step down results, set up for exp and sigmoid decay
2
.gitattributes
vendored
Normal file
@ -0,0 +1,2 @@
|
|||||||
|
# Auto detect text files and perform LF normalization
|
||||||
|
* text=auto
|
341
cars/lr-investigations/exponential/1e-2/0.95/deploy.prototxt
Normal file
@ -0,0 +1,341 @@
|
|||||||
|
input: "data"
|
||||||
|
input_shape {
|
||||||
|
dim: 1
|
||||||
|
dim: 3
|
||||||
|
dim: 227
|
||||||
|
dim: 227
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 196
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "softmax"
|
||||||
|
type: "Softmax"
|
||||||
|
bottom: "fc8"
|
||||||
|
top: "softmax"
|
||||||
|
}
|
388
cars/lr-investigations/exponential/1e-2/0.95/original.prototxt
Normal file
@ -0,0 +1,388 @@
|
|||||||
|
name: "AlexNet"
|
||||||
|
layer {
|
||||||
|
name: "train-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
stage: "train"
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
mirror: true
|
||||||
|
crop_size: 227
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
batch_size: 128
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "val-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
stage: "val"
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
crop_size: 227
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
batch_size: 32
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "accuracy"
|
||||||
|
type: "Accuracy"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "accuracy"
|
||||||
|
include {
|
||||||
|
stage: "val"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "loss"
|
||||||
|
type: "SoftmaxWithLoss"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "loss"
|
||||||
|
exclude {
|
||||||
|
stage: "deploy"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "softmax"
|
||||||
|
type: "Softmax"
|
||||||
|
bottom: "fc8"
|
||||||
|
top: "softmax"
|
||||||
|
include {
|
||||||
|
stage: "deploy"
|
||||||
|
}
|
||||||
|
}
|
14
cars/lr-investigations/exponential/1e-2/0.95/solver.prototxt
Normal file
@ -0,0 +1,14 @@
|
|||||||
|
test_iter: 51
|
||||||
|
test_interval: 102
|
||||||
|
base_lr: 0.00999999977648
|
||||||
|
display: 12
|
||||||
|
max_iter: 10200
|
||||||
|
lr_policy: "exp"
|
||||||
|
gamma: 0.999497234821
|
||||||
|
momentum: 0.899999976158
|
||||||
|
weight_decay: 9.99999974738e-05
|
||||||
|
snapshot: 102
|
||||||
|
snapshot_prefix: "snapshot"
|
||||||
|
solver_mode: GPU
|
||||||
|
net: "train_val.prototxt"
|
||||||
|
solver_type: SGD
|
382
cars/lr-investigations/exponential/1e-2/0.95/train_val.prototxt
Normal file
@ -0,0 +1,382 @@
|
|||||||
|
layer {
|
||||||
|
name: "train-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
phase: TRAIN
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
mirror: true
|
||||||
|
crop_size: 227
|
||||||
|
mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto"
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/train_db"
|
||||||
|
batch_size: 128
|
||||||
|
backend: LMDB
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "val-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
phase: TEST
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
crop_size: 227
|
||||||
|
mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto"
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db"
|
||||||
|
batch_size: 32
|
||||||
|
backend: LMDB
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 196
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "accuracy"
|
||||||
|
type: "Accuracy"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "accuracy"
|
||||||
|
include {
|
||||||
|
phase: TEST
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "loss"
|
||||||
|
type: "SoftmaxWithLoss"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "loss"
|
||||||
|
}
|
341
cars/lr-investigations/exponential/1e-2/0.98/deploy.prototxt
Normal file
@ -0,0 +1,341 @@
|
|||||||
|
input: "data"
|
||||||
|
input_shape {
|
||||||
|
dim: 1
|
||||||
|
dim: 3
|
||||||
|
dim: 227
|
||||||
|
dim: 227
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 196
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "softmax"
|
||||||
|
type: "Softmax"
|
||||||
|
bottom: "fc8"
|
||||||
|
top: "softmax"
|
||||||
|
}
|
388
cars/lr-investigations/exponential/1e-2/0.98/original.prototxt
Normal file
@ -0,0 +1,388 @@
|
|||||||
|
name: "AlexNet"
|
||||||
|
layer {
|
||||||
|
name: "train-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
stage: "train"
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
mirror: true
|
||||||
|
crop_size: 227
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
batch_size: 128
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "val-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
stage: "val"
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
crop_size: 227
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
batch_size: 32
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "accuracy"
|
||||||
|
type: "Accuracy"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "accuracy"
|
||||||
|
include {
|
||||||
|
stage: "val"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "loss"
|
||||||
|
type: "SoftmaxWithLoss"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "loss"
|
||||||
|
exclude {
|
||||||
|
stage: "deploy"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "softmax"
|
||||||
|
type: "Softmax"
|
||||||
|
bottom: "fc8"
|
||||||
|
top: "softmax"
