added first non-linearity results
@ -0,0 +1,467 @@
|
|||||||
|
# AlexNet
|
||||||
|
name: "AlexNet"
|
||||||
|
layer {
|
||||||
|
name: "train-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
transform_param {
|
||||||
|
mirror: true
|
||||||
|
crop_size: 227
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
batch_size: 128
|
||||||
|
}
|
||||||
|
include { stage: "train" }
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "val-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
transform_param {
|
||||||
|
crop_size: 227
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
batch_size: 32
|
||||||
|
}
|
||||||
|
include { stage: "val" }
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# CONV 1
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.01
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 0.0001
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# CONV 2
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.01
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 0.0001
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# CONV 3
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.01
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# CONV 4
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 192
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.01
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# CONV 4.2
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "conv4.2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4.2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 192
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.01
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4.2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4.2"
|
||||||
|
top: "conv4.2"
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# CONV 5
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4.2"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.01
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# DENSE 1
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.005
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# DENSE 2
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.005
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# OUTPUT
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
# Since num_output is unset, DIGITS will automatically set it to the
|
||||||
|
# number of classes in your dataset.
|
||||||
|
# Uncomment this line to set it explicitly:
|
||||||
|
#num_output: 1000
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.01
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# STATS
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "accuracy"
|
||||||
|
type: "Accuracy"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "accuracy"
|
||||||
|
include { stage: "val" }
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "loss"
|
||||||
|
type: "SoftmaxWithLoss"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "loss"
|
||||||
|
exclude { stage: "deploy" }
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "softmax"
|
||||||
|
type: "Softmax"
|
||||||
|
bottom: "fc8"
|
||||||
|
top: "softmax"
|
||||||
|
include { stage: "deploy" }
|
||||||
|
}
|
@ -0,0 +1,375 @@
|
|||||||
|
input: "data"
|
||||||
|
input_shape {
|
||||||
|
dim: 1
|
||||||
|
dim: 3
|
||||||
|
dim: 227
|
||||||
|
dim: 227
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 192
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4.2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4.2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 192
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4.2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4.2"
|
||||||
|
top: "conv4.2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4.2"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 196
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "softmax"
|
||||||
|
type: "Softmax"
|
||||||
|
bottom: "fc8"
|
||||||
|
top: "softmax"
|
||||||
|
}
|
After Width: | Height: | Size: 272 KiB |
@ -0,0 +1,422 @@
|
|||||||
|
name: "AlexNet"
|
||||||
|
layer {
|
||||||
|
name: "train-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
stage: "train"
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
mirror: true
|
||||||
|
crop_size: 227
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
batch_size: 128
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "val-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
stage: "val"
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
crop_size: 227
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
batch_size: 32
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 192
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4.2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4.2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 192
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4.2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4.2"
|
||||||
|
top: "conv4.2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4.2"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "accuracy"
|
||||||
|
type: "Accuracy"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "accuracy"
|
||||||
|
include {
|
||||||
|
stage: "val"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "loss"
|
||||||
|
type: "SoftmaxWithLoss"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "loss"
|
||||||
|
exclude {
|
||||||
|
stage: "deploy"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "softmax"
|
||||||
|
type: "Softmax"
|
||||||
|
bottom: "fc8"
|
||||||
|
top: "softmax"
|
||||||
|
include {
|
||||||
|
stage: "deploy"
|
||||||
|
}
|
||||||
|
}
|
1619
cars/architecture-investigations/conv/nonlinear/l4/2parts/pred.csv
Normal file
After Width: | Height: | Size: 220 KiB |
@ -0,0 +1,14 @@
|
|||||||
|
test_iter: 51
|
||||||
|
test_interval: 102
|
||||||
|
base_lr: 0.00999999977648
|
||||||
|
display: 12
|
||||||
|
max_iter: 10200
|
||||||
|
lr_policy: "exp"
|
||||||
|
gamma: 0.999801933765
|
||||||
|
momentum: 0.899999976158
|
||||||
|
weight_decay: 9.99999974738e-05
|
||||||
|
snapshot: 102
|
||||||
|
snapshot_prefix: "snapshot"
|
||||||
|
solver_mode: GPU
|
||||||
|
net: "train_val.prototxt"
|
||||||
|
solver_type: SGD
|
@ -0,0 +1,416 @@
|
|||||||
|
layer {
|
||||||
|
name: "train-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
phase: TRAIN
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
mirror: true
|
||||||
|
crop_size: 227
|
||||||
|
mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto"
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/train_db"
