added dense layer variations
192
cars/architecture-investigations/architecture.ipynb
Normal file
338
cars/architecture-investigations/fc/0-layer/alexnet-slp.prototxt
Normal file
@ -0,0 +1,338 @@
|
||||
# AlexNet
|
||||
name: "AlexNet"
|
||||
layer {
|
||||
name: "train-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
transform_param {
|
||||
mirror: true
|
||||
crop_size: 227
|
||||
}
|
||||
data_param {
|
||||
batch_size: 128
|
||||
}
|
||||
include { stage: "train" }
|
||||
}
|
||||
layer {
|
||||
name: "val-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
transform_param {
|
||||
crop_size: 227
|
||||
}
|
||||
data_param {
|
||||
batch_size: 32
|
||||
}
|
||||
include { stage: "val" }
|
||||
}
|
||||
|
||||
################
|
||||
# CONV 1
|
||||
################
|
||||
|
||||
layer {
|
||||
name: "conv1"
|
||||
type: "Convolution"
|
||||
bottom: "data"
|
||||
top: "conv1"
|
||||
param {
|
||||
lr_mult: 1
|
||||
decay_mult: 1
|
||||
}
|
||||
param {
|
||||
lr_mult: 2
|
||||
decay_mult: 0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 96
|
||||
kernel_size: 11
|
||||
stride: 4
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.01
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu1"
|
||||
type: "ReLU"
|
||||
bottom: "conv1"
|
||||
top: "conv1"
|
||||
}
|
||||
layer {
|
||||
name: "norm1"
|
||||
type: "LRN"
|
||||
bottom: "conv1"
|
||||
top: "norm1"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 0.0001
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool1"
|
||||
type: "Pooling"
|
||||
bottom: "norm1"
|
||||
top: "pool1"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
|
||||
################
|
||||
# CONV 2
|
||||
################
|
||||
|
||||
layer {
|
||||
name: "conv2"
|
||||
type: "Convolution"
|
||||
bottom: "pool1"
|
||||
top: "conv2"
|
||||
param {
|
||||
lr_mult: 1
|
||||
decay_mult: 1
|
||||
}
|
||||
param {
|
||||
lr_mult: 2
|
||||
decay_mult: 0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 2
|
||||
kernel_size: 5
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.01
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.1
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu2"
|
||||
type: "ReLU"
|
||||
bottom: "conv2"
|
||||
top: "conv2"
|
||||
}
|
||||
layer {
|
||||
name: "norm2"
|
||||
type: "LRN"
|
||||
bottom: "conv2"
|
||||
top: "norm2"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 0.0001
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool2"
|
||||
type: "Pooling"
|
||||
bottom: "norm2"
|
||||
top: "pool2"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
|
||||
################
|
||||
# CONV 3
|
||||
################
|
||||
|
||||
layer {
|
||||
name: "conv3"
|
||||
type: "Convolution"
|
||||
bottom: "pool2"
|
||||
top: "conv3"
|
||||
param {
|
||||
lr_mult: 1
|
||||
decay_mult: 1
|
||||
}
|
||||
param {
|
||||
lr_mult: 2
|
||||
decay_mult: 0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.01
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu3"
|
||||
type: "ReLU"
|
||||
bottom: "conv3"
|
||||
top: "conv3"
|
||||
}
|
||||
|
||||
################
|
||||
# CONV 4
|
||||
################
|
||||
|
||||
layer {
|
||||
name: "conv4"
|
||||
type: "Convolution"
|
||||
bottom: "conv3"
|
||||
top: "conv4"
|
||||
param {
|
||||
lr_mult: 1
|
||||
decay_mult: 1
|
||||
}
|
||||
param {
|
||||
lr_mult: 2
|
||||
decay_mult: 0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.01
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.1
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu4"
|
||||
type: "ReLU"
|
||||
bottom: "conv4"
|
||||
top: "conv4"
|
||||
}
|
||||
|
||||
################
|
||||
# CONV 5
|
||||
################
|
||||
|
||||
layer {
|
||||
name: "conv5"
|
||||
type: "Convolution"
|
||||
bottom: "conv4"
|
||||
top: "conv5"
|
||||
param {
|
||||
lr_mult: 1
|
||||
decay_mult: 1
|
||||
}
|
||||
param {
|
||||
lr_mult: 2
|
||||
decay_mult: 0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.01
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.1
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu5"
|
||||
type: "ReLU"
|
||||
bottom: "conv5"
|
||||
top: "conv5"
|
||||
}
|
||||
layer {
|
||||
name: "pool5"
|
||||
type: "Pooling"
|
||||
bottom: "conv5"
|
||||
top: "pool5"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
|
||||
################
|
||||
# OUTPUT
|
||||
################
|
||||
|
||||
layer {
|
||||
name: "fc8"
|
||||
type: "InnerProduct"
|
||||
bottom: "pool5"
|
||||
top: "fc8"
|
||||
param {
|
||||
lr_mult: 1
|
||||
decay_mult: 1
|
||||
}
|
||||
param {
|
||||
lr_mult: 2
|
||||
decay_mult: 0
|
||||
}
|
||||
inner_product_param {
|
||||
# Since num_output is unset, DIGITS will automatically set it to the
|
||||
# number of classes in your dataset.
|
||||
# Uncomment this line to set it explicitly:
|
||||
#num_output: 1000
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.01
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
################
|
||||
# STATS
|
||||
################
|
||||
|
||||
layer {
|
||||
name: "accuracy"
|
||||
type: "Accuracy"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "accuracy"
|
||||
include { stage: "val" }
|
||||
}
|
||||
layer {
|
||||
name: "loss"
|
||||
type: "SoftmaxWithLoss"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "loss"
|
||||
exclude { stage: "deploy" }
|
||||
}
|
||||
layer {
|
||||
name: "softmax"
|
||||
type: "Softmax"
|
||||
bottom: "fc8"
|
||||
top: "softmax"
|
||||
include { stage: "deploy" }
|
||||
}
|
BIN
cars/architecture-investigations/fc/0-layer/alexnetfc0-4096.png
Normal file
After Width: | Height: | Size: 181 KiB |
4310
cars/architecture-investigations/fc/0-layer/caffe_output.log
Normal file
197
cars/architecture-investigations/fc/0-layer/conf.csv
Normal file
261
cars/architecture-investigations/fc/0-layer/deploy.prototxt
Normal file
@ -0,0 +1,261 @@
|
||||
input: "data"
|
||||
input_shape {
|
||||
dim: 1
|
||||
dim: 3
|
||||
dim: 227
|
||||
dim: 227
|
||||
}
|
||||
layer {
|
||||
name: "conv1"
|
||||
type: "Convolution"
|
||||
bottom: "data"
|
||||
top: "conv1"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 96
|
||||
kernel_size: 11
|
||||
stride: 4
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu1"
|
||||
type: "ReLU"
|
||||
bottom: "conv1"
|
||||
top: "conv1"
|
||||
}
|
||||
layer {
|
||||
name: "norm1"
|
||||
type: "LRN"
|
||||
bottom: "conv1"
|
||||
top: "norm1"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool1"
|
||||
type: "Pooling"
|
||||
bottom: "norm1"
|
||||
top: "pool1"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv2"
|
||||
type: "Convolution"
|
||||
bottom: "pool1"
|
||||
top: "conv2"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 2
|
||||
kernel_size: 5
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu2"
|
||||
type: "ReLU"
|
||||
bottom: "conv2"
|
||||
top: "conv2"
|
||||
}
|
||||
layer {
|
||||
name: "norm2"
|
||||
type: "LRN"
|
||||
bottom: "conv2"
|
||||
top: "norm2"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool2"
|
||||
type: "Pooling"
|
||||
bottom: "norm2"
|
||||
top: "pool2"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv3"
|
||||
type: "Convolution"
|
||||
bottom: "pool2"
|
||||
top: "conv3"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu3"
|
||||
type: "ReLU"
|
||||
bottom: "conv3"
|
||||
top: "conv3"
|
||||
}
|
||||
layer {
|
||||
name: "conv4"
|
||||
type: "Convolution"
|
||||
bottom: "conv3"
|
||||
top: "conv4"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu4"
|
||||
type: "ReLU"
|
||||
bottom: "conv4"
|
||||
top: "conv4"
|
||||
}
|
||||
layer {
|
||||
name: "conv5"
|
||||
type: "Convolution"
|
||||
bottom: "conv4"
|
||||
top: "conv5"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu5"
|
||||
type: "ReLU"
|
||||
bottom: "conv5"
|
||||
top: "conv5"
|
||||
}
|
||||
layer {
|
||||
name: "pool5"
|
||||
type: "Pooling"
|
||||
bottom: "conv5"
|
||||
top: "pool5"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc8"
|
||||
type: "InnerProduct"
|
||||
bottom: "pool5"
|
||||
top: "fc8"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 196
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "softmax"
|
||||
type: "Softmax"
|
||||
bottom: "fc8"
|
||||
top: "softmax"
|
||||
}
|
BIN
cars/architecture-investigations/fc/0-layer/large.png
Normal file
After Width: | Height: | Size: 251 KiB |
308
cars/architecture-investigations/fc/0-layer/original.prototxt
Normal file
@ -0,0 +1,308 @@
|
||||
name: "AlexNet"
|
||||
layer {
|
||||
name: "train-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
stage: "train"
|
||||
}
|
||||
transform_param {
|
||||
mirror: true
|
||||
crop_size: 227
|
||||
}
|
||||
data_param {
|
||||
batch_size: 128
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "val-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
stage: "val"
|
||||
}
|
||||
transform_param {
|
||||
crop_size: 227
|
||||
}
|
||||
data_param {
|
||||
batch_size: 32
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv1"
|
||||
type: "Convolution"
|
||||
bottom: "data"
|
||||
top: "conv1"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 96
|
||||
kernel_size: 11
|
||||
stride: 4
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu1"
|
||||
type: "ReLU"
|
||||
bottom: "conv1"
|
||||
top: "conv1"
|
||||
}
|
||||
layer {
|
||||
name: "norm1"
|
||||
type: "LRN"
|
||||
bottom: "conv1"
|
||||
top: "norm1"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool1"
|
||||
type: "Pooling"
|
||||
bottom: "norm1"
|
||||
top: "pool1"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv2"
|
||||
type: "Convolution"
|
||||
bottom: "pool1"
|
||||
top: "conv2"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 2
|
||||
kernel_size: 5
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu2"
|
||||
type: "ReLU"
|
||||
bottom: "conv2"
|
||||
top: "conv2"
|
||||
}
|
||||
layer {
|
||||
name: "norm2"
|
||||
type: "LRN"
|
||||
bottom: "conv2"
|
||||