|
||||||
|
include {
|
||||||
|
stage: "deploy"
|
||||||
|
}
|
||||||
|
}
|
14
cars/lr-investigations/exponential/1e-2/0.98/solver.prototxt
Normal file
@ -0,0 +1,14 @@
|
|||||||
|
test_iter: 51
|
||||||
|
test_interval: 102
|
||||||
|
base_lr: 0.00999999977648
|
||||||
|
display: 12
|
||||||
|
max_iter: 10200
|
||||||
|
lr_policy: "exp"
|
||||||
|
gamma: 0.999801933765
|
||||||
|
momentum: 0.899999976158
|
||||||
|
weight_decay: 9.99999974738e-05
|
||||||
|
snapshot: 102
|
||||||
|
snapshot_prefix: "snapshot"
|
||||||
|
solver_mode: GPU
|
||||||
|
net: "train_val.prototxt"
|
||||||
|
solver_type: SGD
|
382
cars/lr-investigations/exponential/1e-2/0.98/train_val.prototxt
Normal file
@ -0,0 +1,382 @@
|
|||||||
|
layer {
|
||||||
|
name: "train-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
phase: TRAIN
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
mirror: true
|
||||||
|
crop_size: 227
|
||||||
|
mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto"
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/train_db"
|
||||||
|
batch_size: 128
|
||||||
|
backend: LMDB
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "val-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
phase: TEST
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
crop_size: 227
|
||||||
|
mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto"
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db"
|
||||||
|
batch_size: 32
|
||||||
|
backend: LMDB
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 196
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "accuracy"
|
||||||
|
type: "Accuracy"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "accuracy"
|
||||||
|
include {
|
||||||
|
phase: TEST
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "loss"
|
||||||
|
type: "SoftmaxWithLoss"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "loss"
|
||||||
|
}
|
341
cars/lr-investigations/exponential/1e-2/0.99/deploy.prototxt
Normal file
@ -0,0 +1,341 @@
|
|||||||
|
input: "data"
|
||||||
|
input_shape {
|
||||||
|
dim: 1
|
||||||
|
dim: 3
|
||||||
|
dim: 227
|
||||||
|
dim: 227
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 196
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "softmax"
|
||||||
|
type: "Softmax"
|
||||||
|
bottom: "fc8"
|
||||||
|
top: "softmax"
|
||||||
|
}
|
388
cars/lr-investigations/exponential/1e-2/0.99/original.prototxt
Normal file
@ -0,0 +1,388 @@
|
|||||||
|
name: "AlexNet"
|
||||||
|
layer {
|
||||||
|
name: "train-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
stage: "train"
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
mirror: true
|
||||||
|
crop_size: 227
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
batch_size: 128
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "val-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
stage: "val"
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
crop_size: 227
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
batch_size: 32
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "accuracy"
|
||||||
|
type: "Accuracy"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "accuracy"
|
||||||
|
include {
|
||||||
|
stage: "val"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "loss"
|
||||||
|
type: "SoftmaxWithLoss"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "loss"
|
||||||
|
exclude {
|
||||||
|
stage: "deploy"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "softmax"
|
||||||
|
type: "Softmax"
|
||||||
|
bottom: "fc8"
|
||||||
|
top: "softmax"
|
||||||
|
include {
|
||||||
|
stage: "deploy"
|
||||||
|
}
|
||||||
|
}
|
14
cars/lr-investigations/exponential/1e-2/0.99/solver.prototxt
Normal file
@ -0,0 +1,14 @@
|
|||||||
|
test_iter: 51
|
||||||
|
test_interval: 102
|
||||||
|
base_lr: 0.00999999977648
|
||||||
|
display: 12
|
||||||
|
max_iter: 10200
|
||||||
|
lr_policy: "exp"
|
||||||
|
gamma: 0.999901473522
|
||||||
|
momentum: 0.899999976158
|
||||||
|
weight_decay: 9.99999974738e-05
|
||||||
|
snapshot: 102
|
||||||
|
snapshot_prefix: "snapshot"
|
||||||
|
solver_mode: GPU
|
||||||
|
net: "train_val.prototxt"
|
||||||
|
solver_type: SGD
|
382
cars/lr-investigations/exponential/1e-2/0.99/train_val.prototxt
Normal file
@ -0,0 +1,382 @@
|
|||||||
|
layer {
|
||||||
|
name: "train-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
phase: TRAIN
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
mirror: true
|
||||||
|
crop_size: 227
|
||||||
|
mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto"
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/train_db"
|
||||||
|
batch_size: 128
|
||||||
|
backend: LMDB
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "val-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
phase: TEST
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
crop_size: 227
|
||||||
|
mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto"
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db"
|
||||||
|
batch_size: 32
|
||||||
|
backend: LMDB
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.99999974738e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00499999988824
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.10000000149
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 196
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.00999999977648