|
||||||
|
batch_size: 128
|
||||||
|
backend: LMDB
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "val-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
phase: TEST
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
crop_size: 227
|
||||||
|
mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto"
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db"
|
||||||
|
batch_size: 32
|
||||||
|
backend: LMDB
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 192
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4.2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4.2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 192
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4.2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4.2"
|
||||||
|
top: "conv4.2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4.2"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 196
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "accuracy"
|
||||||
|
type: "Accuracy"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "accuracy"
|
||||||
|
include {
|
||||||
|
phase: TEST
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "loss"
|
||||||
|
type: "SoftmaxWithLoss"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "loss"
|
||||||
|
}
|
@ -0,0 +1,545 @@
|
|||||||
|
# AlexNet
|
||||||
|
name: "AlexNet"
|
||||||
|
layer {
|
||||||
|
name: "train-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
transform_param {
|
||||||
|
mirror: true
|
||||||
|
crop_size: 227
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
batch_size: 128
|
||||||
|
}
|
||||||
|
include { stage: "train" }
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "val-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
transform_param {
|
||||||
|
crop_size: 227
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
batch_size: 32
|
||||||
|
}
|
||||||
|
include { stage: "val" }
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# CONV 1
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.01
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 0.0001
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# CONV 2
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.01
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 0.0001
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# CONV 3
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.01
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# CONV 4
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.01
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# CONV 4.2
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "conv4.2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4.2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.01
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4.2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4.2"
|
||||||
|
top: "conv4.2"
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# CONV 4.3
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "conv4.3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4.2"
|
||||||
|
top: "conv4.3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.01
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4.3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4.3"
|
||||||
|
top: "conv4.3"
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# CONV 4.4
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "conv4.4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4.3"
|
||||||
|
top: "conv4.4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.01
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4.4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4.4"
|
||||||
|
top: "conv4.4"
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# CONV 5
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4.4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.01
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# DENSE 1
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.005
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# DENSE 2
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.005
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# OUTPUT
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
# Since num_output is unset, DIGITS will automatically set it to the
|
||||||
|
# number of classes in your dataset.
|
||||||
|
# Uncomment this line to set it explicitly:
|
||||||
|
#num_output: 1000
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.01
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# STATS
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "accuracy"
|
||||||
|
type: "Accuracy"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "accuracy"
|
||||||
|
include { stage: "val" }
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "loss"
|
||||||
|
type: "SoftmaxWithLoss"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "loss"
|
||||||
|
exclude { stage: "deploy" }
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "softmax"
|
||||||
|
type: "Softmax"
|
||||||
|
bottom: "fc8"
|
||||||
|
top: "softmax"
|
||||||
|
include { stage: "deploy" }
|
||||||
|
}
|
@ -0,0 +1,443 @@
|
|||||||
|
input: "data"
|
||||||
|
input_shape {
|
||||||
|
dim: 1
|
||||||
|
dim: 3
|
||||||
|
dim: 227
|
||||||
|
dim: 227
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4.2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4.2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4.2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4.2"
|
||||||
|
top: "conv4.2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4.3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4.2"
|
||||||
|
top: "conv4.3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4.3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4.3"
|
||||||
|
top: "conv4.3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4.4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4.3"
|
||||||
|
top: "conv4.4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4.4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4.4"
|
||||||
|
top: "conv4.4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4.4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 196
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "softmax"
|
||||||
|
type: "Softmax"
|
||||||
|
bottom: "fc8"
|
||||||
|
top: "softmax"
|
||||||
|
}
|
After Width: | Height: | Size: 124 KiB |
@ -0,0 +1,490 @@
|
|||||||
|
name: "AlexNet"
|
||||||
|
layer {
|
||||||
|
name: "train-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