top: "norm2"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool2"
|
||||
type: "Pooling"
|
||||
bottom: "norm2"
|
||||
top: "pool2"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv3"
|
||||
type: "Convolution"
|
||||
bottom: "pool2"
|
||||
top: "conv3"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu3"
|
||||
type: "ReLU"
|
||||
bottom: "conv3"
|
||||
top: "conv3"
|
||||
}
|
||||
layer {
|
||||
name: "conv4"
|
||||
type: "Convolution"
|
||||
bottom: "conv3"
|
||||
top: "conv4"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu4"
|
||||
type: "ReLU"
|
||||
bottom: "conv4"
|
||||
top: "conv4"
|
||||
}
|
||||
layer {
|
||||
name: "conv5"
|
||||
type: "Convolution"
|
||||
bottom: "conv4"
|
||||
top: "conv5"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu5"
|
||||
type: "ReLU"
|
||||
bottom: "conv5"
|
||||
top: "conv5"
|
||||
}
|
||||
layer {
|
||||
name: "pool5"
|
||||
type: "Pooling"
|
||||
bottom: "conv5"
|
||||
top: "pool5"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc8"
|
||||
type: "InnerProduct"
|
||||
bottom: "pool5"
|
||||
top: "fc8"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "accuracy"
|
||||
type: "Accuracy"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "accuracy"
|
||||
include {
|
||||
stage: "val"
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "loss"
|
||||
type: "SoftmaxWithLoss"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "loss"
|
||||
exclude {
|
||||
stage: "deploy"
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "softmax"
|
||||
type: "Softmax"
|
||||
bottom: "fc8"
|
||||
top: "softmax"
|
||||
include {
|
||||
stage: "deploy"
|
||||
}
|
||||
}
|
1619
cars/architecture-investigations/fc/0-layer/pred.csv
Normal file
BIN
cars/architecture-investigations/fc/0-layer/small.png
Normal file
After Width: | Height: | Size: 215 KiB |
14
cars/architecture-investigations/fc/0-layer/solver.prototxt
Normal file
@ -0,0 +1,14 @@
|
||||
test_iter: 51
|
||||
test_interval: 102
|
||||
base_lr: 0.00999999977648
|
||||
display: 12
|
||||
max_iter: 10200
|
||||
lr_policy: "exp"
|
||||
gamma: 0.999801933765
|
||||
momentum: 0.899999976158
|
||||
weight_decay: 9.99999974738e-05
|
||||
snapshot: 102
|
||||
snapshot_prefix: "snapshot"
|
||||
solver_mode: GPU
|
||||
net: "train_val.prototxt"
|
||||
solver_type: SGD
|
302
cars/architecture-investigations/fc/0-layer/train_val.prototxt
Normal file
@ -0,0 +1,302 @@
|
||||
layer {
|
||||
name: "train-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
phase: TRAIN
|
||||
}
|
||||
transform_param {
|
||||
mirror: true
|
||||
crop_size: 227
|
||||
mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto"
|
||||
}
|
||||
data_param {
|
||||
source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/train_db"
|
||||
batch_size: 128
|
||||
backend: LMDB
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "val-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
phase: TEST
|
||||
}
|
||||
transform_param {
|
||||
crop_size: 227
|
||||
mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto"
|
||||
}
|
||||
data_param {
|
||||
source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db"
|
||||
batch_size: 32
|
||||
backend: LMDB
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv1"
|
||||
type: "Convolution"
|
||||
bottom: "data"
|
||||
top: "conv1"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 96
|
||||
kernel_size: 11
|
||||
stride: 4
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu1"
|
||||
type: "ReLU"
|
||||
bottom: "conv1"
|
||||
top: "conv1"
|
||||
}
|
||||
layer {
|
||||
name: "norm1"
|
||||
type: "LRN"
|
||||
bottom: "conv1"
|
||||
top: "norm1"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool1"
|
||||
type: "Pooling"
|
||||
bottom: "norm1"
|
||||
top: "pool1"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv2"
|
||||
type: "Convolution"
|
||||
bottom: "pool1"
|
||||
top: "conv2"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 2
|
||||
kernel_size: 5
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu2"
|
||||
type: "ReLU"
|
||||
bottom: "conv2"
|
||||
top: "conv2"
|
||||
}
|
||||
layer {
|
||||
name: "norm2"
|
||||
type: "LRN"
|
||||
bottom: "conv2"
|
||||
top: "norm2"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool2"
|
||||
type: "Pooling"
|
||||
bottom: "norm2"
|
||||
top: "pool2"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv3"
|
||||
type: "Convolution"
|
||||
bottom: "pool2"
|
||||
top: "conv3"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu3"
|
||||
type: "ReLU"
|
||||
bottom: "conv3"
|
||||
top: "conv3"
|
||||
}
|
||||
layer {
|
||||
name: "conv4"
|
||||
type: "Convolution"
|
||||
bottom: "conv3"
|
||||
top: "conv4"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu4"
|
||||
type: "ReLU"
|
||||
bottom: "conv4"
|
||||
top: "conv4"
|
||||
}
|
||||
layer {
|
||||
name: "conv5"
|
||||
type: "Convolution"
|
||||
bottom: "conv4"
|
||||
top: "conv5"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu5"
|
||||
type: "ReLU"
|
||||
bottom: "conv5"
|
||||
top: "conv5"
|
||||
}
|
||||
layer {
|
||||
name: "pool5"
|
||||
type: "Pooling"
|
||||
bottom: "conv5"
|
||||
top: "pool5"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc8"
|
||||
type: "InnerProduct"
|
||||
bottom: "pool5"
|
||||
top: "fc8"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 196
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "accuracy"
|
||||
type: "Accuracy"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "accuracy"
|
||||
include {
|
||||
phase: TEST
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "loss"
|
||||
type: "SoftmaxWithLoss"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "loss"
|
||||
}
|
4438
cars/architecture-investigations/fc/1-layer/1024/caffe_output.log
Normal file
197
cars/architecture-investigations/fc/1-layer/1024/conf.csv
Normal file
301
cars/architecture-investigations/fc/1-layer/1024/deploy.prototxt
Normal file
@ -0,0 +1,301 @@
|
||||
input: "data"
|
||||
input_shape {
|
||||
dim: 1
|
||||
dim: 3
|
||||
dim: 227
|
||||
dim: 227
|
||||
}
|
||||
layer {
|
||||
name: "conv1"
|
||||
type: "Convolution"
|
||||
bottom: "data"
|
||||
top: "conv1"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 96
|
||||
kernel_size: 11
|
||||
stride: 4
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu1"
|
||||
type: "ReLU"
|
||||
bottom: "conv1"
|
||||
top: "conv1"
|
||||
}
|
||||
layer {
|
||||
name: "norm1"
|
||||
type: "LRN"
|
||||
bottom: "conv1"
|
||||
top: "norm1"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool1"
|
||||
type: "Pooling"
|
||||
bottom: "norm1"
|
||||
top: "pool1"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv2"
|
||||
type: "Convolution"
|
||||
bottom: "pool1"
|
||||
top: "conv2"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 2
|
||||
kernel_size: 5
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu2"
|
||||
type: "ReLU"
|
||||
bottom: "conv2"
|
||||
top: "conv2"
|
||||
}
|
||||
layer {
|
||||
name: "norm2"
|
||||
type: "LRN"
|
||||
bottom: "conv2"
|
||||
top: "norm2"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool2"
|
||||
type: "Pooling"
|
||||
bottom: "norm2"
|
||||
top: "pool2"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv3"
|
||||
type: "Convolution"
|
||||
bottom: "pool2"
|
||||
top: "conv3"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu3"
|
||||
type: "ReLU"
|
||||
bottom: "conv3"
|
||||
top: "conv3"
|
||||
}
|
||||
layer {
|
||||
name: "conv4"
|
||||
type: "Convolution"
|
||||
bottom: "conv3"
|
||||
top: "conv4"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu4"
|
||||
type: "ReLU"
|
||||
bottom: "conv4"
|
||||
top: "conv4"
|
||||
}
|
||||
layer {
|
||||
name: "conv5"
|
||||
type: "Convolution"
|
||||
bottom: "conv4"
|
||||
top: "conv5"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu5"
|
||||
type: "ReLU"
|
||||
bottom: "conv5"
|
||||
top: "conv5"
|
||||
}
|
||||
layer {
|
||||
name: "pool5"
|
||||
type: "Pooling"
|
||||
bottom: "conv5"
|
||||
top: "pool5"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc6"
|
||||
type: "InnerProduct"
|
||||
bottom: "pool5"
|
||||
top: "fc6"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 1024
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu6"
|
||||
type: "ReLU"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
}
|
||||
layer {
|
||||
name: "drop6"
|
||||
type: "Dropout"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc8"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc6"
|
||||
top: "fc8"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 196
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "softmax"
|
||||
type: "Softmax"
|
||||
bottom: "fc8"
|
||||
top: "softmax"
|
||||
}
|
BIN
cars/architecture-investigations/fc/1-layer/1024/large.png
Normal file
After Width: | Height: | Size: 268 KiB |
@ -0,0 +1,348 @@
|
||||
name: "AlexNet"
|
||||
layer {
|
||||
name: "train-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
stage: "train"
|
||||
}
|
||||
transform_param {
|
||||
mirror: true
|
||||
crop_size: 227
|
||||
}
|
||||
data_param {
|
||||
batch_size: 128
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "val-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
stage: "val"
|
||||
}
|
||||
transform_param {
|
||||
crop_size: 227
|
||||
}
|
||||
data_param {
|
||||
batch_size: 32
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv1"
|
||||
type: "Convolution"
|
||||
bottom: "data"
|
||||
top: "conv1"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 96
|
||||
kernel_size: 11
|
||||
stride: 4
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu1"
|
||||
type: "ReLU"
|
||||
bottom: "conv1"
|
||||
top: "conv1"
|
||||
}
|
||||
layer {
|
||||
name: "norm1"
|
||||
type: "LRN"
|
||||
bottom: "conv1"
|
||||
top: "norm1"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool1"
|
||||
type: "Pooling"
|
||||
bottom: "norm1"
|
||||
top: "pool1"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv2"
