809545 I0408 19:52:53.846629 5931 solver.cpp:218] Iteration 4128 (2.49147 iter/s, 4.81643s/12 iters), loss = 1.02868 I0408 19:52:53.846660 5931 solver.cpp:237] Train net output #0: loss = 1.02868 (* 1 = 1.02868 loss) I0408 19:52:53.846668 5931 sgd_solver.cpp:105] Iteration 4128, lr = 0.0080681 I0408 19:52:58.672061 5931 solver.cpp:218] Iteration 4140 (2.48685 iter/s, 4.82538s/12 iters), loss = 0.857603 I0408 19:52:58.672096 5931 solver.cpp:237] Train net output #0: loss = 0.857603 (* 1 = 0.857603 loss) I0408 19:52:58.672103 5931 sgd_solver.cpp:105] Iteration 4140, lr = 0.00804044 I0408 19:53:01.218135 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:53:03.513885 5931 solver.cpp:218] Iteration 4152 (2.47843 iter/s, 4.84177s/12 iters), loss = 1.2021 I0408 19:53:03.513918 5931 solver.cpp:237] Train net output #0: loss = 1.2021 (* 1 = 1.2021 loss) I0408 19:53:03.513926 5931 sgd_solver.cpp:105] Iteration 4152, lr = 0.00801249 I0408 19:53:05.051857 5931 blocking_queue.cpp:49] Waiting for data I0408 19:53:08.323308 5931 solver.cpp:218] Iteration 4164 (2.49513 iter/s, 4.80937s/12 iters), loss = 1.05113 I0408 19:53:08.323340 5931 solver.cpp:237] Train net output #0: loss = 1.05113 (* 1 = 1.05113 loss) I0408 19:53:08.323348 5931 sgd_solver.cpp:105] Iteration 4164, lr = 0.00798423 I0408 19:53:13.149473 5931 solver.cpp:218] Iteration 4176 (2.48647 iter/s, 4.82611s/12 iters), loss = 1.49781 I0408 19:53:13.149504 5931 solver.cpp:237] Train net output #0: loss = 1.49781 (* 1 = 1.49781 loss) I0408 19:53:13.149513 5931 sgd_solver.cpp:105] Iteration 4176, lr = 0.00795568 I0408 19:53:15.104741 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4182.caffemodel I0408 19:53:18.211241 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4182.solverstate I0408 19:53:21.356909 5931 solver.cpp:330] Iteration 4182, Testing net (#0) I0408 19:53:21.356935 5931 net.cpp:676] Ignoring source layer train-data I0408 19:53:24.319149 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:53:26.146239 5931 solver.cpp:397] Test net output #0: accuracy = 0.334559 I0408 19:53:26.146286 5931 solver.cpp:397] Test net output #1: loss = 3.12765 (* 1 = 3.12765 loss) I0408 19:53:27.883332 5931 solver.cpp:218] Iteration 4188 (0.814454 iter/s, 14.7338s/12 iters), loss = 1.58775 I0408 19:53:27.883365 5931 solver.cpp:237] Train net output #0: loss = 1.58775 (* 1 = 1.58775 loss) I0408 19:53:27.883373 5931 sgd_solver.cpp:105] Iteration 4188, lr = 0.00792683 I0408 19:53:32.615044 5931 solver.cpp:218] Iteration 4200 (2.53611 iter/s, 4.73166s/12 iters), loss = 1.11497 I0408 19:53:32.615140 5931 solver.cpp:237] Train net output #0: loss = 1.11497 (* 1 = 1.11497 loss) I0408 19:53:32.615149 5931 sgd_solver.cpp:105] Iteration 4200, lr = 0.00789768 I0408 19:53:37.447885 5931 solver.cpp:218] Iteration 4212 (2.48307 iter/s, 4.83273s/12 iters), loss = 1.23404 I0408 19:53:37.447923 5931 solver.cpp:237] Train net output #0: loss = 1.23404 (* 1 = 1.23404 loss) I0408 19:53:37.447930 5931 sgd_solver.cpp:105] Iteration 4212, lr = 0.00786823 I0408 19:53:42.283274 5931 solver.cpp:218] Iteration 4224 (2.48173 iter/s, 4.83533s/12 iters), loss = 1.34776 I0408 19:53:42.283313 5931 solver.cpp:237] Train net output #0: loss = 1.34776 (* 1 = 1.34776 loss) I0408 19:53:42.283322 5931 sgd_solver.cpp:105] Iteration 4224, lr = 0.00783848 I0408 19:53:47.100708 5931 solver.cpp:218] Iteration 4236 (2.49098 iter/s, 4.81738s/12 iters), loss = 1.16645 I0408 19:53:47.100744 5931 solver.cpp:237] Train net output #0: loss = 1.16645 (* 1 = 1.16645 loss) I0408 19:53:47.100752 5931 sgd_solver.cpp:105] Iteration 4236, lr = 0.00780843 I0408 19:53:51.677166 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:53:51.894517 5931 solver.cpp:218] Iteration 4248 (2.50326 iter/s, 4.79375s/12 iters), loss = 1.18824 I0408 19:53:51.894551 5931 solver.cpp:237] Train net output #0: loss = 1.18824 (* 1 = 1.18824 loss) I0408 19:53:51.894559 5931 sgd_solver.cpp:105] Iteration 4248, lr = 0.00777809 I0408 19:53:56.592785 5931 solver.cpp:218] Iteration 4260 (2.55416 iter/s, 4.69821s/12 iters), loss = 0.948969 I0408 19:53:56.592819 5931 solver.cpp:237] Train net output #0: loss = 0.948969 (* 1 = 0.948969 loss) I0408 19:53:56.592828 5931 sgd_solver.cpp:105] Iteration 4260, lr = 0.00774744 I0408 19:54:01.379490 5931 solver.cpp:218] Iteration 4272 (2.50697 iter/s, 4.78665s/12 iters), loss = 1.01914 I0408 19:54:01.379523 5931 solver.cpp:237] Train net output #0: loss = 1.01914 (* 1 = 1.01914 loss) I0408 19:54:01.379537 5931 sgd_solver.cpp:105] Iteration 4272, lr = 0.00771649 I0408 19:54:05.751072 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4284.caffemodel I0408 19:54:08.864266 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4284.solverstate I0408 19:54:11.218518 5931 solver.cpp:330] Iteration 4284, Testing net (#0) I0408 19:54:11.218544 5931 net.cpp:676] Ignoring source layer train-data I0408 19:54:14.140738 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:54:15.999917 5931 solver.cpp:397] Test net output #0: accuracy = 0.333333 I0408 19:54:15.999966 5931 solver.cpp:397] Test net output #1: loss = 3.15961 (* 1 = 3.15961 loss) I0408 19:54:16.096501 5931 solver.cpp:218] Iteration 4284 (0.815387 iter/s, 14.7169s/12 iters), loss = 1.12854 I0408 19:54:16.096539 5931 solver.cpp:237] Train net output #0: loss = 1.12854 (* 1 = 1.12854 loss) I0408 19:54:16.096546 5931 sgd_solver.cpp:105] Iteration 4284, lr = 0.00768525 I0408 19:54:20.038765 5931 solver.cpp:218] Iteration 4296 (3.04398 iter/s, 3.94221s/12 iters), loss = 0.818015 I0408 19:54:20.038800 5931 solver.cpp:237] Train net output #0: loss = 0.818015 (* 1 = 0.818015 loss) I0408 19:54:20.038807 5931 sgd_solver.cpp:105] Iteration 4296, lr = 0.00765371 I0408 19:54:24.915174 5931 solver.cpp:218] Iteration 4308 (2.46085 iter/s, 4.87636s/12 iters), loss = 1.00404 I0408 19:54:24.915211 5931 solver.cpp:237] Train net output #0: loss = 1.00404 (* 1 = 1.00404 loss) I0408 19:54:24.915220 5931 sgd_solver.cpp:105] Iteration 4308, lr = 0.00762187 I0408 19:54:29.693827 5931 solver.cpp:218] Iteration 4320 (2.5112 iter/s, 4.7786s/12 iters), loss = 1.52882 I0408 19:54:29.693866 5931 solver.cpp:237] Train net output #0: loss = 1.52882 (* 1 = 1.52882 loss) I0408 19:54:29.693873 5931 sgd_solver.cpp:105] Iteration 4320, lr = 0.00758973 I0408 19:54:34.529711 5931 solver.cpp:218] Iteration 4332 (2.48148 iter/s, 4.83583s/12 iters), loss = 0.943072 I0408 19:54:34.529744 5931 solver.cpp:237] Train net output #0: loss = 0.943072 (* 1 = 0.943072 loss) I0408 19:54:34.529752 5931 sgd_solver.cpp:105] Iteration 4332, lr = 0.0075573 I0408 19:54:39.350107 5931 solver.cpp:218] Iteration 4344 (2.48945 iter/s, 4.82034s/12 iters), loss = 0.936029 I0408 19:54:39.350203 5931 solver.cpp:237] Train net output #0: loss = 0.936029 (* 1 = 0.936029 loss) I0408 19:54:39.350210 5931 sgd_solver.cpp:105] Iteration 4344, lr = 0.00752458 I0408 19:54:41.174686 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:54:44.188874 5931 solver.cpp:218] Iteration 4356 (2.48003 iter/s, 4.83866s/12 iters), loss = 0.903117 I0408 19:54:44.188907 5931 solver.cpp:237] Train net output #0: loss = 0.903117 (* 1 = 0.903117 loss) I0408 19:54:44.188915 5931 sgd_solver.cpp:105] Iteration 4356, lr = 0.00749156 I0408 19:54:49.023360 5931 solver.cpp:218] Iteration 4368 (2.48219 iter/s, 4.83444s/12 iters), loss = 0.822737 I0408 19:54:49.023396 5931 solver.cpp:237] Train net output #0: loss = 0.822737 (* 1 = 0.822737 loss) I0408 19:54:49.023403 5931 sgd_solver.cpp:105] Iteration 4368, lr = 0.00745825 I0408 19:54:53.842201 5931 solver.cpp:218] Iteration 4380 (2.49025 iter/s, 4.81879s/12 iters), loss = 1.03773 I0408 19:54:53.842233 5931 solver.cpp:237] Train net output #0: loss = 1.03773 (* 1 = 1.03773 loss) I0408 19:54:53.842242 5931 sgd_solver.cpp:105] Iteration 4380, lr = 0.00742466 I0408 19:54:55.795584 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4386.caffemodel I0408 19:54:58.951737 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4386.solverstate I0408 19:55:01.310107 5931 solver.cpp:330] Iteration 4386, Testing net (#0) I0408 19:55:01.310133 5931 net.cpp:676] Ignoring source layer train-data I0408 19:55:04.183652 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:55:06.091280 5931 solver.cpp:397] Test net output #0: accuracy = 0.356005 I0408 19:55:06.091329 5931 solver.cpp:397] Test net output #1: loss = 3.1704 (* 1 = 3.1704 loss) I0408 19:55:07.817795 5931 solver.cpp:218] Iteration 4392 (0.858644 iter/s, 13.9755s/12 iters), loss = 1.31783 I0408 19:55:07.817829 5931 solver.cpp:237] Train net output #0: loss = 1.31783 (* 1 = 1.31783 loss) I0408 19:55:07.817836 5931 sgd_solver.cpp:105] Iteration 4392, lr = 0.00739077 I0408 19:55:12.546609 5931 solver.cpp:218] Iteration 4404 (2.53766 iter/s, 4.72876s/12 iters), loss = 1.02119 I0408 19:55:12.546726 5931 solver.cpp:237] Train net output #0: loss = 1.02119 (* 1 = 1.02119 loss) I0408 19:55:12.546736 5931 sgd_solver.cpp:105] Iteration 4404, lr = 0.00735659 I0408 19:55:17.353472 5931 solver.cpp:218] Iteration 4416 (2.4965 iter/s, 4.80673s/12 iters), loss = 0.814722 I0408 19:55:17.353507 5931 solver.cpp:237] Train net output #0: loss = 0.814722 (* 1 = 0.814722 loss) I0408 19:55:17.353513 5931 sgd_solver.cpp:105] Iteration 4416, lr = 0.00732214 I0408 19:55:22.153848 5931 solver.cpp:218] Iteration 4428 (2.49983 iter/s, 4.80032s/12 iters), loss = 1.015 I0408 19:55:22.153882 5931 solver.cpp:237] Train net output #0: loss = 1.015 (* 1 = 1.015 loss) I0408 19:55:22.153889 5931 sgd_solver.cpp:105] Iteration 4428, lr = 0.00728739 I0408 19:55:27.004606 5931 solver.cpp:218] Iteration 4440 (2.47387 iter/s, 4.8507s/12 iters), loss = 0.763155 I0408 19:55:27.004639 5931 solver.cpp:237] Train net output #0: loss = 0.763155 (* 1 = 0.763155 loss) I0408 19:55:27.004647 5931 sgd_solver.cpp:105] Iteration 4440, lr = 0.00725237 I0408 19:55:30.844806 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:55:31.781582 5931 solver.cpp:218] Iteration 4452 (2.51208 iter/s, 4.77693s/12 iters), loss = 1.22367 I0408 19:55:31.781615 5931 solver.cpp:237] Train net output #0: loss = 1.22367 (* 1 = 1.22367 loss) I0408 19:55:31.781622 5931 sgd_solver.cpp:105] Iteration 4452, lr = 0.00721706 I0408 19:55:36.626356 5931 solver.cpp:218] Iteration 4464 (2.47692 iter/s, 4.84472s/12 iters), loss = 0.884745 I0408 19:55:36.626389 5931 solver.cpp:237] Train net output #0: loss = 0.884745 (* 1 = 0.884745 loss) I0408 19:55:36.626396 5931 sgd_solver.cpp:105] Iteration 4464, lr = 0.00718148 I0408 19:55:41.471554 5931 solver.cpp:218] Iteration 4476 (2.4767 iter/s, 4.84515s/12 iters), loss = 1.01609 I0408 19:55:41.471591 5931 solver.cpp:237] Train net output #0: loss = 1.01609 (* 1 = 1.01609 loss) I0408 19:55:41.471598 5931 sgd_solver.cpp:105] Iteration 4476, lr = 0.00714562 I0408 19:55:45.798264 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4488.caffemodel I0408 19:55:50.364996 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4488.solverstate I0408 19:55:54.690732 5931 solver.cpp:330] Iteration 4488, Testing net (#0) I0408 19:55:54.690758 5931 net.cpp:676] Ignoring source layer train-data I0408 19:55:57.342164 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:55:59.059446 5931 solver.cpp:397] Test net output #0: accuracy = 0.355392 I0408 19:55:59.059492 5931 solver.cpp:397] Test net output #1: loss = 3.15389 (* 1 = 3.15389 loss) I0408 19:55:59.155997 5931 solver.cpp:218] Iteration 4488 (0.678566 iter/s, 17.6844s/12 iters), loss = 0.974825 I0408 19:55:59.156036 5931 solver.cpp:237] Train net output #0: loss = 0.974825 (* 1 = 0.974825 loss) I0408 19:55:59.156044 5931 sgd_solver.cpp:105] Iteration 4488, lr = 0.00710949 I0408 19:56:03.140056 5931 solver.cpp:218] Iteration 4500 (3.01204 iter/s, 3.98401s/12 iters), loss = 0.633073 I0408 19:56:03.140089 5931 solver.cpp:237] Train net output #0: loss = 0.633073 (* 1 = 0.633073 loss) I0408 19:56:03.140096 5931 sgd_solver.cpp:105] Iteration 4500, lr = 0.0070731 I0408 19:56:07.953107 5931 solver.cpp:218] Iteration 4512 (2.49325 iter/s, 4.813s/12 iters), loss = 1.14185 I0408 19:56:07.953140 5931 solver.cpp:237] Train net output #0: loss = 1.14185 (* 1 = 1.14185 loss) I0408 19:56:07.953146 5931 sgd_solver.cpp:105] Iteration 4512, lr = 0.00703643 I0408 19:56:12.695410 5931 solver.cpp:218] Iteration 4524 (2.53044 iter/s, 4.74226s/12 iters), loss = 0.898067 I0408 19:56:12.695443 5931 solver.cpp:237] Train net output #0: loss = 0.898067 (* 1 = 0.898067 loss) I0408 19:56:12.695451 5931 sgd_solver.cpp:105] Iteration 4524, lr = 0.0069995 I0408 19:56:17.414057 5931 solver.cpp:218] Iteration 4536 (2.54313 iter/s, 4.71859s/12 iters), loss = 0.961567 I0408 19:56:17.414170 5931 solver.cpp:237] Train net output #0: loss = 0.961567 (* 1 = 0.961567 loss) I0408 19:56:17.414178 5931 sgd_solver.cpp:105] Iteration 4536, lr = 0.00696231 I0408 19:56:22.266469 5931 solver.cpp:218] Iteration 4548 (2.47306 iter/s, 4.85228s/12 iters), loss = 0.867192 I0408 19:56:22.266503 5931 solver.cpp:237] Train net output #0: loss = 0.867192 (* 1 = 0.867192 loss) I0408 19:56:22.266511 5931 sgd_solver.cpp:105] Iteration 4548, lr = 0.00692485 I0408 19:56:23.464895 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:56:27.076748 5931 solver.cpp:218] Iteration 4560 (2.49468 iter/s, 4.81023s/12 iters), loss = 0.710486 I0408 19:56:27.076783 5931 solver.cpp:237] Train net output #0: loss = 0.710486 (* 1 = 0.710486 loss) I0408 19:56:27.076790 5931 sgd_solver.cpp:105] Iteration 4560, lr = 0.00688715 I0408 19:56:31.882838 5931 solver.cpp:218] Iteration 4572 (2.49686 iter/s, 4.80604s/12 iters), loss = 1.12257 I0408 19:56:31.882871 5931 solver.cpp:237] Train net output #0: loss = 1.12257 (* 1 = 1.12257 loss) I0408 19:56:31.882879 5931 sgd_solver.cpp:105] Iteration 4572, lr = 0.00684919 I0408 19:56:36.728086 5931 solver.cpp:218] Iteration 4584 (2.47668 iter/s, 4.8452s/12 iters), loss = 0.863892 I0408 19:56:36.728121 5931 solver.cpp:237] Train net output #0: loss = 0.863892 (* 1 = 0.863892 loss) I0408 19:56:36.728129 5931 sgd_solver.cpp:105] Iteration 4584, lr = 0.00681098 I0408 19:56:38.636687 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4590.caffemodel I0408 19:56:41.710852 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4590.solverstate I0408 19:56:44.117866 5931 solver.cpp:330] Iteration 4590, Testing net (#0) I0408 19:56:44.117893 5931 net.cpp:676] Ignoring source layer train-data I0408 19:56:46.795609 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:56:48.566730 5931 solver.cpp:397] Test net output #0: accuracy = 0.334559 I0408 19:56:48.566929 5931 solver.cpp:397] Test net output #1: loss = 3.32809 (* 1 = 3.32809 loss) I0408 19:56:50.305078 5931 solver.cpp:218] Iteration 4596 (0.883853 iter/s, 13.5769s/12 iters), loss = 0.809408 I0408 19:56:50.305111 5931 solver.cpp:237] Train net output #0: loss = 0.809408 (* 1 = 0.809408 loss) I0408 19:56:50.305119 5931 sgd_solver.cpp:105] Iteration 4596, lr = 0.00677253 I0408 19:56:55.022451 5931 solver.cpp:218] Iteration 4608 (2.54382 iter/s, 4.71732s/12 iters), loss = 0.797493 I0408 19:56:55.022485 5931 solver.cpp:237] Train net output #0: loss = 0.797493 (* 1 = 0.797493 loss) I0408 19:56:55.022493 5931 sgd_solver.cpp:105] Iteration 4608, lr = 0.00673384 I0408 19:56:59.836619 5931 solver.cpp:218] Iteration 4620 (2.49267 iter/s, 4.81411s/12 iters), loss = 0.639119 I0408 19:56:59.836655 5931 solver.cpp:237] Train net output #0: loss = 0.639119 (* 1 = 0.639119 loss) I0408 19:56:59.836663 5931 sgd_solver.cpp:105] Iteration 4620, lr = 0.00669491 I0408 19:57:04.672621 5931 solver.cpp:218] Iteration 4632 (2.48142 iter/s, 4.83595s/12 iters), loss = 0.945835 I0408 19:57:04.672653 5931 solver.cpp:237] Train net output #0: loss = 0.945835 (* 1 = 0.945835 loss) I0408 19:57:04.672660 5931 sgd_solver.cpp:105] Iteration 4632, lr = 0.00665574 I0408 19:57:09.468278 5931 solver.cpp:218] Iteration 4644 (2.50229 iter/s, 4.79561s/12 iters), loss = 0.889238 I0408 19:57:09.468318 5931 solver.cpp:237] Train net output #0: loss = 0.889238 (* 1 = 0.889238 loss) I0408 19:57:09.468325 5931 sgd_solver.cpp:105] Iteration 4644, lr = 0.00661635 I0408 19:57:12.734026 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:57:14.285780 5931 solver.cpp:218] Iteration 4656 (2.49095 iter/s, 4.81744s/12 iters), loss = 0.531205 I0408 19:57:14.285813 5931 solver.cpp:237] Train net output #0: loss = 0.531205 (* 1 = 0.531205 loss) I0408 19:57:14.285821 5931 sgd_solver.cpp:105] Iteration 4656, lr = 0.00657673 I0408 19:57:19.116061 5931 solver.cpp:218] Iteration 4668 (2.48435 iter/s, 4.83023s/12 iters), loss = 0.886806 I0408 19:57:19.116168 5931 solver.cpp:237] Train net output #0: loss = 0.886806 (* 1 = 0.886806 loss) I0408 19:57:19.116176 5931 sgd_solver.cpp:105] Iteration 4668, lr = 0.00653689 I0408 19:57:23.938036 5931 solver.cpp:218] Iteration 4680 (2.48867 iter/s, 4.82185s/12 iters), loss = 0.736363 I0408 19:57:23.938071 5931 solver.cpp:237] Train net output #0: loss = 0.736363 (* 1 = 0.736363 loss) I0408 19:57:23.938079 5931 sgd_solver.cpp:105] Iteration 4680, lr = 0.00649683 I0408 19:57:28.323472 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4692.caffemodel I0408 19:57:31.685166 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4692.solverstate I0408 19:57:35.143018 5931 solver.cpp:330] Iteration 4692, Testing net (#0) I0408 19:57:35.143043 5931 net.cpp:676] Ignoring source layer train-data I0408 19:57:37.875829 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:57:39.681412 5931 solver.cpp:397] Test net output #0: accuracy = 0.356005 I0408 19:57:39.681458 5931 solver.cpp:397] Test net output #1: loss = 3.22998 (* 1 = 3.22998 loss) I0408 19:57:39.777456 5931 solver.cpp:218] Iteration 4692 (0.757607 iter/s, 15.8393s/12 iters), loss = 0.746475 I0408 19:57:39.777491 5931 solver.cpp:237] Train net output #0: loss = 0.746475 (* 1 = 0.746475 loss) I0408 19:57:39.777499 5931 sgd_solver.cpp:105] Iteration 4692, lr = 0.00645656 I0408 19:57:43.748168 5931 solver.cpp:218] Iteration 4704 (3.02217 iter/s, 3.97066s/12 iters), loss = 0.52389 I0408 19:57:43.748203 5931 solver.cpp:237] Train net output #0: loss = 0.52389 (* 1 = 0.52389 loss) I0408 19:57:43.748211 5931 sgd_solver.cpp:105] Iteration 4704, lr = 0.00641609 I0408 19:57:48.453466 5931 solver.cpp:218] Iteration 4716 (2.55035 iter/s, 4.70525s/12 iters), loss = 0.84353 I0408 19:57:48.453501 5931 solver.cpp:237] Train net output #0: loss = 0.84353 (* 1 = 0.84353 loss) I0408 19:57:48.453508 5931 sgd_solver.cpp:105] Iteration 4716, lr = 0.00637541 I0408 19:57:53.071825 5931 solver.cpp:218] Iteration 4728 (2.59835 iter/s, 4.61831s/12 iters), loss = 0.841287 I0408 19:57:53.071966 5931 solver.cpp:237] Train net output #0: loss = 0.841287 (* 1 = 0.841287 loss) I0408 19:57:53.071975 5931 sgd_solver.cpp:105] Iteration 4728, lr = 0.00633453 I0408 19:57:57.738499 5931 solver.cpp:218] Iteration 4740 (2.57151 iter/s, 4.66652s/12 iters), loss = 1.11174 I0408 19:57:57.738533 5931 solver.cpp:237] Train net output #0: loss = 1.11174 (* 1 = 1.11174 loss) I0408 19:57:57.738539 5931 sgd_solver.cpp:105] Iteration 4740, lr = 0.00629346 I0408 19:58:02.526955 5931 solver.cpp:218] Iteration 4752 (2.50605 iter/s, 4.7884s/12 iters), loss = 0.946293 I0408 19:58:02.526988 5931 solver.cpp:237] Train net output #0: loss = 0.946293 (* 1 = 0.946293 loss) I0408 19:58:02.526995 5931 sgd_solver.cpp:105] Iteration 4752, lr = 0.0062522 I0408 19:58:03.022832 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:58:07.375183 5931 solver.cpp:218] Iteration 4764 (2.47516 iter/s, 4.84818s/12 iters), loss = 0.730234 I0408 19:58:07.375226 5931 solver.cpp:237] Train net output #0: loss = 0.730234 (* 1 = 0.730234 loss) I0408 19:58:07.375234 5931 sgd_solver.cpp:105] Iteration 4764, lr = 0.00621076 I0408 19:58:12.188254 5931 solver.cpp:218] Iteration 4776 (2.49324 iter/s, 4.81301s/12 iters), loss = 0.814758 I0408 19:58:12.188288 5931 solver.cpp:237] Train net output #0: loss = 0.814758 (* 1 = 0.814758 loss) I0408 19:58:12.188297 5931 sgd_solver.cpp:105] Iteration 4776, lr = 0.00616914 I0408 19:58:16.879282 5931 solver.cpp:218] Iteration 4788 (2.55811 iter/s, 4.69097s/12 iters), loss = 0.799296 I0408 19:58:16.879320 5931 solver.cpp:237] Train net output #0: loss = 0.799296 (* 1 = 0.799296 loss) I0408 19:58:16.879328 5931 sgd_solver.cpp:105] Iteration 4788, lr = 0.00612735 I0408 19:58:18.734681 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4794.caffemodel I0408 19:58:21.814431 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4794.solverstate I0408 19:58:24.162583 5931 solver.cpp:330] Iteration 4794, Testing net (#0) I0408 19:58:24.162703 5931 net.cpp:676] Ignoring source layer train-data I0408 19:58:26.857852 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:58:28.950800 5931 solver.cpp:397] Test net output #0: accuracy = 0.381127 I0408 19:58:28.950847 5931 solver.cpp:397] Test net output #1: loss = 3.08625 (* 1 = 3.08625 loss) I0408 19:58:30.704238 5931 solver.cpp:218] Iteration 4800 (0.868 iter/s, 13.8249s/12 iters), loss = 0.727426 I0408 19:58:30.704275 5931 solver.cpp:237] Train net output #0: loss = 0.727426 (* 1 = 0.727426 loss) I0408 19:58:30.704283 5931 sgd_solver.cpp:105] Iteration 4800, lr = 0.00608539 I0408 19:58:35.521260 5931 solver.cpp:218] Iteration 4812 (2.49119 iter/s, 4.81697s/12 iters), loss = 0.721816 I0408 19:58:35.521292 5931 solver.cpp:237] Train net output #0: loss = 0.721816 (* 1 = 0.721816 loss) I0408 19:58:35.521299 5931 sgd_solver.cpp:105] Iteration 4812, lr = 0.00604327 I0408 19:58:40.327932 5931 solver.cpp:218] Iteration 4824 (2.49656 iter/s, 4.80662s/12 iters), loss = 0.820893 I0408 19:58:40.327966 5931 solver.cpp:237] Train net output #0: loss = 0.820893 (* 1 = 0.820893 loss) I0408 19:58:40.327973 5931 sgd_solver.cpp:105] Iteration 4824, lr = 0.006001 I0408 19:58:45.205153 5931 solver.cpp:218] Iteration 4836 (2.46044 iter/s, 4.87717s/12 iters), loss = 0.868211 I0408 19:58:45.205188 5931 solver.cpp:237] Train net output #0: loss = 0.868211 (* 1 = 0.868211 loss) I0408 19:58:45.205195 5931 sgd_solver.cpp:105] Iteration 4836, lr = 0.00595858 I0408 19:58:47.119526 5931 blocking_queue.cpp:49] Waiting for data I0408 19:58:49.932314 5931 solver.cpp:218] Iteration 4848 (2.53855 iter/s, 4.72711s/12 iters), loss = 0.686241 I0408 19:58:49.932351 5931 solver.cpp:237] Train net output #0: loss = 0.686241 (* 1 = 0.686241 loss) I0408 19:58:49.932358 5931 sgd_solver.cpp:105] Iteration 4848, lr = 0.00591601 I0408 19:58:52.499554 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:58:54.765101 5931 solver.cpp:218] Iteration 4860 (2.48307 iter/s, 4.83273s/12 iters), loss = 0.885092 I0408 19:58:54.765272 5931 solver.cpp:237] Train net output #0: loss = 0.885092 (* 1 = 0.885092 loss) I0408 19:58:54.765281 5931 sgd_solver.cpp:105] Iteration 4860, lr = 0.00587331 I0408 19:58:59.631913 5931 solver.cpp:218] Iteration 4872 (2.46577 iter/s, 4.86663s/12 iters), loss = 0.51506 I0408 19:58:59.631947 5931 solver.cpp:237] Train net output #0: loss = 0.51506 (* 1 = 0.51506 loss) I0408 19:58:59.631954 5931 sgd_solver.cpp:105] Iteration 4872, lr = 0.00583047 I0408 19:59:04.325546 5931 solver.cpp:218] Iteration 4884 (2.55668 iter/s, 4.69358s/12 iters), loss = 0.599404 I0408 19:59:04.325579 5931 solver.cpp:237] Train net output #0: loss = 0.599404 (* 1 = 0.599404 loss) I0408 19:59:04.325587 5931 sgd_solver.cpp:105] Iteration 4884, lr = 0.00578751 I0408 19:59:08.589504 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4896.caffemodel I0408 19:59:11.674010 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4896.solverstate