stage: "train"
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
mirror: true
|
||||||
|
crop_size: 227
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
batch_size: 128
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "val-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
stage: "val"
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
crop_size: 227
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
batch_size: 32
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4.2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4.2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4.2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4.2"
|
||||||
|
top: "conv4.2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4.3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4.2"
|
||||||
|
top: "conv4.3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4.3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4.3"
|
||||||
|
top: "conv4.3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4.4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4.3"
|
||||||
|
top: "conv4.4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4.4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4.4"
|
||||||
|
top: "conv4.4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4.4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "accuracy"
|
||||||
|
type: "Accuracy"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "accuracy"
|
||||||
|
include {
|
||||||
|
stage: "val"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "loss"
|
||||||
|
type: "SoftmaxWithLoss"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "loss"
|
||||||
|
exclude {
|
||||||
|
stage: "deploy"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "softmax"
|
||||||
|
type: "Softmax"
|
||||||
|
bottom: "fc8"
|
||||||
|
top: "softmax"
|
||||||
|
include {
|
||||||
|
stage: "deploy"
|
||||||
|
}
|
||||||
|
}
|
1619
cars/architecture-investigations/conv/nonlinear/l4/4parts/pred.csv
Normal file
After Width: | Height: | Size: 131 KiB |
@ -0,0 +1,14 @@
|
|||||||
|
test_iter: 51
|
||||||
|
test_interval: 102
|
||||||
|
base_lr: 0.00999999977648
|
||||||
|
display: 12
|
||||||
|
max_iter: 10200
|
||||||
|
lr_policy: "exp"
|
||||||
|
gamma: 0.999801933765
|
||||||
|
momentum: 0.899999976158
|
||||||
|
weight_decay: 9.99999974738e-05
|
||||||
|
snapshot: 102
|
||||||
|
snapshot_prefix: "snapshot"
|
||||||
|
solver_mode: GPU
|
||||||
|
net: "train_val.prototxt"
|
||||||
|
solver_type: SGD
|
@ -0,0 +1,484 @@
|
|||||||
|
layer {
|
||||||
|
name: "train-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
phase: TRAIN
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
mirror: true
|
||||||
|
crop_size: 227
|
||||||
|
mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto"
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/train_db"
|
||||||
|
batch_size: 128
|
||||||
|
backend: LMDB
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "val-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
phase: TEST
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
crop_size: 227
|
||||||
|
mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto"
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db"
|
||||||
|
batch_size: 32
|
||||||
|
backend: LMDB
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4.2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4.2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4.2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4.2"
|
||||||
|
top: "conv4.2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4.3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4.2"
|
||||||
|
top: "conv4.3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4.3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4.3"
|
||||||
|
top: "conv4.3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4.4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4.3"
|
||||||
|
top: "conv4.4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4.4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4.4"
|
||||||
|
top: "conv4.4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4.4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 196
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "accuracy"
|
||||||
|
type: "Accuracy"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "accuracy"
|
||||||
|
include {
|
||||||
|
phase: TEST
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "loss"
|
||||||
|
type: "SoftmaxWithLoss"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "loss"
|
||||||
|
}
|
@ -0,0 +1,468 @@
|
|||||||
|
# AlexNet
|
||||||
|
name: "AlexNet"
|
||||||
|
layer {
|
||||||
|
name: "train-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
transform_param {
|
||||||
|
mirror: true
|
||||||
|
crop_size: 227
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
batch_size: 128
|
||||||
|
}
|
||||||
|
include { stage: "train" }
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "val-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
transform_param {
|
||||||
|
crop_size: 227
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
batch_size: 32
|
||||||
|
}
|
||||||
|
include { stage: "val" }
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# CONV 1
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.01
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 0.0001
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# CONV 2
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.01
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 0.0001
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# CONV 3
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.01
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# CONV 4
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.01
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# CONV 5
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 128
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.01
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# CONV 5.2
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "conv5.2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5.2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 128
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.01
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5.2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5.2"
|
||||||
|
top: "conv5.2"
|
||||||
|
}
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5.2"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# DENSE 1