|
||||
type: "Convolution"
|
||||
bottom: "pool1"
|
||||
top: "conv2"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 2
|
||||
kernel_size: 5
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu2"
|
||||
type: "ReLU"
|
||||
bottom: "conv2"
|
||||
top: "conv2"
|
||||
}
|
||||
layer {
|
||||
name: "norm2"
|
||||
type: "LRN"
|
||||
bottom: "conv2"
|
||||
top: "norm2"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool2"
|
||||
type: "Pooling"
|
||||
bottom: "norm2"
|
||||
top: "pool2"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv3"
|
||||
type: "Convolution"
|
||||
bottom: "pool2"
|
||||
top: "conv3"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu3"
|
||||
type: "ReLU"
|
||||
bottom: "conv3"
|
||||
top: "conv3"
|
||||
}
|
||||
layer {
|
||||
name: "conv4"
|
||||
type: "Convolution"
|
||||
bottom: "conv3"
|
||||
top: "conv4"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu4"
|
||||
type: "ReLU"
|
||||
bottom: "conv4"
|
||||
top: "conv4"
|
||||
}
|
||||
layer {
|
||||
name: "conv5"
|
||||
type: "Convolution"
|
||||
bottom: "conv4"
|
||||
top: "conv5"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu5"
|
||||
type: "ReLU"
|
||||
bottom: "conv5"
|
||||
top: "conv5"
|
||||
}
|
||||
layer {
|
||||
name: "pool5"
|
||||
type: "Pooling"
|
||||
bottom: "conv5"
|
||||
top: "pool5"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc6"
|
||||
type: "InnerProduct"
|
||||
bottom: "pool5"
|
||||
top: "fc6"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 1024
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu6"
|
||||
type: "ReLU"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
}
|
||||
layer {
|
||||
name: "drop6"
|
||||
type: "Dropout"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc8"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc6"
|
||||
top: "fc8"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "accuracy"
|
||||
type: "Accuracy"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "accuracy"
|
||||
include {
|
||||
stage: "val"
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "loss"
|
||||
type: "SoftmaxWithLoss"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "loss"
|
||||
exclude {
|
||||
stage: "deploy"
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "softmax"
|
||||
type: "Softmax"
|
||||
bottom: "fc8"
|
||||
top: "softmax"
|
||||
include {
|
||||
stage: "deploy"
|
||||
}
|
||||
}
|
1619
cars/architecture-investigations/fc/1-layer/1024/pred.csv
Normal file
BIN
cars/architecture-investigations/fc/1-layer/1024/small.png
Normal file
After Width: | Height: | Size: 219 KiB |
@ -0,0 +1,14 @@
|
||||
test_iter: 51
|
||||
test_interval: 102
|
||||
base_lr: 0.00999999977648
|
||||
display: 12
|
||||
max_iter: 10200
|
||||
lr_policy: "exp"
|
||||
gamma: 0.999801933765
|
||||
momentum: 0.899999976158
|
||||
weight_decay: 9.99999974738e-05
|
||||
snapshot: 102
|
||||
snapshot_prefix: "snapshot"
|
||||
solver_mode: GPU
|
||||
net: "train_val.prototxt"
|
||||
solver_type: SGD
|
@ -0,0 +1,342 @@
|
||||
layer {
|
||||
name: "train-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
phase: TRAIN
|
||||
}
|
||||
transform_param {
|
||||
mirror: true
|
||||
crop_size: 227
|
||||
mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto"
|
||||
}
|
||||
data_param {
|
||||
source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/train_db"
|
||||
batch_size: 128
|
||||
backend: LMDB
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "val-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
phase: TEST
|
||||
}
|
||||
transform_param {
|
||||
crop_size: 227
|
||||
mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto"
|
||||
}
|
||||
data_param {
|
||||
source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db"
|
||||
batch_size: 32
|
||||
backend: LMDB
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv1"
|
||||
type: "Convolution"
|
||||
bottom: "data"
|
||||
top: "conv1"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 96
|
||||
kernel_size: 11
|
||||
stride: 4
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu1"
|
||||
type: "ReLU"
|
||||
bottom: "conv1"
|
||||
top: "conv1"
|
||||
}
|
||||
layer {
|
||||
name: "norm1"
|
||||
type: "LRN"
|
||||
bottom: "conv1"
|
||||
top: "norm1"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool1"
|
||||
type: "Pooling"
|
||||
bottom: "norm1"
|
||||
top: "pool1"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv2"
|
||||
type: "Convolution"
|
||||
bottom: "pool1"
|
||||
top: "conv2"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 2
|
||||
kernel_size: 5
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu2"
|
||||
type: "ReLU"
|
||||
bottom: "conv2"
|
||||
top: "conv2"
|
||||
}
|
||||
layer {
|
||||
name: "norm2"
|
||||
type: "LRN"
|
||||
bottom: "conv2"
|
||||
top: "norm2"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool2"
|
||||
type: "Pooling"
|
||||
bottom: "norm2"
|
||||
top: "pool2"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv3"
|
||||
type: "Convolution"
|
||||
bottom: "pool2"
|
||||
top: "conv3"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu3"
|
||||
type: "ReLU"
|
||||
bottom: "conv3"
|
||||
top: "conv3"
|
||||
}
|
||||
layer {
|
||||
name: "conv4"
|
||||
type: "Convolution"
|
||||
bottom: "conv3"
|
||||
top: "conv4"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu4"
|
||||
type: "ReLU"
|
||||
bottom: "conv4"
|
||||
top: "conv4"
|
||||
}
|
||||
layer {
|
||||
name: "conv5"
|
||||
type: "Convolution"
|
||||
bottom: "conv4"
|
||||
top: "conv5"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu5"
|
||||
type: "ReLU"
|
||||
bottom: "conv5"
|
||||
top: "conv5"
|
||||
}
|
||||
layer {
|
||||
name: "pool5"
|
||||
type: "Pooling"
|
||||
bottom: "conv5"
|
||||
top: "pool5"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc6"
|
||||
type: "InnerProduct"
|
||||
bottom: "pool5"
|
||||
top: "fc6"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 1024
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu6"
|
||||
type: "ReLU"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
}
|
||||
layer {
|
||||
name: "drop6"
|
||||
type: "Dropout"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc8"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc6"
|
||||
top: "fc8"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 196
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "accuracy"
|
||||
type: "Accuracy"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "accuracy"
|
||||
include {
|
||||
phase: TEST
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "loss"
|
||||
type: "SoftmaxWithLoss"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "loss"
|
||||
}
|
4438
cars/architecture-investigations/fc/1-layer/2048/caffe_output.log
Normal file
197
cars/architecture-investigations/fc/1-layer/2048/conf.csv
Normal file
301
cars/architecture-investigations/fc/1-layer/2048/deploy.prototxt
Normal file
@ -0,0 +1,301 @@
|
||||
input: "data"
|
||||
input_shape {
|
||||
dim: 1
|
||||
dim: 3
|
||||
dim: 227
|
||||
dim: 227
|
||||
}
|
||||
layer {
|
||||
name: "conv1"
|
||||
type: "Convolution"
|
||||
bottom: "data"
|
||||
top: "conv1"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 96
|
||||
kernel_size: 11
|
||||
stride: 4
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu1"
|
||||
type: "ReLU"
|
||||
bottom: "conv1"
|
||||
top: "conv1"
|
||||
}
|
||||
layer {
|
||||
name: "norm1"
|
||||
type: "LRN"
|
||||
bottom: "conv1"
|
||||
top: "norm1"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool1"
|
||||
type: "Pooling"
|
||||
bottom: "norm1"
|
||||
top: "pool1"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv2"
|
||||
type: "Convolution"
|
||||
bottom: "pool1"
|
||||
top: "conv2"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 2
|
||||
kernel_size: 5
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu2"
|
||||
type: "ReLU"
|
||||
bottom: "conv2"
|
||||
top: "conv2"
|
||||
}
|
||||
layer {
|
||||
name: "norm2"
|
||||
type: "LRN"
|
||||
bottom: "conv2"
|
||||
top: "norm2"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool2"
|
||||
type: "Pooling"
|
||||
bottom: "norm2"
|
||||
top: "pool2"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv3"
|
||||
type: "Convolution"
|
||||
bottom: "pool2"
|
||||
top: "conv3"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu3"
|
||||
type: "ReLU"
|
||||
bottom: "conv3"
|
||||
top: "conv3"
|
||||
}
|
||||
layer {
|
||||
name: "conv4"
|
||||
type: "Convolution"
|
||||
bottom: "conv3"
|
||||
top: "conv4"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu4"
|
||||
type: "ReLU"
|
||||
bottom: "conv4"
|
||||
top: "conv4"
|
||||
}
|
||||
layer {
|
||||
name: "conv5"
|
||||
type: "Convolution"
|
||||
bottom: "conv4"
|
||||
top: "conv5"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu5"
|
||||
type: "ReLU"
|
||||
bottom: "conv5"
|
||||
top: "conv5"
|
||||
}
|
||||
layer {
|
||||
name: "pool5"
|
||||
type: "Pooling"
|
||||
bottom: "conv5"
|
||||
top: "pool5"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc6"
|
||||
type: "InnerProduct"
|
||||
bottom: "pool5"
|
||||
top: "fc6"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 2048
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu6"
|
||||
type: "ReLU"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
}
|
||||
layer {
|
||||
name: "drop6"
|
||||
type: "Dropout"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc8"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc6"
|
||||
top: "fc8"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 196
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "softmax"
|
||||
type: "Softmax"
|
||||
bottom: "fc8"
|
||||
top: "softmax"
|
||||
}
|
BIN
cars/architecture-investigations/fc/1-layer/2048/large.png
Normal file
After Width: | Height: | Size: 278 KiB |
@ -0,0 +1,348 @@
|
||||
name: "AlexNet"
|
||||
layer {
|
||||
name: "train-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