I0408 19:59:14.433045 5931 solver.cpp:330] Iteration 4896, Testing net (#0) I0408 19:59:14.433071 5931 net.cpp:676] Ignoring source layer train-data I0408 19:59:17.024758 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:59:18.908504 5931 solver.cpp:397] Test net output #0: accuracy = 0.369485 I0408 19:59:18.908550 5931 solver.cpp:397] Test net output #1: loss = 3.09063 (* 1 = 3.09063 loss) I0408 19:59:19.004987 5931 solver.cpp:218] Iteration 4896 (0.817474 iter/s, 14.6794s/12 iters), loss = 0.846195 I0408 19:59:19.005020 5931 solver.cpp:237] Train net output #0: loss = 0.846195 (* 1 = 0.846195 loss) I0408 19:59:19.005029 5931 sgd_solver.cpp:105] Iteration 4896, lr = 0.00574443 I0408 19:59:22.952045 5931 solver.cpp:218] Iteration 4908 (3.04028 iter/s, 3.94701s/12 iters), loss = 0.778551 I0408 19:59:22.952078 5931 solver.cpp:237] Train net output #0: loss = 0.778551 (* 1 = 0.778551 loss) I0408 19:59:22.952086 5931 sgd_solver.cpp:105] Iteration 4908, lr = 0.00570123 I0408 19:59:27.776707 5931 solver.cpp:218] Iteration 4920 (2.48725 iter/s, 4.82461s/12 iters), loss = 0.583149 I0408 19:59:27.776824 5931 solver.cpp:237] Train net output #0: loss = 0.583149 (* 1 = 0.583149 loss) I0408 19:59:27.776834 5931 sgd_solver.cpp:105] Iteration 4920, lr = 0.00565793 I0408 19:59:32.576397 5931 solver.cpp:218] Iteration 4932 (2.50023 iter/s, 4.79956s/12 iters), loss = 0.656009 I0408 19:59:32.576431 5931 solver.cpp:237] Train net output #0: loss = 0.656009 (* 1 = 0.656009 loss) I0408 19:59:32.576438 5931 sgd_solver.cpp:105] Iteration 4932, lr = 0.00561452 I0408 19:59:37.400527 5931 solver.cpp:218] Iteration 4944 (2.48752 iter/s, 4.82408s/12 iters), loss = 0.690486 I0408 19:59:37.400559 5931 solver.cpp:237] Train net output #0: loss = 0.690486 (* 1 = 0.690486 loss) I0408 19:59:37.400566 5931 sgd_solver.cpp:105] Iteration 4944, lr = 0.00557103 I0408 19:59:42.040854 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 19:59:42.241802 5931 solver.cpp:218] Iteration 4956 (2.47871 iter/s, 4.84123s/12 iters), loss = 0.462403 I0408 19:59:42.241835 5931 solver.cpp:237] Train net output #0: loss = 0.462403 (* 1 = 0.462403 loss) I0408 19:59:42.241842 5931 sgd_solver.cpp:105] Iteration 4956, lr = 0.00552744 I0408 19:59:47.055979 5931 solver.cpp:218] Iteration 4968 (2.49267 iter/s, 4.81412s/12 iters), loss = 0.487629 I0408 19:59:47.056013 5931 solver.cpp:237] Train net output #0: loss = 0.487629 (* 1 = 0.487629 loss) I0408 19:59:47.056020 5931 sgd_solver.cpp:105] Iteration 4968, lr = 0.00548378 I0408 19:59:51.887815 5931 solver.cpp:218] Iteration 4980 (2.48356 iter/s, 4.83178s/12 iters), loss = 0.614614 I0408 19:59:51.887849 5931 solver.cpp:237] Train net output #0: loss = 0.614614 (* 1 = 0.614614 loss) I0408 19:59:51.887856 5931 sgd_solver.cpp:105] Iteration 4980, lr = 0.00544003 I0408 19:59:56.714779 5931 solver.cpp:218] Iteration 4992 (2.48606 iter/s, 4.82691s/12 iters), loss = 0.696353 I0408 19:59:56.714812 5931 solver.cpp:237] Train net output #0: loss = 0.696353 (* 1 = 0.696353 loss) I0408 19:59:56.714819 5931 sgd_solver.cpp:105] Iteration 4992, lr = 0.00539623 I0408 19:59:58.674933 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4998.caffemodel I0408 20:00:02.304445 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4998.solverstate I0408 20:00:05.357527 5931 solver.cpp:330] Iteration 4998, Testing net (#0) I0408 20:00:05.357553 5931 net.cpp:676] Ignoring source layer train-data I0408 20:00:07.975019 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:00:10.141289 5931 solver.cpp:397] Test net output #0: accuracy = 0.393382 I0408 20:00:10.141338 5931 solver.cpp:397] Test net output #1: loss = 2.94133 (* 1 = 2.94133 loss) I0408 20:00:11.897152 5931 solver.cpp:218] Iteration 5004 (0.790394 iter/s, 15.1823s/12 iters), loss = 0.448587 I0408 20:00:11.897186 5931 solver.cpp:237] Train net output #0: loss = 0.448587 (* 1 = 0.448587 loss) I0408 20:00:11.897194 5931 sgd_solver.cpp:105] Iteration 5004, lr = 0.00535236 I0408 20:00:16.596283 5931 solver.cpp:218] Iteration 5016 (2.55369 iter/s, 4.69908s/12 iters), loss = 0.512112 I0408 20:00:16.596315 5931 solver.cpp:237] Train net output #0: loss = 0.512112 (* 1 = 0.512112 loss) I0408 20:00:16.596323 5931 sgd_solver.cpp:105] Iteration 5016, lr = 0.00530843 I0408 20:00:21.437103 5931 solver.cpp:218] Iteration 5028 (2.47895 iter/s, 4.84076s/12 iters), loss = 0.606361 I0408 20:00:21.437135 5931 solver.cpp:237] Train net output #0: loss = 0.606361 (* 1 = 0.606361 loss) I0408 20:00:21.437142 5931 sgd_solver.cpp:105] Iteration 5028, lr = 0.00526446 I0408 20:00:26.239049 5931 solver.cpp:218] Iteration 5040 (2.49901 iter/s, 4.80189s/12 iters), loss = 0.518664 I0408 20:00:26.239081 5931 solver.cpp:237] Train net output #0: loss = 0.518664 (* 1 = 0.518664 loss) I0408 20:00:26.239089 5931 sgd_solver.cpp:105] Iteration 5040, lr = 0.00522045 I0408 20:00:31.066817 5931 solver.cpp:218] Iteration 5052 (2.48565 iter/s, 4.82772s/12 iters), loss = 0.538114 I0408 20:00:31.066933 5931 solver.cpp:237] Train net output #0: loss = 0.538114 (* 1 = 0.538114 loss) I0408 20:00:31.066942 5931 sgd_solver.cpp:105] Iteration 5052, lr = 0.0051764 I0408 20:00:32.919497 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:00:35.912753 5931 solver.cpp:218] Iteration 5064 (2.47637 iter/s, 4.8458s/12 iters), loss = 0.602735 I0408 20:00:35.912787 5931 solver.cpp:237] Train net output #0: loss = 0.602735 (* 1 = 0.602735 loss) I0408 20:00:35.912794 5931 sgd_solver.cpp:105] Iteration 5064, lr = 0.00513232 I0408 20:00:40.712847 5931 solver.cpp:218] Iteration 5076 (2.49998 iter/s, 4.80004s/12 iters), loss = 0.549402 I0408 20:00:40.712882 5931 solver.cpp:237] Train net output #0: loss = 0.549402 (* 1 = 0.549402 loss) I0408 20:00:40.712889 5931 sgd_solver.cpp:105] Iteration 5076, lr = 0.00508823 I0408 20:00:45.574056 5931 solver.cpp:218] Iteration 5088 (2.46855 iter/s, 4.86115s/12 iters), loss = 0.573379 I0408 20:00:45.574090 5931 solver.cpp:237] Train net output #0: loss = 0.573379 (* 1 = 0.573379 loss) I0408 20:00:45.574097 5931 sgd_solver.cpp:105] Iteration 5088, lr = 0.00504412 I0408 20:00:49.930560 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5100.caffemodel I0408 20:00:53.030486 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5100.solverstate I0408 20:00:55.385972 5931 solver.cpp:330] Iteration 5100, Testing net (#0) I0408 20:00:55.385998 5931 net.cpp:676] Ignoring source layer train-data I0408 20:00:57.971072 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:01:00.195363 5931 solver.cpp:397] Test net output #0: accuracy = 0.389093 I0408 20:01:00.195411 5931 solver.cpp:397] Test net output #1: loss = 3.09837 (* 1 = 3.09837 loss) I0408 20:01:00.291934 5931 solver.cpp:218] Iteration 5100 (0.815339 iter/s, 14.7178s/12 iters), loss = 0.460532 I0408 20:01:00.291967 5931 solver.cpp:237] Train net output #0: loss = 0.460532 (* 1 = 0.460532 loss) I0408 20:01:00.291975 5931 sgd_solver.cpp:105] Iteration 5100, lr = 0.005 I0408 20:01:04.238128 5931 solver.cpp:218] Iteration 5112 (3.04095 iter/s, 3.94614s/12 iters), loss = 0.593658 I0408 20:01:04.238225 5931 solver.cpp:237] Train net output #0: loss = 0.593658 (* 1 = 0.593658 loss) I0408 20:01:04.238234 5931 sgd_solver.cpp:105] Iteration 5112, lr = 0.00495588 I0408 20:01:09.069818 5931 solver.cpp:218] Iteration 5124 (2.48366 iter/s, 4.83157s/12 iters), loss = 0.505945 I0408 20:01:09.069852 5931 solver.cpp:237] Train net output #0: loss = 0.505945 (* 1 = 0.505945 loss) I0408 20:01:09.069859 5931 sgd_solver.cpp:105] Iteration 5124, lr = 0.00491177 I0408 20:01:13.903571 5931 solver.cpp:218] Iteration 5136 (2.48257 iter/s, 4.8337s/12 iters), loss = 0.41879 I0408 20:01:13.903610 5931 solver.cpp:237] Train net output #0: loss = 0.41879 (* 1 = 0.41879 loss) I0408 20:01:13.903618 5931 sgd_solver.cpp:105] Iteration 5136, lr = 0.00486768 I0408 20:01:18.712028 5931 solver.cpp:218] Iteration 5148 (2.49563 iter/s, 4.8084s/12 iters), loss = 0.677808 I0408 20:01:18.712064 5931 solver.cpp:237] Train net output #0: loss = 0.677808 (* 1 = 0.677808 loss) I0408 20:01:18.712071 5931 sgd_solver.cpp:105] Iteration 5148, lr = 0.0048236 I0408 20:01:22.598358 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:01:23.493361 5931 solver.cpp:218] Iteration 5160 (2.50979 iter/s, 4.78128s/12 iters), loss = 0.488419 I0408 20:01:23.493396 5931 solver.cpp:237] Train net output #0: loss = 0.488419 (* 1 = 0.488419 loss) I0408 20:01:23.493403 5931 sgd_solver.cpp:105] Iteration 5160, lr = 0.00477955 I0408 20:01:28.229866 5931 solver.cpp:218] Iteration 5172 (2.53354 iter/s, 4.73645s/12 iters), loss = 0.445747 I0408 20:01:28.229899 5931 solver.cpp:237] Train net output #0: loss = 0.445747 (* 1 = 0.445747 loss) I0408 20:01:28.229907 5931 sgd_solver.cpp:105] Iteration 5172, lr = 0.00473554 I0408 20:01:32.978571 5931 solver.cpp:218] Iteration 5184 (2.52703 iter/s, 4.74865s/12 iters), loss = 0.474229 I0408 20:01:32.978605 5931 solver.cpp:237] Train net output #0: loss = 0.474229 (* 1 = 0.474229 loss) I0408 20:01:32.978612 5931 sgd_solver.cpp:105] Iteration 5184, lr = 0.00469157 I0408 20:01:37.835505 5931 solver.cpp:218] Iteration 5196 (2.47072 iter/s, 4.85688s/12 iters), loss = 0.384813 I0408 20:01:37.835578 5931 solver.cpp:237] Train net output #0: loss = 0.384813 (* 1 = 0.384813 loss) I0408 20:01:37.835587 5931 sgd_solver.cpp:105] Iteration 5196, lr = 0.00464764 I0408 20:01:39.758060 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5202.caffemodel I0408 20:01:43.882413 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5202.solverstate I0408 20:01:46.231945 5931 solver.cpp:330] Iteration 5202, Testing net (#0) I0408 20:01:46.231971 5931 net.cpp:676] Ignoring source layer train-data I0408 20:01:48.557762 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:01:50.546787 5931 solver.cpp:397] Test net output #0: accuracy = 0.413603 I0408 20:01:50.546830 5931 solver.cpp:397] Test net output #1: loss = 2.96037 (* 1 = 2.96037 loss) I0408 20:01:52.254446 5931 solver.cpp:218] Iteration 5208 (0.832245 iter/s, 14.4188s/12 iters), loss = 0.342959 I0408 20:01:52.254482 5931 solver.cpp:237] Train net output #0: loss = 0.342959 (* 1 = 0.342959 loss) I0408 20:01:52.254489 5931 sgd_solver.cpp:105] Iteration 5208, lr = 0.00460377 I0408 20:01:57.084659 5931 solver.cpp:218] Iteration 5220 (2.48439 iter/s, 4.83016s/12 iters), loss = 0.519105 I0408 20:01:57.084692 5931 solver.cpp:237] Train net output #0: loss = 0.519105 (* 1 = 0.519105 loss) I0408 20:01:57.084699 5931 sgd_solver.cpp:105] Iteration 5220, lr = 0.00455996 I0408 20:02:01.927886 5931 solver.cpp:218] Iteration 5232 (2.47772 iter/s, 4.84317s/12 iters), loss = 0.528687 I0408 20:02:01.927917 5931 solver.cpp:237] Train net output #0: loss = 0.528687 (* 1 = 0.528687 loss) I0408 20:02:01.927925 5931 sgd_solver.cpp:105] Iteration 5232, lr = 0.00451622 I0408 20:02:06.745537 5931 solver.cpp:218] Iteration 5244 (2.49087 iter/s, 4.8176s/12 iters), loss = 0.379963 I0408 20:02:06.745573 5931 solver.cpp:237] Train net output #0: loss = 0.379963 (* 1 = 0.379963 loss) I0408 20:02:06.745580 5931 sgd_solver.cpp:105] Iteration 5244, lr = 0.00447256 I0408 20:02:11.576947 5931 solver.cpp:218] Iteration 5256 (2.48378 iter/s, 4.83135s/12 iters), loss = 0.365287 I0408 20:02:11.577044 5931 solver.cpp:237] Train net output #0: loss = 0.365287 (* 1 = 0.365287 loss) I0408 20:02:11.577052 5931 sgd_solver.cpp:105] Iteration 5256, lr = 0.00442897 I0408 20:02:12.810026 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:02:16.390740 5931 solver.cpp:218] Iteration 5268 (2.4929 iter/s, 4.81368s/12 iters), loss = 0.504454 I0408 20:02:16.390772 5931 solver.cpp:237] Train net output #0: loss = 0.504454 (* 1 = 0.504454 loss) I0408 20:02:16.390779 5931 sgd_solver.cpp:105] Iteration 5268, lr = 0.00438548 I0408 20:02:21.235987 5931 solver.cpp:218] Iteration 5280 (2.47668 iter/s, 4.8452s/12 iters), loss = 0.491741 I0408 20:02:21.236021 5931 solver.cpp:237] Train net output #0: loss = 0.491741 (* 1 = 0.491741 loss) I0408 20:02:21.236028 5931 sgd_solver.cpp:105] Iteration 5280, lr = 0.00434207 I0408 20:02:26.121444 5931 solver.cpp:218] Iteration 5292 (2.4563 iter/s, 4.8854s/12 iters), loss = 0.278349 I0408 20:02:26.121479 5931 solver.cpp:237] Train net output #0: loss = 0.278349 (* 1 = 0.278349 loss) I0408 20:02:26.121485 5931 sgd_solver.cpp:105] Iteration 5292, lr = 0.00429877 I0408 20:02:30.450222 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5304.caffemodel I0408 20:02:33.558655 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5304.solverstate I0408 20:02:36.403622 5931 solver.cpp:330] Iteration 5304, Testing net (#0) I0408 20:02:36.403647 5931 net.cpp:676] Ignoring source layer train-data I0408 20:02:38.815709 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:02:40.847920 5931 solver.cpp:397] Test net output #0: accuracy = 0.401961 I0408 20:02:40.847965 5931 solver.cpp:397] Test net output #1: loss = 2.96069 (* 1 = 2.96069 loss) I0408 20:02:40.944459 5931 solver.cpp:218] Iteration 5304 (0.809556 iter/s, 14.8229s/12 iters), loss = 0.346396 I0408 20:02:40.944495 5931 solver.cpp:237] Train net output #0: loss = 0.346396 (* 1 = 0.346396 loss) I0408 20:02:40.944502 5931 sgd_solver.cpp:105] Iteration 5304, lr = 0.00425557 I0408 20:02:44.917454 5931 solver.cpp:218] Iteration 5316 (3.02043 iter/s, 3.97294s/12 iters), loss = 0.626065 I0408 20:02:44.917577 5931 solver.cpp:237] Train net output #0: loss = 0.626065 (* 1 = 0.626065 loss) I0408 20:02:44.917587 5931 sgd_solver.cpp:105] Iteration 5316, lr = 0.00421249 I0408 20:02:49.761301 5931 solver.cpp:218] Iteration 5328 (2.47744 iter/s, 4.8437s/12 iters), loss = 0.433611 I0408 20:02:49.761333 5931 solver.cpp:237] Train net output #0: loss = 0.433611 (* 1 = 0.433611 loss) I0408 20:02:49.761341 5931 sgd_solver.cpp:105] Iteration 5328, lr = 0.00416953 I0408 20:02:54.616887 5931 solver.cpp:218] Iteration 5340 (2.47141 iter/s, 4.85553s/12 iters), loss = 0.35842 I0408 20:02:54.616920 5931 solver.cpp:237] Train net output #0: loss = 0.35842 (* 1 = 0.35842 loss) I0408 20:02:54.616927 5931 sgd_solver.cpp:105] Iteration 5340, lr = 0.00412669 I0408 20:02:59.486536 5931 solver.cpp:218] Iteration 5352 (2.46427 iter/s, 4.86959s/12 iters), loss = 0.56464 I0408 20:02:59.486569 5931 solver.cpp:237] Train net output #0: loss = 0.56464 (* 1 = 0.56464 loss) I0408 20:02:59.486577 5931 sgd_solver.cpp:105] Iteration 5352, lr = 0.00408399 I0408 20:03:02.958838 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:03:04.533740 5931 solver.cpp:218] Iteration 5364 (2.37758 iter/s, 5.04715s/12 iters), loss = 0.295886 I0408 20:03:04.533774 5931 solver.cpp:237] Train net output #0: loss = 0.295886 (* 1 = 0.295886 loss) I0408 20:03:04.533782 5931 sgd_solver.cpp:105] Iteration 5364, lr = 0.00404142 I0408 20:03:09.331681 5931 solver.cpp:218] Iteration 5376 (2.5011 iter/s, 4.79789s/12 iters), loss = 0.46485 I0408 20:03:09.331713 5931 solver.cpp:237] Train net output #0: loss = 0.46485 (* 1 = 0.46485 loss) I0408 20:03:09.331720 5931 sgd_solver.cpp:105] Iteration 5376, lr = 0.003999 I0408 20:03:14.089387 5931 solver.cpp:218] Iteration 5388 (2.52225 iter/s, 4.75765s/12 iters), loss = 0.409785 I0408 20:03:14.089427 5931 solver.cpp:237] Train net output #0: loss = 0.409785 (* 1 = 0.409785 loss) I0408 20:03:14.089435 5931 sgd_solver.cpp:105] Iteration 5388, lr = 0.00395672 I0408 20:03:18.976068 5931 solver.cpp:218] Iteration 5400 (2.45568 iter/s, 4.88662s/12 iters), loss = 0.420254 I0408 20:03:18.976166 5931 solver.cpp:237] Train net output #0: loss = 0.420254 (* 1 = 0.420254 loss) I0408 20:03:18.976174 5931 sgd_solver.cpp:105] Iteration 5400, lr = 0.00391461 I0408 20:03:20.995224 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5406.caffemodel I0408 20:03:26.019547 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5406.solverstate I0408 20:03:28.409253 5931 solver.cpp:330] Iteration 5406, Testing net (#0) I0408 20:03:28.409279 5931 net.cpp:676] Ignoring source layer train-data I0408 20:03:30.809617 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:03:32.884824 5931 solver.cpp:397] Test net output #0: accuracy = 0.425858 I0408 20:03:32.884868 5931 solver.cpp:397] Test net output #1: loss = 2.97192 (* 1 = 2.97192 loss) I0408 20:03:34.627386 5931 solver.cpp:218] Iteration 5412 (0.766715 iter/s, 15.6512s/12 iters), loss = 0.174743 I0408 20:03:34.627424 5931 solver.cpp:237] Train net output #0: loss = 0.174743 (* 1 = 0.174743 loss) I0408 20:03:34.627430 5931 sgd_solver.cpp:105] Iteration 5412, lr = 0.00387265 I0408 20:03:39.410715 5931 solver.cpp:218] Iteration 5424 (2.50874 iter/s, 4.78328s/12 iters), loss = 0.30676 I0408 20:03:39.410749 5931 solver.cpp:237] Train net output #0: loss = 0.30676 (* 1 = 0.30676 loss) I0408 20:03:39.410756 5931 sgd_solver.cpp:105] Iteration 5424, lr = 0.00383086 I0408 20:03:44.213932 5931 solver.cpp:218] Iteration 5436 (2.49836 iter/s, 4.80316s/12 iters), loss = 0.451519 I0408 20:03:44.213963 5931 solver.cpp:237] Train net output #0: loss = 0.451519 (* 1 = 0.451519 loss) I0408 20:03:44.213971 5931 sgd_solver.cpp:105] Iteration 5436, lr = 0.00378924 I0408 20:03:49.087755 5931 solver.cpp:218] Iteration 5448 (2.46216 iter/s, 4.87377s/12 iters), loss = 0.460821 I0408 20:03:49.087873 5931 solver.cpp:237] Train net output #0: loss = 0.460821 (* 1 = 0.460821 loss) I0408 20:03:49.087882 5931 sgd_solver.cpp:105] Iteration 5448, lr = 0.0037478 I0408 20:03:53.884119 5931 solver.cpp:218] Iteration 5460 (2.50196 iter/s, 4.79623s/12 iters), loss = 0.266154 I0408 20:03:53.884153 5931 solver.cpp:237] Train net output #0: loss = 0.266154 (* 1 = 0.266154 loss) I0408 20:03:53.884160 5931 sgd_solver.cpp:105] Iteration 5460, lr = 0.00370654 I0408 20:03:54.407403 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:03:58.746989 5931 solver.cpp:218] Iteration 5472 (2.4677 iter/s, 4.86282s/12 iters), loss = 0.157723 I0408 20:03:58.747025 5931 solver.cpp:237] Train net output #0: loss = 0.157723 (* 1 = 0.157723 loss) I0408 20:03:58.747032 5931 sgd_solver.cpp:105] Iteration 5472, lr = 0.00366547 I0408 20:04:03.634888 5931 solver.cpp:218] Iteration 5484 (2.45507 iter/s, 4.88784s/12 iters), loss = 0.346608 I0408 20:04:03.634922 5931 solver.cpp:237] Train net output #0: loss = 0.346608 (* 1 = 0.346608 loss) I0408 20:04:03.634930 5931 sgd_solver.cpp:105] Iteration 5484, lr = 0.00362459 I0408 20:04:08.462983 5931 solver.cpp:218] Iteration 5496 (2.48548 iter/s, 4.82804s/12 iters), loss = 0.400039 I0408 20:04:08.463017 5931 solver.cpp:237] Train net output #0: loss = 0.400039 (* 1 = 0.400039 loss) I0408 20:04:08.463025 5931 sgd_solver.cpp:105] Iteration 5496, lr = 0.00358391 I0408 20:04:13.081629 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5508.caffemodel I0408 20:04:17.910331 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5508.solverstate I0408 20:04:21.824476 5931 solver.cpp:330] Iteration 5508, Testing net (#0) I0408 20:04:21.824579 5931 net.cpp:676] Ignoring source layer train-data I0408 20:04:24.084301 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:04:26.196768 5931 solver.cpp:397] Test net output #0: accuracy = 0.403799 I0408 20:04:26.196815 5931 solver.cpp:397] Test net output #1: loss = 3.01402 (* 1 = 3.01402 loss) I0408 20:04:26.293203 5931 solver.cpp:218] Iteration 5508 (0.673018 iter/s, 17.8301s/12 iters), loss = 0.346051 I0408 20:04:26.293237 5931 solver.cpp:237] Train net output #0: loss = 0.346051 (* 1 = 0.346051 loss) I0408 20:04:26.293246 5931 sgd_solver.cpp:105] Iteration 5508, lr = 0.00354344 I0408 20:04:30.263195 5931 solver.cpp:218] Iteration 5520 (3.02272 iter/s, 3.96994s/12 iters), loss = 0.30861 I0408 20:04:30.263234 5931 solver.cpp:237] Train net output #0: loss = 0.30861 (* 1 = 0.30861 loss) I0408 20:04:30.263242 5931 sgd_solver.cpp:105] Iteration 5520, lr = 0.00350317 I0408 20:04:32.619812 5931 blocking_queue.cpp:49] Waiting for data I0408 20:04:35.097795 5931 solver.cpp:218] Iteration 5532 (2.48214 iter/s, 4.83454s/12 iters), loss = 0.256705 I0408 20:04:35.097831 5931 solver.cpp:237] Train net output #0: loss = 0.256705 (* 1 = 0.256705 loss) I0408 20:04:35.097838 5931 sgd_solver.cpp:105] Iteration 5532, lr = 0.00346311 I0408 20:04:39.922616 5931 solver.cpp:218] Iteration 5544 (2.48717 iter/s, 4.82476s/12 iters), loss = 0.22492 I0408 20:04:39.922650 5931 solver.cpp:237] Train net output #0: loss = 0.22492 (* 1 = 0.22492 loss) I0408 20:04:39.922657 5931 sgd_solver.cpp:105] Iteration 5544, lr = 0.00342327 I0408 20:04:44.774231 5931 solver.cpp:218] Iteration 5556 (2.47343 iter/s, 4.85156s/12 iters), loss = 0.265254 I0408 20:04:44.774267 5931 solver.cpp:237] Train net output #0: loss = 0.265254 (* 1 = 0.265254 loss) I0408 20:04:44.774274 5931 sgd_solver.cpp:105] Iteration 5556, lr = 0.00338365 I0408 20:04:47.413537 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:04:49.695631 5931 solver.cpp:218] Iteration 5568 (2.43836 iter/s, 4.92135s/12 iters), loss = 0.337113 I0408 20:04:49.695665 5931 solver.cpp:237] Train net output #0: loss = 0.337113 (* 1 = 0.337113 loss) I0408 20:04:49.695673 5931 sgd_solver.cpp:105] Iteration 5568, lr = 0.00334426 I0408 20:04:54.732162 5931 solver.cpp:218] Iteration 5580 (2.38262 iter/s, 5.03648s/12 iters), loss = 0.372072 I0408 20:04:54.732277 5931 solver.cpp:237] Train net output #0: loss = 0.372072 (* 1 = 0.372072 loss) I0408 20:04:54.732285 5931 sgd_solver.cpp:105] Iteration 5580, lr = 0.00330509 I0408 20:04:59.478559 5931 solver.cpp:218] Iteration 5592 (2.5283 iter/s, 4.74626s/12 iters), loss = 0.271403 I0408 20:04:59.478591 5931 solver.cpp:237] Train net output #0: loss = 0.271403 (* 1 = 0.271403 loss) I0408 20:04:59.478600 5931 sgd_solver.cpp:105] Iteration 5592, lr = 0.00326616 I0408 20:05:04.204401 5931 solver.cpp:218] Iteration 5604 (2.53926 iter/s, 4.72579s/12 iters), loss = 0.422858 I0408 20:05:04.204433 5931 solver.cpp:237] Train net output #0: loss = 0.422858 (* 1 = 0.422858 loss) I0408 20:05:04.204442 5931 sgd_solver.cpp:105] Iteration 5604, lr = 0.00322747 I0408 20:05:06.134773 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5610.caffemodel I0408 20:05:09.229415 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5610.solverstate I0408 20:05:12.079964 5931 solver.cpp:330] Iteration 5610, Testing net (#0) I0408 20:05:12.079990 5931 net.cpp:676] Ignoring source layer train-data I0408 20:05:14.428975 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:05:16.864751 5931 solver.cpp:397] Test net output #0: accuracy = 0.43076 I0408 20:05:16.864795 5931 solver.cpp:397] Test net output #1: loss = 3.02431 (* 1 = 3.02431 loss) I0408 20:05:18.668787 5931 solver.cpp:218] Iteration 5616 (0.829628 iter/s, 14.4643s/12 iters), loss = 0.315521 I0408 20:05:18.668820 5931 solver.cpp:237] Train net output #0: loss = 0.315521 (* 1 = 0.315521 loss) I0408 20:05:18.668828 5931 sgd_solver.cpp:105] Iteration 5616, lr = 0.00318902 I0408 20:05:23.579398 5931 solver.cpp:218] Iteration 5628 (2.44371 iter/s, 4.91056s/12 iters), loss = 0.263526 I0408 20:05:23.579432 5931 solver.cpp:237] Train net output #0: loss = 0.263526 (* 1 = 0.263526 loss) I0408 20:05:23.579439 5931 sgd_solver.cpp:105] Iteration 5628, lr = 0.00315081 I0408 20:05:28.361833 5931 solver.cpp:218] Iteration 5640 (2.50921 iter/s, 4.78238s/12 iters), loss = 0.4336 I0408 20:05:28.361928 5931 solver.cpp:237] Train net output #0: loss = 0.4336 (* 1 = 0.4336 loss) I0408 20:05:28.361937 5931 sgd_solver.cpp:105] Iteration 5640, lr = 0.00311285 I0408 20:05:33.196039 5931 solver.cpp:218] Iteration 5652 (2.48237 iter/s, 4.83409s/12 iters), loss = 