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.005
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# DENSE 2
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.005
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# OUTPUT
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
# Since num_output is unset, DIGITS will automatically set it to the
|
||||||
|
# number of classes in your dataset.
|
||||||
|
# Uncomment this line to set it explicitly:
|
||||||
|
#num_output: 1000
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.01
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# STATS
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "accuracy"
|
||||||
|
type: "Accuracy"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "accuracy"
|
||||||
|
include { stage: "val" }
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "loss"
|
||||||
|
type: "SoftmaxWithLoss"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "loss"
|
||||||
|
exclude { stage: "deploy" }
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "softmax"
|
||||||
|
type: "Softmax"
|
||||||
|
bottom: "fc8"
|
||||||
|
top: "softmax"
|
||||||
|
include { stage: "deploy" }
|
||||||
|
}
|
@ -0,0 +1,375 @@
|
|||||||
|
input: "data"
|
||||||
|
input_shape {
|
||||||
|
dim: 1
|
||||||
|
dim: 3
|
||||||
|
dim: 227
|
||||||
|
dim: 227
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 128
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5.2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5.2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 128
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5.2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5.2"
|
||||||
|
top: "conv5.2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5.2"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 196
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "softmax"
|
||||||
|
type: "Softmax"
|
||||||
|
bottom: "fc8"
|
||||||
|
top: "softmax"
|
||||||
|
}
|
After Width: | Height: | Size: 272 KiB |
@ -0,0 +1,422 @@
|
|||||||
|
name: "AlexNet"
|
||||||
|
layer {
|
||||||
|
name: "train-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
stage: "train"
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
mirror: true
|
||||||
|
crop_size: 227
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
batch_size: 128
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "val-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
stage: "val"
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
crop_size: 227
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
batch_size: 32
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 128
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5.2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5.2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 128
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5.2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5.2"
|
||||||
|
top: "conv5.2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5.2"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "accuracy"
|
||||||
|
type: "Accuracy"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "accuracy"
|
||||||
|
include {
|
||||||
|
stage: "val"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "loss"
|
||||||
|
type: "SoftmaxWithLoss"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "loss"
|
||||||
|
exclude {
|
||||||
|
stage: "deploy"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "softmax"
|
||||||
|
type: "Softmax"
|
||||||
|
bottom: "fc8"
|
||||||
|
top: "softmax"
|
||||||
|
include {
|
||||||
|
stage: "deploy"
|
||||||
|
}
|
||||||
|
}
|
1619
cars/architecture-investigations/conv/nonlinear/l5/2parts/pred.csv
Normal file
After Width: | Height: | Size: 221 KiB |
@ -0,0 +1,14 @@
|
|||||||
|
test_iter: 51
|
||||||
|
test_interval: 102
|
||||||
|
base_lr: 0.00999999977648
|
||||||
|
display: 12
|
||||||
|
max_iter: 10200
|
||||||
|
lr_policy: "exp"
|
||||||
|
gamma: 0.999801933765
|
||||||
|
momentum: 0.899999976158
|
||||||
|
weight_decay: 9.99999974738e-05
|
||||||
|
snapshot: 102
|
||||||
|
snapshot_prefix: "snapshot"
|
||||||
|
solver_mode: GPU
|
||||||
|
net: "train_val.prototxt"
|
||||||
|
solver_type: SGD
|
@ -0,0 +1,416 @@
|
|||||||
|
layer {
|
||||||
|
name: "train-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
phase: TRAIN
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
mirror: true
|
||||||
|
crop_size: 227
|
||||||
|
mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto"
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/train_db"
|
||||||
|
batch_size: 128
|
||||||
|
backend: LMDB
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "val-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
phase: TEST
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
crop_size: 227
|
||||||
|
mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto"
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db"
|
||||||
|
batch_size: 32
|
||||||
|
backend: LMDB
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 128
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5.2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5.2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 128
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5.2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5.2"
|
||||||
|
top: "conv5.2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5.2"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 196
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "accuracy"
|
||||||
|
type: "Accuracy"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "accuracy"
|
||||||
|
include {
|
||||||
|
phase: TEST
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "loss"
|
||||||
|
type: "SoftmaxWithLoss"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "loss"
|
||||||
|
}
|
@ -0,0 +1,546 @@
|
|||||||
|
# AlexNet
|
||||||
|
name: "AlexNet"
|
||||||
|
layer {
|
||||||
|
name: "train-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
transform_param {
|
||||||
|
mirror: true
|
||||||
|
crop_size: 227
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