stage: "train"
|
||||
}
|
||||
transform_param {
|
||||
mirror: true
|
||||
crop_size: 227
|
||||
}
|
||||
data_param {
|
||||
batch_size: 128
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "val-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
stage: "val"
|
||||
}
|
||||
transform_param {
|
||||
crop_size: 227
|
||||
}
|
||||
data_param {
|
||||
batch_size: 32
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv1"
|
||||
type: "Convolution"
|
||||
bottom: "data"
|
||||
top: "conv1"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 96
|
||||
kernel_size: 11
|
||||
stride: 4
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu1"
|
||||
type: "ReLU"
|
||||
bottom: "conv1"
|
||||
top: "conv1"
|
||||
}
|
||||
layer {
|
||||
name: "norm1"
|
||||
type: "LRN"
|
||||
bottom: "conv1"
|
||||
top: "norm1"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool1"
|
||||
type: "Pooling"
|
||||
bottom: "norm1"
|
||||
top: "pool1"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv2"
|
||||
type: "Convolution"
|
||||
bottom: "pool1"
|
||||
top: "conv2"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 2
|
||||
kernel_size: 5
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu2"
|
||||
type: "ReLU"
|
||||
bottom: "conv2"
|
||||
top: "conv2"
|
||||
}
|
||||
layer {
|
||||
name: "norm2"
|
||||
type: "LRN"
|
||||
bottom: "conv2"
|
||||
top: "norm2"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool2"
|
||||
type: "Pooling"
|
||||
bottom: "norm2"
|
||||
top: "pool2"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv3"
|
||||
type: "Convolution"
|
||||
bottom: "pool2"
|
||||
top: "conv3"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu3"
|
||||
type: "ReLU"
|
||||
bottom: "conv3"
|
||||
top: "conv3"
|
||||
}
|
||||
layer {
|
||||
name: "conv4"
|
||||
type: "Convolution"
|
||||
bottom: "conv3"
|
||||
top: "conv4"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu4"
|
||||
type: "ReLU"
|
||||
bottom: "conv4"
|
||||
top: "conv4"
|
||||
}
|
||||
layer {
|
||||
name: "conv5"
|
||||
type: "Convolution"
|
||||
bottom: "conv4"
|
||||
top: "conv5"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu5"
|
||||
type: "ReLU"
|
||||
bottom: "conv5"
|
||||
top: "conv5"
|
||||
}
|
||||
layer {
|
||||
name: "pool5"
|
||||
type: "Pooling"
|
||||
bottom: "conv5"
|
||||
top: "pool5"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc6"
|
||||
type: "InnerProduct"
|
||||
bottom: "pool5"
|
||||
top: "fc6"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 2048
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu6"
|
||||
type: "ReLU"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
}
|
||||
layer {
|
||||
name: "drop6"
|
||||
type: "Dropout"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc8"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc6"
|
||||
top: "fc8"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "accuracy"
|
||||
type: "Accuracy"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "accuracy"
|
||||
include {
|
||||
stage: "val"
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "loss"
|
||||
type: "SoftmaxWithLoss"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "loss"
|
||||
exclude {
|
||||
stage: "deploy"
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "softmax"
|
||||
type: "Softmax"
|
||||
bottom: "fc8"
|
||||
top: "softmax"
|
||||
include {
|
||||
stage: "deploy"
|
||||
}
|
||||
}
|
1619
cars/architecture-investigations/fc/1-layer/2048/pred.csv
Normal file
BIN
cars/architecture-investigations/fc/1-layer/2048/small.png
Normal file
After Width: | Height: | Size: 229 KiB |
@ -0,0 +1,14 @@
|
||||
test_iter: 51
|
||||
test_interval: 102
|
||||
base_lr: 0.00999999977648
|
||||
display: 12
|
||||
max_iter: 10200
|
||||
lr_policy: "exp"
|
||||
gamma: 0.999801933765
|
||||
momentum: 0.899999976158
|
||||
weight_decay: 9.99999974738e-05
|
||||
snapshot: 102
|
||||
snapshot_prefix: "snapshot"
|
||||
solver_mode: GPU
|
||||
net: "train_val.prototxt"
|
||||
solver_type: SGD
|
@ -0,0 +1,342 @@
|
||||
layer {
|
||||
name: "train-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
phase: TRAIN
|
||||
}
|
||||
transform_param {
|
||||
mirror: true
|
||||
crop_size: 227
|
||||
mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto"
|
||||
}
|
||||
data_param {
|
||||
source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/train_db"
|
||||
batch_size: 128
|
||||
backend: LMDB
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "val-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
phase: TEST
|
||||
}
|
||||
transform_param {
|
||||
crop_size: 227
|
||||
mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto"
|
||||
}
|
||||
data_param {
|
||||
source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db"
|
||||
batch_size: 32
|
||||
backend: LMDB
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv1"
|
||||
type: "Convolution"
|
||||
bottom: "data"
|
||||
top: "conv1"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 96
|
||||
kernel_size: 11
|
||||
stride: 4
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu1"
|
||||
type: "ReLU"
|
||||
bottom: "conv1"
|
||||
top: "conv1"
|
||||
}
|
||||
layer {
|
||||
name: "norm1"
|
||||
type: "LRN"
|
||||
bottom: "conv1"
|
||||
top: "norm1"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool1"
|
||||
type: "Pooling"
|
||||
bottom: "norm1"
|
||||
top: "pool1"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv2"
|
||||
type: "Convolution"
|
||||
bottom: "pool1"
|
||||
top: "conv2"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 2
|
||||
kernel_size: 5
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu2"
|
||||
type: "ReLU"
|
||||
bottom: "conv2"
|
||||
top: "conv2"
|
||||
}
|
||||
layer {
|
||||
name: "norm2"
|
||||
type: "LRN"
|
||||
bottom: "conv2"
|
||||
top: "norm2"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool2"
|
||||
type: "Pooling"
|
||||
bottom: "norm2"
|
||||
top: "pool2"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv3"
|
||||
type: "Convolution"
|
||||
bottom: "pool2"
|
||||
top: "conv3"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu3"
|
||||
type: "ReLU"
|
||||
bottom: "conv3"
|
||||
top: "conv3"
|
||||
}
|
||||
layer {
|
||||
name: "conv4"
|
||||
type: "Convolution"
|
||||
bottom: "conv3"
|
||||
top: "conv4"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu4"
|
||||
type: "ReLU"
|
||||
bottom: "conv4"
|
||||
top: "conv4"
|
||||
}
|
||||
layer {
|
||||
name: "conv5"
|
||||
type: "Convolution"
|
||||
bottom: "conv4"
|
||||
top: "conv5"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu5"
|
||||
type: "ReLU"
|
||||
bottom: "conv5"
|
||||
top: "conv5"
|
||||
}
|
||||
layer {
|
||||
name: "pool5"
|
||||
type: "Pooling"
|
||||
bottom: "conv5"
|
||||
top: "pool5"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc6"
|
||||
type: "InnerProduct"
|
||||
bottom: "pool5"
|
||||
top: "fc6"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 2048
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu6"
|
||||
type: "ReLU"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
}
|
||||
layer {
|
||||
name: "drop6"
|
||||
type: "Dropout"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc8"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc6"
|
||||
top: "fc8"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 196
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "accuracy"
|
||||
type: "Accuracy"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "accuracy"
|
||||
include {
|
||||
phase: TEST
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "loss"
|
||||
type: "SoftmaxWithLoss"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "loss"
|
||||
}
|
4438
cars/architecture-investigations/fc/1-layer/4096/caffe_output.log
Normal file
197
cars/architecture-investigations/fc/1-layer/4096/conf.csv
Normal file
301
cars/architecture-investigations/fc/1-layer/4096/deploy.prototxt
Normal file
@ -0,0 +1,301 @@
|
||||
input: "data"
|
||||
input_shape {
|
||||
dim: 1
|
||||
dim: 3
|
||||
dim: 227
|
||||
dim: 227
|
||||
}
|
||||
layer {
|
||||
name: "conv1"
|
||||
type: "Convolution"
|
||||
bottom: "data"
|
||||
top: "conv1"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 96
|
||||
kernel_size: 11
|
||||
stride: 4
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu1"
|
||||
type: "ReLU"
|
||||
bottom: "conv1"
|
||||
top: "conv1"
|
||||
}
|
||||
layer {
|
||||
name: "norm1"
|
||||
type: "LRN"
|
||||
bottom: "conv1"
|
||||
top: "norm1"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool1"
|
||||
type: "Pooling"
|
||||
bottom: "norm1"
|
||||
top: "pool1"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv2"
|
||||
type: "Convolution"
|
||||
bottom: "pool1"
|
||||
top: "conv2"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 2
|
||||
kernel_size: 5
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu2"
|
||||
type: "ReLU"
|
||||
bottom: "conv2"
|
||||
top: "conv2"
|
||||
}
|
||||
layer {
|
||||
name: "norm2"
|
||||
type: "LRN"
|
||||
bottom: "conv2"
|
||||
top: "norm2"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool2"
|
||||
type: "Pooling"
|
||||
bottom: "norm2"
|
||||
top: "pool2"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv3"
|
||||
type: "Convolution"
|
||||
bottom: "pool2"
|
||||
top: "conv3"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu3"
|
||||
type: "ReLU"
|
||||
bottom: "conv3"
|
||||
top: "conv3"
|
||||
}
|
||||
layer {
|
||||
name: "conv4"
|
||||
type: "Convolution"
|
||||
bottom: "conv3"
|
||||
top: "conv4"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu4"
|
||||
type: "ReLU"
|
||||
bottom: "conv4"
|
||||
top: "conv4"
|
||||
}
|
||||
layer {
|
||||
name: "conv5"
|
||||
type: "Convolution"
|
||||
bottom: "conv4"
|
||||
top: "conv5"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu5"
|
||||
type: "ReLU"
|
||||
bottom: "conv5"
|
||||
top: "conv5"
|
||||
}
|
||||
layer {
|
||||
name: "pool5"
|
||||
type: "Pooling"