0.296835 I0408 20:05:33.196074 5931 solver.cpp:237] Train net output #0: loss = 0.296835 (* 1 = 0.296835 loss) I0408 20:05:33.196082 5931 sgd_solver.cpp:105] Iteration 5652, lr = 0.00307515 I0408 20:05:37.867424 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:05:38.030833 5931 solver.cpp:218] Iteration 5664 (2.48204 iter/s, 4.83474s/12 iters), loss = 0.219908 I0408 20:05:38.030866 5931 solver.cpp:237] Train net output #0: loss = 0.219908 (* 1 = 0.219908 loss) I0408 20:05:38.030874 5931 sgd_solver.cpp:105] Iteration 5664, lr = 0.00303769 I0408 20:05:42.785985 5931 solver.cpp:218] Iteration 5676 (2.52361 iter/s, 4.75509s/12 iters), loss = 0.22732 I0408 20:05:42.786017 5931 solver.cpp:237] Train net output #0: loss = 0.22732 (* 1 = 0.22732 loss) I0408 20:05:42.786024 5931 sgd_solver.cpp:105] Iteration 5676, lr = 0.0030005 I0408 20:05:47.514586 5931 solver.cpp:218] Iteration 5688 (2.53778 iter/s, 4.72855s/12 iters), loss = 0.247547 I0408 20:05:47.514621 5931 solver.cpp:237] Train net output #0: loss = 0.247547 (* 1 = 0.247547 loss) I0408 20:05:47.514627 5931 sgd_solver.cpp:105] Iteration 5688, lr = 0.00296357 I0408 20:05:52.313370 5931 solver.cpp:218] Iteration 5700 (2.50066 iter/s, 4.79873s/12 iters), loss = 0.507992 I0408 20:05:52.313402 5931 solver.cpp:237] Train net output #0: loss = 0.507992 (* 1 = 0.507992 loss) I0408 20:05:52.313410 5931 sgd_solver.cpp:105] Iteration 5700, lr = 0.0029269 I0408 20:05:56.715853 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5712.caffemodel I0408 20:05:59.803385 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5712.solverstate I0408 20:06:02.159986 5931 solver.cpp:330] Iteration 5712, Testing net (#0) I0408 20:06:02.160013 5931 net.cpp:676] Ignoring source layer train-data I0408 20:06:04.469571 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:06:06.941562 5931 solver.cpp:397] Test net output #0: accuracy = 0.432598 I0408 20:06:06.941609 5931 solver.cpp:397] Test net output #1: loss = 2.99721 (* 1 = 2.99721 loss) I0408 20:06:07.038086 5931 solver.cpp:218] Iteration 5712 (0.81496 iter/s, 14.7246s/12 iters), loss = 0.273816 I0408 20:06:07.038122 5931 solver.cpp:237] Train net output #0: loss = 0.273816 (* 1 = 0.273816 loss) I0408 20:06:07.038130 5931 sgd_solver.cpp:105] Iteration 5712, lr = 0.0028905 I0408 20:06:10.987726 5931 solver.cpp:218] Iteration 5724 (3.03829 iter/s, 3.94959s/12 iters), loss = 0.308905 I0408 20:06:10.987766 5931 solver.cpp:237] Train net output #0: loss = 0.308905 (* 1 = 0.308905 loss) I0408 20:06:10.987773 5931 sgd_solver.cpp:105] Iteration 5724, lr = 0.00285438 I0408 20:06:15.823117 5931 solver.cpp:218] Iteration 5736 (2.48174 iter/s, 4.83533s/12 iters), loss = 0.238564 I0408 20:06:15.823148 5931 solver.cpp:237] Train net output #0: loss = 0.238564 (* 1 = 0.238564 loss) I0408 20:06:15.823155 5931 sgd_solver.cpp:105] Iteration 5736, lr = 0.00281852 I0408 20:06:20.558178 5931 solver.cpp:218] Iteration 5748 (2.53431 iter/s, 4.73501s/12 iters), loss = 0.37392 I0408 20:06:20.558212 5931 solver.cpp:237] Train net output #0: loss = 0.37392 (* 1 = 0.37392 loss) I0408 20:06:20.558218 5931 sgd_solver.cpp:105] Iteration 5748, lr = 0.00278294 I0408 20:06:25.366329 5931 solver.cpp:218] Iteration 5760 (2.49579 iter/s, 4.8081s/12 iters), loss = 0.236158 I0408 20:06:25.366362 5931 solver.cpp:237] Train net output #0: loss = 0.236158 (* 1 = 0.236158 loss) I0408 20:06:25.366370 5931 sgd_solver.cpp:105] Iteration 5760, lr = 0.00274763 I0408 20:06:27.197660 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:06:30.052968 5931 solver.cpp:218] Iteration 5772 (2.5605 iter/s, 4.68658s/12 iters), loss = 0.269355 I0408 20:06:30.053064 5931 solver.cpp:237] Train net output #0: loss = 0.269355 (* 1 = 0.269355 loss) I0408 20:06:30.053073 5931 sgd_solver.cpp:105] Iteration 5772, lr = 0.00271261 I0408 20:06:34.871819 5931 solver.cpp:218] Iteration 5784 (2.49028 iter/s, 4.81874s/12 iters), loss = 0.193116 I0408 20:06:34.871857 5931 solver.cpp:237] Train net output #0: loss = 0.193116 (* 1 = 0.193116 loss) I0408 20:06:34.871865 5931 sgd_solver.cpp:105] Iteration 5784, lr = 0.00267786 I0408 20:06:39.647927 5931 solver.cpp:218] Iteration 5796 (2.51254 iter/s, 4.77605s/12 iters), loss = 0.346414 I0408 20:06:39.647960 5931 solver.cpp:237] Train net output #0: loss = 0.346414 (* 1 = 0.346414 loss) I0408 20:06:39.647969 5931 sgd_solver.cpp:105] Iteration 5796, lr = 0.0026434 I0408 20:06:44.419777 5931 solver.cpp:218] Iteration 5808 (2.51478 iter/s, 4.7718s/12 iters), loss = 0.126896 I0408 20:06:44.419811 5931 solver.cpp:237] Train net output #0: loss = 0.126896 (* 1 = 0.126896 loss) I0408 20:06:44.419819 5931 sgd_solver.cpp:105] Iteration 5808, lr = 0.00260923 I0408 20:06:46.393946 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5814.caffemodel I0408 20:06:49.537226 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5814.solverstate I0408 20:06:51.899366 5931 solver.cpp:330] Iteration 5814, Testing net (#0) I0408 20:06:51.899394 5931 net.cpp:676] Ignoring source layer train-data I0408 20:06:54.154704 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:06:56.675269 5931 solver.cpp:397] Test net output #0: accuracy = 0.431373 I0408 20:06:56.675318 5931 solver.cpp:397] Test net output #1: loss = 3.00631 (* 1 = 3.00631 loss) I0408 20:06:58.406922 5931 solver.cpp:218] Iteration 5820 (0.857935 iter/s, 13.9871s/12 iters), loss = 0.235076 I0408 20:06:58.406956 5931 solver.cpp:237] Train net output #0: loss = 0.235076 (* 1 = 0.235076 loss) I0408 20:06:58.406963 5931 sgd_solver.cpp:105] Iteration 5820, lr = 0.00257534 I0408 20:07:03.232364 5931 solver.cpp:218] Iteration 5832 (2.48685 iter/s, 4.82539s/12 iters), loss = 0.257338 I0408 20:07:03.232488 5931 solver.cpp:237] Train net output #0: loss = 0.257338 (* 1 = 0.257338 loss) I0408 20:07:03.232497 5931 sgd_solver.cpp:105] Iteration 5832, lr = 0.00254174 I0408 20:07:07.941685 5931 solver.cpp:218] Iteration 5844 (2.54821 iter/s, 4.70918s/12 iters), loss = 0.215022 I0408 20:07:07.941718 5931 solver.cpp:237] Train net output #0: loss = 0.215022 (* 1 = 0.215022 loss) I0408 20:07:07.941725 5931 sgd_solver.cpp:105] Iteration 5844, lr = 0.00250844 I0408 20:07:12.774667 5931 solver.cpp:218] Iteration 5856 (2.48297 iter/s, 4.83293s/12 iters), loss = 0.332472 I0408 20:07:12.774700 5931 solver.cpp:237] Train net output #0: loss = 0.332472 (* 1 = 0.332472 loss) I0408 20:07:12.774708 5931 sgd_solver.cpp:105] Iteration 5856, lr = 0.00247542 I0408 20:07:16.788264 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:07:17.561910 5931 solver.cpp:218] Iteration 5868 (2.50669 iter/s, 4.78719s/12 iters), loss = 0.208182 I0408 20:07:17.561944 5931 solver.cpp:237] Train net output #0: loss = 0.208182 (* 1 = 0.208182 loss) I0408 20:07:17.561950 5931 sgd_solver.cpp:105] Iteration 5868, lr = 0.0024427 I0408 20:07:22.426555 5931 solver.cpp:218] Iteration 5880 (2.46681 iter/s, 4.86459s/12 iters), loss = 0.115693 I0408 20:07:22.426589 5931 solver.cpp:237] Train net output #0: loss = 0.115693 (* 1 = 0.115693 loss) I0408 20:07:22.426597 5931 sgd_solver.cpp:105] Iteration 5880, lr = 0.00241027 I0408 20:07:27.271683 5931 solver.cpp:218] Iteration 5892 (2.47674 iter/s, 4.84508s/12 iters), loss = 0.207036 I0408 20:07:27.271718 5931 solver.cpp:237] Train net output #0: loss = 0.207036 (* 1 = 0.207036 loss) I0408 20:07:27.271725 5931 sgd_solver.cpp:105] Iteration 5892, lr = 0.00237813 I0408 20:07:31.975659 5931 solver.cpp:218] Iteration 5904 (2.55106 iter/s, 4.70392s/12 iters), loss = 0.200547 I0408 20:07:31.975694 5931 solver.cpp:237] Train net output #0: loss = 0.200547 (* 1 = 0.200547 loss) I0408 20:07:31.975701 5931 sgd_solver.cpp:105] Iteration 5904, lr = 0.00234629 I0408 20:07:36.291177 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5916.caffemodel I0408 20:07:39.393429 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5916.solverstate I0408 20:07:41.748649 5931 solver.cpp:330] Iteration 5916, Testing net (#0) I0408 20:07:41.748672 5931 net.cpp:676] Ignoring source layer train-data I0408 20:07:43.738060 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:07:45.996183 5931 solver.cpp:397] Test net output #0: accuracy = 0.431373 I0408 20:07:45.996230 5931 solver.cpp:397] Test net output #1: loss = 2.95003 (* 1 = 2.95003 loss) I0408 20:07:46.091876 5931 solver.cpp:218] Iteration 5916 (0.85009 iter/s, 14.1161s/12 iters), loss = 0.168647 I0408 20:07:46.091912 5931 solver.cpp:237] Train net output #0: loss = 0.168647 (* 1 = 0.168647 loss) I0408 20:07:46.091919 5931 sgd_solver.cpp:105] Iteration 5916, lr = 0.00231475 I0408 20:07:50.096832 5931 solver.cpp:218] Iteration 5928 (2.99633 iter/s, 4.0049s/12 iters), loss = 0.225836 I0408 20:07:50.096865 5931 solver.cpp:237] Train net output #0: loss = 0.225836 (* 1 = 0.225836 loss) I0408 20:07:50.096873 5931 sgd_solver.cpp:105] Iteration 5928, lr = 0.00228351 I0408 20:07:54.831508 5931 solver.cpp:218] Iteration 5940 (2.53452 iter/s, 4.73462s/12 iters), loss = 0.144558 I0408 20:07:54.831547 5931 solver.cpp:237] Train net output #0: loss = 0.144558 (* 1 = 0.144558 loss) I0408 20:07:54.831555 5931 sgd_solver.cpp:105] Iteration 5940, lr = 0.00225256 I0408 20:07:59.687925 5931 solver.cpp:218] Iteration 5952 (2.47098 iter/s, 4.85637s/12 iters), loss = 0.186715 I0408 20:07:59.687958 5931 solver.cpp:237] Train net output #0: loss = 0.186715 (* 1 = 0.186715 loss) I0408 20:07:59.687965 5931 sgd_solver.cpp:105] Iteration 5952, lr = 0.00222191 I0408 20:08:04.500212 5931 solver.cpp:218] Iteration 5964 (2.49364 iter/s, 4.81224s/12 iters), loss = 0.196992 I0408 20:08:04.500248 5931 solver.cpp:237] Train net output #0: loss = 0.196992 (* 1 = 0.196992 loss) I0408 20:08:04.500257 5931 sgd_solver.cpp:105] Iteration 5964, lr = 0.00219157 I0408 20:08:05.781056 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:08:09.352057 5931 solver.cpp:218] Iteration 5976 (2.47332 iter/s, 4.85179s/12 iters), loss = 0.200582 I0408 20:08:09.352170 5931 solver.cpp:237] Train net output #0: loss = 0.200582 (* 1 = 0.200582 loss) I0408 20:08:09.352180 5931 sgd_solver.cpp:105] Iteration 5976, lr = 0.00216152 I0408 20:08:14.136185 5931 solver.cpp:218] Iteration 5988 (2.50836 iter/s, 4.784s/12 iters), loss = 0.277873 I0408 20:08:14.136219 5931 solver.cpp:237] Train net output #0: loss = 0.277873 (* 1 = 0.277873 loss) I0408 20:08:14.136227 5931 sgd_solver.cpp:105] Iteration 5988, lr = 0.00213177 I0408 20:08:18.979646 5931 solver.cpp:218] Iteration 6000 (2.47759 iter/s, 4.84341s/12 iters), loss = 0.259368 I0408 20:08:18.979686 5931 solver.cpp:237] Train net output #0: loss = 0.259368 (* 1 = 0.259368 loss) I0408 20:08:18.979693 5931 sgd_solver.cpp:105] Iteration 6000, lr = 0.00210232 I0408 20:08:23.802606 5931 solver.cpp:218] Iteration 6012 (2.48813 iter/s, 4.8229s/12 iters), loss = 0.0745169 I0408 20:08:23.802641 5931 solver.cpp:237] Train net output #0: loss = 0.0745169 (* 1 = 0.0745169 loss) I0408 20:08:23.802649 5931 sgd_solver.cpp:105] Iteration 6012, lr = 0.00207317 I0408 20:08:25.763334 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6018.caffemodel I0408 20:08:28.903297 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6018.solverstate I0408 20:08:31.259670 5931 solver.cpp:330] Iteration 6018, Testing net (#0) I0408 20:08:31.259696 5931 net.cpp:676] Ignoring source layer train-data I0408 20:08:33.308152 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:08:35.620275 5931 solver.cpp:397] Test net output #0: accuracy = 0.443627 I0408 20:08:35.620321 5931 solver.cpp:397] Test net output #1: loss = 2.99605 (* 1 = 2.99605 loss) I0408 20:08:37.351923 5931 solver.cpp:218] Iteration 6024 (0.885658 iter/s, 13.5492s/12 iters), loss = 0.246775 I0408 20:08:37.351958 5931 solver.cpp:237] Train net output #0: loss = 0.246775 (* 1 = 0.246775 loss) I0408 20:08:37.351965 5931 sgd_solver.cpp:105] Iteration 6024, lr = 0.00204432 I0408 20:08:42.124806 5931 solver.cpp:218] Iteration 6036 (2.51423 iter/s, 4.77283s/12 iters), loss = 0.3277 I0408 20:08:42.124923 5931 solver.cpp:237] Train net output #0: loss = 0.3277 (* 1 = 0.3277 loss) I0408 20:08:42.124933 5931 sgd_solver.cpp:105] Iteration 6036, lr = 0.00201576 I0408 20:08:46.855738 5931 solver.cpp:218] Iteration 6048 (2.53657 iter/s, 4.7308s/12 iters), loss = 0.256331 I0408 20:08:46.855770 5931 solver.cpp:237] Train net output #0: loss = 0.256331 (* 1 = 0.256331 loss) I0408 20:08:46.855777 5931 sgd_solver.cpp:105] Iteration 6048, lr = 0.00198751 I0408 20:08:51.761030 5931 solver.cpp:218] Iteration 6060 (2.44636 iter/s, 4.90524s/12 iters), loss = 0.116351 I0408 20:08:51.761065 5931 solver.cpp:237] Train net output #0: loss = 0.116351 (* 1 = 0.116351 loss) I0408 20:08:51.761072 5931 sgd_solver.cpp:105] Iteration 6060, lr = 0.00195956 I0408 20:08:55.074321 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:08:56.574128 5931 solver.cpp:218] Iteration 6072 (2.49322 iter/s, 4.81304s/12 iters), loss = 0.162984 I0408 20:08:56.574162 5931 solver.cpp:237] Train net output #0: loss = 0.162984 (* 1 = 0.162984 loss) I0408 20:08:56.574168 5931 sgd_solver.cpp:105] Iteration 6072, lr = 0.0019319 I0408 20:09:01.385977 5931 solver.cpp:218] Iteration 6084 (2.49387 iter/s, 4.81179s/12 iters), loss = 0.124318 I0408 20:09:01.386009 5931 solver.cpp:237] Train net output #0: loss = 0.124318 (* 1 = 0.124318 loss) I0408 20:09:01.386018 5931 sgd_solver.cpp:105] Iteration 6084, lr = 0.00190455 I0408 20:09:06.322439 5931 solver.cpp:218] Iteration 6096 (2.43092 iter/s, 4.93641s/12 iters), loss = 0.245757 I0408 20:09:06.322474 5931 solver.cpp:237] Train net output #0: loss = 0.245757 (* 1 = 0.245757 loss) I0408 20:09:06.322480 5931 sgd_solver.cpp:105] Iteration 6096, lr = 0.00187749 I0408 20:09:11.060858 5931 solver.cpp:218] Iteration 6108 (2.53252 iter/s, 4.73836s/12 iters), loss = 0.205739 I0408 20:09:11.060889 5931 solver.cpp:237] Train net output #0: loss = 0.205739 (* 1 = 0.205739 loss) I0408 20:09:11.060897 5931 sgd_solver.cpp:105] Iteration 6108, lr = 0.00185072 I0408 20:09:15.463348 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6120.caffemodel I0408 20:09:20.048437 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6120.solverstate I0408 20:09:22.424505 5931 solver.cpp:330] Iteration 6120, Testing net (#0) I0408 20:09:22.424536 5931 net.cpp:676] Ignoring source layer train-data I0408 20:09:24.564239 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:09:27.215373 5931 solver.cpp:397] Test net output #0: accuracy = 0.443015 I0408 20:09:27.215422 5931 solver.cpp:397] Test net output #1: loss = 2.9398 (* 1 = 2.9398 loss) I0408 20:09:27.312129 5931 solver.cpp:218] Iteration 6120 (0.738407 iter/s, 16.2512s/12 iters), loss = 0.191523 I0408 20:09:27.312165 5931 solver.cpp:237] Train net output #0: loss = 0.191523 (* 1 = 0.191523 loss) I0408 20:09:27.312172 5931 sgd_solver.cpp:105] Iteration 6120, lr = 0.00182426 I0408 20:09:31.356608 5931 solver.cpp:218] Iteration 6132 (2.96705 iter/s, 4.04443s/12 iters), loss = 0.266697 I0408 20:09:31.356642 5931 solver.cpp:237] Train net output #0: loss = 0.266697 (* 1 = 0.266697 loss) I0408 20:09:31.356650 5931 sgd_solver.cpp:105] Iteration 6132, lr = 0.00179808 I0408 20:09:36.217468 5931 solver.cpp:218] Iteration 6144 (2.46873 iter/s, 4.86081s/12 iters), loss = 0.370711 I0408 20:09:36.217499 5931 solver.cpp:237] Train net output #0: loss = 0.370711 (* 1 = 0.370711 loss) I0408 20:09:36.217507 5931 sgd_solver.cpp:105] Iteration 6144, lr = 0.0017722 I0408 20:09:41.051517 5931 solver.cpp:218] Iteration 6156 (2.48242 iter/s, 4.834s/12 iters), loss = 0.210087 I0408 20:09:41.051555 5931 solver.cpp:237] Train net output #0: loss = 0.210087 (* 1 = 0.210087 loss) I0408 20:09:41.051563 5931 sgd_solver.cpp:105] Iteration 6156, lr = 0.00174662 I0408 20:09:45.965445 5931 solver.cpp:218] Iteration 6168 (2.44207 iter/s, 4.91387s/12 iters), loss = 0.181852 I0408 20:09:45.965509 5931 solver.cpp:237] Train net output #0: loss = 0.181852 (* 1 = 0.181852 loss) I0408 20:09:45.965517 5931 sgd_solver.cpp:105] Iteration 6168, lr = 0.00172133 I0408 20:09:46.504793 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:09:50.758802 5931 solver.cpp:218] Iteration 6180 (2.50351 iter/s, 4.79328s/12 iters), loss = 0.147821 I0408 20:09:50.758837 5931 solver.cpp:237] Train net output #0: loss = 0.147821 (* 1 = 0.147821 loss) I0408 20:09:50.758846 5931 sgd_solver.cpp:105] Iteration 6180, lr = 0.00169632 I0408 20:09:55.686964 5931 solver.cpp:218] Iteration 6192 (2.43501 iter/s, 4.92811s/12 iters), loss = 0.123501 I0408 20:09:55.687000 5931 solver.cpp:237] Train net output #0: loss = 0.123501 (* 1 = 0.123501 loss) I0408 20:09:55.687006 5931 sgd_solver.cpp:105] Iteration 6192, lr = 0.00167161 I0408 20:10:00.510259 5931 solver.cpp:218] Iteration 6204 (2.48795 iter/s, 4.82324s/12 iters), loss = 0.128774 I0408 20:10:00.510293 5931 solver.cpp:237] Train net output #0: loss = 0.128774 (* 1 = 0.128774 loss) I0408 20:10:00.510300 5931 sgd_solver.cpp:105] Iteration 6204, lr = 0.00164719 I0408 20:10:05.372558 5931 solver.cpp:218] Iteration 6216 (2.468 iter/s, 4.86225s/12 iters), loss = 0.334978 I0408 20:10:05.372594 5931 solver.cpp:237] Train net output #0: loss = 0.334978 (* 1 = 0.334978 loss) I0408 20:10:05.372602 5931 sgd_solver.cpp:105] Iteration 6216, lr = 0.00162305 I0408 20:10:07.284966 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6222.caffemodel I0408 20:10:10.440666 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6222.solverstate I0408 20:10:12.825141 5931 solver.cpp:330] Iteration 6222, Testing net (#0) I0408 20:10:12.825167 5931 net.cpp:676] Ignoring source layer train-data I0408 20:10:14.862123 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:10:16.104339 5931 blocking_queue.cpp:49] Waiting for data I0408 20:10:17.241958 5931 solver.cpp:397] Test net output #0: accuracy = 0.449142 I0408 20:10:17.242003 5931 solver.cpp:397] Test net output #1: loss = 2.95634 (* 1 = 2.95634 loss) I0408 20:10:18.974587 5931 solver.cpp:218] Iteration 6228 (0.882226 iter/s, 13.602s/12 iters), loss = 0.153808 I0408 20:10:18.974622 5931 solver.cpp:237] Train net output #0: loss = 0.153808 (* 1 = 0.153808 loss) I0408 20:10:18.974629 5931 sgd_solver.cpp:105] Iteration 6228, lr = 0.0015992 I0408 20:10:23.851501 5931 solver.cpp:218] Iteration 6240 (2.4606 iter/s, 4.87686s/12 iters), loss = 0.0711555 I0408 20:10:23.851536 5931 solver.cpp:237] Train net output #0: loss = 0.0711555 (* 1 = 0.0711555 loss) I0408 20:10:23.851544 5931 sgd_solver.cpp:105] Iteration 6240, lr = 0.00157563 I0408 20:10:28.754727 5931 solver.cpp:218] Iteration 6252 (2.4474 iter/s, 4.90317s/12 iters), loss = 0.170034 I0408 20:10:28.754760 5931 solver.cpp:237] Train net output #0: loss = 0.170034 (* 1 = 0.170034 loss) I0408 20:10:28.754767 5931 sgd_solver.cpp:105] Iteration 6252, lr = 0.00155235 I0408 20:10:33.615926 5931 solver.cpp:218] Iteration 6264 (2.46855 iter/s, 4.86115s/12 iters), loss = 0.160324 I0408 20:10:33.615958 5931 solver.cpp:237] Train net output #0: loss = 0.160324 (* 1 = 0.160324 loss) I0408 20:10:33.615967 5931 sgd_solver.cpp:105] Iteration 6264, lr = 0.00152935 I0408 20:10:36.205178 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:10:38.488222 5931 solver.cpp:218] Iteration 6276 (2.46293 iter/s, 4.87224s/12 iters), loss = 0.0757003 I0408 20:10:38.488255 5931 solver.cpp:237] Train net output #0: loss = 0.0757003 (* 1 = 0.0757003 loss) I0408 20:10:38.488262 5931 sgd_solver.cpp:105] Iteration 6276, lr = 0.00150663 I0408 20:10:43.354019 5931 solver.cpp:218] Iteration 6288 (2.46622 iter/s, 4.86575s/12 iters), loss = 0.136363 I0408 20:10:43.354053 5931 solver.cpp:237] Train net output #0: loss = 0.136363 (* 1 = 0.136363 loss) I0408 20:10:43.354061 5931 sgd_solver.cpp:105] Iteration 6288, lr = 0.00148419 I0408 20:10:48.155094 5931 solver.cpp:218] Iteration 6300 (2.49947 iter/s, 4.80102s/12 iters), loss = 0.14871 I0408 20:10:48.155211 5931 solver.cpp:237] Train net output #0: loss = 0.14871 (* 1 = 0.14871 loss) I0408 20:10:48.155220 5931 sgd_solver.cpp:105] Iteration 6300, lr = 0.00146202 I0408 20:10:53.068392 5931 solver.cpp:218] Iteration 6312 (2.44242 iter/s, 4.91316s/12 iters), loss = 0.180014 I0408 20:10:53.068423 5931 solver.cpp:237] Train net output #0: loss = 0.180014 (* 1 = 0.180014 loss) I0408 20:10:53.068431 5931 sgd_solver.cpp:105] Iteration 6312, lr = 0.00144013 I0408 20:10:57.431567 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6324.caffemodel I0408 20:11:01.525633 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6324.solverstate I0408 20:11:04.830422 5931 solver.cpp:330] Iteration 6324, Testing net (#0) I0408 20:11:04.830447 5931 net.cpp:676] Ignoring source layer train-data I0408 20:11:06.871363 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:11:09.605623 5931 solver.cpp:397] Test net output #0: accuracy = 0.456495 I0408 20:11:09.605669 5931 solver.cpp:397] Test net output #1: loss = 2.96024 (* 1 = 2.96024 loss) I0408 20:11:09.702230 5931 solver.cpp:218] Iteration 6324 (0.721424 iter/s, 16.6338s/12 iters), loss = 0.168762 I0408 20:11:09.702267 5931 solver.cpp:237] Train net output #0: loss = 0.168762 (* 1 = 0.168762 loss) I0408 20:11:09.702275 5931 sgd_solver.cpp:105] Iteration 6324, lr = 0.00141851 I0408 20:11:13.726189 5931 solver.cpp:218] Iteration 6336 (2.98218 iter/s, 4.0239s/12 iters), loss = 0.102495 I0408 20:11:13.726224 5931 solver.cpp:237] Train net output #0: loss = 0.102495 (* 1 = 0.102495 loss) I0408 20:11:13.726231 5931 sgd_solver.cpp:105] Iteration 6336, lr = 0.00139716 I0408 20:11:18.546707 5931 solver.cpp:218] Iteration 6348 (2.48939 iter/s, 4.82046s/12 iters), loss = 0.230752 I0408 20:11:18.546805 5931 solver.cpp:237] Train net output #0: loss = 0.230752 (* 1 = 0.230752 loss) I0408 20:11:18.546814 5931 sgd_solver.cpp:105] Iteration 6348, lr = 0.00137609 I0408 20:11:23.428619 5931 solver.cpp:218] Iteration 6360 (2.45811 iter/s, 4.8818s/12 iters), loss = 0.318958 I0408 20:11:23.428651 5931 solver.cpp:237] Train net output #0: loss = 0.318958 (* 1 = 0.318958 loss) I0408 20:11:23.428659 5931 sgd_solver.cpp:105] Iteration 6360, lr = 0.00135528 I0408 20:11:28.053357 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:11:28.190143 5931 solver.cpp:218] Iteration 6372 (2.52023 iter/s, 4.76147s/12 iters), loss = 0.15347 I0408 20:11:28.190173 5931 solver.cpp:237] Train net output #0: loss = 0.15347 (* 1 = 0.15347 loss) I0408 20:11:28.190181 5931 sgd_solver.cpp:105] Iteration 6372, lr = 0.00133474 I0408 20:11:33.026971 5931 solver.cpp:218] Iteration 6384 (2.48099 iter/s, 4.83678s/12 iters), loss = 0.0793962 I0408 20:11:33.027004 5931 solver.cpp:237] Train net output #0: loss = 0.0793962 (* 1 = 0.0793962 loss) I0408 20:11:33.027011 5931 sgd_solver.cpp:105] Iteration 6384, lr = 0.00131446 I0408 20:11:37.895071 5931 solver.cpp:218] Iteration 6396 (2.46505 iter/s, 4.86805s/12 iters), loss = 0.177293 I0408 20:11:37.895103 5931 solver.cpp:237] Train net output #0: loss = 0.177293 (* 1 = 0.177293 loss) I0408 20:11:37.895112 5931 sgd_solver.cpp:105] Iteration 6396, lr = 0.00129444 I0408 20:11:42.710003 5931 solver.cpp:218] Iteration 6408 (2.49227 iter/s, 4.81488s/12 iters), loss = 0.165544 I0408 20:11:42.710036 5931 solver.cpp:237] Train net output #0: loss = 0.165544 (* 1 = 0.165544 loss) I0408 20:11:42.710043 5931 sgd_solver.cpp:105] Iteration 6408, lr = 0.00127468 I0408 20:11:47.520005 5931 solver.cpp:218] Iteration 6420 (2.49483 iter/s, 4.80995s/12 iters), loss = 0.125816 I0408 20:11:47.520040 5931 solver.cpp:237] Train net output #0: loss = 0.125816 (* 1 = 0.125816 loss) I0408 20:11:47.520047 5931 sgd_solver.cpp:105] Iteration 