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "accuracy"
|
||||||
|
type: "Accuracy"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "accuracy"
|
||||||
|
include {
|
||||||
|
phase: TEST
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "loss"
|
||||||
|
type: "SoftmaxWithLoss"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "loss"
|
||||||
|
}
|
341
cars/lr-investigations/sigmoid/1e-2/50_0.05/deploy.prototxt
Normal file
@ -0,0 +1,341 @@
|
|||||||
|
input: "data"
|
||||||
|
input_shape {
|
||||||
|
dim: 1
|
||||||
|
dim: 3
|
||||||
|
dim: 227
|
||||||
|
dim: 227
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 196
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "softmax"
|
||||||
|
type: "Softmax"
|
||||||
|
bottom: "fc8"
|
||||||
|
top: "softmax"
|
||||||
|
}
|
388
cars/lr-investigations/sigmoid/1e-2/50_0.05/original.prototxt
Normal file
@ -0,0 +1,388 @@
|
|||||||
|
name: "AlexNet"
|
||||||
|
layer {
|
||||||
|
name: "train-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
stage: "train"
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
mirror: true
|
||||||
|
crop_size: 227
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
batch_size: 128
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "val-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
stage: "val"
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
crop_size: 227
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
batch_size: 32
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "accuracy"
|
||||||
|
type: "Accuracy"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "accuracy"
|
||||||
|
include {
|
||||||
|
stage: "val"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "loss"
|
||||||
|
type: "SoftmaxWithLoss"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "loss"
|
||||||
|
exclude {
|
||||||
|
stage: "deploy"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "softmax"
|
||||||
|
type: "Softmax"
|
||||||
|
bottom: "fc8"
|
||||||
|
top: "softmax"
|
||||||
|
include {
|
||||||
|
stage: "deploy"
|
||||||
|
}
|
||||||
|
}
|
15
cars/lr-investigations/sigmoid/1e-2/50_0.05/solver.prototxt
Normal file
@ -0,0 +1,15 @@
|
|||||||
|
test_iter: 51
|
||||||
|
test_interval: 102
|
||||||
|
base_lr: 0.0099999998
|
||||||
|
display: 12
|
||||||
|
max_iter: 10200
|
||||||
|
lr_policy: "sigmoid"
|
||||||
|
gamma: -0.00049019611
|
||||||
|
momentum: 0.89999998
|
||||||
|
weight_decay: 9.9999997e-05
|
||||||
|
stepsize: 5100
|
||||||
|
snapshot: 102
|
||||||
|
snapshot_prefix: "snapshot"
|
||||||
|
solver_mode: GPU
|
||||||
|
net: "train_val.prototxt"
|
||||||
|
solver_type: SGD
|
382
cars/lr-investigations/sigmoid/1e-2/50_0.05/train_val.prototxt
Normal file
@ -0,0 +1,382 @@
|
|||||||
|
layer {
|
||||||
|
name: "train-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
phase: TRAIN
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
mirror: true
|
||||||
|
crop_size: 227
|
||||||
|
mean_file: "/mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/mean.binaryproto"
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
source: "/mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/train_db"
|
||||||
|
batch_size: 128
|
||||||
|
backend: LMDB
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "val-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
phase: TEST
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
crop_size: 227
|
||||||
|
mean_file: "/mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/mean.binaryproto"
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
source: "/mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/val_db"
|
||||||
|
batch_size: 32
|
||||||
|
backend: LMDB
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 196
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "accuracy"
|
||||||
|
type: "Accuracy"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "accuracy"
|
||||||
|
include {
|
||||||
|
phase: TEST
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "loss"
|
||||||
|
type: "SoftmaxWithLoss"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "loss"
|
||||||
|
}
|
341
cars/lr-investigations/sigmoid/1e-2/50_0.1/deploy.prototxt
Normal file
@ -0,0 +1,341 @@
|
|||||||
|
input: "data"
|
||||||
|
input_shape {
|
||||||
|
dim: 1
|
||||||
|
dim: 3
|
||||||
|
dim: 227
|
||||||
|
dim: 227
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 196
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "softmax"
|
||||||
|
type: "Softmax"
|
||||||
|
bottom: "fc8"
|
||||||
|
top: "softmax"
|
||||||
|
}
|
388
cars/lr-investigations/sigmoid/1e-2/50_0.1/original.prototxt
Normal file
@ -0,0 +1,388 @@
|
|||||||
|
name: "AlexNet"
|
||||||
|
layer {
|
||||||
|
name: "train-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
stage: "train"
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
mirror: true
|
||||||
|
crop_size: 227
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
batch_size: 128
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "val-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
stage: "val"
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
crop_size: 227
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
batch_size: 32
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "accuracy"
|
||||||
|
type: "Accuracy"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "accuracy"
|
||||||
|
include {
|
||||||
|