batch_size: 128
|
||||||
|
}
|
||||||
|
include { stage: "train" }
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "val-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
transform_param {
|
||||||
|
crop_size: 227
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
batch_size: 32
|
||||||
|
}
|
||||||
|
include { stage: "val" }
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# CONV 1
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.01
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 0.0001
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# CONV 2
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.01
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 0.0001
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# CONV 3
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.01
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# CONV 4
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.01
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# CONV 5
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 64
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.01
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# CONV 5.2
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "conv5.2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5.2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 64
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.01
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5.2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5.2"
|
||||||
|
top: "conv5.2"
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# CONV 5.3
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "conv5.3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv5.2"
|
||||||
|
top: "conv5.3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 64
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.01
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5.3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5.3"
|
||||||
|
top: "conv5.3"
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# CONV 5.4
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "conv5.4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv5.3"
|
||||||
|
top: "conv5.4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 64
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.01
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5.4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5.4"
|
||||||
|
top: "conv5.4"
|
||||||
|
}
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5.4"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# DENSE 1
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.005
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# DENSE 2
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.005
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# OUTPUT
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1
|
||||||
|
decay_mult: 1
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2
|
||||||
|
decay_mult: 0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
# Since num_output is unset, DIGITS will automatically set it to the
|
||||||
|
# number of classes in your dataset.
|
||||||
|
# Uncomment this line to set it explicitly:
|
||||||
|
#num_output: 1000
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.01
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
################
|
||||||
|
# STATS
|
||||||
|
################
|
||||||
|
|
||||||
|
layer {
|
||||||
|
name: "accuracy"
|
||||||
|
type: "Accuracy"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "accuracy"
|
||||||
|
include { stage: "val" }
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "loss"
|
||||||
|
type: "SoftmaxWithLoss"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "loss"
|
||||||
|
exclude { stage: "deploy" }
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "softmax"
|
||||||
|
type: "Softmax"
|
||||||
|
bottom: "fc8"
|
||||||
|
top: "softmax"
|
||||||
|
include { stage: "deploy" }
|
||||||
|
}
|
@ -0,0 +1,443 @@
|
|||||||
|
input: "data"
|
||||||
|
input_shape {
|
||||||
|
dim: 1
|
||||||
|
dim: 3
|
||||||
|
dim: 227
|
||||||
|
dim: 227
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 64
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5.2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5.2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 64
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5.2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5.2"
|
||||||
|
top: "conv5.2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5.3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv5.2"
|
||||||
|
top: "conv5.3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 64
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5.3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5.3"
|
||||||
|
top: "conv5.3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5.4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv5.3"
|
||||||
|
top: "conv5.4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 64
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5.4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5.4"
|
||||||
|
top: "conv5.4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5.4"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 196
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "softmax"
|
||||||
|
type: "Softmax"
|
||||||
|
bottom: "fc8"
|
||||||
|
top: "softmax"
|
||||||
|
}
|
After Width: | Height: | Size: 125 KiB |
@ -0,0 +1,490 @@
|
|||||||
|
name: "AlexNet"
|
||||||
|
layer {
|
||||||
|
name: "train-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
stage: "train"
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
mirror: true
|
||||||
|
crop_size: 227
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
batch_size: 128
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "val-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
stage: "val"
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
crop_size: 227
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
batch_size: 32