6420, lr = 0.00125519 I0408 20:11:49.422883 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6426.caffemodel I0408 20:11:53.252032 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6426.solverstate I0408 20:11:56.711493 5931 solver.cpp:330] Iteration 6426, Testing net (#0) I0408 20:11:56.711521 5931 net.cpp:676] Ignoring source layer train-data I0408 20:11:58.702052 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:12:01.492951 5931 solver.cpp:397] Test net output #0: accuracy = 0.458333 I0408 20:12:01.492997 5931 solver.cpp:397] Test net output #1: loss = 3.00246 (* 1 = 3.00246 loss) I0408 20:12:03.239104 5931 solver.cpp:218] Iteration 6432 (0.763406 iter/s, 15.719s/12 iters), loss = 0.196917 I0408 20:12:03.239140 5931 solver.cpp:237] Train net output #0: loss = 0.196917 (* 1 = 0.196917 loss) I0408 20:12:03.239148 5931 sgd_solver.cpp:105] Iteration 6432, lr = 0.00123594 I0408 20:12:08.040228 5931 solver.cpp:218] Iteration 6444 (2.49944 iter/s, 4.80107s/12 iters), loss = 0.264956 I0408 20:12:08.040262 5931 solver.cpp:237] Train net output #0: loss = 0.264956 (* 1 = 0.264956 loss) I0408 20:12:08.040271 5931 sgd_solver.cpp:105] Iteration 6444, lr = 0.00121696 I0408 20:12:12.863951 5931 solver.cpp:218] Iteration 6456 (2.48773 iter/s, 4.82367s/12 iters), loss = 0.305538 I0408 20:12:12.863986 5931 solver.cpp:237] Train net output #0: loss = 0.305538 (* 1 = 0.305538 loss) I0408 20:12:12.863993 5931 sgd_solver.cpp:105] Iteration 6456, lr = 0.00119822 I0408 20:12:17.758031 5931 solver.cpp:218] Iteration 6468 (2.45197 iter/s, 4.89402s/12 iters), loss = 0.0797478 I0408 20:12:17.758066 5931 solver.cpp:237] Train net output #0: loss = 0.0797478 (* 1 = 0.0797478 loss) I0408 20:12:17.758074 5931 sgd_solver.cpp:105] Iteration 6468, lr = 0.00117973 I0408 20:12:19.778565 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:12:22.656345 5931 solver.cpp:218] Iteration 6480 (2.44985 iter/s, 4.89826s/12 iters), loss = 0.0982578 I0408 20:12:22.656380 5931 solver.cpp:237] Train net output #0: loss = 0.0982579 (* 1 = 0.0982579 loss) I0408 20:12:22.656388 5931 sgd_solver.cpp:105] Iteration 6480, lr = 0.00116149 I0408 20:12:27.474653 5931 solver.cpp:218] Iteration 6492 (2.49053 iter/s, 4.81825s/12 iters), loss = 0.104125 I0408 20:12:27.474686 5931 solver.cpp:237] Train net output #0: loss = 0.104125 (* 1 = 0.104125 loss) I0408 20:12:27.474694 5931 sgd_solver.cpp:105] Iteration 6492, lr = 0.0011435 I0408 20:12:32.354048 5931 solver.cpp:218] Iteration 6504 (2.45935 iter/s, 4.87934s/12 iters), loss = 0.184643 I0408 20:12:32.354081 5931 solver.cpp:237] Train net output #0: loss = 0.184643 (* 1 = 0.184643 loss) I0408 20:12:32.354089 5931 sgd_solver.cpp:105] Iteration 6504, lr = 0.00112575 I0408 20:12:37.232302 5931 solver.cpp:218] Iteration 6516 (2.45992 iter/s, 4.8782s/12 iters), loss = 0.0606845 I0408 20:12:37.232337 5931 solver.cpp:237] Train net output #0: loss = 0.0606845 (* 1 = 0.0606845 loss) I0408 20:12:37.232344 5931 sgd_solver.cpp:105] Iteration 6516, lr = 0.00110824 I0408 20:12:41.641340 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6528.caffemodel I0408 20:12:45.429971 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6528.solverstate I0408 20:12:47.839398 5931 solver.cpp:330] Iteration 6528, Testing net (#0) I0408 20:12:47.839422 5931 net.cpp:676] Ignoring source layer train-data I0408 20:12:49.688155 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:12:52.194080 5931 solver.cpp:397] Test net output #0: accuracy = 0.458333 I0408 20:12:52.194218 5931 solver.cpp:397] Test net output #1: loss = 2.96061 (* 1 = 2.96061 loss) I0408 20:12:52.290647 5931 solver.cpp:218] Iteration 6528 (0.796904 iter/s, 15.0583s/12 iters), loss = 0.0645053 I0408 20:12:52.290684 5931 solver.cpp:237] Train net output #0: loss = 0.0645054 (* 1 = 0.0645054 loss) I0408 20:12:52.290693 5931 sgd_solver.cpp:105] Iteration 6528, lr = 0.00109097 I0408 20:12:56.250638 5931 solver.cpp:218] Iteration 6540 (3.03035 iter/s, 3.95994s/12 iters), loss = 0.119277 I0408 20:12:56.250674 5931 solver.cpp:237] Train net output #0: loss = 0.119277 (* 1 = 0.119277 loss) I0408 20:12:56.250681 5931 sgd_solver.cpp:105] Iteration 6540, lr = 0.00107393 I0408 20:13:01.046283 5931 solver.cpp:218] Iteration 6552 (2.5023 iter/s, 4.79559s/12 iters), loss = 0.0869053 I0408 20:13:01.046316 5931 solver.cpp:237] Train net output #0: loss = 0.0869053 (* 1 = 0.0869053 loss) I0408 20:13:01.046324 5931 sgd_solver.cpp:105] Iteration 6552, lr = 0.00105713 I0408 20:13:06.057199 5931 solver.cpp:218] Iteration 6564 (2.3948 iter/s, 5.01086s/12 iters), loss = 0.124849 I0408 20:13:06.057231 5931 solver.cpp:237] Train net output #0: loss = 0.124849 (* 1 = 0.124849 loss) I0408 20:13:06.057240 5931 sgd_solver.cpp:105] Iteration 6564, lr = 0.00104057 I0408 20:13:10.039264 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:13:10.767402 5931 solver.cpp:218] Iteration 6576 (2.54769 iter/s, 4.71015s/12 iters), loss = 0.187502 I0408 20:13:10.767434 5931 solver.cpp:237] Train net output #0: loss = 0.187502 (* 1 = 0.187502 loss) I0408 20:13:10.767441 5931 sgd_solver.cpp:105] Iteration 6576, lr = 0.00102423 I0408 20:13:15.552714 5931 solver.cpp:218] Iteration 6588 (2.5077 iter/s, 4.78526s/12 iters), loss = 0.101033 I0408 20:13:15.552748 5931 solver.cpp:237] Train net output #0: loss = 0.101033 (* 1 = 0.101033 loss) I0408 20:13:15.552757 5931 sgd_solver.cpp:105] Iteration 6588, lr = 0.00100812 I0408 20:13:20.493610 5931 solver.cpp:218] Iteration 6600 (2.42874 iter/s, 4.94084s/12 iters), loss = 0.136095 I0408 20:13:20.493644 5931 solver.cpp:237] Train net output #0: loss = 0.136095 (* 1 = 0.136095 loss) I0408 20:13:20.493651 5931 sgd_solver.cpp:105] Iteration 6600, lr = 0.000992235 I0408 20:13:25.458819 5931 solver.cpp:218] Iteration 6612 (2.41684 iter/s, 4.96515s/12 iters), loss = 0.115821 I0408 20:13:25.458936 5931 solver.cpp:237] Train net output #0: loss = 0.115821 (* 1 = 0.115821 loss) I0408 20:13:25.458945 5931 sgd_solver.cpp:105] Iteration 6612, lr = 0.000976574 I0408 20:13:30.456481 5931 solver.cpp:218] Iteration 6624 (2.40119 iter/s, 4.99752s/12 iters), loss = 0.278434 I0408 20:13:30.456513 5931 solver.cpp:237] Train net output #0: loss = 0.278434 (* 1 = 0.278434 loss) I0408 20:13:30.456521 5931 sgd_solver.cpp:105] Iteration 6624, lr = 0.000961133 I0408 20:13:32.526356 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6630.caffemodel I0408 20:13:36.006157 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6630.solverstate I0408 20:13:38.355458 5931 solver.cpp:330] Iteration 6630, Testing net (#0) I0408 20:13:38.355482 5931 net.cpp:676] Ignoring source layer train-data I0408 20:13:40.274756 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:13:42.873092 5931 solver.cpp:397] Test net output #0: accuracy = 0.464461 I0408 20:13:42.873137 5931 solver.cpp:397] Test net output #1: loss = 2.94478 (* 1 = 2.94478 loss) I0408 20:13:44.616324 5931 solver.cpp:218] Iteration 6636 (0.847471 iter/s, 14.1598s/12 iters), loss = 0.133299 I0408 20:13:44.616359 5931 solver.cpp:237] Train net output #0: loss = 0.133299 (* 1 = 0.133299 loss) I0408 20:13:44.616366 5931 sgd_solver.cpp:105] Iteration 6636, lr = 0.000945911 I0408 20:13:49.346843 5931 solver.cpp:218] Iteration 6648 (2.53675 iter/s, 4.73046s/12 iters), loss = 0.301478 I0408 20:13:49.346876 5931 solver.cpp:237] Train net output #0: loss = 0.301478 (* 1 = 0.301478 loss) I0408 20:13:49.346884 5931 sgd_solver.cpp:105] Iteration 6648, lr = 0.000930905 I0408 20:13:54.184154 5931 solver.cpp:218] Iteration 6660 (2.48074 iter/s, 4.83726s/12 iters), loss = 0.110594 I0408 20:13:54.184187 5931 solver.cpp:237] Train net output #0: loss = 0.110594 (* 1 = 0.110594 loss) I0408 20:13:54.184195 5931 sgd_solver.cpp:105] Iteration 6660, lr = 0.000916113 I0408 20:13:58.985841 5931 solver.cpp:218] Iteration 6672 (2.49915 iter/s, 4.80163s/12 iters), loss = 0.0967719 I0408 20:13:58.985936 5931 solver.cpp:237] Train net output #0: loss = 0.0967719 (* 1 = 0.0967719 loss) I0408 20:13:58.985944 5931 sgd_solver.cpp:105] Iteration 6672, lr = 0.000901533 I0408 20:14:00.287806 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:14:03.751572 5931 solver.cpp:218] Iteration 6684 (2.51804 iter/s, 4.76562s/12 iters), loss = 0.176942 I0408 20:14:03.751607 5931 solver.cpp:237] Train net output #0: loss = 0.176942 (* 1 = 0.176942 loss) I0408 20:14:03.751616 5931 sgd_solver.cpp:105] Iteration 6684, lr = 0.000887162 I0408 20:14:08.475462 5931 solver.cpp:218] Iteration 6696 (2.54031 iter/s, 4.72384s/12 iters), loss = 0.0631857 I0408 20:14:08.475497 5931 solver.cpp:237] Train net output #0: loss = 0.0631858 (* 1 = 0.0631858 loss) I0408 20:14:08.475504 5931 sgd_solver.cpp:105] Iteration 6696, lr = 0.000872998 I0408 20:14:13.273082 5931 solver.cpp:218] Iteration 6708 (2.50127 iter/s, 4.79757s/12 iters), loss = 0.166637 I0408 20:14:13.273115 5931 solver.cpp:237] Train net output #0: loss = 0.166637 (* 1 = 0.166637 loss) I0408 20:14:13.273123 5931 sgd_solver.cpp:105] Iteration 6708, lr = 0.000859039 I0408 20:14:17.936640 5931 solver.cpp:218] Iteration 6720 (2.57317 iter/s, 4.6635s/12 iters), loss = 0.137803 I0408 20:14:17.936671 5931 solver.cpp:237] Train net output #0: loss = 0.137803 (* 1 = 0.137803 loss) I0408 20:14:17.936678 5931 sgd_solver.cpp:105] Iteration 6720, lr = 0.000845283 I0408 20:14:22.252166 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6732.caffemodel I0408 20:14:25.308012 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6732.solverstate I0408 20:14:27.723134 5931 solver.cpp:330] Iteration 6732, Testing net (#0) I0408 20:14:27.723160 5931 net.cpp:676] Ignoring source layer train-data I0408 20:14:29.600313 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:14:32.533883 5931 solver.cpp:397] Test net output #0: accuracy = 0.466912 I0408 20:14:32.533931 5931 solver.cpp:397] Test net output #1: loss = 2.92792 (* 1 = 2.92792 loss) I0408 20:14:32.630347 5931 solver.cpp:218] Iteration 6732 (0.81668 iter/s, 14.6936s/12 iters), loss = 0.0591866 I0408 20:14:32.630384 5931 solver.cpp:237] Train net output #0: loss = 0.0591867 (* 1 = 0.0591867 loss) I0408 20:14:32.630393 5931 sgd_solver.cpp:105] Iteration 6732, lr = 0.000831727 I0408 20:14:36.601056 5931 solver.cpp:218] Iteration 6744 (3.02217 iter/s, 3.97066s/12 iters), loss = 0.163432 I0408 20:14:36.601091 5931 solver.cpp:237] Train net output #0: loss = 0.163432 (* 1 = 0.163432 loss) I0408 20:14:36.601099 5931 sgd_solver.cpp:105] Iteration 6744, lr = 0.000818369 I0408 20:14:41.400969 5931 solver.cpp:218] Iteration 6756 (2.50008 iter/s, 4.79986s/12 iters), loss = 0.134583 I0408 20:14:41.401002 5931 solver.cpp:237] Train net output #0: loss = 0.134583 (* 1 = 0.134583 loss) I0408 20:14:41.401010 5931 sgd_solver.cpp:105] Iteration 6756, lr = 0.000805206 I0408 20:14:46.205837 5931 solver.cpp:218] Iteration 6768 (2.4975 iter/s, 4.80481s/12 iters), loss = 0.0954983 I0408 20:14:46.205868 5931 solver.cpp:237] Train net output #0: loss = 0.0954984 (* 1 = 0.0954984 loss) I0408 20:14:46.205876 5931 sgd_solver.cpp:105] Iteration 6768, lr = 0.000792237 I0408 20:14:49.582054 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:14:51.064855 5931 solver.cpp:218] Iteration 6780 (2.46966 iter/s, 4.85897s/12 iters), loss = 0.13027 I0408 20:14:51.064888 5931 solver.cpp:237] Train net output #0: loss = 0.13027 (* 1 = 0.13027 loss) I0408 20:14:51.064895 5931 sgd_solver.cpp:105] Iteration 6780, lr = 0.000779459 I0408 20:14:55.858438 5931 solver.cpp:218] Iteration 6792 (2.50337 iter/s, 4.79353s/12 iters), loss = 0.200689 I0408 20:14:55.858471 5931 solver.cpp:237] Train net output #0: loss = 0.200689 (* 1 = 0.200689 loss) I0408 20:14:55.858479 5931 sgd_solver.cpp:105] Iteration 6792, lr = 0.000766871 I0408 20:15:00.700433 5931 solver.cpp:218] Iteration 6804 (2.47834 iter/s, 4.84194s/12 iters), loss = 0.085935 I0408 20:15:00.700548 5931 solver.cpp:237] Train net output #0: loss = 0.085935 (* 1 = 0.085935 loss) I0408 20:15:00.700557 5931 sgd_solver.cpp:105] Iteration 6804, lr = 0.000754468 I0408 20:15:05.547202 5931 solver.cpp:218] Iteration 6816 (2.47595 iter/s, 4.84663s/12 iters), loss = 0.128109 I0408 20:15:05.547236 5931 solver.cpp:237] Train net output #0: loss = 0.128109 (* 1 = 0.128109 loss) I0408 20:15:05.547243 5931 sgd_solver.cpp:105] Iteration 6816, lr = 0.00074225 I0408 20:15:10.352576 5931 solver.cpp:218] Iteration 6828 (2.49723 iter/s, 4.80532s/12 iters), loss = 0.120586 I0408 20:15:10.352608 5931 solver.cpp:237] Train net output #0: loss = 0.120586 (* 1 = 0.120586 loss) I0408 20:15:10.352617 5931 sgd_solver.cpp:105] Iteration 6828, lr = 0.000730215 I0408 20:15:12.281247 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6834.caffemodel I0408 20:15:15.355904 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6834.solverstate I0408 20:15:17.709599 5931 solver.cpp:330] Iteration 6834, Testing net (#0) I0408 20:15:17.709625 5931 net.cpp:676] Ignoring source layer train-data I0408 20:15:19.549518 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:15:22.466540 5931 solver.cpp:397] Test net output #0: accuracy = 0.469363 I0408 20:15:22.466588 5931 solver.cpp:397] Test net output #1: loss = 2.92281 (* 1 = 2.92281 loss) I0408 20:15:24.207881 5931 solver.cpp:218] Iteration 6840 (0.866098 iter/s, 13.8552s/12 iters), loss = 0.164247 I0408 20:15:24.207917 5931 solver.cpp:237] Train net output #0: loss = 0.164247 (* 1 = 0.164247 loss) I0408 20:15:24.207926 5931 sgd_solver.cpp:105] Iteration 6840, lr = 0.000718359 I0408 20:15:29.007839 5931 solver.cpp:218] Iteration 6852 (2.50005 iter/s, 4.7999s/12 iters), loss = 0.154856 I0408 20:15:29.007871 5931 solver.cpp:237] Train net output #0: loss = 0.154856 (* 1 = 0.154856 loss) I0408 20:15:29.007879 5931 sgd_solver.cpp:105] Iteration 6852, lr = 0.000706682 I0408 20:15:33.844710 5931 solver.cpp:218] Iteration 6864 (2.48097 iter/s, 4.83682s/12 iters), loss = 0.129887 I0408 20:15:33.844862 5931 solver.cpp:237] Train net output #0: loss = 0.129887 (* 1 = 0.129887 loss) I0408 20:15:33.844871 5931 sgd_solver.cpp:105] Iteration 6864, lr = 0.00069518 I0408 20:15:38.682919 5931 solver.cpp:218] Iteration 6876 (2.48034 iter/s, 4.83804s/12 iters), loss = 0.074003 I0408 20:15:38.682952 5931 solver.cpp:237] Train net output #0: loss = 0.0740031 (* 1 = 0.0740031 loss) I0408 20:15:38.682960 5931 sgd_solver.cpp:105] Iteration 6876, lr = 0.000683851 I0408 20:15:39.260697 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:15:43.503979 5931 solver.cpp:218] Iteration 6888 (2.4891 iter/s, 4.82101s/12 iters), loss = 0.198173 I0408 20:15:43.504011 5931 solver.cpp:237] Train net output #0: loss = 0.198173 (* 1 = 0.198173 loss) I0408 20:15:43.504019 5931 sgd_solver.cpp:105] Iteration 6888, lr = 0.000672694 I0408 20:15:48.301620 5931 solver.cpp:218] Iteration 6900 (2.50126 iter/s, 4.79759s/12 iters), loss = 0.181807 I0408 20:15:48.301654 5931 solver.cpp:237] Train net output #0: loss = 0.181807 (* 1 = 0.181807 loss) I0408 20:15:48.301661 5931 sgd_solver.cpp:105] Iteration 6900, lr = 0.000661705 I0408 20:15:53.151407 5931 solver.cpp:218] Iteration 6912 (2.47436 iter/s, 4.84974s/12 iters), loss = 0.113427 I0408 20:15:53.151443 5931 solver.cpp:237] Train net output #0: loss = 0.113427 (* 1 = 0.113427 loss) I0408 20:15:53.151451 5931 sgd_solver.cpp:105] Iteration 6912, lr = 0.000650884 I0408 20:15:57.975843 5931 solver.cpp:218] Iteration 6924 (2.48737 iter/s, 4.82438s/12 iters), loss = 0.10663 I0408 20:15:57.975875 5931 solver.cpp:237] Train net output #0: loss = 0.10663 (* 1 = 0.10663 loss) I0408 20:15:57.975883 5931 sgd_solver.cpp:105] Iteration 6924, lr = 0.000640227 I0408 20:16:02.336524 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6936.caffemodel I0408 20:16:06.629683 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6936.solverstate I0408 20:16:08.980520 5931 solver.cpp:330] Iteration 6936, Testing net (#0) I0408 20:16:08.980546 5931 net.cpp:676] Ignoring source layer train-data I0408 20:16:09.593680 5931 blocking_queue.cpp:49] Waiting for data I0408 20:16:10.679060 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:16:13.348839 5931 solver.cpp:397] Test net output #0: accuracy = 0.459559 I0408 20:16:13.348884 5931 solver.cpp:397] Test net output #1: loss = 2.94355 (* 1 = 2.94355 loss) I0408 20:16:13.445363 5931 solver.cpp:218] Iteration 6936 (0.775722 iter/s, 15.4695s/12 iters), loss = 0.114165 I0408 20:16:13.445396 5931 solver.cpp:237] Train net output #0: loss = 0.114165 (* 1 = 0.114165 loss) I0408 20:16:13.445405 5931 sgd_solver.cpp:105] Iteration 6936, lr = 0.000629733 I0408 20:16:17.429514 5931 solver.cpp:218] Iteration 6948 (3.01197 iter/s, 3.9841s/12 iters), loss = 0.131762 I0408 20:16:17.429548 5931 solver.cpp:237] Train net output #0: loss = 0.131762 (* 1 = 0.131762 loss) I0408 20:16:17.429556 5931 sgd_solver.cpp:105] Iteration 6948, lr = 0.0006194 I0408 20:16:22.282490 5931 solver.cpp:218] Iteration 6960 (2.47274 iter/s, 4.85292s/12 iters), loss = 0.280908 I0408 20:16:22.282522 5931 solver.cpp:237] Train net output #0: loss = 0.280908 (* 1 = 0.280908 loss) I0408 20:16:22.282531 5931 sgd_solver.cpp:105] Iteration 6960, lr = 0.000609226 I0408 20:16:27.083074 5931 solver.cpp:218] Iteration 6972 (2.49972 iter/s, 4.80053s/12 iters), loss = 0.0834992 I0408 20:16:27.083107 5931 solver.cpp:237] Train net output #0: loss = 0.0834993 (* 1 = 0.0834993 loss) I0408 20:16:27.083115 5931 sgd_solver.cpp:105] Iteration 6972, lr = 0.000599208 I0408 20:16:29.739754 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:16:31.932974 5931 solver.cpp:218] Iteration 6984 (2.4743 iter/s, 4.84985s/12 iters), loss = 0.164028 I0408 20:16:31.933009 5931 solver.cpp:237] Train net output #0: loss = 0.164028 (* 1 = 0.164028 loss) I0408 20:16:31.933017 5931 sgd_solver.cpp:105] Iteration 6984, lr = 0.000589344 I0408 20:16:36.755919 5931 solver.cpp:218] Iteration 6996 (2.48813 iter/s, 4.82289s/12 iters), loss = 0.169343 I0408 20:16:36.756073 5931 solver.cpp:237] Train net output #0: loss = 0.169343 (* 1 = 0.169343 loss) I0408 20:16:36.756083 5931 sgd_solver.cpp:105] Iteration 6996, lr = 0.000579632 I0408 20:16:41.536451 5931 solver.cpp:218] Iteration 7008 (2.51027 iter/s, 4.78036s/12 iters), loss = 0.10899 I0408 20:16:41.536484 5931 solver.cpp:237] Train net output #0: loss = 0.10899 (* 1 = 0.10899 loss) I0408 20:16:41.536492 5931 sgd_solver.cpp:105] Iteration 7008, lr = 0.000570071 I0408 20:16:46.375644 5931 solver.cpp:218] Iteration 7020 (2.47978 iter/s, 4.83914s/12 iters), loss = 0.206646 I0408 20:16:46.375679 5931 solver.cpp:237] Train net output #0: loss = 0.206646 (* 1 = 0.206646 loss) I0408 20:16:46.375686 5931 sgd_solver.cpp:105] Iteration 7020, lr = 0.000560659 I0408 20:16:51.199347 5931 solver.cpp:218] Iteration 7032 (2.48774 iter/s, 4.82365s/12 iters), loss = 0.0845994 I0408 20:16:51.199383 5931 solver.cpp:237] Train net output #0: loss = 0.0845994 (* 1 = 0.0845994 loss) I0408 20:16:51.199389 5931 sgd_solver.cpp:105] Iteration 7032, lr = 0.000551392 I0408 20:16:53.162933 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7038.caffemodel I0408 20:16:57.693749 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7038.solverstate I0408 20:17:01.519523 5931 solver.cpp:330] Iteration 7038, Testing net (#0) I0408 20:17:01.519548 5931 net.cpp:676] Ignoring source layer train-data I0408 20:17:03.273010 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:17:06.315460 5931 solver.cpp:397] Test net output #0: accuracy = 0.462623 I0408 20:17:06.315510 5931 solver.cpp:397] Test net output #1: loss = 2.95039 (* 1 = 2.95039 loss) I0408 20:17:08.055099 5931 solver.cpp:218] Iteration 7044 (0.711926 iter/s, 16.8557s/12 iters), loss = 0.178482 I0408 20:17:08.055223 5931 solver.cpp:237] Train net output #0: loss = 0.178482 (* 1 = 0.178482 loss) I0408 20:17:08.055231 5931 sgd_solver.cpp:105] Iteration 7044, lr = 0.00054227 I0408 20:17:12.865379 5931 solver.cpp:218] Iteration 7056 (2.49473 iter/s, 4.81014s/12 iters), loss = 0.103092 I0408 20:17:12.865413 5931 solver.cpp:237] Train net output #0: loss = 0.103092 (* 1 = 0.103092 loss) I0408 20:17:12.865420 5931 sgd_solver.cpp:105] Iteration 7056, lr = 0.00053329 I0408 20:17:17.736277 5931 solver.cpp:218] Iteration 7068 (2.46364 iter/s, 4.87084s/12 iters), loss = 0.188787 I0408 20:17:17.736310 5931 solver.cpp:237] Train net output #0: loss = 0.188787 (* 1 = 0.188787 loss) I0408 20:17:17.736317 5931 sgd_solver.cpp:105] Iteration 7068, lr = 0.000524451 I0408 20:17:22.414850 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:17:22.536586 5931 solver.cpp:218] Iteration 7080 (2.49986 iter/s, 4.80026s/12 iters), loss = 0.194107 I0408 20:17:22.536615 5931 solver.cpp:237] Train net output #0: loss = 0.194107 (* 1 = 0.194107 loss) I0408 20:17:22.536623 5931 sgd_solver.cpp:105] Iteration 7080, lr = 0.00051575 I0408 20:17:27.378692 5931 solver.cpp:218] Iteration 7092 (2.47829 iter/s, 4.84206s/12 iters), loss = 0.0827191 I0408 20:17:27.378726 5931 solver.cpp:237] Train net output #0: loss = 0.0827191 (* 1 = 0.0827191 loss) I0408 20:17:27.378734 5931 sgd_solver.cpp:105] Iteration 7092, lr = 0.000507186 I0408 20:17:32.198681 5931 solver.cpp:218] Iteration 7104 (2.48966 iter/s, 4.81993s/12 iters), loss = 0.16073 I0408 20:17:32.198716 5931 solver.cpp:237] Train net output #0: loss = 0.16073 (* 1 = 0.16073 loss) I0408 20:17:32.198724 5931 sgd_solver.cpp:105] Iteration 7104, lr = 0.000498757 I0408 20:17:37.021219 5931 solver.cpp:218] Iteration 7116 (2.48834 iter/s, 4.82248s/12 iters), loss = 0.18256 I0408 20:17:37.021252 5931 solver.cpp:237] Train net output #0: loss = 0.18256 (* 1 = 0.18256 loss) I0408 20:17:37.021260 5931 sgd_solver.cpp:105] Iteration 7116, lr = 0.00049046 I0408 20:17:41.838027 5931 solver.cpp:218] Iteration 7128 (2.4913 iter/s, 4.81675s/12 iters), loss = 0.125816 I0408 20:17:41.838140 5931 solver.cpp:237] Train net output #0: loss = 0.125816 (* 1 = 0.125816 loss) I0408 20:17:41.838148 5931 sgd_solver.cpp:105] Iteration 7128, lr = 0.000482295 I0408 20:17:46.209100 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7140.caffemodel I0408 20:17:49.364675 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7140.solverstate I0408 20:17:51.727552 5931 solver.cpp:330] Iteration 7140, Testing net (#0) I0408 20:17:51.727579 5931 net.cpp:676] Ignoring source layer train-data I0408 20:17:53.296329 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:17:56.051793 5931 solver.cpp:397] Test net output #0: accuracy = 0.465686 I0408 20:17:56.051839 5931 solver.cpp:397] Test net output #1: loss = 2.94129 (* 1 = 2.94129 loss) I0408 20:17:56.148749 5931 solver.cpp:218] Iteration 7140 (0.838541 iter/s, 14.3106s/12 iters), loss = 0.0895932 I0408 20:17:56.148800 5931 solver.cpp:237] Train net output #0: loss = 0.0895933 (* 1 = 0.0895933 loss) I0408 20:17:56.148813 5931 sgd_solver.cpp:105] Iteration 7140, lr = 0.000474259 I0408 20:18:00.106354 5931 solver.cpp:218] Iteration 7152 (3.03219 iter/s, 3.95754s/12 iters), loss = 0.18653 I0408 20:18:00.106387 5931 solver.cpp:237] Train net output #0: loss = 0.18653 (* 1 = 0.18653 loss) I0408 20:18:00.106395 5931 sgd_solver.cpp:105] Iteration 7152, lr = 0.00046635 I0408 20:18:04.809603 5931 solver.cpp:218] Iteration 7164 (2.55146 iter/s, 4.7032s/12 iters), loss = 0.0887692 I0408 20:18:04.809638 5931 solver.cpp:237] Train net output #0: loss = 0.0887693 (* 1 = 0.0887693 loss) I0408 20:18:04.809646 5931 sgd_solver.cpp:105] Iteration 7164, lr = 0.000458566 I0408 20:18:09.553859 5931 solver.cpp:218] Iteration 7176 (2.5294 iter/s, 4.7442s/12 iters), loss = 0.0805091 I0408 