stage: "val"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "loss"
|
||||||
|
type: "SoftmaxWithLoss"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "loss"
|
||||||
|
exclude {
|
||||||
|
stage: "deploy"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "softmax"
|
||||||
|
type: "Softmax"
|
||||||
|
bottom: "fc8"
|
||||||
|
top: "softmax"
|
||||||
|
include {
|
||||||
|
stage: "deploy"
|
||||||
|
}
|
||||||
|
}
|
15
cars/lr-investigations/sigmoid/1e-2/50_0.1/solver.prototxt
Normal file
@ -0,0 +1,15 @@
|
|||||||
|
test_iter: 51
|
||||||
|
test_interval: 102
|
||||||
|
base_lr: 0.0099999998
|
||||||
|
display: 12
|
||||||
|
max_iter: 10200
|
||||||
|
lr_policy: "sigmoid"
|
||||||
|
gamma: -0.00098039221
|
||||||
|
momentum: 0.89999998
|
||||||
|
weight_decay: 9.9999997e-05
|
||||||
|
stepsize: 5100
|
||||||
|
snapshot: 102
|
||||||
|
snapshot_prefix: "snapshot"
|
||||||
|
solver_mode: GPU
|
||||||
|
net: "train_val.prototxt"
|
||||||
|
solver_type: SGD
|
382
cars/lr-investigations/sigmoid/1e-2/50_0.1/train_val.prototxt
Normal file
@ -0,0 +1,382 @@
|
|||||||
|
layer {
|
||||||
|
name: "train-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
phase: TRAIN
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
mirror: true
|
||||||
|
crop_size: 227
|
||||||
|
mean_file: "/mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/mean.binaryproto"
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
source: "/mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/train_db"
|
||||||
|
batch_size: 128
|
||||||
|
backend: LMDB
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "val-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
phase: TEST
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
crop_size: 227
|
||||||
|
mean_file: "/mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/mean.binaryproto"
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
source: "/mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/val_db"
|
||||||
|
batch_size: 32
|
||||||
|
backend: LMDB
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 196
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "accuracy"
|
||||||
|
type: "Accuracy"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "accuracy"
|
||||||
|
include {
|
||||||
|
phase: TEST
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "loss"
|
||||||
|
type: "SoftmaxWithLoss"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "loss"
|
||||||
|
}
|
341
cars/lr-investigations/sigmoid/1e-2/50_0.2/deploy.prototxt
Normal file
@ -0,0 +1,341 @@
|
|||||||
|
input: "data"
|
||||||
|
input_shape {
|
||||||
|
dim: 1
|
||||||
|
dim: 3
|
||||||
|
dim: 227
|
||||||
|
dim: 227
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 196
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "softmax"
|
||||||
|
type: "Softmax"
|
||||||
|
bottom: "fc8"
|
||||||
|
top: "softmax"
|
||||||
|
}
|
388
cars/lr-investigations/sigmoid/1e-2/50_0.2/original.prototxt
Normal file
@ -0,0 +1,388 @@
|
|||||||
|
name: "AlexNet"
|
||||||
|
layer {
|
||||||
|
name: "train-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
stage: "train"
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
mirror: true
|
||||||
|
crop_size: 227
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
batch_size: 128
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "val-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
stage: "val"
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
crop_size: 227
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
batch_size: 32
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "accuracy"
|
||||||
|
type: "Accuracy"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "accuracy"
|
||||||
|
include {
|
||||||
|
stage: "val"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "loss"
|
||||||
|
type: "SoftmaxWithLoss"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "loss"
|
||||||
|
exclude {
|
||||||
|
stage: "deploy"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "softmax"
|
||||||
|
type: "Softmax"
|
||||||
|
bottom: "fc8"
|
||||||
|
top: "softmax"
|
||||||
|
include {
|
||||||
|
stage: "deploy"
|
||||||
|
}
|
||||||
|
}
|
15
cars/lr-investigations/sigmoid/1e-2/50_0.2/solver.prototxt
Normal file
@ -0,0 +1,15 @@
|
|||||||
|
test_iter: 51
|
||||||
|
test_interval: 102
|
||||||
|
base_lr: 0.0099999998
|
||||||
|
display: 12
|
||||||
|
max_iter: 10200
|
||||||
|
lr_policy: "sigmoid"
|
||||||
|
gamma: -0.0019607844
|
||||||
|
momentum: 0.89999998
|
||||||
|
weight_decay: 9.9999997e-05
|
||||||
|
stepsize: 5100
|
||||||
|
snapshot: 102
|
||||||
|
snapshot_prefix: "snapshot"
|
||||||
|
solver_mode: GPU
|
||||||
|
net: "train_val.prototxt"
|
||||||
|
solver_type: SGD
|
382
cars/lr-investigations/sigmoid/1e-2/50_0.2/train_val.prototxt
Normal file
@ -0,0 +1,382 @@
|
|||||||
|
layer {
|
||||||
|
name: "train-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
phase: TRAIN
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
mirror: true
|
||||||
|
crop_size: 227
|
||||||
|
mean_file: "/mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/mean.binaryproto"
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
source: "/mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/train_db"
|
||||||
|
batch_size: 128
|
||||||
|
backend: LMDB
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "val-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