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 64
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5.2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5.2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 64
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5.2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5.2"
|
||||||
|
top: "conv5.2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5.3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv5.2"
|
||||||
|
top: "conv5.3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 64
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5.3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5.3"
|
||||||
|
top: "conv5.3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5.4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv5.3"
|
||||||
|
top: "conv5.4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 64
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5.4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5.4"
|
||||||
|
top: "conv5.4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5.4"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "accuracy"
|
||||||
|
type: "Accuracy"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "accuracy"
|
||||||
|
include {
|
||||||
|
stage: "val"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "loss"
|
||||||
|
type: "SoftmaxWithLoss"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "loss"
|
||||||
|
exclude {
|
||||||
|
stage: "deploy"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "softmax"
|
||||||
|
type: "Softmax"
|
||||||
|
bottom: "fc8"
|
||||||
|
top: "softmax"
|
||||||
|
include {
|
||||||
|
stage: "deploy"
|
||||||
|
}
|
||||||
|
}
|
1619
cars/architecture-investigations/conv/nonlinear/l5/4parts/pred.csv
Normal file
After Width: | Height: | Size: 133 KiB |
@ -0,0 +1,14 @@
|
|||||||
|
test_iter: 51
|
||||||
|
test_interval: 102
|
||||||
|
base_lr: 0.00999999977648
|
||||||
|
display: 12
|
||||||
|
max_iter: 10200
|
||||||
|
lr_policy: "exp"
|
||||||
|
gamma: 0.999801933765
|
||||||
|
momentum: 0.899999976158
|
||||||
|
weight_decay: 9.99999974738e-05
|
||||||
|
snapshot: 102
|
||||||
|
snapshot_prefix: "snapshot"
|
||||||
|
solver_mode: GPU
|
||||||
|
net: "train_val.prototxt"
|
||||||
|
solver_type: SGD
|
@ -0,0 +1,484 @@
|
|||||||
|
layer {
|
||||||
|
name: "train-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
phase: TRAIN
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
mirror: true
|
||||||
|
crop_size: 227
|
||||||
|
mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto"
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/train_db"
|
||||||
|
batch_size: 128
|
||||||
|
backend: LMDB
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "val-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
phase: TEST
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
crop_size: 227
|
||||||
|
mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto"
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db"
|
||||||
|
batch_size: 32
|
||||||
|
backend: LMDB
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 64
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5.2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5.2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 64
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5.2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5.2"
|
||||||
|
top: "conv5.2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5.3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv5.2"
|
||||||
|
top: "conv5.3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 64
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5.3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5.3"
|
||||||
|
top: "conv5.3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5.4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv5.3"
|
||||||
|
top: "conv5.4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 64
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5.4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5.4"
|
||||||
|
top: "conv5.4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5.4"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 196
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "accuracy"
|
||||||
|
type: "Accuracy"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "accuracy"
|
||||||
|
include {
|
||||||
|
phase: TEST
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "loss"
|
||||||
|
type: "SoftmaxWithLoss"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "loss"
|
||||||
|
}
|
@ -21,7 +21,7 @@ minimalistic
|
|||||||
todonotes
|
todonotes
|
||||||
\end_modules
|
\end_modules
|
||||||
\maintain_unincluded_children false
|
\maintain_unincluded_children false
|
||||||
\language british
|
\language english
|
||||||
\language_package default
|
\language_package default
|
||||||
\inputencoding auto
|
\inputencoding auto
|
||||||
\fontencoding global
|
\fontencoding global
|
||||||
@ -97,7 +97,7 @@ todonotes
|
|||||||
\defskip medskip
|
\defskip medskip
|
||||||
\is_math_indent 0
|
\is_math_indent 0
|
||||||
\math_numbering_side default
|
\math_numbering_side default
|
||||||
\quotes_style british
|
\quotes_style english
|
||||||
\dynamic_quotes 0
|
\dynamic_quotes 0
|
||||||
\papercolumns 1
|
\papercolumns 1
|
||||||
\papersides 1
|
\papersides 1
|
||||||
@ -275,8 +275,75 @@ setcounter{page}{1}
|
|||||||
Introduction
|
Introduction
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
Although much of the theory for convolutional neural networks (CNNs) was
|
||||||
|
developed throughout the 20th century, their importance to the field of
|
||||||
|
computer vision was not widely appreciated until the early 2010s.
|
||||||
|
|
||||||
|
\begin_inset Flex TODO Note (inline)
|
||||||
|
status open
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
|
More context
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
Although CNNs can appear opaque when attempting to understand how decisions
|
||||||
|
are made, they are not black boxes and there are many ways to affect a
|
||||||
|
model's perfomance.