20:18:09.553894 5931 solver.cpp:237] Train net output #0: loss = 0.0805092 (* 1 = 0.0805092 loss) I0408 20:18:09.553901 5931 sgd_solver.cpp:105] Iteration 7176, lr = 0.000450907 I0408 20:18:11.601563 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:18:14.399296 5931 solver.cpp:218] Iteration 7188 (2.47658 iter/s, 4.84538s/12 iters), loss = 0.232216 I0408 20:18:14.399361 5931 solver.cpp:237] Train net output #0: loss = 0.232216 (* 1 = 0.232216 loss) I0408 20:18:14.399369 5931 sgd_solver.cpp:105] Iteration 7188, lr = 0.000443369 I0408 20:18:19.212534 5931 solver.cpp:218] Iteration 7200 (2.49317 iter/s, 4.81315s/12 iters), loss = 0.0812828 I0408 20:18:19.212568 5931 solver.cpp:237] Train net output #0: loss = 0.0812828 (* 1 = 0.0812828 loss) I0408 20:18:19.212575 5931 sgd_solver.cpp:105] Iteration 7200, lr = 0.000435951 I0408 20:18:24.076754 5931 solver.cpp:218] Iteration 7212 (2.46702 iter/s, 4.86417s/12 iters), loss = 0.125965 I0408 20:18:24.076788 5931 solver.cpp:237] Train net output #0: loss = 0.125965 (* 1 = 0.125965 loss) I0408 20:18:24.076795 5931 sgd_solver.cpp:105] Iteration 7212, lr = 0.000428653 I0408 20:18:28.859877 5931 solver.cpp:218] Iteration 7224 (2.50885 iter/s, 4.78307s/12 iters), loss = 0.06889 I0408 20:18:28.859916 5931 solver.cpp:237] Train net output #0: loss = 0.06889 (* 1 = 0.06889 loss) I0408 20:18:28.859923 5931 sgd_solver.cpp:105] Iteration 7224, lr = 0.000421471 I0408 20:18:33.699026 5931 solver.cpp:218] Iteration 7236 (2.47981 iter/s, 4.83909s/12 iters), loss = 0.0516151 I0408 20:18:33.699061 5931 solver.cpp:237] Train net output #0: loss = 0.0516151 (* 1 = 0.0516151 loss) I0408 20:18:33.699069 5931 sgd_solver.cpp:105] Iteration 7236, lr = 0.000414404 I0408 20:18:35.659523 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7242.caffemodel I0408 20:18:38.754662 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7242.solverstate I0408 20:18:41.115761 5931 solver.cpp:330] Iteration 7242, Testing net (#0) I0408 20:18:41.115787 5931 net.cpp:676] Ignoring source layer train-data I0408 20:18:42.776041 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:18:45.920527 5931 solver.cpp:397] Test net output #0: accuracy = 0.468137 I0408 20:18:45.920724 5931 solver.cpp:397] Test net output #1: loss = 2.9379 (* 1 = 2.9379 loss) I0408 20:18:47.674877 5931 solver.cpp:218] Iteration 7248 (0.858628 iter/s, 13.9758s/12 iters), loss = 0.0657108 I0408 20:18:47.674913 5931 solver.cpp:237] Train net output #0: loss = 0.0657108 (* 1 = 0.0657108 loss) I0408 20:18:47.674921 5931 sgd_solver.cpp:105] Iteration 7248, lr = 0.00040745 I0408 20:18:52.370834 5931 solver.cpp:218] Iteration 7260 (2.55542 iter/s, 4.6959s/12 iters), loss = 0.151435 I0408 20:18:52.370869 5931 solver.cpp:237] Train net output #0: loss = 0.151435 (* 1 = 0.151435 loss) I0408 20:18:52.370877 5931 sgd_solver.cpp:105] Iteration 7260, lr = 0.000400608 I0408 20:18:57.212363 5931 solver.cpp:218] Iteration 7272 (2.47858 iter/s, 4.84147s/12 iters), loss = 0.0784705 I0408 20:18:57.212394 5931 solver.cpp:237] Train net output #0: loss = 0.0784705 (* 1 = 0.0784705 loss) I0408 20:18:57.212402 5931 sgd_solver.cpp:105] Iteration 7272, lr = 0.000393877 I0408 20:19:01.300945 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:19:02.022949 5931 solver.cpp:218] Iteration 7284 (2.49452 iter/s, 4.81054s/12 iters), loss = 0.0987218 I0408 20:19:02.022984 5931 solver.cpp:237] Train net output #0: loss = 0.0987218 (* 1 = 0.0987218 loss) I0408 20:19:02.022991 5931 sgd_solver.cpp:105] Iteration 7284, lr = 0.000387254 I0408 20:19:06.865867 5931 solver.cpp:218] Iteration 7296 (2.47787 iter/s, 4.84286s/12 iters), loss = 0.0326328 I0408 20:19:06.865900 5931 solver.cpp:237] Train net output #0: loss = 0.0326328 (* 1 = 0.0326328 loss) I0408 20:19:06.865906 5931 sgd_solver.cpp:105] Iteration 7296, lr = 0.000380738 I0408 20:19:11.649075 5931 solver.cpp:218] Iteration 7308 (2.5088 iter/s, 4.78316s/12 iters), loss = 0.0749877 I0408 20:19:11.649108 5931 solver.cpp:237] Train net output #0: loss = 0.0749877 (* 1 = 0.0749877 loss) I0408 20:19:11.649116 5931 sgd_solver.cpp:105] Iteration 7308, lr = 0.000374327 I0408 20:19:16.496217 5931 solver.cpp:218] Iteration 7320 (2.47571 iter/s, 4.84709s/12 iters), loss = 0.12528 I0408 20:19:16.496301 5931 solver.cpp:237] Train net output #0: loss = 0.12528 (* 1 = 0.12528 loss) I0408 20:19:16.496310 5931 sgd_solver.cpp:105] Iteration 7320, lr = 0.00036802 I0408 20:19:21.310253 5931 solver.cpp:218] Iteration 7332 (2.49276 iter/s, 4.81394s/12 iters), loss = 0.134648 I0408 20:19:21.310284 5931 solver.cpp:237] Train net output #0: loss = 0.134648 (* 1 = 0.134648 loss) I0408 20:19:21.310292 5931 sgd_solver.cpp:105] Iteration 7332, lr = 0.000361816 I0408 20:19:25.699064 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7344.caffemodel I0408 20:19:29.611052 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7344.solverstate I0408 20:19:31.970430 5931 solver.cpp:330] Iteration 7344, Testing net (#0) I0408 20:19:31.970455 5931 net.cpp:676] Ignoring source layer train-data I0408 20:19:33.650229 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:19:36.817358 5931 solver.cpp:397] Test net output #0: accuracy = 0.472426 I0408 20:19:36.817406 5931 solver.cpp:397] Test net output #1: loss = 2.92733 (* 1 = 2.92733 loss) I0408 20:19:36.913908 5931 solver.cpp:218] Iteration 7344 (0.769054 iter/s, 15.6036s/12 iters), loss = 0.033353 I0408 20:19:36.913940 5931 solver.cpp:237] Train net output #0: loss = 0.033353 (* 1 = 0.033353 loss) I0408 20:19:36.913949 5931 sgd_solver.cpp:105] Iteration 7344, lr = 0.000355712 I0408 20:19:40.861305 5931 solver.cpp:218] Iteration 7356 (3.04002 iter/s, 3.94735s/12 iters), loss = 0.0802436 I0408 20:19:40.861337 5931 solver.cpp:237] Train net output #0: loss = 0.0802436 (* 1 = 0.0802436 loss) I0408 20:19:40.861346 5931 sgd_solver.cpp:105] Iteration 7356, lr = 0.000349707 I0408 20:19:45.655977 5931 solver.cpp:218] Iteration 7368 (2.5028 iter/s, 4.79462s/12 iters), loss = 0.0973827 I0408 20:19:45.656013 5931 solver.cpp:237] Train net output #0: loss = 0.0973827 (* 1 = 0.0973827 loss) I0408 20:19:45.656020 5931 sgd_solver.cpp:105] Iteration 7368, lr = 0.0003438 I0408 20:19:50.462960 5931 solver.cpp:218] Iteration 7380 (2.4964 iter/s, 4.80693s/12 iters), loss = 0.10154 I0408 20:19:50.463057 5931 solver.cpp:237] Train net output #0: loss = 0.10154 (* 1 = 0.10154 loss) I0408 20:19:50.463066 5931 sgd_solver.cpp:105] Iteration 7380, lr = 0.00033799 I0408 20:19:51.787308 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:19:55.296522 5931 solver.cpp:218] Iteration 7392 (2.4827 iter/s, 4.83345s/12 iters), loss = 0.205759 I0408 20:19:55.296561 5931 solver.cpp:237] Train net output #0: loss = 0.205759 (* 1 = 0.205759 loss) I0408 20:19:55.296569 5931 sgd_solver.cpp:105] Iteration 7392, lr = 0.000332274 I0408 20:20:00.119652 5931 solver.cpp:218] Iteration 7404 (2.48804 iter/s, 4.82307s/12 iters), loss = 0.209126 I0408 20:20:00.119686 5931 solver.cpp:237] Train net output #0: loss = 0.209126 (* 1 = 0.209126 loss) I0408 20:20:00.119694 5931 sgd_solver.cpp:105] Iteration 7404, lr = 0.000326652 I0408 20:20:04.919106 5931 solver.cpp:218] Iteration 7416 (2.50031 iter/s, 4.7994s/12 iters), loss = 0.0922531 I0408 20:20:04.919139 5931 solver.cpp:237] Train net output #0: loss = 0.0922531 (* 1 = 0.0922531 loss) I0408 20:20:04.919147 5931 sgd_solver.cpp:105] Iteration 7416, lr = 0.000321121 I0408 20:20:09.778239 5931 solver.cpp:218] Iteration 7428 (2.4696 iter/s, 4.85908s/12 iters), loss = 0.14191 I0408 20:20:09.778277 5931 solver.cpp:237] Train net output #0: loss = 0.14191 (* 1 = 0.14191 loss) I0408 20:20:09.778285 5931 sgd_solver.cpp:105] Iteration 7428, lr = 0.000315682 I0408 20:20:14.635035 5931 solver.cpp:218] Iteration 7440 (2.4708 iter/s, 4.85674s/12 iters), loss = 0.136621 I0408 20:20:14.635066 5931 solver.cpp:237] Train net output #0: loss = 0.136621 (* 1 = 0.136621 loss) I0408 20:20:14.635074 5931 sgd_solver.cpp:105] Iteration 7440, lr = 0.000310331 I0408 20:20:16.542326 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7446.caffemodel I0408 20:20:19.931020 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7446.solverstate I0408 20:20:23.936364 5931 solver.cpp:330] Iteration 7446, Testing net (#0) I0408 20:20:23.936429 5931 net.cpp:676] Ignoring source layer train-data I0408 20:20:25.507534 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:20:28.730105 5931 solver.cpp:397] Test net output #0: accuracy = 0.466299 I0408 20:20:28.730154 5931 solver.cpp:397] Test net output #1: loss = 2.95751 (* 1 = 2.95751 loss) I0408 20:20:30.418192 5931 solver.cpp:218] Iteration 7452 (0.760308 iter/s, 15.7831s/12 iters), loss = 0.278244 I0408 20:20:30.418228 5931 solver.cpp:237] Train net output #0: loss = 0.278244 (* 1 = 0.278244 loss) I0408 20:20:30.418236 5931 sgd_solver.cpp:105] Iteration 7452, lr = 0.000305068 I0408 20:20:35.144546 5931 solver.cpp:218] Iteration 7464 (2.53899 iter/s, 4.7263s/12 iters), loss = 0.176602 I0408 20:20:35.144580 5931 solver.cpp:237] Train net output #0: loss = 0.176602 (* 1 = 0.176602 loss) I0408 20:20:35.144587 5931 sgd_solver.cpp:105] Iteration 7464, lr = 0.000299892 I0408 20:20:39.885480 5931 solver.cpp:218] Iteration 7476 (2.53118 iter/s, 4.74088s/12 iters), loss = 0.115417 I0408 20:20:39.885514 5931 solver.cpp:237] Train net output #0: loss = 0.115417 (* 1 = 0.115417 loss) I0408 20:20:39.885522 5931 sgd_solver.cpp:105] Iteration 7476, lr = 0.000294801 I0408 20:20:43.289029 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:20:44.707486 5931 solver.cpp:218] Iteration 7488 (2.48862 iter/s, 4.82196s/12 iters), loss = 0.0603507 I0408 20:20:44.707520 5931 solver.cpp:237] Train net output #0: loss = 0.0603507 (* 1 = 0.0603507 loss) I0408 20:20:44.707527 5931 sgd_solver.cpp:105] Iteration 7488, lr = 0.000289793 I0408 20:20:49.577452 5931 solver.cpp:218] Iteration 7500 (2.46411 iter/s, 4.86991s/12 iters), loss = 0.0762331 I0408 20:20:49.577486 5931 solver.cpp:237] Train net output #0: loss = 0.0762331 (* 1 = 0.0762331 loss) I0408 20:20:49.577494 5931 sgd_solver.cpp:105] Iteration 7500, lr = 0.000284869 I0408 20:20:54.378831 5931 solver.cpp:218] Iteration 7512 (2.49931 iter/s, 4.80132s/12 iters), loss = 0.171264 I0408 20:20:54.378928 5931 solver.cpp:237] Train net output #0: loss = 0.171264 (* 1 = 0.171264 loss) I0408 20:20:54.378938 5931 sgd_solver.cpp:105] Iteration 7512, lr = 0.000280025 I0408 20:20:59.213133 5931 solver.cpp:218] Iteration 7524 (2.48232 iter/s, 4.83419s/12 iters), loss = 0.0863697 I0408 20:20:59.213167 5931 solver.cpp:237] Train net output #0: loss = 0.0863698 (* 1 = 0.0863698 loss) I0408 20:20:59.213176 5931 sgd_solver.cpp:105] Iteration 7524, lr = 0.000275262 I0408 20:21:04.035259 5931 solver.cpp:218] Iteration 7536 (2.48855 iter/s, 4.82208s/12 iters), loss = 0.0900084 I0408 20:21:04.035293 5931 solver.cpp:237] Train net output #0: loss = 0.0900084 (* 1 = 0.0900084 loss) I0408 20:21:04.035301 5931 sgd_solver.cpp:105] Iteration 7536, lr = 0.000270577 I0408 20:21:08.386983 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7548.caffemodel I0408 20:21:11.474941 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7548.solverstate I0408 20:21:13.848488 5931 solver.cpp:330] Iteration 7548, Testing net (#0) I0408 20:21:13.848515 5931 net.cpp:676] Ignoring source layer train-data I0408 20:21:15.375437 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:21:18.636113 5931 solver.cpp:397] Test net output #0: accuracy = 0.466912 I0408 20:21:18.636162 5931 solver.cpp:397] Test net output #1: loss = 2.93221 (* 1 = 2.93221 loss) I0408 20:21:18.731993 5931 solver.cpp:218] Iteration 7548 (0.816512 iter/s, 14.6967s/12 iters), loss = 0.110486 I0408 20:21:18.732028 5931 solver.cpp:237] Train net output #0: loss = 0.110486 (* 1 = 0.110486 loss) I0408 20:21:18.732038 5931 sgd_solver.cpp:105] Iteration 7548, lr = 0.00026597 I0408 20:21:22.667505 5931 solver.cpp:218] Iteration 7560 (3.0492 iter/s, 3.93546s/12 iters), loss = 0.054214 I0408 20:21:22.667544 5931 solver.cpp:237] Train net output #0: loss = 0.054214 (* 1 = 0.054214 loss) I0408 20:21:22.667551 5931 sgd_solver.cpp:105] Iteration 7560, lr = 0.000261439 I0408 20:21:27.544577 5931 solver.cpp:218] Iteration 7572 (2.46052 iter/s, 4.87701s/12 iters), loss = 0.0605282 I0408 20:21:27.544695 5931 solver.cpp:237] Train net output #0: loss = 0.0605282 (* 1 = 0.0605282 loss) I0408 20:21:27.544704 5931 sgd_solver.cpp:105] Iteration 7572, lr = 0.000256983 I0408 20:21:32.375460 5931 solver.cpp:218] Iteration 7584 (2.48409 iter/s, 4.83075s/12 iters), loss = 0.0444338 I0408 20:21:32.375499 5931 solver.cpp:237] Train net output #0: loss = 0.0444338 (* 1 = 0.0444338 loss) I0408 20:21:32.375507 5931 sgd_solver.cpp:105] Iteration 7584, lr = 0.000252602 I0408 20:21:32.981845 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:21:37.189952 5931 solver.cpp:218] Iteration 7596 (2.49251 iter/s, 4.81443s/12 iters), loss = 0.07387 I0408 20:21:37.189985 5931 solver.cpp:237] Train net output #0: loss = 0.07387 (* 1 = 0.07387 loss) I0408 20:21:37.189992 5931 sgd_solver.cpp:105] Iteration 7596, lr = 0.000248293 I0408 20:21:41.994925 5931 solver.cpp:218] Iteration 7608 (2.49744 iter/s, 4.80492s/12 iters), loss = 0.11755 I0408 20:21:41.994958 5931 solver.cpp:237] Train net output #0: loss = 0.11755 (* 1 = 0.11755 loss) I0408 20:21:41.994966 5931 sgd_solver.cpp:105] Iteration 7608, lr = 0.000244056 I0408 20:21:46.805831 5931 solver.cpp:218] Iteration 7620 (2.49436 iter/s, 4.81085s/12 iters), loss = 0.0318004 I0408 20:21:46.805868 5931 solver.cpp:237] Train net output #0: loss = 0.0318004 (* 1 = 0.0318004 loss) I0408 20:21:46.805876 5931 sgd_solver.cpp:105] Iteration 7620, lr = 0.000239889 I0408 20:21:49.141270 5931 blocking_queue.cpp:49] Waiting for data I0408 20:21:51.573714 5931 solver.cpp:218] Iteration 7632 (2.51687 iter/s, 4.76783s/12 iters), loss = 0.117765 I0408 20:21:51.573746 5931 solver.cpp:237] Train net output #0: loss = 0.117765 (* 1 = 0.117765 loss) I0408 20:21:51.573755 5931 sgd_solver.cpp:105] Iteration 7632, lr = 0.000235792 I0408 20:21:56.285547 5931 solver.cpp:218] Iteration 7644 (2.54681 iter/s, 4.71178s/12 iters), loss = 0.094675 I0408 20:21:56.285579 5931 solver.cpp:237] Train net output #0: loss = 0.094675 (* 1 = 0.094675 loss) I0408 20:21:56.285588 5931 sgd_solver.cpp:105] Iteration 7644, lr = 0.000231763 I0408 20:21:58.238368 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7650.caffemodel I0408 20:22:03.017647 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7650.solverstate I0408 20:22:05.652349 5931 solver.cpp:330] Iteration 7650, Testing net (#0) I0408 20:22:05.652375 5931 net.cpp:676] Ignoring source layer train-data I0408 20:22:07.126479 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:22:10.222456 5931 solver.cpp:397] Test net output #0: accuracy = 0.465686 I0408 20:22:10.222502 5931 solver.cpp:397] Test net output #1: loss = 2.94049 (* 1 = 2.94049 loss) I0408 20:22:11.955940 5931 solver.cpp:218] Iteration 7656 (0.765778 iter/s, 15.6703s/12 iters), loss = 0.0435643 I0408 20:22:11.955976 5931 solver.cpp:237] Train net output #0: loss = 0.0435643 (* 1 = 0.0435643 loss) I0408 20:22:11.955983 5931 sgd_solver.cpp:105] Iteration 7656, lr = 0.000227801 I0408 20:22:16.681826 5931 solver.cpp:218] Iteration 7668 (2.53923 iter/s, 4.72583s/12 iters), loss = 0.123313 I0408 20:22:16.681859 5931 solver.cpp:237] Train net output #0: loss = 0.123313 (* 1 = 0.123313 loss) I0408 20:22:16.681867 5931 sgd_solver.cpp:105] Iteration 7668, lr = 0.000223906 I0408 20:22:21.405337 5931 solver.cpp:218] Iteration 7680 (2.54051 iter/s, 4.72346s/12 iters), loss = 0.0731207 I0408 20:22:21.405370 5931 solver.cpp:237] Train net output #0: loss = 0.0731207 (* 1 = 0.0731207 loss) I0408 20:22:21.405377 5931 sgd_solver.cpp:105] Iteration 7680, lr = 0.000220075 I0408 20:22:24.082844 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:22:26.240177 5931 solver.cpp:218] Iteration 7692 (2.48201 iter/s, 4.83479s/12 iters), loss = 0.0993189 I0408 20:22:26.240211 5931 solver.cpp:237] Train net output #0: loss = 0.0993189 (* 1 = 0.0993189 loss) I0408 20:22:26.240219 5931 sgd_solver.cpp:105] Iteration 7692, lr = 0.000216309 I0408 20:22:31.039340 5931 solver.cpp:218] Iteration 7704 (2.50046 iter/s, 4.79911s/12 iters), loss = 0.101911 I0408 20:22:31.039407 5931 solver.cpp:237] Train net output #0: loss = 0.101911 (* 1 = 0.101911 loss) I0408 20:22:31.039415 5931 sgd_solver.cpp:105] Iteration 7704, lr = 0.000212606 I0408 20:22:35.875198 5931 solver.cpp:218] Iteration 7716 (2.48151 iter/s, 4.83577s/12 iters), loss = 0.0725028 I0408 20:22:35.875231 5931 solver.cpp:237] Train net output #0: loss = 0.0725029 (* 1 = 0.0725029 loss) I0408 20:22:35.875239 5931 sgd_solver.cpp:105] Iteration 7716, lr = 0.000208964 I0408 20:22:40.676853 5931 solver.cpp:218] Iteration 7728 (2.49916 iter/s, 4.8016s/12 iters), loss = 0.115026 I0408 20:22:40.676887 5931 solver.cpp:237] Train net output #0: loss = 0.115026 (* 1 = 0.115026 loss) I0408 20:22:40.676893 5931 sgd_solver.cpp:105] Iteration 7728, lr = 0.000205384 I0408 20:22:45.528357 5931 solver.cpp:218] Iteration 7740 (2.47349 iter/s, 4.85145s/12 iters), loss = 0.0881686 I0408 20:22:45.528390 5931 solver.cpp:237] Train net output #0: loss = 0.0881687 (* 1 = 0.0881687 loss) I0408 20:22:45.528398 5931 sgd_solver.cpp:105] Iteration 7740, lr = 0.000201864 I0408 20:22:49.881412 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7752.caffemodel I0408 20:22:52.990099 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7752.solverstate I0408 20:22:55.355211 5931 solver.cpp:330] Iteration 7752, Testing net (#0) I0408 20:22:55.355237 5931 net.cpp:676] Ignoring source layer train-data I0408 20:22:56.796537 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:23:00.137374 5931 solver.cpp:397] Test net output #0: accuracy = 0.465686 I0408 20:23:00.137423 5931 solver.cpp:397] Test net output #1: loss = 2.92803 (* 1 = 2.92803 loss) I0408 20:23:00.233801 5931 solver.cpp:218] Iteration 7752 (0.816028 iter/s, 14.7054s/12 iters), loss = 0.0743262 I0408 20:23:00.233837 5931 solver.cpp:237] Train net output #0: loss = 0.0743262 (* 1 = 0.0743262 loss) I0408 20:23:00.233845 5931 sgd_solver.cpp:105] Iteration 7752, lr = 0.000198403 I0408 20:23:04.154002 5931 solver.cpp:218] Iteration 7764 (3.06111 iter/s, 3.92015s/12 iters), loss = 0.223223 I0408 20:23:04.154098 5931 solver.cpp:237] Train net output #0: loss = 0.223223 (* 1 = 0.223223 loss) I0408 20:23:04.154107 5931 sgd_solver.cpp:105] Iteration 7764, lr = 0.000195 I0408 20:23:08.886755 5931 solver.cpp:218] Iteration 7776 (2.53558 iter/s, 4.73264s/12 iters), loss = 0.0771 I0408 20:23:08.886790 5931 solver.cpp:237] Train net output #0: loss = 0.0771001 (* 1 = 0.0771001 loss) I0408 20:23:08.886797 5931 sgd_solver.cpp:105] Iteration 7776, lr = 0.000191655 I0408 20:23:13.660429 5931 solver.cpp:218] Iteration 7788 (2.51381 iter/s, 4.77362s/12 iters), loss = 0.131822 I0408 20:23:13.660462 5931 solver.cpp:237] Train net output #0: loss = 0.131822 (* 1 = 0.131822 loss) I0408 20:23:13.660470 5931 sgd_solver.cpp:105] Iteration 7788, lr = 0.000188365 I0408 20:23:13.666374 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:23:18.473021 5931 solver.cpp:218] Iteration 7800 (2.49349 iter/s, 4.81254s/12 iters), loss = 0.102104 I0408 20:23:18.473054 5931 solver.cpp:237] Train net output #0: loss = 0.102104 (* 1 = 0.102104 loss) I0408 20:23:18.473062 5931 sgd_solver.cpp:105] Iteration 7800, lr = 0.000185131 I0408 20:23:23.284548 5931 solver.cpp:218] Iteration 7812 (2.49404 iter/s, 4.81147s/12 iters), loss = 0.165851 I0408 20:23:23.284579 5931 solver.cpp:237] Train net output #0: loss = 0.165851 (* 1 = 0.165851 loss) I0408 20:23:23.284586 5931 sgd_solver.cpp:105] Iteration 7812, lr = 0.000181952 I0408 20:23:28.096400 5931 solver.cpp:218] Iteration 7824 (2.49387 iter/s, 4.8118s/12 iters), loss = 0.116059 I0408 20:23:28.096433 5931 solver.cpp:237] Train net output #0: loss = 0.116059 (* 1 = 0.116059 loss) I0408 20:23:28.096441 5931 sgd_solver.cpp:105] Iteration 7824, lr = 0.000178826 I0408 20:23:32.954372 5931 solver.cpp:218] Iteration 7836 (2.47019 iter/s, 4.85792s/12 iters), loss = 0.110737 I0408 20:23:32.954406 5931 solver.cpp:237] Train net output #0: loss = 0.110737 (* 1 = 0.110737 loss) I0408 20:23:32.954414 5931 sgd_solver.cpp:105] Iteration 7836, lr = 0.000175753 I0408 20:23:37.781884 5931 solver.cpp:218] Iteration 7848 (2.48578 iter/s, 4.82746s/12 iters), loss = 0.19917 I0408 20:23:37.781942 5931 solver.cpp:237] Train net output #0: loss = 0.19917 (* 1 = 0.19917 loss) I0408 20:23:37.781950 5931 sgd_solver.cpp:105] Iteration 7848, lr = 0.000172732 I0408 20:23:39.740697 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7854.caffemodel I0408 20:23:44.558678 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7854.solverstate I0408 20:23:46.919368 5931 solver.cpp:330] Iteration 7854, Testing net (#0) I0408 20:23:46.919394 5931 net.cpp:676] Ignoring source layer train-data I0408 20:23:48.309034 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:23:51.709477 5931 solver.cpp:397] Test net output #0: accuracy = 0.465074 I0408 20:23:51.709525 5931 solver.cpp:397] Test net output #1: loss = 2.9478 (* 1 = 2.9478 loss) I0408 20:23:53.455191 5931 solver.cpp:218] Iteration 7860 (0.765637 iter/s, 15.6732s/12 iters), loss = 0.125866 I0408 20:23:53.455235 5931 solver.cpp:237] Train net output #0: loss = 0.125866 (* 1 = 0.125866 loss) I0408 20:23:53.455243 5931 sgd_solver.cpp:105] Iteration 7860, lr = 0.000169762 I0408 20:23:58.128324 5931 solver.cpp:218] Iteration 7872 (2.56791 iter/s, 4.67307s/12 iters), loss = 0.151375 I0408 20:23:58.128357 5931 solver.cpp:237] Train net output #0: loss = 0.151375 (* 1 = 0.151375 loss) I0408 20:23:58.128365 5931 sgd_solver.cpp:105] Iteration 7872, lr = 0.000166842 I0408 20:24:02.844486 5931 solver.cpp:218] Iteration 7884 (2.54447 iter/s, 4.71611s/12 iters), loss = 0.0382169 I0408 20:24:02.844519 5931 solver.cpp:237] Train net output #0: loss = 0.0382169 (* 1 = 0.0382169 loss) I0408 20:24:02.844527 5931 sgd_solver.cpp:105] Iteration 7884, lr = 0.000163971 I0408 20:24:04.911635 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:24:07.601445 5931 solver.cpp:218] Iteration 7896 (2.52265 iter/s, 4.7569s/12 iters), loss = 0.0646236 I0408 20:24:07.601478 5931 solver.cpp:237] Train net output #0: loss = 0.0646236 (* 1 = 0.0646236 loss) I0408 20:24:07.601485 5931 sgd_solver.cpp:105] Iteration 7896, lr = 0.000161149 I0408 20:24:12.320919 5931 solver.cpp:218] Iteration 7908 (2.54268 iter/s, 4.71942s/12 iters), loss = 0.182402 I0408 20:24:12.321022 5931 solver.cpp:237] Train net output #0: loss = 0.182402 (* 1 = 0.182402 loss) I0408 20:24:12.321030 5931 sgd_solver.cpp:105] Iteration 7908, lr = 0.000158375 I0408 20:24:17.179579 5931 solver.cpp:218] Iteration 7920 (2.46988 iter/s, 4.85854s/12 iters), loss = 0.19271 I0408 20:24:17.179612 5931 solver.cpp:237] Train net output #0: loss = 0.19271 (* 1 = 0.19271 loss) I0408 20:24:17.179620 5931 sgd_solver.cpp:105] Iteration 7920, lr = 0.000155648 I0408 20:24:22.006021 5931 solver.cpp:218] Iteration 7932 (2.48633 iter/s, 4.82639s/12 iters), loss = 0.0952818 I0408 20:24:22.006053 5931 solver.cpp:237] Train net output #0: loss = 0.0952818 (* 1 = 0.0952818 loss) I0408 20:24:22.006062 5931 sgd_solver.cpp:105] Iteration 7932, lr = 0.000152967 I0408 20:24:26.796352 5931 solver.cpp:218] Iteration 7944 (2.50507 iter/s, 4.79028s/12 iters), loss = 0.146613 I0408 20:24:26.796387 5931 