phase: TEST
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
crop_size: 227
|
||||||
|
mean_file: "/mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/mean.binaryproto"
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
source: "/mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/val_db"
|
||||||
|
batch_size: 32
|
||||||
|
backend: LMDB
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 196
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "accuracy"
|
||||||
|
type: "Accuracy"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "accuracy"
|
||||||
|
include {
|
||||||
|
phase: TEST
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "loss"
|
||||||
|
type: "SoftmaxWithLoss"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "loss"
|
||||||
|
}
|
197
cars/lr-investigations/step-down/1e-2/33_0.1/conf.csv
Normal file
341
cars/lr-investigations/step-down/1e-2/33_0.1/deploy.prototxt
Normal file
@ -0,0 +1,341 @@
|
|||||||
|
input: "data"
|
||||||
|
input_shape {
|
||||||
|
dim: 1
|
||||||
|
dim: 3
|
||||||
|
dim: 227
|
||||||
|
dim: 227
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 196
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "softmax"
|
||||||
|
type: "Softmax"
|
||||||
|
bottom: "fc8"
|
||||||
|
top: "softmax"
|
||||||
|
}
|
BIN
cars/lr-investigations/step-down/1e-2/33_0.1/large.png
Normal file
After Width: | Height: | Size: 106 KiB |
388
cars/lr-investigations/step-down/1e-2/33_0.1/original.prototxt
Normal file
@ -0,0 +1,388 @@
|
|||||||
|
name: "AlexNet"
|
||||||
|
layer {
|
||||||
|
name: "train-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
stage: "train"
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
mirror: true
|
||||||
|
crop_size: 227
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
batch_size: 128
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "val-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
stage: "val"
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
crop_size: 227
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
batch_size: 32
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "accuracy"
|
||||||
|
type: "Accuracy"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "accuracy"
|
||||||
|
include {
|
||||||
|
stage: "val"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "loss"
|
||||||
|
type: "SoftmaxWithLoss"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "loss"
|
||||||
|
exclude {
|
||||||
|
stage: "deploy"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "softmax"
|
||||||
|
type: "Softmax"
|
||||||
|
bottom: "fc8"
|
||||||
|
top: "softmax"
|
||||||
|
include {
|
||||||
|
stage: "deploy"
|
||||||
|
}
|
||||||
|
}
|
1619
cars/lr-investigations/step-down/1e-2/33_0.1/pred.csv
Normal file
BIN
cars/lr-investigations/step-down/1e-2/33_0.1/small.png
Normal file
After Width: | Height: | Size: 100 KiB |
15
cars/lr-investigations/step-down/1e-2/33_0.1/solver.prototxt
Normal file
@ -0,0 +1,15 @@
|
|||||||
|
test_iter: 51
|
||||||
|
test_interval: 102
|
||||||
|
base_lr: 0.0099999998
|
||||||
|
display: 12
|
||||||
|
max_iter: 10200
|
||||||
|
lr_policy: "step"
|
||||||
|
gamma: 0.1
|
||||||
|
momentum: 0.89999998
|
||||||
|
weight_decay: 9.9999997e-05
|
||||||
|
stepsize: 3366
|
||||||
|
snapshot: 102
|
||||||
|
snapshot_prefix: "snapshot"
|
||||||
|
solver_mode: GPU
|
||||||
|
net: "train_val.prototxt"
|
||||||
|
solver_type: SGD
|
382
cars/lr-investigations/step-down/1e-2/33_0.1/train_val.prototxt
Normal file
@ -0,0 +1,382 @@
|
|||||||
|
layer {
|
||||||
|
name: "train-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
phase: TRAIN
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
mirror: true
|
||||||
|
crop_size: 227
|
||||||
|
mean_file: "/mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/mean.binaryproto"
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
source: "/mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/train_db"
|
||||||
|
batch_size: 128
|
||||||
|
backend: LMDB
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "val-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
phase: TEST
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
crop_size: 227
|
||||||
|
mean_file: "/mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/mean.binaryproto"
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
source: "/mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/val_db"
|
||||||
|
batch_size: 32
|
||||||
|
backend: LMDB
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 196
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "accuracy"
|
||||||
|
type: "Accuracy"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "accuracy"
|
||||||
|
include {
|
||||||
|
phase: TEST
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "loss"
|
||||||
|
type: "SoftmaxWithLoss"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "loss"
|
||||||
|
}
|
197
cars/lr-investigations/step-down/1e-2/33_0.25/conf.csv
Normal file
341
cars/lr-investigations/step-down/1e-2/33_0.25/deploy.prototxt
Normal file
@ -0,0 +1,341 @@
|
|||||||
|
input: "data"
|
||||||
|
input_shape {
|
||||||
|
dim: 1
|
||||||
|
dim: 3
|
||||||
|
dim: 227
|
||||||
|
dim: 227
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 196
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "softmax"
|
||||||
|
type: "Softmax"
|