|
||||||
|
This work presents investigations into how a CNN's performance is affected
|
||||||
|
by the subject dataset, the architecture of the network and the parameters
|
||||||
|
used when training.
|
||||||
|
Section
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand ref
|
||||||
|
reference "sec:Investigations-Scope"
|
||||||
|
plural "false"
|
||||||
|
caps "false"
|
||||||
|
noprefix "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
outlines the scope of the investigations made herein, describing the motivation
|
||||||
|
for the variations and expectations as to how this would affect performance.
|
||||||
|
The results for these investigations are presented in section
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand ref
|
||||||
|
reference "sec:Results"
|
||||||
|
plural "false"
|
||||||
|
caps "false"
|
||||||
|
noprefix "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
with interpretations made in the following section.
|
||||||
|
Section
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand ref
|
||||||
|
reference "sec:Conclusions"
|
||||||
|
plural "false"
|
||||||
|
caps "false"
|
||||||
|
noprefix "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
summarises and concludes the work.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Section
|
\begin_layout Section
|
||||||
Investigations Scope
|
Investigations Scope
|
||||||
|
\begin_inset CommandInset label
|
||||||
|
LatexCommand label
|
||||||
|
name "sec:Investigations-Scope"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
@ -339,30 +406,78 @@ Fully-Connected Layers
|
|||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
The final two layers of AlexNet are dense or fully-connected layers and
|
Following the convolutional stages there are three dense or fully-connected
|
||||||
provide two key features in image classification.
|
layers which provide two key features in image classification.
|
||||||
The first is flattening the 2D cross-section of the preceding convolutional
|
The first is flattening the 2D cross-section of the preceding convolutional
|
||||||
layers into a 1D representation for propagation to a final one-hot vector
|
layers into a 1D representation for propagation to a final one-hot vector
|
||||||
output.
|
output.
|
||||||
The second is as a traditional multi-layer perceptron classifier, taking
|
The second is as a traditional multi-layer perceptron classifier, taking
|
||||||
the high-level visual insights of the later convolutional layers and reasoning
|
the high-level visual insights of the later convolutional layers and reasoning
|
||||||
these into a final classification.
|
these into a final classification.
|
||||||
|
When treated as an MLP, these can instead be considered as 2 hidden layers
|
||||||
|
and a single output layer.
|
||||||
|
The reason for designating the last layer separately is the level to which
|
||||||
|
it is fixed when varying the classifier as a whole.
|
||||||
|
The number of neurons in this layer remains equal to the number of classes
|
||||||
|
in the dataset in order to form a one-hot vector output when the network
|
||||||
|
makes a classification.
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Subsubsection
|
\begin_layout Subsubsection
|
||||||
Non-Linearity
|
Non-Linearity
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
The inclusion of non-linear layers throughout AlexNet is critical to it's
|
||||||
|
ability to learn complex insights into a dataset.
|
||||||
|
Convolution as a mathematical operation can be proven to be associative
|
||||||
|
\begin_inset Flex TODO Note (Margin)
|
||||||
|
status open
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
|
Fubini's theorem
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
in a similar fashion to multiplication.
|
||||||
|
This means that consecutive convolutions can be collapsed into a single
|
||||||
|
operation, for example multiple filters can be merged into a single compound
|
||||||
|
operation for less expensive application to an image.
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Section
|
\begin_layout Section
|
||||||
Results
|
Results
|
||||||
|
\begin_inset CommandInset label
|
||||||
|
LatexCommand label
|
||||||
|
name "sec:Results"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Section
|
\begin_layout Section
|
||||||
Discussion
|
Discussion
|
||||||
|
\begin_inset CommandInset label
|
||||||
|
LatexCommand label
|
||||||
|
name "sec:Discussion"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Section
|
\begin_layout Section
|
||||||
Conclusions
|
Conclusions
|
||||||
|
\begin_inset CommandInset label
|
||||||
|
LatexCommand label
|
||||||
|
name "sec:Conclusions"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
|