solver.cpp:237] Train net output #0: loss = 0.146613 (* 1 = 0.146613 loss) I0408 20:24:26.796394 5931 sgd_solver.cpp:105] Iteration 7944, lr = 0.000150331 I0408 20:24:31.200110 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7956.caffemodel I0408 20:24:34.338088 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7956.solverstate I0408 20:24:37.527542 5931 solver.cpp:330] Iteration 7956, Testing net (#0) I0408 20:24:37.527567 5931 net.cpp:676] Ignoring source layer train-data I0408 20:24:38.880158 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:24:42.319628 5931 solver.cpp:397] Test net output #0: accuracy = 0.467524 I0408 20:24:42.319679 5931 solver.cpp:397] Test net output #1: loss = 2.94018 (* 1 = 2.94018 loss) I0408 20:24:42.415591 5931 solver.cpp:218] Iteration 7956 (0.768287 iter/s, 15.6192s/12 iters), loss = 0.0466145 I0408 20:24:42.415721 5931 solver.cpp:237] Train net output #0: loss = 0.0466145 (* 1 = 0.0466145 loss) I0408 20:24:42.415731 5931 sgd_solver.cpp:105] Iteration 7956, lr = 0.00014774 I0408 20:24:46.337007 5931 solver.cpp:218] Iteration 7968 (3.06023 iter/s, 3.92127s/12 iters), loss = 0.0817163 I0408 20:24:46.337041 5931 solver.cpp:237] Train net output #0: loss = 0.0817163 (* 1 = 0.0817163 loss) I0408 20:24:46.337049 5931 sgd_solver.cpp:105] Iteration 7968, lr = 0.000145194 I0408 20:24:51.135247 5931 solver.cpp:218] Iteration 7980 (2.50094 iter/s, 4.79819s/12 iters), loss = 0.0511982 I0408 20:24:51.135282 5931 solver.cpp:237] Train net output #0: loss = 0.0511982 (* 1 = 0.0511982 loss) I0408 20:24:51.135289 5931 sgd_solver.cpp:105] Iteration 7980, lr = 0.00014269 I0408 20:24:55.242931 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:24:55.923118 5931 solver.cpp:218] Iteration 7992 (2.50636 iter/s, 4.78782s/12 iters), loss = 0.0730105 I0408 20:24:55.923152 5931 solver.cpp:237] Train net output #0: loss = 0.0730105 (* 1 = 0.0730105 loss) I0408 20:24:55.923159 5931 sgd_solver.cpp:105] Iteration 7992, lr = 0.000140229 I0408 20:25:00.782428 5931 solver.cpp:218] Iteration 8004 (2.46951 iter/s, 4.85926s/12 iters), loss = 0.0519604 I0408 20:25:00.782461 5931 solver.cpp:237] Train net output #0: loss = 0.0519604 (* 1 = 0.0519604 loss) I0408 20:25:00.782469 5931 sgd_solver.cpp:105] Iteration 8004, lr = 0.00013781 I0408 20:25:05.574198 5931 solver.cpp:218] Iteration 8016 (2.50432 iter/s, 4.79171s/12 iters), loss = 0.0522229 I0408 20:25:05.574231 5931 solver.cpp:237] Train net output #0: loss = 0.0522229 (* 1 = 0.0522229 loss) I0408 20:25:05.574239 5931 sgd_solver.cpp:105] Iteration 8016, lr = 0.000135432 I0408 20:25:10.331296 5931 solver.cpp:218] Iteration 8028 (2.52257 iter/s, 4.75704s/12 iters), loss = 0.139277 I0408 20:25:10.331329 5931 solver.cpp:237] Train net output #0: loss = 0.139277 (* 1 = 0.139277 loss) I0408 20:25:10.331337 5931 sgd_solver.cpp:105] Iteration 8028, lr = 0.000133094 I0408 20:25:15.040107 5931 solver.cpp:218] Iteration 8040 (2.54844 iter/s, 4.70876s/12 iters), loss = 0.164568 I0408 20:25:15.040202 5931 solver.cpp:237] Train net output #0: loss = 0.164568 (* 1 = 0.164568 loss) I0408 20:25:15.040211 5931 sgd_solver.cpp:105] Iteration 8040, lr = 0.000130797 I0408 20:25:19.880785 5931 solver.cpp:218] Iteration 8052 (2.47905 iter/s, 4.84057s/12 iters), loss = 0.1742 I0408 20:25:19.880820 5931 solver.cpp:237] Train net output #0: loss = 0.1742 (* 1 = 0.1742 loss) I0408 20:25:19.880826 5931 sgd_solver.cpp:105] Iteration 8052, lr = 0.000128538 I0408 20:25:21.837352 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8058.caffemodel I0408 20:25:24.963810 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8058.solverstate I0408 20:25:27.320695 5931 solver.cpp:330] Iteration 8058, Testing net (#0) I0408 20:25:27.320720 5931 net.cpp:676] Ignoring source layer train-data I0408 20:25:28.619453 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:25:32.110468 5931 solver.cpp:397] Test net output #0: accuracy = 0.466912 I0408 20:25:32.110517 5931 solver.cpp:397] Test net output #1: loss = 2.94616 (* 1 = 2.94616 loss) I0408 20:25:33.832515 5931 solver.cpp:218] Iteration 8064 (0.860113 iter/s, 13.9517s/12 iters), loss = 0.168703 I0408 20:25:33.832549 5931 solver.cpp:237] Train net output #0: loss = 0.168703 (* 1 = 0.168703 loss) I0408 20:25:33.832557 5931 sgd_solver.cpp:105] Iteration 8064, lr = 0.000126318 I0408 20:25:38.563421 5931 solver.cpp:218] Iteration 8076 (2.53654 iter/s, 4.73085s/12 iters), loss = 0.134421 I0408 20:25:38.563454 5931 solver.cpp:237] Train net output #0: loss = 0.134421 (* 1 = 0.134421 loss) I0408 20:25:38.563462 5931 sgd_solver.cpp:105] Iteration 8076, lr = 0.000124136 I0408 20:25:43.309962 5931 solver.cpp:218] Iteration 8088 (2.52819 iter/s, 4.74648s/12 iters), loss = 0.0561604 I0408 20:25:43.309993 5931 solver.cpp:237] Train net output #0: loss = 0.0561605 (* 1 = 0.0561605 loss) I0408 20:25:43.310000 5931 sgd_solver.cpp:105] Iteration 8088, lr = 0.000121991 I0408 20:25:44.625670 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:25:47.990897 5931 solver.cpp:218] Iteration 8100 (2.56362 iter/s, 4.68088s/12 iters), loss = 0.0781737 I0408 20:25:47.990960 5931 solver.cpp:237] Train net output #0: loss = 0.0781737 (* 1 = 0.0781737 loss) I0408 20:25:47.990968 5931 sgd_solver.cpp:105] Iteration 8100, lr = 0.000119883 I0408 20:25:52.831816 5931 solver.cpp:218] Iteration 8112 (2.47891 iter/s, 4.84084s/12 iters), loss = 0.124162 I0408 20:25:52.831851 5931 solver.cpp:237] Train net output #0: loss = 0.124162 (* 1 = 0.124162 loss) I0408 20:25:52.831858 5931 sgd_solver.cpp:105] Iteration 8112, lr = 0.000117811 I0408 20:25:57.656028 5931 solver.cpp:218] Iteration 8124 (2.48748 iter/s, 4.82416s/12 iters), loss = 0.0961411 I0408 20:25:57.656060 5931 solver.cpp:237] Train net output #0: loss = 0.0961411 (* 1 = 0.0961411 loss) I0408 20:25:57.656069 5931 sgd_solver.cpp:105] Iteration 8124, lr = 0.000115774 I0408 20:26:02.498335 5931 solver.cpp:218] Iteration 8136 (2.47818 iter/s, 4.84225s/12 iters), loss = 0.0787658 I0408 20:26:02.498368 5931 solver.cpp:237] Train net output #0: loss = 0.0787658 (* 1 = 0.0787658 loss) I0408 20:26:02.498376 5931 sgd_solver.cpp:105] Iteration 8136, lr = 0.000113772 I0408 20:26:07.322288 5931 solver.cpp:218] Iteration 8148 (2.48761 iter/s, 4.8239s/12 iters), loss = 0.064925 I0408 20:26:07.322320 5931 solver.cpp:237] Train net output #0: loss = 0.0649251 (* 1 = 0.0649251 loss) I0408 20:26:07.322329 5931 sgd_solver.cpp:105] Iteration 8148, lr = 0.000111804 I0408 20:26:11.680806 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8160.caffemodel I0408 20:26:15.559020 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8160.solverstate I0408 20:26:17.915998 5931 solver.cpp:330] Iteration 8160, Testing net (#0) I0408 20:26:17.916024 5931 net.cpp:676] Ignoring source layer train-data I0408 20:26:19.107070 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:26:22.232733 5931 solver.cpp:397] Test net output #0: accuracy = 0.471814 I0408 20:26:22.232777 5931 solver.cpp:397] Test net output #1: loss = 2.93942 (* 1 = 2.93942 loss) I0408 20:26:22.327145 5931 solver.cpp:218] Iteration 8160 (0.799744 iter/s, 15.0048s/12 iters), loss = 0.0508529 I0408 20:26:22.327178 5931 solver.cpp:237] Train net output #0: loss = 0.0508529 (* 1 = 0.0508529 loss) I0408 20:26:22.327185 5931 sgd_solver.cpp:105] Iteration 8160, lr = 0.000109869 I0408 20:26:26.459023 5931 solver.cpp:218] Iteration 8172 (2.90428 iter/s, 4.13183s/12 iters), loss = 0.0753525 I0408 20:26:26.459059 5931 solver.cpp:237] Train net output #0: loss = 0.0753525 (* 1 = 0.0753525 loss) I0408 20:26:26.459065 5931 sgd_solver.cpp:105] Iteration 8172, lr = 0.000107968 I0408 20:26:31.516129 5931 solver.cpp:218] Iteration 8184 (2.37292 iter/s, 5.05705s/12 iters), loss = 0.101495 I0408 20:26:31.516163 5931 solver.cpp:237] Train net output #0: loss = 0.101495 (* 1 = 0.101495 loss) I0408 20:26:31.516170 5931 sgd_solver.cpp:105] Iteration 8184, lr = 0.0001061 I0408 20:26:34.918092 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:26:36.319432 5931 solver.cpp:218] Iteration 8196 (2.49831 iter/s, 4.80325s/12 iters), loss = 0.085153 I0408 20:26:36.319468 5931 solver.cpp:237] Train net output #0: loss = 0.0851531 (* 1 = 0.0851531 loss) I0408 20:26:36.319476 5931 sgd_solver.cpp:105] Iteration 8196, lr = 0.000104263 I0408 20:26:41.268072 5931 solver.cpp:218] Iteration 8208 (2.42493 iter/s, 4.94859s/12 iters), loss = 0.112394 I0408 20:26:41.268105 5931 solver.cpp:237] Train net output #0: loss = 0.112394 (* 1 = 0.112394 loss) I0408 20:26:41.268113 5931 sgd_solver.cpp:105] Iteration 8208, lr = 0.000102458 I0408 20:26:46.106567 5931 solver.cpp:218] Iteration 8220 (2.48014 iter/s, 4.83844s/12 iters), loss = 0.154063 I0408 20:26:46.106600 5931 solver.cpp:237] Train net output #0: loss = 0.154063 (* 1 = 0.154063 loss) I0408 20:26:46.106608 5931 sgd_solver.cpp:105] Iteration 8220, lr = 0.000100684 I0408 20:26:50.947154 5931 solver.cpp:218] Iteration 8232 (2.47907 iter/s, 4.84053s/12 iters), loss = 0.105271 I0408 20:26:50.947284 5931 solver.cpp:237] Train net output #0: loss = 0.105271 (* 1 = 0.105271 loss) I0408 20:26:50.947293 5931 sgd_solver.cpp:105] Iteration 8232, lr = 9.89401e-05 I0408 20:26:56.002797 5931 solver.cpp:218] Iteration 8244 (2.37365 iter/s, 5.0555s/12 iters), loss = 0.134947 I0408 20:26:56.002830 5931 solver.cpp:237] Train net output #0: loss = 0.134947 (* 1 = 0.134947 loss) I0408 20:26:56.002837 5931 sgd_solver.cpp:105] Iteration 8244, lr = 9.72262e-05 I0408 20:27:00.783254 5931 solver.cpp:218] Iteration 8256 (2.51025 iter/s, 4.78041s/12 iters), loss = 0.176201 I0408 20:27:00.783288 5931 solver.cpp:237] Train net output #0: loss = 0.176201 (* 1 = 0.176201 loss) I0408 20:27:00.783295 5931 sgd_solver.cpp:105] Iteration 8256, lr = 9.55418e-05 I0408 20:27:02.754855 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8262.caffemodel I0408 20:27:05.881983 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8262.solverstate I0408 20:27:09.374007 5931 solver.cpp:330] Iteration 8262, Testing net (#0) I0408 20:27:09.374032 5931 net.cpp:676] Ignoring source layer train-data I0408 20:27:10.601816 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:27:14.163220 5931 solver.cpp:397] Test net output #0: accuracy = 0.470588 I0408 20:27:14.163269 5931 solver.cpp:397] Test net output #1: loss = 2.93941 (* 1 = 2.93941 loss) I0408 20:27:15.953040 5931 solver.cpp:218] Iteration 8268 (0.79105 iter/s, 15.1697s/12 iters), loss = 0.0735358 I0408 20:27:15.953075 5931 solver.cpp:237] Train net output #0: loss = 0.0735358 (* 1 = 0.0735358 loss) I0408 20:27:15.953083 5931 sgd_solver.cpp:105] Iteration 8268, lr = 9.38862e-05 I0408 20:27:20.682509 5931 solver.cpp:218] Iteration 8280 (2.53731 iter/s, 4.72941s/12 iters), loss = 0.0912038 I0408 20:27:20.682543 5931 solver.cpp:237] Train net output #0: loss = 0.0912038 (* 1 = 0.0912038 loss) I0408 20:27:20.682549 5931 sgd_solver.cpp:105] Iteration 8280, lr = 9.22591e-05 I0408 20:27:25.504879 5931 solver.cpp:218] Iteration 8292 (2.48843 iter/s, 4.82232s/12 iters), loss = 0.114888 I0408 20:27:25.505025 5931 solver.cpp:237] Train net output #0: loss = 0.114888 (* 1 = 0.114888 loss) I0408 20:27:25.505034 5931 sgd_solver.cpp:105] Iteration 8292, lr = 9.06599e-05 I0408 20:27:26.138120 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:27:30.352633 5931 solver.cpp:218] Iteration 8304 (2.47546 iter/s, 4.84759s/12 iters), loss = 0.0824306 I0408 20:27:30.352665 5931 solver.cpp:237] Train net output #0: loss = 0.0824306 (* 1 = 0.0824306 loss) I0408 20:27:30.352672 5931 sgd_solver.cpp:105] Iteration 8304, lr = 8.90882e-05 I0408 20:27:33.073662 5931 blocking_queue.cpp:49] Waiting for data I0408 20:27:35.130246 5931 solver.cpp:218] Iteration 8316 (2.51174 iter/s, 4.77756s/12 iters), loss = 0.0808418 I0408 20:27:35.130280 5931 solver.cpp:237] Train net output #0: loss = 0.0808418 (* 1 = 0.0808418 loss) I0408 20:27:35.130287 5931 sgd_solver.cpp:105] Iteration 8316, lr = 8.75435e-05 I0408 20:27:40.008551 5931 solver.cpp:218] Iteration 8328 (2.4599 iter/s, 4.87825s/12 iters), loss = 0.0297925 I0408 20:27:40.008586 5931 solver.cpp:237] Train net output #0: loss = 0.0297925 (* 1 = 0.0297925 loss) I0408 20:27:40.008594 5931 sgd_solver.cpp:105] Iteration 8328, lr = 8.60253e-05 I0408 20:27:44.911015 5931 solver.cpp:218] Iteration 8340 (2.44778 iter/s, 4.90241s/12 iters), loss = 0.101278 I0408 20:27:44.911047 5931 solver.cpp:237] Train net output #0: loss = 0.101278 (* 1 = 0.101278 loss) I0408 20:27:44.911054 5931 sgd_solver.cpp:105] Iteration 8340, lr = 8.45333e-05 I0408 20:27:49.745927 5931 solver.cpp:218] Iteration 8352 (2.48197 iter/s, 4.83486s/12 iters), loss = 0.10988 I0408 20:27:49.745960 5931 solver.cpp:237] Train net output #0: loss = 0.10988 (* 1 = 0.10988 loss) I0408 20:27:49.745968 5931 sgd_solver.cpp:105] Iteration 8352, lr = 8.30669e-05 I0408 20:27:54.103435 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8364.caffemodel I0408 20:27:57.227099 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8364.solverstate I0408 20:27:59.647097 5931 solver.cpp:330] Iteration 8364, Testing net (#0) I0408 20:27:59.647125 5931 net.cpp:676] Ignoring source layer train-data I0408 20:28:00.816737 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:28:04.415927 5931 solver.cpp:397] Test net output #0: accuracy = 0.470588 I0408 20:28:04.415974 5931 solver.cpp:397] Test net output #1: loss = 2.94869 (* 1 = 2.94869 loss) I0408 20:28:04.512482 5931 solver.cpp:218] Iteration 8364 (0.812651 iter/s, 14.7665s/12 iters), loss = 0.0300906 I0408 20:28:04.512516 5931 solver.cpp:237] Train net output #0: loss = 0.0300906 (* 1 = 0.0300906 loss) I0408 20:28:04.512523 5931 sgd_solver.cpp:105] Iteration 8364, lr = 8.16257e-05 I0408 20:28:08.512995 5931 solver.cpp:218] Iteration 8376 (2.99966 iter/s, 4.00046s/12 iters), loss = 0.0399983 I0408 20:28:08.513027 5931 solver.cpp:237] Train net output #0: loss = 0.0399983 (* 1 = 0.0399983 loss) I0408 20:28:08.513036 5931 sgd_solver.cpp:105] Iteration 8376, lr = 8.02093e-05 I0408 20:28:13.315222 5931 solver.cpp:218] Iteration 8388 (2.49887 iter/s, 4.80218s/12 iters), loss = 0.0287316 I0408 20:28:13.315255 5931 solver.cpp:237] Train net output #0: loss = 0.0287316 (* 1 = 0.0287316 loss) I0408 20:28:13.315263 5931 sgd_solver.cpp:105] Iteration 8388, lr = 7.88173e-05 I0408 20:28:16.044642 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:28:18.179610 5931 solver.cpp:218] Iteration 8400 (2.46694 iter/s, 4.86434s/12 iters), loss = 0.172697 I0408 20:28:18.179644 5931 solver.cpp:237] Train net output #0: loss = 0.172696 (* 1 = 0.172696 loss) I0408 20:28:18.179652 5931 sgd_solver.cpp:105] Iteration 8400, lr = 7.74494e-05 I0408 20:28:23.128772 5931 solver.cpp:218] Iteration 8412 (2.42468 iter/s, 4.9491s/12 iters), loss = 0.0878625 I0408 20:28:23.128818 5931 solver.cpp:237] Train net output #0: loss = 0.0878624 (* 1 = 0.0878624 loss) I0408 20:28:23.128841 5931 sgd_solver.cpp:105] Iteration 8412, lr = 7.61049e-05 I0408 20:28:28.049643 5931 solver.cpp:218] Iteration 8424 (2.43862 iter/s, 4.92081s/12 iters), loss = 0.0928251 I0408 20:28:28.049742 5931 solver.cpp:237] Train net output #0: loss = 0.0928251 (* 1 = 0.0928251 loss) I0408 20:28:28.049751 5931 sgd_solver.cpp:105] Iteration 8424, lr = 7.47836e-05 I0408 20:28:32.882720 5931 solver.cpp:218] Iteration 8436 (2.48295 iter/s, 4.83296s/12 iters), loss = 0.137636 I0408 20:28:32.882752 5931 solver.cpp:237] Train net output #0: loss = 0.137636 (* 1 = 0.137636 loss) I0408 20:28:32.882761 5931 sgd_solver.cpp:105] Iteration 8436, lr = 7.34851e-05 I0408 20:28:37.880565 5931 solver.cpp:218] Iteration 8448 (2.40106 iter/s, 4.99779s/12 iters), loss = 0.143883 I0408 20:28:37.880599 5931 solver.cpp:237] Train net output #0: loss = 0.143883 (* 1 = 0.143883 loss) I0408 20:28:37.880605 5931 sgd_solver.cpp:105] Iteration 8448, lr = 7.22089e-05 I0408 20:28:42.894275 5931 solver.cpp:218] Iteration 8460 (2.39346 iter/s, 5.01365s/12 iters), loss = 0.136481 I0408 20:28:42.894309 5931 solver.cpp:237] Train net output #0: loss = 0.136481 (* 1 = 0.136481 loss) I0408 20:28:42.894316 5931 sgd_solver.cpp:105] Iteration 8460, lr = 7.09548e-05 I0408 20:28:44.878473 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8466.caffemodel I0408 20:28:48.067986 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8466.solverstate I0408 20:28:50.431948 5931 solver.cpp:330] Iteration 8466, Testing net (#0) I0408 20:28:50.431974 5931 net.cpp:676] Ignoring source layer train-data I0408 20:28:51.569953 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:28:55.220135 5931 solver.cpp:397] Test net output #0: accuracy = 0.470588 I0408 20:28:55.220185 5931 solver.cpp:397] Test net output #1: loss = 2.93773 (* 1 = 2.93773 loss) I0408 20:28:56.962355 5931 solver.cpp:218] Iteration 8472 (0.852999 iter/s, 14.068s/12 iters), loss = 0.0511453 I0408 20:28:56.962390 5931 solver.cpp:237] Train net output #0: loss = 0.0511453 (* 1 = 0.0511453 loss) I0408 20:28:56.962399 5931 sgd_solver.cpp:105] Iteration 8472, lr = 6.97223e-05 I0408 20:29:01.840673 5931 solver.cpp:218] Iteration 8484 (2.45989 iter/s, 4.87826s/12 iters), loss = 0.0473533 I0408 20:29:01.840792 5931 solver.cpp:237] Train net output #0: loss = 0.0473532 (* 1 = 0.0473532 loss) I0408 20:29:01.840801 5931 sgd_solver.cpp:105] Iteration 8484, lr = 6.85111e-05 I0408 20:29:06.645707 5931 solver.cpp:218] Iteration 8496 (2.49745 iter/s, 4.8049s/12 iters), loss = 0.108647 I0408 20:29:06.645741 5931 solver.cpp:237] Train net output #0: loss = 0.108647 (* 1 = 0.108647 loss) I0408 20:29:06.645748 5931 sgd_solver.cpp:105] Iteration 8496, lr = 6.73207e-05 I0408 20:29:06.680244 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:29:11.507843 5931 solver.cpp:218] Iteration 8508 (2.46808 iter/s, 4.86209s/12 iters), loss = 0.0733235 I0408 20:29:11.507876 5931 solver.cpp:237] Train net output #0: loss = 0.0733235 (* 1 = 0.0733235 loss) I0408 20:29:11.507884 5931 sgd_solver.cpp:105] Iteration 8508, lr = 6.61509e-05 I0408 20:29:16.345728 5931 solver.cpp:218] Iteration 8520 (2.48045 iter/s, 4.83783s/12 iters), loss = 0.0643699 I0408 20:29:16.345762 5931 solver.cpp:237] Train net output #0: loss = 0.0643699 (* 1 = 0.0643699 loss) I0408 20:29:16.345768 5931 sgd_solver.cpp:105] Iteration 8520, lr = 6.50013e-05 I0408 20:29:21.103876 5931 solver.cpp:218] Iteration 8532 (2.52202 iter/s, 4.7581s/12 iters), loss = 0.0633643 I0408 20:29:21.103909 5931 solver.cpp:237] Train net output #0: loss = 0.0633643 (* 1 = 0.0633643 loss) I0408 20:29:21.103917 5931 sgd_solver.cpp:105] Iteration 8532, lr = 6.38715e-05 I0408 20:29:26.053018 5931 solver.cpp:218] Iteration 8544 (2.42469 iter/s, 4.94909s/12 iters), loss = 0.0946614 I0408 20:29:26.053057 5931 solver.cpp:237] Train net output #0: loss = 0.0946614 (* 1 = 0.0946614 loss) I0408 20:29:26.053064 5931 sgd_solver.cpp:105] Iteration 8544, lr = 6.27613e-05 I0408 20:29:30.829038 5931 solver.cpp:218] Iteration 8556 (2.51258 iter/s, 4.77596s/12 iters), loss = 0.111092 I0408 20:29:30.829071 5931 solver.cpp:237] Train net output #0: loss = 0.111092 (* 1 = 0.111092 loss) I0408 20:29:30.829078 5931 sgd_solver.cpp:105] Iteration 8556, lr = 6.16702e-05 I0408 20:29:35.121054 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8568.caffemodel I0408 20:29:39.336314 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8568.solverstate I0408 20:29:42.511834 5931 solver.cpp:330] Iteration 8568, Testing net (#0) I0408 20:29:42.511859 5931 net.cpp:676] Ignoring source layer train-data I0408 20:29:43.594988 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:29:47.112916 5931 solver.cpp:397] Test net output #0: accuracy = 0.471201 I0408 20:29:47.112962 5931 solver.cpp:397] Test net output #1: loss = 2.94576 (* 1 = 2.94576 loss) I0408 20:29:47.207698 5931 solver.cpp:218] Iteration 8568 (0.732664 iter/s, 16.3786s/12 iters), loss = 0.149233 I0408 20:29:47.207748 5931 solver.cpp:237] Train net output #0: loss = 0.149233 (* 1 = 0.149233 loss) I0408 20:29:47.207759 5931 sgd_solver.cpp:105] Iteration 8568, lr = 6.0598e-05 I0408 20:29:51.206379 5931 solver.cpp:218] Iteration 8580 (3.00104 iter/s, 3.99862s/12 iters), loss = 0.0988229 I0408 20:29:51.206414 5931 solver.cpp:237] Train net output #0: loss = 0.0988229 (* 1 = 0.0988229 loss) I0408 20:29:51.206421 5931 sgd_solver.cpp:105] Iteration 8580, lr = 5.95443e-05 I0408 20:29:56.132553 5931 solver.cpp:218] Iteration 8592 (2.436 iter/s, 4.92612s/12 iters), loss = 0.153437 I0408 20:29:56.132586 5931 solver.cpp:237] Train net output #0: loss = 0.153437 (* 1 = 0.153437 loss) I0408 20:29:56.132593 5931 sgd_solver.cpp:105] Iteration 8592, lr = 5.85088e-05 I0408 20:29:58.273859 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:30:00.957770 5931 solver.cpp:218] Iteration 8604 (2.48696 iter/s, 4.82516s/12 iters), loss = 0.0346651 I0408 20:30:00.957804 5931 solver.cpp:237] Train net output #0: loss = 0.034665 (* 1 = 0.034665 loss) I0408 20:30:00.957811 5931 sgd_solver.cpp:105] Iteration 8604, lr = 5.74913e-05 I0408 20:30:05.844019 5931 solver.cpp:218] Iteration 8616 (2.4559 iter/s, 4.8862s/12 iters), loss = 0.088288 I0408 20:30:05.844134 5931 solver.cpp:237] Train net output #0: loss = 0.0882879 (* 1 = 0.0882879 loss) I0408 20:30:05.844143 5931 sgd_solver.cpp:105] Iteration 8616, lr = 5.64913e-05 I0408 20:30:10.772385 5931 solver.cpp:218] Iteration 8628 (2.43495 iter/s, 4.92824s/12 iters), loss = 0.148244 I0408 20:30:10.772418 5931 solver.cpp:237] Train net output #0: loss = 0.148244 (* 1 = 0.148244 loss) I0408 20:30:10.772425 5931 sgd_solver.cpp:105] Iteration 8628, lr = 5.55086e-05 I0408 20:30:15.619257 5931 solver.cpp:218] Iteration 8640 (2.47585 iter/s, 4.84682s/12 iters), loss = 0.0402559 I0408 20:30:15.619292 5931 solver.cpp:237] Train net output #0: loss = 0.0402559 (* 1 = 0.0402559 loss) I0408 20:30:15.619300 5931 sgd_solver.cpp:105] Iteration 8640, lr = 5.4543e-05 I0408 20:30:20.432282 5931 solver.cpp:218] Iteration 8652 (2.49326 iter/s, 4.81297s/12 iters), loss = 0.148454 I0408 20:30:20.432315 5931 solver.cpp:237] Train net output #0: loss = 0.148454 (* 1 = 0.148454 loss) I0408 20:30:20.432323 5931 sgd_solver.cpp:105] Iteration 8652, lr = 5.3594e-05 I0408 20:30:25.361495 5931 solver.cpp:218] Iteration 8664 (2.43449 iter/s, 4.92916s/12 iters), loss = 0.117744 I0408 20:30:25.361528 5931 solver.cpp:237] Train net output #0: loss = 0.117744 (* 1 = 0.117744 loss) I0408 20:30:25.361536 5931 sgd_solver.cpp:105] Iteration 8664, lr = 5.26614e-05 I0408 20:30:27.283310 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8670.caffemodel I0408 20:30:30.444983 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8670.solverstate I0408 20:30:32.804564 5931 solver.cpp:330] Iteration 8670, Testing net (#0) I0408 20:30:32.804589 5931 net.cpp:676] Ignoring source layer train-data I0408 20:30:33.845715 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:30:37.590982 5931 solver.cpp:397] Test net output #0: accuracy = 0.471201 I0408 20:30:37.591125 5931 solver.cpp:397] Test net output #1: loss = 2.94176 (* 1 = 2.94176 loss) I0408 20:30:39.324362 5931 solver.cpp:218] Iteration 8676 (0.859427 iter/s, 13.9628s/12 iters), loss = 0.0733706 I0408 20:30:39.324395 5931 solver.cpp:237] Train net output #0: loss = 0.0733706 (* 1 = 0.0733706 loss) I0408 20:30:39.324402 5931 sgd_solver.cpp:105] Iteration 8676, lr = 5.17451e-05 I0408 20:30:44.171057 5931 solver.cpp:218] Iteration 8688 (2.47594 iter/s, 4.84664s/12 iters), loss = 0.0753945 I0408 20:30:44.171089 5931 solver.cpp:237] Train net output #0: loss = 0.0753945 (* 1 = 0.0753945 