||||||
|
bottom: "fc8"
|
||||||
|
top: "softmax"
|
||||||
|
}
|
BIN
cars/lr-investigations/step-down/1e-2/33_0.25/large.png
Normal file
After Width: | Height: | Size: 105 KiB |
388
cars/lr-investigations/step-down/1e-2/33_0.25/original.prototxt
Normal file
@ -0,0 +1,388 @@
|
|||||||
|
name: "AlexNet"
|
||||||
|
layer {
|
||||||
|
name: "train-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
stage: "train"
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
mirror: true
|
||||||
|
crop_size: 227
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
batch_size: 128
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "val-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
stage: "val"
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
crop_size: 227
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
batch_size: 32
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "accuracy"
|
||||||
|
type: "Accuracy"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "accuracy"
|
||||||
|
include {
|
||||||
|
stage: "val"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "loss"
|
||||||
|
type: "SoftmaxWithLoss"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "loss"
|
||||||
|
exclude {
|
||||||
|
stage: "deploy"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "softmax"
|
||||||
|
type: "Softmax"
|
||||||
|
bottom: "fc8"
|
||||||
|
top: "softmax"
|
||||||
|
include {
|
||||||
|
stage: "deploy"
|
||||||
|
}
|
||||||
|
}
|
1619
cars/lr-investigations/step-down/1e-2/33_0.25/pred.csv
Normal file
BIN
cars/lr-investigations/step-down/1e-2/33_0.25/small.png
Normal file
After Width: | Height: | Size: 98 KiB |
@ -0,0 +1,15 @@
|
|||||||
|
test_iter: 51
|
||||||
|
test_interval: 102
|
||||||
|
base_lr: 0.0099999998
|
||||||
|
display: 12
|
||||||
|
max_iter: 10200
|
||||||
|
lr_policy: "step"
|
||||||
|
gamma: 0.25
|
||||||
|
momentum: 0.89999998
|
||||||
|
weight_decay: 9.9999997e-05
|
||||||
|
stepsize: 3366
|
||||||
|
snapshot: 102
|
||||||
|
snapshot_prefix: "snapshot"
|
||||||
|
solver_mode: GPU
|
||||||
|
net: "train_val.prototxt"
|
||||||
|
solver_type: SGD
|
382
cars/lr-investigations/step-down/1e-2/33_0.25/train_val.prototxt
Normal file
@ -0,0 +1,382 @@
|
|||||||
|
layer {
|
||||||
|
name: "train-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
phase: TRAIN
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
mirror: true
|
||||||
|
crop_size: 227
|
||||||
|
mean_file: "/mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/mean.binaryproto"
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
source: "/mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/train_db"
|
||||||
|
batch_size: 128
|
||||||
|
backend: LMDB
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "val-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
phase: TEST
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
crop_size: 227
|
||||||
|
mean_file: "/mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/mean.binaryproto"
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
source: "/mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/val_db"
|
||||||
|
batch_size: 32
|
||||||
|
backend: LMDB
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 196
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "accuracy"
|
||||||
|
type: "Accuracy"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "accuracy"
|
||||||
|
include {
|
||||||
|
phase: TEST
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "loss"
|
||||||
|
type: "SoftmaxWithLoss"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "loss"
|
||||||
|
}
|
197
cars/lr-investigations/step-down/1e-2/33_0.5/conf.csv
Normal file
341
cars/lr-investigations/step-down/1e-2/33_0.5/deploy.prototxt
Normal file
@ -0,0 +1,341 @@
|
|||||||
|
input: "data"
|
||||||
|
input_shape {
|
||||||
|
dim: 1
|
||||||
|
dim: 3
|
||||||
|
dim: 227
|
||||||
|
dim: 227
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 196
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "softmax"
|
||||||
|
type: "Softmax"
|
||||||
|
bottom: "fc8"
|
||||||
|
top: "softmax"
|
||||||
|
}
|
BIN
cars/lr-investigations/step-down/1e-2/33_0.5/large.png
Normal file
After Width: | Height: | Size: 111 KiB |
388
cars/lr-investigations/step-down/1e-2/33_0.5/original.prototxt
Normal file
@ -0,0 +1,388 @@
|
|||||||
|
name: "AlexNet"
|
||||||
|
layer {
|
||||||
|
name: "train-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
stage: "train"
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
mirror: true
|
||||||
|
crop_size: 227
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
batch_size: 128
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "val-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
stage: "val"
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
crop_size: 227
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
batch_size: 32
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "accuracy"
|
||||||
|
type: "Accuracy"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "accuracy"
|
||||||
|
include {
|
||||||
|
stage: "val"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "loss"
|
||||||
|
type: "SoftmaxWithLoss"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "loss"
|
||||||
|
exclude {
|
||||||
|
stage: "deploy"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "softmax"
|
||||||
|
type: "Softmax"
|
||||||
|