|
||||
bottom: "conv5"
|
||||
top: "pool5"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc6"
|
||||
type: "InnerProduct"
|
||||
bottom: "pool5"
|
||||
top: "fc6"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 4096
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu6"
|
||||
type: "ReLU"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
}
|
||||
layer {
|
||||
name: "drop6"
|
||||
type: "Dropout"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc8"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc6"
|
||||
top: "fc8"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 196
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "softmax"
|
||||
type: "Softmax"
|
||||
bottom: "fc8"
|
||||
top: "softmax"
|
||||
}
|
BIN
cars/architecture-investigations/fc/1-layer/4096/large.png
Normal file
After Width: | Height: | Size: 272 KiB |
@ -0,0 +1,348 @@
|
||||
name: "AlexNet"
|
||||
layer {
|
||||
name: "train-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
stage: "train"
|
||||
}
|
||||
transform_param {
|
||||
mirror: true
|
||||
crop_size: 227
|
||||
}
|
||||
data_param {
|
||||
batch_size: 128
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "val-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
stage: "val"
|
||||
}
|
||||
transform_param {
|
||||
crop_size: 227
|
||||
}
|
||||
data_param {
|
||||
batch_size: 32
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv1"
|
||||
type: "Convolution"
|
||||
bottom: "data"
|
||||
top: "conv1"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 96
|
||||
kernel_size: 11
|
||||
stride: 4
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu1"
|
||||
type: "ReLU"
|
||||
bottom: "conv1"
|
||||
top: "conv1"
|
||||
}
|
||||
layer {
|
||||
name: "norm1"
|
||||
type: "LRN"
|
||||
bottom: "conv1"
|
||||
top: "norm1"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool1"
|
||||
type: "Pooling"
|
||||
bottom: "norm1"
|
||||
top: "pool1"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv2"
|
||||
type: "Convolution"
|
||||
bottom: "pool1"
|
||||
top: "conv2"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 2
|
||||
kernel_size: 5
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu2"
|
||||
type: "ReLU"
|
||||
bottom: "conv2"
|
||||
top: "conv2"
|
||||
}
|
||||
layer {
|
||||
name: "norm2"
|
||||
type: "LRN"
|
||||
bottom: "conv2"
|
||||
top: "norm2"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool2"
|
||||
type: "Pooling"
|
||||
bottom: "norm2"
|
||||
top: "pool2"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv3"
|
||||
type: "Convolution"
|
||||
bottom: "pool2"
|
||||
top: "conv3"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu3"
|
||||
type: "ReLU"
|
||||
bottom: "conv3"
|
||||
top: "conv3"
|
||||
}
|
||||
layer {
|
||||
name: "conv4"
|
||||
type: "Convolution"
|
||||
bottom: "conv3"
|
||||
top: "conv4"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu4"
|
||||
type: "ReLU"
|
||||
bottom: "conv4"
|
||||
top: "conv4"
|
||||
}
|
||||
layer {
|
||||
name: "conv5"
|
||||
type: "Convolution"
|
||||
bottom: "conv4"
|
||||
top: "conv5"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu5"
|
||||
type: "ReLU"
|
||||
bottom: "conv5"
|
||||
top: "conv5"
|
||||
}
|
||||
layer {
|
||||
name: "pool5"
|
||||
type: "Pooling"
|
||||
bottom: "conv5"
|
||||
top: "pool5"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc6"
|
||||
type: "InnerProduct"
|
||||
bottom: "pool5"
|
||||
top: "fc6"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 4096
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu6"
|
||||
type: "ReLU"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
}
|
||||
layer {
|
||||
name: "drop6"
|
||||
type: "Dropout"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc8"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc6"
|
||||
top: "fc8"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "accuracy"
|
||||
type: "Accuracy"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "accuracy"
|
||||
include {
|
||||
stage: "val"
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "loss"
|
||||
type: "SoftmaxWithLoss"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "loss"
|
||||
exclude {
|
||||
stage: "deploy"
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "softmax"
|
||||
type: "Softmax"
|
||||
bottom: "fc8"
|
||||
top: "softmax"
|
||||
include {
|
||||
stage: "deploy"
|
||||
}
|
||||
}
|
1619
cars/architecture-investigations/fc/1-layer/4096/pred.csv
Normal file
BIN
cars/architecture-investigations/fc/1-layer/4096/small.png
Normal file
After Width: | Height: | Size: 221 KiB |
@ -0,0 +1,14 @@
|
||||
test_iter: 51
|
||||
test_interval: 102
|
||||
base_lr: 0.00999999977648
|
||||
display: 12
|
||||
max_iter: 10200
|
||||
lr_policy: "exp"
|
||||
gamma: 0.999801933765
|
||||
momentum: 0.899999976158
|
||||
weight_decay: 9.99999974738e-05
|
||||
snapshot: 102
|
||||
snapshot_prefix: "snapshot"
|
||||
solver_mode: GPU
|
||||
net: "train_val.prototxt"
|
||||
solver_type: SGD
|
@ -0,0 +1,342 @@
|
||||
layer {
|
||||
name: "train-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
phase: TRAIN
|
||||
}
|
||||
transform_param {
|
||||
mirror: true
|
||||
crop_size: 227
|
||||
mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto"
|
||||
}
|
||||
data_param {
|
||||
source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/train_db"
|
||||
batch_size: 128
|
||||
backend: LMDB
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "val-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
phase: TEST
|
||||
}
|
||||
transform_param {
|
||||
crop_size: 227
|
||||
mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto"
|
||||
}
|
||||
data_param {
|
||||
source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db"
|
||||
batch_size: 32
|
||||
backend: LMDB
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv1"
|
||||
type: "Convolution"
|
||||
bottom: "data"
|
||||
top: "conv1"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 96
|
||||
kernel_size: 11
|
||||
stride: 4
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu1"
|
||||
type: "ReLU"
|
||||
bottom: "conv1"
|
||||
top: "conv1"
|
||||
}
|
||||
layer {
|
||||
name: "norm1"
|
||||
type: "LRN"
|
||||
bottom: "conv1"
|
||||
top: "norm1"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool1"
|
||||
type: "Pooling"
|
||||
bottom: "norm1"
|
||||
top: "pool1"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv2"
|
||||
type: "Convolution"
|
||||
bottom: "pool1"
|
||||
top: "conv2"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 2
|
||||
kernel_size: 5
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu2"
|
||||
type: "ReLU"
|
||||
bottom: "conv2"
|
||||
top: "conv2"
|
||||
}
|
||||
layer {
|
||||
name: "norm2"
|
||||
type: "LRN"
|
||||
bottom: "conv2"
|
||||
top: "norm2"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool2"
|
||||
type: "Pooling"
|
||||
bottom: "norm2"
|
||||
top: "pool2"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv3"
|
||||
type: "Convolution"
|
||||
bottom: "pool2"
|
||||
top: "conv3"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu3"
|
||||
type: "ReLU"
|
||||
bottom: "conv3"
|
||||
top: "conv3"
|
||||
}
|
||||
layer {
|
||||
name: "conv4"
|
||||
type: "Convolution"
|
||||
bottom: "conv3"
|
||||
top: "conv4"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu4"
|
||||
type: "ReLU"
|
||||
bottom: "conv4"
|
||||
top: "conv4"
|
||||
}
|
||||
layer {
|
||||
name: "conv5"
|
||||
type: "Convolution"
|
||||
bottom: "conv4"
|
||||
top: "conv5"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu5"
|
||||
type: "ReLU"
|
||||
bottom: "conv5"
|
||||
top: "conv5"
|
||||
}
|
||||
layer {
|
||||
name: "pool5"
|
||||
type: "Pooling"
|
||||
bottom: "conv5"
|
||||
top: "pool5"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc6"
|
||||
type: "InnerProduct"
|
||||
bottom: "pool5"
|
||||
top: "fc6"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 4096
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu6"
|
||||
type: "ReLU"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
}
|
||||
layer {
|
||||
name: "drop6"
|
||||
type: "Dropout"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc8"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc6"
|
||||
top: "fc8"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 196
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "accuracy"
|
||||
type: "Accuracy"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "accuracy"
|
||||
include {
|
||||
phase: TEST
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "loss"
|
||||
type: "SoftmaxWithLoss"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "loss"
|
||||
}
|
4438
cars/architecture-investigations/fc/1-layer/512/caffe_output.log
Normal file
197
cars/architecture-investigations/fc/1-layer/512/conf.csv
Normal file
301
cars/architecture-investigations/fc/1-layer/512/deploy.prototxt
Normal file
@ -0,0 +1,301 @@
|
||||
input: "data"
|
||||
input_shape {
|
||||
dim: 1
|
||||
dim: 3
|
||||
dim: 227
|
||||
dim: 227
|
||||
}
|
||||
layer {
|
||||
name: "conv1"
|
||||
type: "Convolution"
|
||||
bottom: "data"
|
||||
top: "conv1"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 96
|
||||
kernel_size: 11
|
||||
stride: 4
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu1"
|
||||
type: "ReLU"
|
||||
bottom: "conv1"
|
||||
top: "conv1"
|
||||
}
|
||||
layer {
|
||||
name: "norm1"
|
||||
type: "LRN"
|
||||
bottom: "conv1"
|
||||
top: "norm1"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool1"
|
||||
type: "Pooling"
|
||||
bottom: "norm1"
|
||||
top: "pool1"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv2"
|
||||
type: "Convolution"
|
||||
bottom: "pool1"
|
||||
top: "conv2"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 2
|
||||
kernel_size: 5
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu2"
|
||||
type: "ReLU"
|
||||
bottom: "conv2"
|
||||
top: "conv2"
|
||||
}
|
||||
layer {