loss) I0408 20:30:44.171097 5931 sgd_solver.cpp:105] Iteration 8688, lr = 5.08445e-05 I0408 20:30:48.316236 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:30:48.970965 5931 solver.cpp:218] Iteration 8700 (2.50008 iter/s, 4.79986s/12 iters), loss = 0.0575705 I0408 20:30:48.970999 5931 solver.cpp:237] Train net output #0: loss = 0.0575705 (* 1 = 0.0575705 loss) I0408 20:30:48.971007 5931 sgd_solver.cpp:105] Iteration 8700, lr = 4.99596e-05 I0408 20:30:53.821552 5931 solver.cpp:218] Iteration 8712 (2.47396 iter/s, 4.85053s/12 iters), loss = 0.0795703 I0408 20:30:53.821583 5931 solver.cpp:237] Train net output #0: loss = 0.0795702 (* 1 = 0.0795702 loss) I0408 20:30:53.821591 5931 sgd_solver.cpp:105] Iteration 8712, lr = 4.909e-05 I0408 20:30:58.628325 5931 solver.cpp:218] Iteration 8724 (2.4965 iter/s, 4.80672s/12 iters), loss = 0.0746322 I0408 20:30:58.628360 5931 solver.cpp:237] Train net output #0: loss = 0.0746321 (* 1 = 0.0746321 loss) I0408 20:30:58.628367 5931 sgd_solver.cpp:105] Iteration 8724, lr = 4.82354e-05 I0408 20:31:03.472627 5931 solver.cpp:218] Iteration 8736 (2.47716 iter/s, 4.84425s/12 iters), loss = 0.12831 I0408 20:31:03.472659 5931 solver.cpp:237] Train net output #0: loss = 0.12831 (* 1 = 0.12831 loss) I0408 20:31:03.472667 5931 sgd_solver.cpp:105] Iteration 8736, lr = 4.73957e-05 I0408 20:31:08.296367 5931 solver.cpp:218] Iteration 8748 (2.48772 iter/s, 4.82369s/12 iters), loss = 0.120845 I0408 20:31:08.296424 5931 solver.cpp:237] Train net output #0: loss = 0.120845 (* 1 = 0.120845 loss) I0408 20:31:08.296432 5931 sgd_solver.cpp:105] Iteration 8748, lr = 4.65705e-05 I0408 20:31:13.092270 5931 solver.cpp:218] Iteration 8760 (2.50217 iter/s, 4.79583s/12 iters), loss = 0.0858041 I0408 20:31:13.092304 5931 solver.cpp:237] Train net output #0: loss = 0.0858041 (* 1 = 0.0858041 loss) I0408 20:31:13.092311 5931 sgd_solver.cpp:105] Iteration 8760, lr = 4.57596e-05 I0408 20:31:17.531430 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8772.caffemodel I0408 20:31:21.013509 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8772.solverstate I0408 20:31:24.816133 5931 solver.cpp:330] Iteration 8772, Testing net (#0) I0408 20:31:24.816157 5931 net.cpp:676] Ignoring source layer train-data I0408 20:31:25.814661 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:31:29.278798 5931 solver.cpp:397] Test net output #0: accuracy = 0.471201 I0408 20:31:29.278846 5931 solver.cpp:397] Test net output #1: loss = 2.9544 (* 1 = 2.9544 loss) I0408 20:31:29.375337 5931 solver.cpp:218] Iteration 8772 (0.736965 iter/s, 16.283s/12 iters), loss = 0.0411556 I0408 20:31:29.375370 5931 solver.cpp:237] Train net output #0: loss = 0.0411556 (* 1 = 0.0411556 loss) I0408 20:31:29.375378 5931 sgd_solver.cpp:105] Iteration 8772, lr = 4.49627e-05 I0408 20:31:33.539240 5931 solver.cpp:218] Iteration 8784 (2.88194 iter/s, 4.16385s/12 iters), loss = 0.134866 I0408 20:31:33.539275 5931 solver.cpp:237] Train net output #0: loss = 0.134866 (* 1 = 0.134866 loss) I0408 20:31:33.539283 5931 sgd_solver.cpp:105] Iteration 8784, lr = 4.41797e-05 I0408 20:31:38.444595 5931 solver.cpp:218] Iteration 8796 (2.44633 iter/s, 4.9053s/12 iters), loss = 0.10287 I0408 20:31:38.444695 5931 solver.cpp:237] Train net output #0: loss = 0.10287 (* 1 = 0.10287 loss) I0408 20:31:38.444703 5931 sgd_solver.cpp:105] Iteration 8796, lr = 4.34103e-05 I0408 20:31:39.868703 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:31:43.273849 5931 solver.cpp:218] Iteration 8808 (2.48492 iter/s, 4.82913s/12 iters), loss = 0.0556044 I0408 20:31:43.273881 5931 solver.cpp:237] Train net output #0: loss = 0.0556044 (* 1 = 0.0556044 loss) I0408 20:31:43.273890 5931 sgd_solver.cpp:105] Iteration 8808, lr = 4.26541e-05 I0408 20:31:48.101758 5931 solver.cpp:218] Iteration 8820 (2.48558 iter/s, 4.82786s/12 iters), loss = 0.0501046 I0408 20:31:48.101791 5931 solver.cpp:237] Train net output #0: loss = 0.0501046 (* 1 = 0.0501046 loss) I0408 20:31:48.101799 5931 sgd_solver.cpp:105] Iteration 8820, lr = 4.19112e-05 I0408 20:31:52.938191 5931 solver.cpp:218] Iteration 8832 (2.4812 iter/s, 4.83638s/12 iters), loss = 0.0740233 I0408 20:31:52.938226 5931 solver.cpp:237] Train net output #0: loss = 0.0740233 (* 1 = 0.0740233 loss) I0408 20:31:52.938235 5931 sgd_solver.cpp:105] Iteration 8832, lr = 4.11811e-05 I0408 20:31:57.894986 5931 solver.cpp:218] Iteration 8844 (2.42094 iter/s, 4.95674s/12 iters), loss = 0.181416 I0408 20:31:57.895025 5931 solver.cpp:237] Train net output #0: loss = 0.181416 (* 1 = 0.181416 loss) I0408 20:31:57.895032 5931 sgd_solver.cpp:105] Iteration 8844, lr = 4.04636e-05 I0408 20:32:02.857275 5931 solver.cpp:218] Iteration 8856 (2.41827 iter/s, 4.96223s/12 iters), loss = 0.0361681 I0408 20:32:02.857306 5931 solver.cpp:237] Train net output #0: loss = 0.0361681 (* 1 = 0.0361681 loss) I0408 20:32:02.857314 5931 sgd_solver.cpp:105] Iteration 8856, lr = 3.97586e-05 I0408 20:32:08.101279 5931 solver.cpp:218] Iteration 8868 (2.28835 iter/s, 5.24395s/12 iters), loss = 0.0931413 I0408 20:32:08.101310 5931 solver.cpp:237] Train net output #0: loss = 0.0931413 (* 1 = 0.0931413 loss) I0408 20:32:08.101317 5931 sgd_solver.cpp:105] Iteration 8868, lr = 3.90659e-05 I0408 20:32:10.105515 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8874.caffemodel I0408 20:32:13.221325 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8874.solverstate I0408 20:32:15.575300 5931 solver.cpp:330] Iteration 8874, Testing net (#0) I0408 20:32:15.575326 5931 net.cpp:676] Ignoring source layer train-data I0408 20:32:16.502672 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:32:19.884495 5931 solver.cpp:397] Test net output #0: accuracy = 0.472426 I0408 20:32:19.884541 5931 solver.cpp:397] Test net output #1: loss = 2.95092 (* 1 = 2.95092 loss) I0408 20:32:21.676535 5931 solver.cpp:218] Iteration 8880 (0.883965 iter/s, 13.5752s/12 iters), loss = 0.0893554 I0408 20:32:21.676570 5931 solver.cpp:237] Train net output #0: loss = 0.0893554 (* 1 = 0.0893554 loss) I0408 20:32:21.676578 5931 sgd_solver.cpp:105] Iteration 8880, lr = 3.83852e-05 I0408 20:32:26.565443 5931 solver.cpp:218] Iteration 8892 (2.45456 iter/s, 4.88885s/12 iters), loss = 0.19656 I0408 20:32:26.565476 5931 solver.cpp:237] Train net output #0: loss = 0.19656 (* 1 = 0.19656 loss) I0408 20:32:26.565485 5931 sgd_solver.cpp:105] Iteration 8892, lr = 3.77162e-05 I0408 20:32:29.991446 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:32:31.315542 5931 solver.cpp:218] Iteration 8904 (2.52629 iter/s, 4.75005s/12 iters), loss = 0.184462 I0408 20:32:31.315575 5931 solver.cpp:237] Train net output #0: loss = 0.184462 (* 1 = 0.184462 loss) I0408 20:32:31.315583 5931 sgd_solver.cpp:105] Iteration 8904, lr = 3.7059e-05 I0408 20:32:36.149960 5931 solver.cpp:218] Iteration 8916 (2.48223 iter/s, 4.83436s/12 iters), loss = 0.0538377 I0408 20:32:36.149991 5931 solver.cpp:237] Train net output #0: loss = 0.0538377 (* 1 = 0.0538377 loss) I0408 20:32:36.149999 5931 sgd_solver.cpp:105] Iteration 8916, lr = 3.64131e-05 I0408 20:32:40.977504 5931 solver.cpp:218] Iteration 8928 (2.48576 iter/s, 4.82749s/12 iters), loss = 0.0963427 I0408 20:32:40.977653 5931 solver.cpp:237] Train net output #0: loss = 0.0963427 (* 1 = 0.0963427 loss) I0408 20:32:40.977663 5931 sgd_solver.cpp:105] Iteration 8928, lr = 3.57784e-05 I0408 20:32:45.782821 5931 solver.cpp:218] Iteration 8940 (2.49732 iter/s, 4.80515s/12 iters), loss = 0.120136 I0408 20:32:45.782855 5931 solver.cpp:237] Train net output #0: loss = 0.120136 (* 1 = 0.120136 loss) I0408 20:32:45.782862 5931 sgd_solver.cpp:105] Iteration 8940, lr = 3.51547e-05 I0408 20:32:50.719826 5931 solver.cpp:218] Iteration 8952 (2.43065 iter/s, 4.93695s/12 iters), loss = 0.0655056 I0408 20:32:50.719859 5931 solver.cpp:237] Train net output #0: loss = 0.0655056 (* 1 = 0.0655056 loss) I0408 20:32:50.719866 5931 sgd_solver.cpp:105] Iteration 8952, lr = 3.45419e-05 I0408 20:32:55.436892 5931 solver.cpp:218] Iteration 8964 (2.54398 iter/s, 4.71701s/12 iters), loss = 0.156777 I0408 20:32:55.436925 5931 solver.cpp:237] Train net output #0: loss = 0.156777 (* 1 = 0.156777 loss) I0408 20:32:55.436933 5931 sgd_solver.cpp:105] Iteration 8964, lr = 3.39398e-05 I0408 20:32:59.763679 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8976.caffemodel I0408 20:33:02.857662 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8976.solverstate I0408 20:33:05.211658 5931 solver.cpp:330] Iteration 8976, Testing net (#0) I0408 20:33:05.211683 5931 net.cpp:676] Ignoring source layer train-data I0408 20:33:06.132351 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:33:10.005319 5931 solver.cpp:397] Test net output #0: accuracy = 0.471201 I0408 20:33:10.005368 5931 solver.cpp:397] Test net output #1: loss = 2.95804 (* 1 = 2.95804 loss) I0408 20:33:10.102162 5931 solver.cpp:218] Iteration 8976 (0.818264 iter/s, 14.6652s/12 iters), loss = 0.0280937 I0408 20:33:10.102201 5931 solver.cpp:237] Train net output #0: loss = 0.0280937 (* 1 = 0.0280937 loss) I0408 20:33:10.102210 5931 sgd_solver.cpp:105] Iteration 8976, lr = 3.33481e-05 I0408 20:33:14.166538 5931 solver.cpp:218] Iteration 8988 (2.95253 iter/s, 4.06432s/12 iters), loss = 0.0495558 I0408 20:33:14.166617 5931 solver.cpp:237] Train net output #0: loss = 0.0495558 (* 1 = 0.0495558 loss) I0408 20:33:14.166626 5931 sgd_solver.cpp:105] Iteration 8988, lr = 3.27666e-05 I0408 20:33:17.340737 5931 blocking_queue.cpp:49] Waiting for data I0408 20:33:18.966545 5931 solver.cpp:218] Iteration 9000 (2.50005 iter/s, 4.79991s/12 iters), loss = 0.029268 I0408 20:33:18.966578 5931 solver.cpp:237] Train net output #0: loss = 0.029268 (* 1 = 0.029268 loss) I0408 20:33:18.966585 5931 sgd_solver.cpp:105] Iteration 9000, lr = 3.21953e-05 I0408 20:33:19.615051 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:33:23.697597 5931 solver.cpp:218] Iteration 9012 (2.53646 iter/s, 4.731s/12 iters), loss = 0.0514562 I0408 20:33:23.697628 5931 solver.cpp:237] Train net output #0: loss = 0.0514562 (* 1 = 0.0514562 loss) I0408 20:33:23.697636 5931 sgd_solver.cpp:105] Iteration 9012, lr = 3.16339e-05 I0408 20:33:28.421757 5931 solver.cpp:218] Iteration 9024 (2.54016 iter/s, 4.72411s/12 iters), loss = 0.119511 I0408 20:33:28.421789 5931 solver.cpp:237] Train net output #0: loss = 0.119511 (* 1 = 0.119511 loss) I0408 20:33:28.421797 5931 sgd_solver.cpp:105] Iteration 9024, lr = 3.10823e-05 I0408 20:33:33.231767 5931 solver.cpp:218] Iteration 9036 (2.49482 iter/s, 4.80996s/12 iters), loss = 0.0514225 I0408 20:33:33.231801 5931 solver.cpp:237] Train net output #0: loss = 0.0514225 (* 1 = 0.0514225 loss) I0408 20:33:33.231808 5931 sgd_solver.cpp:105] Iteration 9036, lr = 3.05403e-05 I0408 20:33:38.100306 5931 solver.cpp:218] Iteration 9048 (2.46483 iter/s, 4.86849s/12 iters), loss = 0.0690097 I0408 20:33:38.100340 5931 solver.cpp:237] Train net output #0: loss = 0.0690097 (* 1 = 0.0690097 loss) I0408 20:33:38.100348 5931 sgd_solver.cpp:105] Iteration 9048, lr = 3.00077e-05 I0408 20:33:42.925173 5931 solver.cpp:218] Iteration 9060 (2.48714 iter/s, 4.82481s/12 iters), loss = 0.114602 I0408 20:33:42.925204 5931 solver.cpp:237] Train net output #0: loss = 0.114602 (* 1 = 0.114602 loss) I0408 20:33:42.925212 5931 sgd_solver.cpp:105] Iteration 9060, lr = 2.94843e-05 I0408 20:33:47.746598 5931 solver.cpp:218] Iteration 9072 (2.48892 iter/s, 4.82137s/12 iters), loss = 0.0583481 I0408 20:33:47.746695 5931 solver.cpp:237] Train net output #0: loss = 0.0583481 (* 1 = 0.0583481 loss) I0408 20:33:47.746704 5931 sgd_solver.cpp:105] Iteration 9072, lr = 2.89701e-05 I0408 20:33:49.688468 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9078.caffemodel I0408 20:33:52.807066 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9078.solverstate I0408 20:33:55.163450 5931 solver.cpp:330] Iteration 9078, Testing net (#0) I0408 20:33:55.163475 5931 net.cpp:676] Ignoring source layer train-data I0408 20:33:56.031569 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:33:59.675956 5931 solver.cpp:397] Test net output #0: accuracy = 0.471814 I0408 20:33:59.676000 5931 solver.cpp:397] Test net output #1: loss = 2.94564 (* 1 = 2.94564 loss) I0408 20:34:01.425879 5931 solver.cpp:218] Iteration 9084 (0.877248 iter/s, 13.6791s/12 iters), loss = 0.0723732 I0408 20:34:01.425915 5931 solver.cpp:237] Train net output #0: loss = 0.0723732 (* 1 = 0.0723732 loss) I0408 20:34:01.425923 5931 sgd_solver.cpp:105] Iteration 9084, lr = 2.84647e-05 I0408 20:34:06.204130 5931 solver.cpp:218] Iteration 9096 (2.51141 iter/s, 4.77819s/12 iters), loss = 0.0574748 I0408 20:34:06.204164 5931 solver.cpp:237] Train net output #0: loss = 0.0574748 (* 1 = 0.0574748 loss) I0408 20:34:06.204172 5931 sgd_solver.cpp:105] Iteration 9096, lr = 2.79682e-05 I0408 20:34:09.065004 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:34:10.996745 5931 solver.cpp:218] Iteration 9108 (2.50388 iter/s, 4.79255s/12 iters), loss = 0.0838419 I0408 20:34:10.996779 5931 solver.cpp:237] Train net output #0: loss = 0.0838419 (* 1 = 0.0838419 loss) I0408 20:34:10.996786 5931 sgd_solver.cpp:105] Iteration 9108, lr = 2.74803e-05 I0408 20:34:15.736411 5931 solver.cpp:218] Iteration 9120 (2.53186 iter/s, 4.73961s/12 iters), loss = 0.117803 I0408 20:34:15.736445 5931 solver.cpp:237] Train net output #0: loss = 0.117803 (* 1 = 0.117803 loss) I0408 20:34:15.736452 5931 sgd_solver.cpp:105] Iteration 9120, lr = 2.70009e-05 I0408 20:34:20.517153 5931 solver.cpp:218] Iteration 9132 (2.5101 iter/s, 4.78068s/12 iters), loss = 0.110181 I0408 20:34:20.517271 5931 solver.cpp:237] Train net output #0: loss = 0.110181 (* 1 = 0.110181 loss) I0408 20:34:20.517280 5931 sgd_solver.cpp:105] Iteration 9132, lr = 2.65299e-05 I0408 20:34:25.332458 5931 solver.cpp:218] Iteration 9144 (2.49213 iter/s, 4.81516s/12 iters), loss = 0.0930482 I0408 20:34:25.332496 5931 solver.cpp:237] Train net output #0: loss = 0.0930482 (* 1 = 0.0930482 loss) I0408 20:34:25.332504 5931 sgd_solver.cpp:105] Iteration 9144, lr = 2.6067e-05 I0408 20:34:30.132419 5931 solver.cpp:218] Iteration 9156 (2.50005 iter/s, 4.7999s/12 iters), loss = 0.0490891 I0408 20:34:30.132452 5931 solver.cpp:237] Train net output #0: loss = 0.0490891 (* 1 = 0.0490891 loss) I0408 20:34:30.132460 5931 sgd_solver.cpp:105] Iteration 9156, lr = 2.56122e-05 I0408 20:34:34.975716 5931 solver.cpp:218] Iteration 9168 (2.47768 iter/s, 4.84324s/12 iters), loss = 0.127033 I0408 20:34:34.975751 5931 solver.cpp:237] Train net output #0: loss = 0.127033 (* 1 = 0.127033 loss) I0408 20:34:34.975759 5931 sgd_solver.cpp:105] Iteration 9168, lr = 2.51653e-05 I0408 20:34:39.332674 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9180.caffemodel I0408 20:34:43.032655 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9180.solverstate I0408 20:34:46.995499 5931 solver.cpp:330] Iteration 9180, Testing net (#0) I0408 20:34:46.995524 5931 net.cpp:676] Ignoring source layer train-data I0408 20:34:47.832314 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:34:51.787060 5931 solver.cpp:397] Test net output #0: accuracy = 0.473039 I0408 20:34:51.787160 5931 solver.cpp:397] Test net output #1: loss = 2.94609 (* 1 = 2.94609 loss) I0408 20:34:51.883633 5931 solver.cpp:218] Iteration 9180 (0.70973 iter/s, 16.9078s/12 iters), loss = 0.0608644 I0408 20:34:51.883671 5931 solver.cpp:237] Train net output #0: loss = 0.0608644 (* 1 = 0.0608644 loss) I0408 20:34:51.883679 5931 sgd_solver.cpp:105] Iteration 9180, lr = 2.47262e-05 I0408 20:34:55.841660 5931 solver.cpp:218] Iteration 9192 (3.03186 iter/s, 3.95797s/12 iters), loss = 0.138006 I0408 20:34:55.841693 5931 solver.cpp:237] Train net output #0: loss = 0.138006 (* 1 = 0.138006 loss) I0408 20:34:55.841701 5931 sgd_solver.cpp:105] Iteration 9192, lr = 2.42948e-05 I0408 20:35:00.668448 5931 solver.cpp:218] Iteration 9204 (2.48616 iter/s, 4.82673s/12 iters), loss = 0.0751007 I0408 20:35:00.668483 5931 solver.cpp:237] Train net output #0: loss = 0.0751007 (* 1 = 0.0751007 loss) I0408 20:35:00.668489 5931 sgd_solver.cpp:105] Iteration 9204, lr = 2.38708e-05 I0408 20:35:00.728327 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:35:05.510135 5931 solver.cpp:218] Iteration 9216 (2.4785 iter/s, 4.84163s/12 iters), loss = 0.122912 I0408 20:35:05.510170 5931 solver.cpp:237] Train net output #0: loss = 0.122912 (* 1 = 0.122912 loss) I0408 20:35:05.510177 5931 sgd_solver.cpp:105] Iteration 9216, lr = 2.34542e-05 I0408 20:35:10.318519 5931 solver.cpp:218] Iteration 9228 (2.49567 iter/s, 4.80833s/12 iters), loss = 0.0800206 I0408 20:35:10.318552 5931 solver.cpp:237] Train net output #0: loss = 0.0800206 (* 1 = 0.0800206 loss) I0408 20:35:10.318559 5931 sgd_solver.cpp:105] Iteration 9228, lr = 2.30449e-05 I0408 20:35:15.108515 5931 solver.cpp:218] Iteration 9240 (2.50525 iter/s, 4.78994s/12 iters), loss = 0.0737501 I0408 20:35:15.108549 5931 solver.cpp:237] Train net output #0: loss = 0.0737502 (* 1 = 0.0737502 loss) I0408 20:35:15.108556 5931 sgd_solver.cpp:105] Iteration 9240, lr = 2.26427e-05 I0408 20:35:19.973369 5931 solver.cpp:218] Iteration 9252 (2.4667 iter/s, 4.8648s/12 iters), loss = 0.0617412 I0408 20:35:19.973402 5931 solver.cpp:237] Train net output #0: loss = 0.0617412 (* 1 = 0.0617412 loss) I0408 20:35:19.973408 5931 sgd_solver.cpp:105] Iteration 9252, lr = 2.22475e-05 I0408 20:35:24.804848 5931 solver.cpp:218] Iteration 9264 (2.48374 iter/s, 4.83142s/12 iters), loss = 0.131618 I0408 20:35:24.804996 5931 solver.cpp:237] Train net output #0: loss = 0.131618 (* 1 = 0.131618 loss) I0408 20:35:24.805004 5931 sgd_solver.cpp:105] Iteration 9264, lr = 2.18592e-05 I0408 20:35:29.627671 5931 solver.cpp:218] Iteration 9276 (2.48825 iter/s, 4.82266s/12 iters), loss = 0.225857 I0408 20:35:29.627707 5931 solver.cpp:237] Train net output #0: loss = 0.225857 (* 1 = 0.225857 loss) I0408 20:35:29.627715 5931 sgd_solver.cpp:105] Iteration 9276, lr = 2.14777e-05 I0408 20:35:31.577963 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9282.caffemodel I0408 20:35:34.691906 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9282.solverstate I0408 20:35:37.051455 5931 solver.cpp:330] Iteration 9282, Testing net (#0) I0408 20:35:37.051482 5931 net.cpp:676] Ignoring source layer train-data I0408 20:35:37.830374 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:35:41.821640 5931 solver.cpp:397] Test net output #0: accuracy = 0.470588 I0408 20:35:41.821686 5931 solver.cpp:397] Test net output #1: loss = 2.95209 (* 1 = 2.95209 loss) I0408 20:35:43.569531 5931 solver.cpp:218] Iteration 9288 (0.860722 iter/s, 13.9418s/12 iters), loss = 0.120213 I0408 20:35:43.569566 5931 solver.cpp:237] Train net output #0: loss = 0.120213 (* 1 = 0.120213 loss) I0408 20:35:43.569572 5931 sgd_solver.cpp:105] Iteration 9288, lr = 2.11028e-05 I0408 20:35:48.282476 5931 solver.cpp:218] Iteration 9300 (2.54621 iter/s, 4.71289s/12 iters), loss = 0.0497918 I0408 20:35:48.282510 5931 solver.cpp:237] Train net output #0: loss = 0.0497918 (* 1 = 0.0497918 loss) I0408 20:35:48.282516 5931 sgd_solver.cpp:105] Iteration 9300, lr = 2.07344e-05 I0408 20:35:50.398639 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:35:53.122256 5931 solver.cpp:218] Iteration 9312 (2.47948 iter/s, 4.83972s/12 iters), loss = 0.0553774 I0408 20:35:53.122287 5931 solver.cpp:237] Train net output #0: loss = 0.0553775 (* 1 = 0.0553775 loss) I0408 20:35:53.122295 5931 sgd_solver.cpp:105] Iteration 9312, lr = 2.03725e-05 I0408 20:35:57.935631 5931 solver.cpp:218] Iteration 9324 (2.49308 iter/s, 4.81332s/12 iters), loss = 0.0643109 I0408 20:35:57.935747 5931 solver.cpp:237] Train net output #0: loss = 0.064311 (* 1 = 0.064311 loss) I0408 20:35:57.935756 5931 sgd_solver.cpp:105] Iteration 9324, lr = 2.00168e-05 I0408 20:36:02.791230 5931 solver.cpp:218] Iteration 9336 (2.47144 iter/s, 4.85546s/12 iters), loss = 0.107235 I0408 20:36:02.791265 5931 solver.cpp:237] Train net output #0: loss = 0.107235 (* 1 = 0.107235 loss) I0408 20:36:02.791271 5931 sgd_solver.cpp:105] Iteration 9336, lr = 1.96673e-05 I0408 20:36:07.588019 5931 solver.cpp:218] Iteration 9348 (2.5017 iter/s, 4.79674s/12 iters), loss = 0.123679 I0408 20:36:07.588053 5931 solver.cpp:237] Train net output #0: loss = 0.123679 (* 1 = 0.123679 loss) I0408 20:36:07.588060 5931 sgd_solver.cpp:105] Iteration 9348, lr = 1.9324e-05 I0408 20:36:12.414711 5931 solver.cpp:218] Iteration 9360 (2.4862 iter/s, 4.82663s/12 iters), loss = 0.156089 I0408 20:36:12.414743 5931 solver.cpp:237] Train net output #0: loss = 0.156089 (* 1 = 0.156089 loss) I0408 20:36:12.414750 5931 sgd_solver.cpp:105] Iteration 9360, lr = 1.89866e-05 I0408 20:36:17.251804 5931 solver.cpp:218] Iteration 9372 (2.48086 iter/s, 4.83704s/12 iters), loss = 0.0873874 I0408 20:36:17.251839 5931 solver.cpp:237] Train net output #0: loss = 0.0873875 (* 1 = 0.0873875 loss) I0408 20:36:17.251847 5931 sgd_solver.cpp:105] Iteration 9372, lr = 1.86551e-05 I0408 20:36:21.609894 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9384.caffemodel I0408 20:36:24.723522 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9384.solverstate I0408 20:36:27.078889 5931 solver.cpp:330] Iteration 9384, Testing net (#0) I0408 20:36:27.078914 5931 net.cpp:676] Ignoring source layer train-data I0408 20:36:27.819653 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:36:31.861135 5931 solver.cpp:397] Test net output #0: accuracy = 0.472426 I0408 20:36:31.861289 5931 solver.cpp:397] Test net output #1: loss = 2.94438 (* 1 = 2.94438 loss) I0408 20:36:31.957691 5931 solver.cpp:218] Iteration 9384 (0.816004 iter/s, 14.7058s/12 iters), loss = 0.25483 I0408 20:36:31.957724 5931 solver.cpp:237] Train net output #0: loss = 0.25483 (* 1 = 0.25483 loss) I0408 20:36:31.957733 5931 sgd_solver.cpp:105] Iteration 9384, lr = 1.83294e-05 I0408 20:36:35.913532 5931 solver.cpp:218] Iteration 9396 (3.03353 iter/s, 3.95578s/12 iters), loss = 0.181478 I0408 20:36:35.913565 5931 solver.cpp:237] Train net output #0: loss = 0.181478 (* 1 = 0.181478 loss) I0408 20:36:35.913573 5931 sgd_solver.cpp:105] Iteration 9396, lr = 1.80093e-05 I0408 20:36:40.077522 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:36:40.718521 5931 solver.cpp:218] Iteration 9408 (2.49743 iter/s, 4.80493s/12 iters), loss = 0.11943 I0408 20:36:40.718554 5931 solver.cpp:237] Train net output #0: loss = 0.11943 (* 1 = 0.11943 loss) I0408 20:36:40.718561 5931 sgd_solver.cpp:105] Iteration 9408, lr = 1.76949e-05 I0408 20:36:45.575469 5931 solver.cpp:218] Iteration 9420 (2.47072 iter/s, 4.85689s/12 iters), loss = 0.0547342 I0408 20:36:45.575503 5931 solver.cpp:237] Train net output #0: loss = 0.0547343 (* 1 = 0.0547343 loss) I0408 20:36:45.575510 5931 sgd_solver.cpp:105] Iteration 9420, lr = 1.73859e-05 I0408 20:36:50.381433 5931 solver.cpp:218] Iteration 9432 (2.49693 iter/s, 4.80591s/12 iters), loss = 0.0512802 I0408 20:36:50.381469 5931 solver.cpp:237] Train net output #0: loss = 0.0512803 (* 1 = 0.0512803 loss) I0408 20:36:50.381475 5931 sgd_solver.cpp:105] Iteration 9432, lr = 1.70823e-05 I0408 20:36:55.196823 5931 solver.cpp:218] Iteration 9444 (2.49204 iter/s, 4.81533s/12 iters), loss = 0.0732759 I0408 20:36:55.196858 5931 solver.cpp:237] Train net output #0: loss = 0.0732759 (* 1 = 0.0732759 loss) I0408 20:36:55.196866 5931 sgd_solver.cpp:105] Iteration 9444, lr = 1.6784e-05 I0408 20:37:00.030663 5931 solver.cpp:218] Iteration 9456 (2.48253 iter/s, 4.83378s/12 iters), loss = 0.17094 I0408 20:37:00.030697 5931 solver.cpp:237] Train net output #0: loss = 0.17094 (* 1 = 0.17094 loss) I0408 20:37:00.030704 5931 sgd_solver.cpp:105] Iteration 9456, lr = 1.64909e-05 I0408 20:37:04.870842 5931 solver.cpp:218] Iteration 9468 (2.47928 iter/s, 4.84012s/12 iters), loss = 0.137621 I0408 20:37:04.870963 5931 solver.cpp:237] Train net output #0: loss = 0.137621 (* 1 = 0.137621 loss) I0408 20:37:04.870972 5931 sgd_solver.cpp:105] Iteration 9468, lr = 1.62029e-05 I0408 20:37:09.671526 5931 solver.cpp:218] Iteration 9480 (2.49972 iter/s, 4.80054s/12 iters), loss = 0.179658 I0408 20:37:09.671561 5931 solver.cpp:237] Train net output #0: loss = 0.179658 (* 1 = 0.179658 loss) I0408 20:37:09.671569 5931 sgd_solver.cpp:105] Iteration 9480, lr = 1.59199e-05 I0408 20:37:11.625967 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9486.caffemodel I0408 20:37:16.086841 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9486.solverstate I0408 20:37:18.439859 5931 solver.cpp:330] Iteration 9486, Testing net (#0) I0408 20:37:18.439883 5931 net.cpp:676] Ignoring source layer train-data I0408 20:37:19.134279 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:37:23.224915 5931 solver.cpp:397] Test net output #0: accuracy = 0.470588 I0408 20:37:23.224964 5931 solver.cpp:397] Test net output #1: loss = 2.9512 (* 1 = 2.9512 loss) I0408 20:37:24.966917 5931 solver.cpp:218] Iteration 9492 (0.784554 iter/s, 15.2953s/12 iters), loss = 0.213301 I0408 20:37:24.966953 5931 solver.cpp:237] Train net output #0: loss = 0.213301 (* 1 = 0.213301 loss) I0408 20:37:24.966960 5931 sgd_solver.cpp:105] Iteration 9492, lr = 1.56419e-05 I0408 20:37:29.779623 5931 solver.cpp:218] Iteration 9504 (2.49343 iter/s, 4.81265s/12 iters), loss = 0.198088 I0408 20:37:29.779654 5931 solver.cpp:237] Train net output #0: loss = 0.198088 (* 1 = 0.198088 loss) I0408 20:37:29.779662 5931 sgd_solver.cpp:105] Iteration 9504, lr = 1.53687e-05 I0408 20:37:31.173892 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:37:34.600750 5931 solver.cpp:218] Iteration 9516 (2.48907 iter/s, 4.82107s/12 iters), loss = 0.0584544 I0408 20:37:34.600785 5931 solver.cpp:237] Train net output #0: loss = 0.0584545 (* 1 = 0.0584545 loss) I0408 20:37:34.600791 5931 sgd_solver.cpp:105] Iteration 9516, lr = 1.51003e-05 I0408 20:37:39.433826 5931 solver.cpp:218] Iteration 9528 (2.48292 iter/s, 4.83302s/12 iters), loss = 0.0587378 I0408 20:37:39.433925 5931 solver.cpp:237] Train net output #0: loss = 0.0587378 (* 1 = 0.0587378 loss) I0408 20:37:39.433933 5931 sgd_solver.cpp:105] Iteration 9528, lr = 1.48365e-05 I0408 20:37:44.215971 5931 solver.cpp:218] Iteration 9540 (2.5094 iter/s, 4.78203s/12 iters), loss = 0.0592625 I0408 20:37:44.216004 5931 solver.cpp:237] Train net output #0: loss = 0.0592626 (* 1 = 0.0592626 loss) I0408 20:37:44.216012 5931 sgd_solver.cpp:105] Iteration 9540, lr = 1.45774e-05 I0408 20:37:49.061978 5931 solver.cpp:218] Iteration 9552 (2.47629 iter/s, 4.84595s/12 iters), loss = 0.0672157 I0408 20:37:49.062011 5931 solver.cpp:237] Train net output #0: loss = 0.0672158 (* 1 = 0.0672158 loss) I0408 20:37:49.062019 5931 sgd_solver.cpp:105] Iteration 9552, lr = 1.43227e-05 I0408 20:37:53.895902 5931 solver.cpp:218] Iteration 9564 (2.48248 iter/s, 4.83387s/12 iters), loss = 0.046416 I0408 20:37:53.895936 5931 solver.cpp:237] Train net output #0: loss = 0.046416 (* 1 = 0.046416 loss) I0408 20:37:53.895943 5931 sgd_solver.cpp:105] Iteration 9564, lr = 1.40726e-05 I0408 20:37:58.727025 5931 solver.cpp:218] Iteration 9576 (2.48392 iter/s, 4.83107s/12 iters), loss = 0.144244 I0408 20:37:58.727059 5931 solver.cpp:237] Train net output #0: loss = 0.144244 (* 1 = 0.144244 loss) I0408 20:37:58.727066 5931 sgd_solver.cpp:105] Iteration 9576, lr = 1.38267e-05 I0408 20:38:03.077329 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9588.caffemodel I0408 20:38:06.183543 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9588.solverstate I0408 20:38:10.067361 5931 solver.cpp:330] Iteration 9588, Testing net (#0) I0408 20:38:10.067428 5931 net.cpp:676] Ignoring source layer train-data I0408 20:38:10.722975 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:38:14.855226 5931 solver.cpp:397] Test net output #0: accuracy = 0.471201 I0408 20:38:14.855273 5931 solver.cpp:397] Test net output #1: loss = 2.96082 (* 1 = 2.96082 loss) I0408 20:38:14.951717 5931 solver.cpp:218] Iteration 9588 (0.739617 iter/s, 16.2246s/12 iters), loss = 0.0613223 I0408 20:38:14.951754 5931 solver.cpp:237] Train net output #0: loss = 0.0613223 (* 1 = 0.0613223 loss) I0408 20:38:14.951762 5931 sgd_solver.cpp:105] Iteration 9588, lr = 1.35852e-05 I0408 20:38:18.958339 5931 solver.cpp:218] Iteration 9600 (2.99509 iter/s, 4.00656s/12 iters), loss = 0.132205 I0408 20:38:18.958374 5931 solver.cpp:237] Train net output #0: loss = 0.132205 (* 1 = 0.132205 loss) I0408 20:38:18.958380 5931 sgd_solver.cpp:105] Iteration 9600, lr = 1.33479e-05 I0408 20:38:22.440071 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:38:23.787370 5931 solver.cpp:218] Iteration 9612 (2.485 iter/s, 4.82898s/12 iters), loss = 0.0688998 I0408 20:38:23.787405 5931 solver.cpp:237] Train net output #0: loss = 0.0688998 (* 1 = 0.0688998 loss) I0408 20:38:23.787412 5931 sgd_solver.cpp:105] Iteration 9612, lr = 1.31147e-05 I0408 20:38:28.643677 5931 solver.cpp:218] Iteration 9624 (2.47104 iter/s, 4.85625s/12 iters), loss = 0.119419 I0408 20:38:28.643712 5931 solver.cpp:237] Train net output #0: loss = 0.119419 (* 1 = 0.119419 loss) I0408 20:38:28.643720 5931 sgd_solver.cpp:105] Iteration 9624, lr = 1.28856e-05 I0408 20:38:33.460417 5931 solver.cpp:218] Iteration 9636 (2.49134 iter/s, 4.81668s/12 iters), loss = 0.0237301 I0408 20:38:33.460450 5931 solver.cpp:237] Train net output #0: loss = 0.0237302 (* 1 = 0.0237302 loss) I0408 20:38:33.460458 5931 sgd_solver.cpp:105] Iteration 9636, lr = 1.26605e-05 I0408 20:38:38.266090 5931 solver.cpp:218] Iteration 9648 (2.49708 iter/s, 4.80562s/12 iters), loss = 0.125619 I0408 20:38:38.266126 5931 solver.cpp:237] Train net output #0: loss = 0.125619 (* 1 = 0.125619 loss) I0408 20:38:38.266134 5931 sgd_solver.cpp:105] Iteration 9648, lr = 1.24393e-05 I0408 20:38:43.136318 5931 solver.cpp:218] Iteration 9660 (2.46398 iter/s, 4.87017s/12 iters), loss = 0.0678197 I0408 20:38:43.136462 5931 solver.cpp:237] Train net output #0: loss = 0.0678197 (* 1 = 0.0678197 loss) I0408 20:38:43.136471 5931 sgd_solver.cpp:105] Iteration 9660, lr = 1.2222e-05 I0408 20:38:47.958387 5931 solver.cpp:218] Iteration 9672 (2.48864 iter/s, 4.82191s/12 iters), loss = 0.0385928 I0408 20:38:47.958421 5931 solver.cpp:237] Train net output #0: loss = 0.0385928 (* 1 = 0.0385928 loss) I0408 20:38:47.958428 5931 sgd_solver.cpp:105] Iteration 9672, lr = 1.20084e-05 I0408 20:38:52.750205 5931 solver.cpp:218] Iteration 9684 (2.5043 iter/s, 4.79176s/12 iters), loss = 0.134879 I0408 20:38:52.750238 5931 solver.cpp:237] Train net output #0: loss = 0.134879 (* 1 = 0.134879 loss) I0408 20:38:52.750247 5931 sgd_solver.cpp:105] Iteration 9684, lr = 1.17986e-05 I0408 20:38:54.718261 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9690.caffemodel I0408 20:38:57.833307 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9690.solverstate I0408 20:39:00.186273 5931 solver.cpp:330] Iteration 9690, Testing net (#0) I0408 20:39:00.186300 5931 net.cpp:676] Ignoring source layer train-data I0408 20:39:00.789927 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:39:03.874589 5931 blocking_queue.cpp:49] Waiting for data I0408 20:39:04.967350 5931 solver.cpp:397] Test net output #0: accuracy = 0.472426 I0408 20:39:04.967398 5931 solver.cpp:397] Test net output #1: loss = 2.95407 (* 1 = 2.95407 loss) I0408 20:39:06.717764 5931 solver.cpp:218] Iteration 9696 (0.859138 iter/s, 13.9675s/12 iters), loss = 0.0833017 I0408 20:39:06.717798 5931 solver.cpp:237] Train net output #0: loss = 0.0833017 (* 1 = 0.0833017 loss) I0408 20:39:06.717806 5931 sgd_solver.cpp:105] Iteration 9696, lr = 1.15925e-05 I0408 20:39:11.425753 5931 solver.cpp:218] Iteration 9708 (2.54889 iter/s, 4.70794s/12 iters), loss = 0.142654 I0408 20:39:11.425787 5931 solver.cpp:237] Train net output #0: loss = 0.142655 (* 1 = 0.142655 loss) I0408 20:39:11.425794 5931 sgd_solver.cpp:105] Iteration 9708, lr = 1.13899e-05 I0408 20:39:12.116508 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:39:16.269891 5931 solver.cpp:218] Iteration 9720 (2.47725 iter/s, 4.84408s/12 iters), loss = 0.0678505 I0408 20:39:16.270009 5931 solver.cpp:237] Train net output #0: loss = 0.0678505 (* 1 = 0.0678505 loss) I0408 20:39:16.270016 5931 sgd_solver.cpp:105] Iteration 9720, lr = 1.11909e-05 I0408 20:39:21.082855 5931 solver.cpp:218] Iteration 9732 (2.49334 iter/s, 4.81283s/12 iters), loss = 0.0502067 I0408 20:39:21.082890 5931 solver.cpp:237] Train net output #0: loss = 0.0502068 (* 1 = 0.0502068 loss) I0408 20:39:21.082897 5931 sgd_solver.cpp:105] Iteration 9732, lr = 1.09954e-05 I0408 20:39:25.938031 5931 solver.cpp:218] Iteration 9744 (2.47162 iter/s, 4.85512s/12 iters), loss = 0.0657831 I0408 20:39:25.938066 5931 solver.cpp:237] Train net output #0: loss = 0.0657832 (* 1 = 0.0657832 loss) I0408 20:39:25.938073 5931 sgd_solver.cpp:105] Iteration 9744, lr = 1.08033e-05 I0408 20:39:30.765408 5931 solver.cpp:218] Iteration 9756 (2.48585 iter/s, 4.82732s/12 iters), loss = 0.085278 I0408 20:39:30.765439 5931 solver.cpp:237] Train net output #0: loss = 0.0852781 (* 1 = 0.0852781 loss) I0408 20:39:30.765446 5931 sgd_solver.cpp:105] Iteration 9756, lr = 1.06145e-05 I0408 20:39:35.604094 5931 solver.cpp:218] Iteration 9768 (2.48004 iter/s, 4.83864s/12 iters), loss = 0.0588029 I0408 20:39:35.604130 5931 solver.cpp:237] Train net output #0: loss = 0.0588029 (* 1 = 0.0588029 loss) I0408 20:39:35.604137 5931 sgd_solver.cpp:105] Iteration 9768, lr = 1.0429e-05 I0408 20:39:40.421936 5931 solver.cpp:218] Iteration 9780 (2.49077 iter/s, 4.81779s/12 iters), loss = 0.0834084 I0408 20:39:40.421968 5931 solver.cpp:237] Train net output #0: loss = 0.0834084 (* 1 = 0.0834084 loss) I0408 20:39:40.421977 5931 sgd_solver.cpp:105] Iteration 9780, lr = 1.02468e-05 I0408 20:39:44.683256 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9792.caffemodel I0408 20:39:47.806821 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9792.solverstate I0408 20:39:50.162832 5931 solver.cpp:330] Iteration 9792, Testing net (#0) I0408 20:39:50.162858 5931 net.cpp:676] Ignoring source layer train-data I0408 20:39:50.727265 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:39:54.953281 5931 solver.cpp:397] Test net output #0: accuracy = 0.470588 I0408 20:39:54.953331 5931 solver.cpp:397] Test net output #1: loss = 2.95754 (* 1 = 2.95754 loss) I0408 20:39:55.049803 5931 solver.cpp:218] Iteration 9792 (0.820356 iter/s, 14.6278s/12 iters), loss = 0.0912696 I0408 20:39:55.049839 5931 solver.cpp:237] Train net output #0: loss = 0.0912696 (* 1 = 0.0912696 loss) I0408 20:39:55.049846 5931 sgd_solver.cpp:105] Iteration 9792, lr = 1.00677e-05 I0408 20:39:59.054729 5931 solver.cpp:218] Iteration 9804 (2.99635 iter/s, 4.00487s/12 iters), loss = 0.044689 I0408 20:39:59.054762 5931 solver.cpp:237] Train net output #0: loss = 0.0446891 (* 1 = 0.0446891 loss) I0408 20:39:59.054770 5931 sgd_solver.cpp:105] Iteration 9804, lr = 9.89177e-06 I0408 20:40:01.928100 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:40:03.910099 5931 solver.cpp:218] Iteration 9816 (2.47152 iter/s, 4.85531s/12 iters), loss = 0.0518716 I0408 20:40:03.910132 5931 solver.cpp:237] Train net output #0: loss = 0.0518717 (* 1 = 0.0518717 loss) I0408 20:40:03.910140 5931 sgd_solver.cpp:105] Iteration 9816, lr = 9.71891e-06 I0408 20:40:08.733824 5931 solver.cpp:218] Iteration 9828 (2.48773 iter/s, 4.82367s/12 iters), loss = 0.035862 I0408 20:40:08.733857 5931 solver.cpp:237] Train net output #0: loss = 0.035862 (* 1 = 0.035862 loss) I0408 20:40:08.733865 5931 sgd_solver.cpp:105] Iteration 9828, lr = 9.54907e-06 I0408 20:40:13.563439 5931 solver.cpp:218] Iteration 9840 (2.4847 iter/s, 4.82956s/12 iters), loss = 0.132918 I0408 20:40:13.563472 5931 solver.cpp:237] Train net output #0: loss = 0.132918 (* 1 = 0.132918 loss) I0408 20:40:13.563480 5931 sgd_solver.cpp:105] Iteration 9840, lr = 9.38219e-06 I0408 20:40:18.379511 5931 solver.cpp:218] Iteration 9852 (2.49168 iter/s, 4.81602s/12 iters), loss = 0.125383 I0408 20:40:18.379583 5931 solver.cpp:237] Train net output #0: loss = 0.125383 (* 1 = 0.125383 loss) I0408 20:40:18.379591 5931 sgd_solver.cpp:105] Iteration 9852, lr = 9.21823e-06 I0408 20:40:23.221319 5931 solver.cpp:218] Iteration 9864 (2.47846 iter/s, 4.84171s/12 iters), loss = 0.07437 I0408 20:40:23.221354 5931 solver.cpp:237] Train net output #0: loss = 0.07437 (* 1 = 0.07437 loss) I0408 20:40:23.221361 5931 sgd_solver.cpp:105] Iteration 9864, lr = 9.05713e-06 I0408 20:40:28.036972 5931 solver.cpp:218] Iteration 9876 (2.4919 iter/s, 4.8156s/12 iters), loss = 0.0945036 I0408 20:40:28.037007 5931 solver.cpp:237] Train net output #0: loss = 0.0945036 (* 1 = 0.0945036 loss) I0408 20:40:28.037015 5931 sgd_solver.cpp:105] Iteration 9876, lr = 8.89884e-06 I0408 20:40:32.861271 5931 solver.cpp:218] Iteration 9888 (2.48744 iter/s, 4.82424s/12 iters), loss = 0.194543 I0408 20:40:32.861305 5931 solver.cpp:237] Train net output #0: loss = 0.194543 (* 1 = 0.194543 loss) I0408 20:40:32.861313 5931 sgd_solver.cpp:105] Iteration 9888, lr = 8.74331e-06 I0408 20:40:34.828349 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9894.caffemodel I0408 20:40:37.923693 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9894.solverstate I0408 20:40:40.279616 5931 solver.cpp:330] Iteration 9894, Testing net (#0) I0408 20:40:40.279642 5931 net.cpp:676] Ignoring source layer train-data I0408 20:40:40.744858 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:40:44.506418 5931 solver.cpp:397] Test net output #0: accuracy = 0.474265 I0408 20:40:44.506464 5931 solver.cpp:397] Test net output #1: loss = 2.93378 (* 1 = 2.93378 loss) I0408 20:40:46.251792 5931 solver.cpp:218] Iteration 9900 (0.896161 iter/s, 13.3905s/12 iters), loss = 0.12264 I0408 20:40:46.251828 5931 solver.cpp:237] Train net output #0: loss = 0.12264 (* 1 = 0.12264 loss) I0408 20:40:46.251837 5931 sgd_solver.cpp:105] Iteration 9900, lr = 8.5905e-06 I0408 20:40:50.982254 5931 solver.cpp:218] Iteration 9912 (2.53678 iter/s, 4.7304s/12 iters), loss = 0.0552435 I0408 20:40:50.982350 5931 solver.cpp:237] Train net output #0: loss = 0.0552435 (* 1 = 0.0552435 loss) I0408 20:40:50.982359 5931 sgd_solver.cpp:105] Iteration 9912, lr = 8.44036e-06 I0408 20:40:51.070289 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:40:55.760116 5931 solver.cpp:218] Iteration 9924 (2.51164 iter/s, 4.77775s/12 iters), loss = 0.152204 I0408 20:40:55.760149 5931 solver.cpp:237] Train net output #0: loss = 0.152204 (* 1 = 0.152204 loss) I0408 20:40:55.760157 5931 sgd_solver.cpp:105] Iteration 9924, lr = 8.29284e-06 I0408 20:41:00.578701 5931 solver.cpp:218] Iteration 9936 (2.49039 iter/s, 4.81853s/12 iters), loss = 0.0711884 I0408 20:41:00.578733 5931 solver.cpp:237] Train net output #0: loss = 0.0711885 (* 1 = 0.0711885 loss) I0408 20:41:00.578742 5931 sgd_solver.cpp:105] Iteration 9936, lr = 8.1479e-06 I0408 20:41:05.403081 5931 solver.cpp:218] Iteration 9948 (2.48739 iter/s, 4.82432s/12 iters), loss = 0.128263 I0408 20:41:05.403115 5931 solver.cpp:237] Train net output #0: loss = 0.128263 (* 1 = 0.128263 loss) I0408 20:41:05.403122 5931 sgd_solver.cpp:105] Iteration 9948, lr = 8.00549e-06 I0408 20:41:10.234453 5931 solver.cpp:218] Iteration 9960 (2.48379 iter/s, 4.83132s/12 iters), loss = 0.151204 I0408 20:41:10.234486 5931 solver.cpp:237] Train net output #0: loss = 0.151204 (* 1 = 0.151204 loss) I0408 20:41:10.234493 5931 sgd_solver.cpp:105] Iteration 9960, lr = 7.86557e-06 I0408 20:41:15.075289 5931 solver.cpp:218] Iteration 9972 (2.47894 iter/s, 4.84078s/12 iters), loss = 0.113763 I0408 20:41:15.075322 5931 solver.cpp:237] Train net output #0: loss = 0.113763 (* 1 = 0.113763 loss) I0408 20:41:15.075330 5931 sgd_solver.cpp:105] Iteration 9972, lr = 7.72808e-06 I0408 20:41:19.879783 5931 solver.cpp:218] Iteration 9984 (2.49769 iter/s, 4.80444s/12 iters), loss = 0.0795457 I0408 20:41:19.879818 5931 solver.cpp:237] Train net output #0: loss = 0.0795457 (* 1 = 0.0795457 loss) I0408 20:41:19.879827 5931 sgd_solver.cpp:105] Iteration 9984, lr = 7.59301e-06 I0408 20:41:24.260288 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9996.caffemodel I0408 20:41:27.370132 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9996.solverstate I0408 20:41:29.787765 5931 solver.cpp:330] Iteration 9996, Testing net (#0) I0408 20:41:29.787791 5931 net.cpp:676] Ignoring source layer train-data I0408 20:41:30.261198 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:41:34.452486 5931 solver.cpp:397] Test net output #0: accuracy = 0.473039 I0408 20:41:34.452533 5931 solver.cpp:397] Test net output #1: loss = 2.95554 (* 1 = 2.95554 loss) I0408 20:41:34.549006 5931 solver.cpp:218] Iteration 9996 (0.818044 iter/s, 14.6691s/12 iters), loss = 0.135623 I0408 20:41:34.549041 5931 solver.cpp:237] Train net output #0: loss = 0.135623 (* 1 = 0.135623 loss) I0408 20:41:34.549049 5931 sgd_solver.cpp:105] Iteration 9996, lr = 7.46029e-06 I0408 20:41:38.544926 5931 solver.cpp:218] Iteration 10008 (3.00311 iter/s, 3.99586s/12 iters), loss = 0.0737608 I0408 20:41:38.544958 5931 solver.cpp:237] Train net output #0: loss = 0.0737609 (* 1 = 0.0737609 loss) I0408 20:41:38.544965 5931 sgd_solver.cpp:105] Iteration 10008, lr = 7.32989e-06 I0408 20:41:40.704476 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:41:43.386376 5931 solver.cpp:218] Iteration 10020 (2.47862 iter/s, 4.8414s/12 iters), loss = 0.0687955 I0408 20:41:43.386411 5931 solver.cpp:237] Train net output #0: loss = 0.0687956 (* 1 = 0.0687956 loss) I0408 20:41:43.386418 5931 sgd_solver.cpp:105] Iteration 10020, lr = 7.20176e-06 I0408 20:41:48.209853 5931 solver.cpp:218] Iteration 10032 (2.48786 iter/s, 4.82342s/12 iters), loss = 0.171151 I0408 20:41:48.209887 5931 solver.cpp:237] Train net output #0: loss = 0.171151 (* 1 = 0.171151 loss) I0408 20:41:48.209893 5931 sgd_solver.cpp:105] Iteration 10032, lr = 7.07588e-06 I0408 20:41:53.035887 5931 solver.cpp:218] Iteration 10044 (2.48654 iter/s, 4.82598s/12 iters), loss = 0.0817633 I0408 20:41:53.035921 5931 solver.cpp:237] Train net output #0: loss = 0.0817634 (* 1 = 0.0817634 loss) I0408 20:41:53.035929 5931 sgd_solver.cpp:105] Iteration 10044, lr = 6.95219e-06 I0408 20:41:57.857344 5931 solver.cpp:218] Iteration 10056 (2.4889 iter/s, 4.8214s/12 iters), loss = 0.115068 I0408 20:41:57.857439 5931 solver.cpp:237] Train net output #0: loss = 0.115068 (* 1 = 0.115068 loss) I0408 20:41:57.857448 5931 sgd_solver.cpp:105] Iteration 10056, lr = 6.83066e-06 I0408 20:42:02.654227 5931 solver.cpp:218] Iteration 10068 (2.50168 iter/s, 4.79677s/12 iters), loss = 0.167017 I0408 20:42:02.654260 5931 solver.cpp:237] Train net output #0: loss = 0.167017 (* 1 = 0.167017 loss) I0408 20:42:02.654268 5931 sgd_solver.cpp:105] Iteration 10068, lr = 6.71126e-06 I0408 20:42:07.511828 5931 solver.cpp:218] Iteration 10080 (2.47038 iter/s, 4.85755s/12 iters), loss = 0.162304 I0408 20:42:07.511859 5931 solver.cpp:237] Train net output #0: loss = 0.162304 (* 1 = 0.162304 loss) I0408 20:42:07.511868 5931 sgd_solver.cpp:105] Iteration 10080, lr = 6.59394e-06 I0408 20:42:12.320920 5931 solver.cpp:218] Iteration 10092 (2.4953 iter/s, 4.80904s/12 iters), loss = 0.0981655 I0408 20:42:12.320955 5931 solver.cpp:237] Train net output #0: loss = 0.0981656 (* 1 = 0.0981656 loss) I0408 20:42:12.320962 5931 sgd_solver.cpp:105] Iteration 10092, lr = 6.47867e-06 I0408 20:42:14.289875 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10098.caffemodel I0408 20:42:19.269456 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10098.solverstate I0408 20:42:21.621007 5931 solver.cpp:330] Iteration 10098, Testing net (#0) I0408 20:42:21.621034 5931 net.cpp:676] Ignoring source layer train-data I0408 20:42:22.057817 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:42:26.406313 5931 solver.cpp:397] Test net output #0: accuracy = 0.47549 I0408 20:42:26.406352 5931 solver.cpp:397] Test net output #1: loss = 2.94543 (* 1 = 2.94543 loss) I0408 20:42:28.155103 5931 solver.cpp:218] Iteration 10104 (0.757858 iter/s, 15.8341s/12 iters), loss = 0.034996 I0408 20:42:28.155170 5931 solver.cpp:237] Train net output #0: loss = 0.0349961 (* 1 = 0.0349961 loss) I0408 20:42:28.155179 5931 sgd_solver.cpp:105] Iteration 10104, lr = 6.36542e-06 I0408 20:42:32.267426 5936 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:42:32.857280 5931 solver.cpp:218] Iteration 10116 (2.55206 iter/s, 4.70209s/12 iters), loss = 0.0455537 I0408 20:42:32.857316 5931 solver.cpp:237] Train net output #0: loss = 0.0455538 (* 1 = 0.0455538 loss) I0408 20:42:32.857323 5931 sgd_solver.cpp:105] Iteration 10116, lr = 6.25414e-06 I0408 20:42:37.622426 5931 solver.cpp:218] Iteration 10128 (2.51832 iter/s, 4.76509s/12 iters), loss = 0.11589 I0408 20:42:37.622457 5931 solver.cpp:237] Train net output #0: loss = 0.11589 (* 1 = 0.11589 loss) I0408 20:42:37.622465 5931 sgd_solver.cpp:105] Iteration 10128, lr = 6.14481e-06 I0408 20:42:42.429641 5931 solver.cpp:218] Iteration 10140 (2.49627 iter/s, 4.80717s/12 iters), loss = 0.0707577 I0408 20:42:42.429675 5931 solver.cpp:237] Train net output #0: loss = 0.0707578 (* 1 = 0.0707578 loss) I0408 20:42:42.429683 5931 sgd_solver.cpp:105] Iteration 10140, lr = 6.03739e-06 I0408 20:42:47.289350 5931 solver.cpp:218] Iteration 10152 (2.46931 iter/s, 4.85965s/12 iters), loss = 0.164566 I0408 20:42:47.289386 5931 solver.cpp:237] Train net output #0: loss = 0.164566 (* 1 = 0.164566 loss) I0408 20:42:47.289393 5931 sgd_solver.cpp:105] Iteration 10152, lr = 5.93184e-06 I0408 20:42:52.098048 5931 solver.cpp:218] Iteration 10164 (2.49551 iter/s, 4.80864s/12 iters), loss = 0.214253 I0408 20:42:52.098083 5931 solver.cpp:237] Train net output #0: loss = 0.214253 (* 1 = 0.214253 loss) I0408 20:42:52.098090 5931 sgd_solver.cpp:105] Iteration 10164, lr = 5.82814e-06 I0408 20:42:56.939460 5931 solver.cpp:218] Iteration 10176 (2.47864 iter/s, 4.84136s/12 iters), loss = 0.0714591 I0408 20:42:56.939500 5931 solver.cpp:237] Train net output #0: loss = 0.0714592 (* 1 = 0.0714592 loss) I0408 20:42:56.939507 5931 sgd_solver.cpp:105] Iteration 10176, lr = 5.72625e-06 I0408 20:43:01.749601 5931 solver.cpp:218] Iteration 10188 (2.49476 iter/s, 4.81009s/12 iters), loss = 0.0401616 I0408 20:43:01.749706 5931 solver.cpp:237] Train net output #0: loss = 0.0401617 (* 1 = 0.0401617 loss) I0408 20:43:01.749713 5931 sgd_solver.cpp:105] Iteration 10188, lr = 5.62614e-06 I0408 20:43:06.128652 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10200.caffemodel I0408 20:43:09.309223 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10200.solverstate I0408 20:43:13.292811 5931 solver.cpp:310] Iteration 10200, loss = 0.064615 I0408 20:43:13.292837 5931 solver.cpp:330] Iteration 10200, Testing net (#0) I0408 20:43:13.292841 5931 net.cpp:676] Ignoring source layer train-data I0408 20:43:13.677668 5937 data_layer.cpp:73] Restarting data prefetching from start. I0408 20:43:18.069763 5931 solver.cpp:397] Test net output #0: accuracy = 0.474877 I0408 20:43:18.069809 5931 solver.cpp:397] Test net output #1: loss = 2.93863 (* 1 = 2.93863 loss) I0408 20:43:18.069819 5931 solver.cpp:315] Optimization Done. I0408 20:43:18.069826 5931 caffe.cpp:259] Optimization Done.