bottom: "fc8"
|
||||||
|
top: "softmax"
|
||||||
|
include {
|
||||||
|
stage: "deploy"
|
||||||
|
}
|
||||||
|
}
|
1619
cars/lr-investigations/step-down/1e-2/33_0.5/pred.csv
Normal file
BIN
cars/lr-investigations/step-down/1e-2/33_0.5/small.png
Normal file
After Width: | Height: | Size: 104 KiB |
15
cars/lr-investigations/step-down/1e-2/33_0.5/solver.prototxt
Normal file
@ -0,0 +1,15 @@
|
|||||||
|
test_iter: 51
|
||||||
|
test_interval: 102
|
||||||
|
base_lr: 0.0099999998
|
||||||
|
display: 12
|
||||||
|
max_iter: 10200
|
||||||
|
lr_policy: "step"
|
||||||
|
gamma: 0.5
|
||||||
|
momentum: 0.89999998
|
||||||
|
weight_decay: 9.9999997e-05
|
||||||
|
stepsize: 3366
|
||||||
|
snapshot: 102
|
||||||
|
snapshot_prefix: "snapshot"
|
||||||
|
solver_mode: GPU
|
||||||
|
net: "train_val.prototxt"
|
||||||
|
solver_type: SGD
|
382
cars/lr-investigations/step-down/1e-2/33_0.5/train_val.prototxt
Normal file
@ -0,0 +1,382 @@
|
|||||||
|
layer {
|
||||||
|
name: "train-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
phase: TRAIN
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
mirror: true
|
||||||
|
crop_size: 227
|
||||||
|
mean_file: "/mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/mean.binaryproto"
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
source: "/mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/train_db"
|
||||||
|
batch_size: 128
|
||||||
|
backend: LMDB
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "val-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
phase: TEST
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
crop_size: 227
|
||||||
|
mean_file: "/mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/mean.binaryproto"
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
source: "/mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/val_db"
|
||||||
|
batch_size: 32
|
||||||
|
backend: LMDB
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 196
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "accuracy"
|
||||||
|
type: "Accuracy"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "accuracy"
|
||||||
|
include {
|
||||||
|
phase: TEST
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "loss"
|
||||||
|
type: "SoftmaxWithLoss"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "loss"
|
||||||
|
}
|
197
cars/lr-investigations/step-down/1e-2/33_0.75/conf.csv
Normal file
341
cars/lr-investigations/step-down/1e-2/33_0.75/deploy.prototxt
Normal file
@ -0,0 +1,341 @@
|
|||||||
|
input: "data"
|
||||||
|
input_shape {
|
||||||
|
dim: 1
|
||||||
|
dim: 3
|
||||||
|
dim: 227
|
||||||
|
dim: 227
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 196
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "softmax"
|
||||||
|
type: "Softmax"
|
||||||
|
bottom: "fc8"
|
||||||
|
top: "softmax"
|
||||||
|
}
|
BIN
cars/lr-investigations/step-down/1e-2/33_0.75/large.png
Normal file
After Width: | Height: | Size: 118 KiB |
388
cars/lr-investigations/step-down/1e-2/33_0.75/original.prototxt
Normal file
@ -0,0 +1,388 @@
|
|||||||
|
name: "AlexNet"
|
||||||
|
layer {
|
||||||
|
name: "train-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
stage: "train"
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
mirror: true
|
||||||
|
crop_size: 227
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
batch_size: 128
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "val-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
stage: "val"
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
crop_size: 227
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
batch_size: 32
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "accuracy"
|
||||||
|
type: "Accuracy"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "accuracy"
|
||||||
|
include {
|
||||||
|
stage: "val"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "loss"
|
||||||
|
type: "SoftmaxWithLoss"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "loss"
|
||||||
|
exclude {
|
||||||
|
stage: "deploy"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "softmax"
|
||||||
|
type: "Softmax"
|
||||||
|
bottom: "fc8"
|
||||||
|
top: "softmax"
|
||||||
|
include {
|
||||||
|
stage: "deploy"
|
||||||
|
}
|
||||||
|
}
|
1619
cars/lr-investigations/step-down/1e-2/33_0.75/pred.csv
Normal file
BIN
cars/lr-investigations/step-down/1e-2/33_0.75/small.png
Normal file
After Width: | Height: | Size: 108 KiB |
@ -0,0 +1,15 @@
|
|||||||
|
test_iter: 51
|
||||||
|
test_interval: 102
|
||||||
|
base_lr: 0.0099999998
|
||||||
|
display: 12
|
||||||
|
max_iter: 10200
|
||||||
|
lr_policy: "step"
|
||||||
|
gamma: 0.75
|
||||||
|
momentum: 0.89999998
|
||||||
|
weight_decay: 9.9999997e-05
|
||||||
|
stepsize: 3366
|
||||||
|
snapshot: 102
|
||||||
|
snapshot_prefix: "snapshot"
|
||||||
|
solver_mode: GPU
|
||||||
|
net: "train_val.prototxt"
|
||||||
|
solver_type: SGD
|
382
cars/lr-investigations/step-down/1e-2/33_0.75/train_val.prototxt
Normal file
@ -0,0 +1,382 @@
|
|||||||
|
layer {
|
||||||
|
name: "train-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
phase: TRAIN
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
mirror: true
|
||||||
|
crop_size: 227
|
||||||
|
mean_file: "/mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/mean.binaryproto"
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
source: "/mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/train_db"