|
||||
name: "norm2"
|
||||
type: "LRN"
|
||||
bottom: "conv2"
|
||||
top: "norm2"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool2"
|
||||
type: "Pooling"
|
||||
bottom: "norm2"
|
||||
top: "pool2"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv3"
|
||||
type: "Convolution"
|
||||
bottom: "pool2"
|
||||
top: "conv3"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu3"
|
||||
type: "ReLU"
|
||||
bottom: "conv3"
|
||||
top: "conv3"
|
||||
}
|
||||
layer {
|
||||
name: "conv4"
|
||||
type: "Convolution"
|
||||
bottom: "conv3"
|
||||
top: "conv4"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu4"
|
||||
type: "ReLU"
|
||||
bottom: "conv4"
|
||||
top: "conv4"
|
||||
}
|
||||
layer {
|
||||
name: "conv5"
|
||||
type: "Convolution"
|
||||
bottom: "conv4"
|
||||
top: "conv5"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu5"
|
||||
type: "ReLU"
|
||||
bottom: "conv5"
|
||||
top: "conv5"
|
||||
}
|
||||
layer {
|
||||
name: "pool5"
|
||||
type: "Pooling"
|
||||
bottom: "conv5"
|
||||
top: "pool5"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc6"
|
||||
type: "InnerProduct"
|
||||
bottom: "pool5"
|
||||
top: "fc6"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 512
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu6"
|
||||
type: "ReLU"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
}
|
||||
layer {
|
||||
name: "drop6"
|
||||
type: "Dropout"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc8"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc6"
|
||||
top: "fc8"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 196
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "softmax"
|
||||
type: "Softmax"
|
||||
bottom: "fc8"
|
||||
top: "softmax"
|
||||
}
|
BIN
cars/architecture-investigations/fc/1-layer/512/large.png
Normal file
After Width: | Height: | Size: 269 KiB |
@ -0,0 +1,348 @@
|
||||
name: "AlexNet"
|
||||
layer {
|
||||
name: "train-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
stage: "train"
|
||||
}
|
||||
transform_param {
|
||||
mirror: true
|
||||
crop_size: 227
|
||||
}
|
||||
data_param {
|
||||
batch_size: 128
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "val-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
stage: "val"
|
||||
}
|
||||
transform_param {
|
||||
crop_size: 227
|
||||
}
|
||||
data_param {
|
||||
batch_size: 32
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv1"
|
||||
type: "Convolution"
|
||||
bottom: "data"
|
||||
top: "conv1"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 96
|
||||
kernel_size: 11
|
||||
stride: 4
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu1"
|
||||
type: "ReLU"
|
||||
bottom: "conv1"
|
||||
top: "conv1"
|
||||
}
|
||||
layer {
|
||||
name: "norm1"
|
||||
type: "LRN"
|
||||
bottom: "conv1"
|
||||
top: "norm1"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool1"
|
||||
type: "Pooling"
|
||||
bottom: "norm1"
|
||||
top: "pool1"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv2"
|
||||
type: "Convolution"
|
||||
bottom: "pool1"
|
||||
top: "conv2"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 2
|
||||
kernel_size: 5
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu2"
|
||||
type: "ReLU"
|
||||
bottom: "conv2"
|
||||
top: "conv2"
|
||||
}
|
||||
layer {
|
||||
name: "norm2"
|
||||
type: "LRN"
|
||||
bottom: "conv2"
|
||||
top: "norm2"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool2"
|
||||
type: "Pooling"
|
||||
bottom: "norm2"
|
||||
top: "pool2"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv3"
|
||||
type: "Convolution"
|
||||
bottom: "pool2"
|
||||
top: "conv3"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu3"
|
||||
type: "ReLU"
|
||||
bottom: "conv3"
|
||||
top: "conv3"
|
||||
}
|
||||
layer {
|
||||
name: "conv4"
|
||||
type: "Convolution"
|
||||
bottom: "conv3"
|
||||
top: "conv4"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu4"
|
||||
type: "ReLU"
|
||||
bottom: "conv4"
|
||||
top: "conv4"
|
||||
}
|
||||
layer {
|
||||
name: "conv5"
|
||||
type: "Convolution"
|
||||
bottom: "conv4"
|
||||
top: "conv5"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu5"
|
||||
type: "ReLU"
|
||||
bottom: "conv5"
|
||||
top: "conv5"
|
||||
}
|
||||
layer {
|
||||
name: "pool5"
|
||||
type: "Pooling"
|
||||
bottom: "conv5"
|
||||
top: "pool5"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc6"
|
||||
type: "InnerProduct"
|
||||
bottom: "pool5"
|
||||
top: "fc6"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 512
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu6"
|
||||
type: "ReLU"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
}
|
||||
layer {
|
||||
name: "drop6"
|
||||
type: "Dropout"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc8"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc6"
|
||||
top: "fc8"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "accuracy"
|
||||
type: "Accuracy"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "accuracy"
|
||||
include {
|
||||
stage: "val"
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "loss"
|
||||
type: "SoftmaxWithLoss"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "loss"
|
||||
exclude {
|
||||
stage: "deploy"
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "softmax"
|
||||
type: "Softmax"
|
||||
bottom: "fc8"
|
||||
top: "softmax"
|
||||
include {
|
||||
stage: "deploy"
|
||||
}
|
||||
}
|
1619
cars/architecture-investigations/fc/1-layer/512/pred.csv
Normal file
BIN
cars/architecture-investigations/fc/1-layer/512/small.png
Normal file
After Width: | Height: | Size: 217 KiB |
@ -0,0 +1,14 @@
|
||||
test_iter: 51
|
||||
test_interval: 102
|
||||
base_lr: 0.00999999977648
|
||||
display: 12
|
||||
max_iter: 10200
|
||||
lr_policy: "exp"
|
||||
gamma: 0.999801933765
|
||||
momentum: 0.899999976158
|
||||
weight_decay: 9.99999974738e-05
|
||||
snapshot: 102
|
||||
snapshot_prefix: "snapshot"
|
||||
solver_mode: GPU
|
||||
net: "train_val.prototxt"
|
||||
solver_type: SGD
|
@ -0,0 +1,342 @@
|
||||
layer {
|
||||
name: "train-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
phase: TRAIN
|
||||
}
|
||||
transform_param {
|
||||
mirror: true
|
||||
crop_size: 227
|
||||
mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto"
|
||||
}
|
||||
data_param {
|
||||
source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/train_db"
|
||||
batch_size: 128
|
||||
backend: LMDB
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "val-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
phase: TEST
|
||||
}
|
||||
transform_param {
|
||||
crop_size: 227
|
||||
mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto"
|
||||
}
|
||||
data_param {
|
||||
source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db"
|
||||
batch_size: 32
|
||||
backend: LMDB
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv1"
|
||||
type: "Convolution"
|
||||
bottom: "data"
|
||||
top: "conv1"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 96
|
||||
kernel_size: 11
|
||||
stride: 4
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu1"
|
||||
type: "ReLU"
|
||||
bottom: "conv1"
|
||||
top: "conv1"
|
||||
}
|
||||
layer {
|
||||
name: "norm1"
|
||||
type: "LRN"
|
||||
bottom: "conv1"
|
||||
top: "norm1"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool1"
|
||||
type: "Pooling"
|
||||
bottom: "norm1"
|
||||
top: "pool1"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv2"
|
||||
type: "Convolution"
|
||||
bottom: "pool1"
|
||||
top: "conv2"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 2
|
||||
kernel_size: 5
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu2"
|
||||
type: "ReLU"
|
||||
bottom: "conv2"
|
||||
top: "conv2"
|
||||
}
|
||||
layer {
|
||||
name: "norm2"
|
||||
type: "LRN"
|
||||
bottom: "conv2"
|
||||
top: "norm2"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool2"
|
||||
type: "Pooling"
|
||||
bottom: "norm2"
|
||||
top: "pool2"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv3"
|
||||
type: "Convolution"
|
||||
bottom: "pool2"
|
||||
top: "conv3"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu3"
|
||||
type: "ReLU"
|
||||
bottom: "conv3"
|
||||
top: "conv3"
|
||||
}
|
||||
layer {
|
||||
name: "conv4"
|
||||
type: "Convolution"
|
||||
bottom: "conv3"
|
||||
top: "conv4"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu4"
|
||||
type: "ReLU"
|
||||
bottom: "conv4"
|
||||
top: "conv4"
|
||||
}
|
||||
layer {
|
||||
name: "conv5"
|
||||
type: "Convolution"
|
||||
bottom: "conv4"
|
||||
top: "conv5"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu5"
|
||||
type: "ReLU"
|
||||
bottom: "conv5"
|
||||
top: "conv5"
|
||||
}
|
||||
layer {
|
||||
name: "pool5"
|
||||
type: "Pooling"
|
||||
bottom: "conv5"
|
||||
top: "pool5"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc6"
|
||||
type: "InnerProduct"
|
||||
bottom: "pool5"
|
||||
top: "fc6"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 512
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu6"
|
||||
type: "ReLU"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
}
|
||||
layer {
|
||||
name: "drop6"
|
||||
type: "Dropout"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc8"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc6"
|
||||
top: "fc8"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 196
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "accuracy"
|
||||
type: "Accuracy"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "accuracy"
|
||||
include {
|
||||
phase: TEST
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "loss"
|
||||
type: "SoftmaxWithLoss"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "loss"
|
||||
}
|
4438
cars/architecture-investigations/fc/1-layer/8192/caffe_output.log
Normal file
197
cars/architecture-investigations/fc/1-layer/8192/conf.csv
Normal file
301
cars/architecture-investigations/fc/1-layer/8192/deploy.prototxt
Normal file
@ -0,0 +1,301 @@
|
||||
input: "data"
|