|
||||||
|
batch_size: 128
|
||||||
|
backend: LMDB
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "val-data"
|
||||||
|
type: "Data"
|
||||||
|
top: "data"
|
||||||
|
top: "label"
|
||||||
|
include {
|
||||||
|
phase: TEST
|
||||||
|
}
|
||||||
|
transform_param {
|
||||||
|
crop_size: 227
|
||||||
|
mean_file: "/mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/mean.binaryproto"
|
||||||
|
}
|
||||||
|
data_param {
|
||||||
|
source: "/mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/val_db"
|
||||||
|
batch_size: 32
|
||||||
|
backend: LMDB
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv1"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "data"
|
||||||
|
top: "conv1"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 96
|
||||||
|
kernel_size: 11
|
||||||
|
stride: 4
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu1"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "conv1"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm1"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv1"
|
||||||
|
top: "norm1"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool1"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm1"
|
||||||
|
top: "pool1"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv2"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool1"
|
||||||
|
top: "conv2"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 2
|
||||||
|
kernel_size: 5
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu2"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "conv2"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "norm2"
|
||||||
|
type: "LRN"
|
||||||
|
bottom: "conv2"
|
||||||
|
top: "norm2"
|
||||||
|
lrn_param {
|
||||||
|
local_size: 5
|
||||||
|
alpha: 9.9999997e-05
|
||||||
|
beta: 0.75
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool2"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "norm2"
|
||||||
|
top: "pool2"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv3"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "pool2"
|
||||||
|
top: "conv3"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu3"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv3"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv4"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv3"
|
||||||
|
top: "conv4"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 384
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu4"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv4"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "conv5"
|
||||||
|
type: "Convolution"
|
||||||
|
bottom: "conv4"
|
||||||
|
top: "conv5"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
convolution_param {
|
||||||
|
num_output: 256
|
||||||
|
pad: 1
|
||||||
|
kernel_size: 3
|
||||||
|
group: 2
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu5"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "conv5"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "pool5"
|
||||||
|
type: "Pooling"
|
||||||
|
bottom: "conv5"
|
||||||
|
top: "pool5"
|
||||||
|
pooling_param {
|
||||||
|
pool: MAX
|
||||||
|
kernel_size: 3
|
||||||
|
stride: 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc6"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "pool5"
|
||||||
|
top: "fc6"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu6"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop6"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc6"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc7"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc6"
|
||||||
|
top: "fc7"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 4096
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0049999999
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "relu7"
|
||||||
|
type: "ReLU"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "drop7"
|
||||||
|
type: "Dropout"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc7"
|
||||||
|
dropout_param {
|
||||||
|
dropout_ratio: 0.5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "fc8"
|
||||||
|
type: "InnerProduct"
|
||||||
|
bottom: "fc7"
|
||||||
|
top: "fc8"
|
||||||
|
param {
|
||||||
|
lr_mult: 1.0
|
||||||
|
decay_mult: 1.0
|
||||||
|
}
|
||||||
|
param {
|
||||||
|
lr_mult: 2.0
|
||||||
|
decay_mult: 0.0
|
||||||
|
}
|
||||||
|
inner_product_param {
|
||||||
|
num_output: 196
|
||||||
|
weight_filler {
|
||||||
|
type: "gaussian"
|
||||||
|
std: 0.0099999998
|
||||||
|
}
|
||||||
|
bias_filler {
|
||||||
|
type: "constant"
|
||||||
|
value: 0.0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "accuracy"
|
||||||
|
type: "Accuracy"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "accuracy"
|
||||||
|
include {
|
||||||
|
phase: TEST
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layer {
|
||||||
|
name: "loss"
|
||||||
|
type: "SoftmaxWithLoss"
|
||||||
|
bottom: "fc8"
|
||||||
|
bottom: "label"
|
||||||
|
top: "loss"
|
||||||
|
}
|
@ -5,7 +5,7 @@ description = ""
|
|||||||
authors = ["andy <andy@sarsoo.xyz>"]
|
authors = ["andy <andy@sarsoo.xyz>"]
|
||||||
|
|
||||||
[tool.poetry.dependencies]
|
[tool.poetry.dependencies]
|
||||||
python = "^3.9"
|
python = "^3.8"
|
||||||
numpy = "^1.20.2"
|
numpy = "^1.20.2"
|
||||||
matplotlib = "^3.4.1"
|
matplotlib = "^3.4.1"
|
||||||
jupyterlab = "^3.0.12"
|
jupyterlab = "^3.0.12"
|
||||||
|