||||
input_shape {
|
||||
dim: 1
|
||||
dim: 3
|
||||
dim: 227
|
||||
dim: 227
|
||||
}
|
||||
layer {
|
||||
name: "conv1"
|
||||
type: "Convolution"
|
||||
bottom: "data"
|
||||
top: "conv1"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 96
|
||||
kernel_size: 11
|
||||
stride: 4
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu1"
|
||||
type: "ReLU"
|
||||
bottom: "conv1"
|
||||
top: "conv1"
|
||||
}
|
||||
layer {
|
||||
name: "norm1"
|
||||
type: "LRN"
|
||||
bottom: "conv1"
|
||||
top: "norm1"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool1"
|
||||
type: "Pooling"
|
||||
bottom: "norm1"
|
||||
top: "pool1"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv2"
|
||||
type: "Convolution"
|
||||
bottom: "pool1"
|
||||
top: "conv2"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 2
|
||||
kernel_size: 5
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu2"
|
||||
type: "ReLU"
|
||||
bottom: "conv2"
|
||||
top: "conv2"
|
||||
}
|
||||
layer {
|
||||
name: "norm2"
|
||||
type: "LRN"
|
||||
bottom: "conv2"
|
||||
top: "norm2"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool2"
|
||||
type: "Pooling"
|
||||
bottom: "norm2"
|
||||
top: "pool2"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv3"
|
||||
type: "Convolution"
|
||||
bottom: "pool2"
|
||||
top: "conv3"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu3"
|
||||
type: "ReLU"
|
||||
bottom: "conv3"
|
||||
top: "conv3"
|
||||
}
|
||||
layer {
|
||||
name: "conv4"
|
||||
type: "Convolution"
|
||||
bottom: "conv3"
|
||||
top: "conv4"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu4"
|
||||
type: "ReLU"
|
||||
bottom: "conv4"
|
||||
top: "conv4"
|
||||
}
|
||||
layer {
|
||||
name: "conv5"
|
||||
type: "Convolution"
|
||||
bottom: "conv4"
|
||||
top: "conv5"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu5"
|
||||
type: "ReLU"
|
||||
bottom: "conv5"
|
||||
top: "conv5"
|
||||
}
|
||||
layer {
|
||||
name: "pool5"
|
||||
type: "Pooling"
|
||||
bottom: "conv5"
|
||||
top: "pool5"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc6"
|
||||
type: "InnerProduct"
|
||||
bottom: "pool5"
|
||||
top: "fc6"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 8192
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu6"
|
||||
type: "ReLU"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
}
|
||||
layer {
|
||||
name: "drop6"
|
||||
type: "Dropout"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc8"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc6"
|
||||
top: "fc8"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 196
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "softmax"
|
||||
type: "Softmax"
|
||||
bottom: "fc8"
|
||||
top: "softmax"
|
||||
}
|
BIN
cars/architecture-investigations/fc/1-layer/8192/large.png
Normal file
After Width: | Height: | Size: 255 KiB |
@ -0,0 +1,348 @@
|
||||
name: "AlexNet"
|
||||
layer {
|
||||
name: "train-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
stage: "train"
|
||||
}
|
||||
transform_param {
|
||||
mirror: true
|
||||
crop_size: 227
|
||||
}
|
||||
data_param {
|
||||
batch_size: 128
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "val-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
stage: "val"
|
||||
}
|
||||
transform_param {
|
||||
crop_size: 227
|
||||
}
|
||||
data_param {
|
||||
batch_size: 32
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv1"
|
||||
type: "Convolution"
|
||||
bottom: "data"
|
||||
top: "conv1"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 96
|
||||
kernel_size: 11
|
||||
stride: 4
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu1"
|
||||
type: "ReLU"
|
||||
bottom: "conv1"
|
||||
top: "conv1"
|
||||
}
|
||||
layer {
|
||||
name: "norm1"
|
||||
type: "LRN"
|
||||
bottom: "conv1"
|
||||
top: "norm1"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool1"
|
||||
type: "Pooling"
|
||||
bottom: "norm1"
|
||||
top: "pool1"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv2"
|
||||
type: "Convolution"
|
||||
bottom: "pool1"
|
||||
top: "conv2"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 2
|
||||
kernel_size: 5
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu2"
|
||||
type: "ReLU"
|
||||
bottom: "conv2"
|
||||
top: "conv2"
|
||||
}
|
||||
layer {
|
||||
name: "norm2"
|
||||
type: "LRN"
|
||||
bottom: "conv2"
|
||||
top: "norm2"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool2"
|
||||
type: "Pooling"
|
||||
bottom: "norm2"
|
||||
top: "pool2"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv3"
|
||||
type: "Convolution"
|
||||
bottom: "pool2"
|
||||
top: "conv3"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu3"
|
||||
type: "ReLU"
|
||||
bottom: "conv3"
|
||||
top: "conv3"
|
||||
}
|
||||
layer {
|
||||
name: "conv4"
|
||||
type: "Convolution"
|
||||
bottom: "conv3"
|
||||
top: "conv4"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu4"
|
||||
type: "ReLU"
|
||||
bottom: "conv4"
|
||||
top: "conv4"
|
||||
}
|
||||
layer {
|
||||
name: "conv5"
|
||||
type: "Convolution"
|
||||
bottom: "conv4"
|
||||
top: "conv5"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu5"
|
||||
type: "ReLU"
|
||||
bottom: "conv5"
|
||||
top: "conv5"
|
||||
}
|
||||
layer {
|
||||
name: "pool5"
|
||||
type: "Pooling"
|
||||
bottom: "conv5"
|
||||
top: "pool5"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc6"
|
||||
type: "InnerProduct"
|
||||
bottom: "pool5"
|
||||
top: "fc6"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 8192
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu6"
|
||||
type: "ReLU"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
}
|
||||
layer {
|
||||
name: "drop6"
|
||||
type: "Dropout"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc8"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc6"
|
||||
top: "fc8"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "accuracy"
|
||||
type: "Accuracy"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "accuracy"
|
||||
include {
|
||||
stage: "val"
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "loss"
|
||||
type: "SoftmaxWithLoss"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "loss"
|
||||
exclude {
|
||||
stage: "deploy"
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "softmax"
|
||||
type: "Softmax"
|
||||
bottom: "fc8"
|
||||
top: "softmax"
|
||||
include {
|
||||
stage: "deploy"
|
||||
}
|
||||
}
|
1619
cars/architecture-investigations/fc/1-layer/8192/pred.csv
Normal file
BIN
cars/architecture-investigations/fc/1-layer/8192/small.png
Normal file
After Width: | Height: | Size: 214 KiB |
@ -0,0 +1,14 @@
|
||||
test_iter: 51
|
||||
test_interval: 102
|
||||
base_lr: 0.00999999977648
|
||||
display: 12
|
||||
max_iter: 10200
|
||||
lr_policy: "exp"
|
||||
gamma: 0.999801933765
|
||||
momentum: 0.899999976158
|
||||
weight_decay: 9.99999974738e-05
|
||||
snapshot: 102
|
||||
snapshot_prefix: "snapshot"
|
||||
solver_mode: GPU
|
||||
net: "train_val.prototxt"
|
||||
solver_type: SGD
|
@ -0,0 +1,342 @@
|
||||
layer {
|
||||
name: "train-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
phase: TRAIN
|
||||
}
|
||||
transform_param {
|
||||
mirror: true
|
||||
crop_size: 227
|
||||
mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto"
|
||||
}
|
||||
data_param {
|
||||
source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/train_db"
|
||||
batch_size: 128
|
||||
backend: LMDB
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "val-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
phase: TEST
|
||||
}
|
||||
transform_param {
|
||||
crop_size: 227
|
||||
mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto"
|
||||
}
|
||||
data_param {
|
||||
source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db"
|
||||
batch_size: 32
|
||||
backend: LMDB
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv1"
|
||||
type: "Convolution"
|
||||
bottom: "data"
|
||||
top: "conv1"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 96
|
||||
kernel_size: 11
|
||||
stride: 4
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu1"
|
||||
type: "ReLU"
|
||||
bottom: "conv1"
|
||||
top: "conv1"
|
||||
}
|
||||
layer {
|
||||
name: "norm1"
|
||||
type: "LRN"
|
||||
bottom: "conv1"
|
||||
top: "norm1"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool1"
|
||||
type: "Pooling"
|
||||
bottom: "norm1"
|
||||
top: "pool1"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv2"
|
||||
type: "Convolution"
|
||||
bottom: "pool1"
|
||||
top: "conv2"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 2
|
||||
kernel_size: 5
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu2"
|
||||
type: "ReLU"
|
||||
bottom: "conv2"
|
||||
top: "conv2"
|
||||
}
|
||||
layer {
|
||||
name: "norm2"
|
||||
type: "LRN"
|
||||
bottom: "conv2"
|
||||
top: "norm2"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool2"
|
||||
type: "Pooling"
|
||||
bottom: "norm2"
|
||||
top: "pool2"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv3"
|
||||
type: "Convolution"
|
||||
bottom: "pool2"
|
||||
top: "conv3"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu3"
|
||||
type: "ReLU"
|
||||
bottom: "conv3"
|
||||
top: "conv3"
|
||||
}
|
||||
layer {
|
||||
name: "conv4"
|
||||
type: "Convolution"
|
||||
bottom: "conv3"
|
||||
top: "conv4"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu4"
|
||||
type: "ReLU"
|
||||
bottom: "conv4"
|
||||
top: "conv4"
|
||||
}
|
||||
layer {
|
||||
name: "conv5"
|
||||
type: "Convolution"
|
||||
bottom: "conv4"
|
||||
top: "conv5"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu5"
|
||||
type: "ReLU"
|
||||
bottom: "conv5"
|
||||
top: "conv5"
|
||||
}
|
||||
layer {
|
||||
name: "pool5"
|
||||
type: "Pooling"
|
||||
bottom: "conv5"
|
||||
top: "pool5"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc6"
|
||||
type: "InnerProduct"
|
||||
bottom: "pool5"
|
||||
top: "fc6"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 8192
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu6"
|
||||
type: "ReLU"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
}
|
||||
layer {
|
||||
name: "drop6"
|
||||
type: "Dropout"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc8"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc6"
|
||||
top: "fc8"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 196
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "accuracy"
|
||||
type: "Accuracy"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "accuracy"
|
||||
include {
|
||||
phase: TEST
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "loss"
|
||||
type: "SoftmaxWithLoss"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "loss"
|
||||
}
|
383
cars/architecture-investigations/fc/1-layer/alexnet1fc.prototxt
Normal file
@ -0,0 +1,383 @@
|
||||
# AlexNet
|
||||
name: "AlexNet"
|
||||
layer {
|
||||
name: "train-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
transform_param {
|
||||
mirror: true
|
||||
crop_size: 227
|
||||
}
|
||||
data_param {
|
||||
batch_size: 128
|
||||
}
|
||||
include { stage: "train" }
|
||||
}
|
||||
layer {
|
||||
name: "val-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
transform_param {
|
||||
crop_size: 227
|
||||
}
|
||||
data_param {
|
||||
batch_size: 32
|
||||
}
|
||||
include { stage: "val" }
|
||||
}
|
||||
|
||||
################
|
||||
# CONV 1
|
||||
################
|
||||
|
||||
layer {
|
||||
name: "conv1"
|
||||
type: "Convolution"
|
||||
bottom: "data"
|
||||
top: "conv1"
|
||||
param {
|
||||
lr_mult: 1
|
||||
decay_mult: 1
|
||||
}
|
||||
param {
|
||||
lr_mult: 2
|
||||
decay_mult: 0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 96
|
||||
kernel_size: 11
|
||||
stride: 4
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.01
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu1"
|
||||
type: "ReLU"
|
||||
bottom: "conv1"
|
||||
top: "conv1"
|
||||
}
|
||||
layer {
|
||||
name: "norm1"
|
||||
type: "LRN"
|
||||
bottom: "conv1"
|
||||
top: "norm1"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 0.0001
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool1"
|
||||
type: "Pooling"
|
||||
bottom: "norm1"
|
||||
top: "pool1"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
|
||||
################
|
||||
# CONV 2
|
||||
################
|
||||
|
||||
layer {
|
||||
name: "conv2"
|
||||
type: "Convolution"
|
||||
bottom: "pool1"
|
||||
top: "conv2"
|
||||
param {
|
||||
lr_mult: 1
|
||||
decay_mult: 1
|
||||
}
|
||||
param {
|
||||
lr_mult: 2
|
||||
decay_mult: 0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 2
|
||||
kernel_size: 5
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.01
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.1
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu2"
|
||||
type: "ReLU"
|
||||
bottom: "conv2"
|
||||
top: "conv2"
|
||||
}
|
||||
layer {
|
||||
name: "norm2"
|
||||
type: "LRN"
|
||||
bottom: "conv2"
|
||||
top: "norm2"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 0.0001
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool2"
|
||||
type: "Pooling"
|
||||
bottom: "norm2"
|
||||
top: "pool2"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
|
||||
################
|
||||
# CONV 3
|
||||
################
|
||||
|
||||
layer {
|
||||
name: "conv3"
|
||||
type: "Convolution"
|
||||
bottom: "pool2"
|
||||
top: "conv3"
|
||||
param {
|
||||
lr_mult: 1
|
||||
decay_mult: 1
|
||||
}
|
||||
param {
|
||||
lr_mult: 2
|
||||
decay_mult: 0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.01
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu3"
|
||||
type: "ReLU"
|
||||
bottom: "conv3"
|
||||
top: "conv3"
|
||||
}
|
||||
|
||||
################
|
||||
# CONV 4
|
||||
################
|
||||
|
||||
layer {
|
||||
name: "conv4"
|
||||
type: "Convolution"
|
||||
bottom: "conv3"
|
||||
top: "conv4"
|
||||
param {
|
||||
lr_mult: 1
|
||||
decay_mult: 1
|
||||
}
|
||||
param {
|
||||
lr_mult: 2
|
||||
decay_mult: 0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.01
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.1
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu4"
|
||||
type: "ReLU"
|
||||
bottom: "conv4"
|
||||
top: "conv4"
|
||||
}
|
||||
|
||||
################
|
||||
# CONV 5
|
||||
################
|
||||
|
||||
layer {
|
||||
name: "conv5"
|
||||
type: "Convolution"
|
||||
bottom: "conv4"
|
||||
top: "conv5"
|
||||
param {
|
||||
lr_mult: 1
|
||||
decay_mult: 1
|
||||
}
|
||||
param {
|
||||
lr_mult: 2
|
||||
decay_mult: 0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.01
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.1
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu5"
|
||||
type: "ReLU"
|
||||
bottom: "conv5"
|
||||
top: "conv5"
|
||||
}
|
||||
layer {
|
||||
name: "pool5"
|
||||
type: "Pooling"
|
||||
bottom: "conv5"
|
||||
top: "pool5"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
|
||||
################
|
||||
# DENSE 1
|
||||
################
|
||||
|
||||
layer {
|
||||
name: "fc6"
|
||||
type: "InnerProduct"
|
||||
bottom: "pool5"
|
||||
top: "fc6"
|
||||
param {
|
||||
lr_mult: 1
|
||||
decay_mult: 1
|
||||
}
|
||||
param {
|
||||
lr_mult: 2
|
||||
decay_mult: 0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 4096
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.005
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.1
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu6"
|
||||
type: "ReLU"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
}
|
||||
layer {
|
||||
name: "drop6"
|
||||
type: "Dropout"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
|
||||
################
|
||||
# OUTPUT
|
||||
################
|
||||
|
||||
layer {
|
||||
name: "fc8"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc6"
|
||||
top: "fc8"
|
||||
param {
|
||||
lr_mult: 1
|
||||
decay_mult: 1
|
||||
}
|
||||
param {
|
||||
lr_mult: 2
|
||||
decay_mult: 0
|
||||
}
|
||||
inner_product_param {
|
||||
# Since num_output is unset, DIGITS will automatically set it to the
|
||||
# number of classes in your dataset.
|
||||
# Uncomment this line to set it explicitly:
|
||||
#num_output: 1000
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.01
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
################
|
||||
# STATS
|
||||
################
|
||||
|
||||
layer {
|
||||
name: "accuracy"
|
||||
type: "Accuracy"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "accuracy"
|
||||
include { stage: "val" }
|
||||
}
|
||||
layer {
|
||||
name: "loss"
|
||||
type: "SoftmaxWithLoss"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "loss"
|
||||
exclude { stage: "deploy" }
|
||||
}
|
||||
layer {
|
||||
name: "softmax"
|
||||
type: "Softmax"
|
||||
bottom: "fc8"
|
||||
top: "softmax"
|
||||
include { stage: "deploy" }
|
||||
}
|
BIN
cars/architecture-investigations/fc/1-layer/alexnetfc1-4096.png
Normal file
After Width: | Height: | Size: 202 KiB |
4566
cars/architecture-investigations/fc/2-layers/1024/caffe_output.log
Normal file
197
cars/architecture-investigations/fc/2-layers/1024/conf.csv
Normal file
@ -0,0 +1,341 @@
|
||||
input: "data"
|
||||
input_shape {
|
||||
dim: 1
|
||||
dim: 3
|
||||
dim: 227
|
||||
dim: 227
|
||||
}
|
||||
layer {
|
||||
name: "conv1"
|
||||
type: "Convolution"
|
||||
bottom: "data"
|
||||
top: "conv1"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 96
|
||||
kernel_size: 11
|
||||
stride: 4
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu1"
|
||||
type: "ReLU"
|
||||
bottom: "conv1"
|
||||
top: "conv1"
|
||||
}
|
||||
layer {
|
||||
name: "norm1"
|
||||
type: "LRN"
|
||||
bottom: "conv1"
|
||||
top: "norm1"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool1"
|
||||
type: "Pooling"
|
||||
bottom: "norm1"
|
||||
top: "pool1"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv2"
|
||||
type: "Convolution"
|
||||
bottom: "pool1"
|
||||
top: "conv2"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 2
|
||||
kernel_size: 5
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu2"
|
||||
type: "ReLU"
|
||||
bottom: "conv2"
|
||||
top: "conv2"
|
||||
}
|
||||
layer {
|
||||
name: "norm2"
|
||||
type: "LRN"
|
||||
bottom: "conv2"
|
||||
top: "norm2"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool2"
|
||||
type: "Pooling"
|
||||
bottom: "norm2"
|
||||
top: "pool2"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv3"
|
||||
type: "Convolution"
|
||||
bottom: "pool2"
|
||||
top: "conv3"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu3"
|
||||
type: "ReLU"
|
||||
bottom: "conv3"
|
||||
top: "conv3"
|
||||
}
|
||||
layer {
|
||||
name: "conv4"
|
||||
type: "Convolution"
|
||||
bottom: "conv3"
|
||||
top: "conv4"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu4"
|
||||
type: "ReLU"
|
||||
bottom: "conv4"
|
||||
top: "conv4"
|
||||
}
|
||||
layer {
|
||||
name: "conv5"
|
||||
type: "Convolution"
|
||||
bottom: "conv4"
|
||||
top: "conv5"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu5"
|
||||
type: "ReLU"
|
||||
bottom: "conv5"
|
||||
top: "conv5"
|
||||
}
|
||||
layer {
|
||||
name: "pool5"
|
||||
type: "Pooling"
|
||||
bottom: "conv5"
|
||||
top: "pool5"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc6"
|
||||
type: "InnerProduct"
|
||||
bottom: "pool5"
|
||||
top: "fc6"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 1024
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu6"
|
||||
type: "ReLU"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
}
|
||||
layer {
|
||||
name: "drop6"
|
||||
type: "Dropout"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc7"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc6"
|
||||
top: "fc7"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 1024
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu7"
|
||||
type: "ReLU"
|
||||
bottom: "fc7"
|
||||
top: "fc7"
|
||||
}
|
||||
layer {
|
||||
name: "drop7"
|
||||
type: "Dropout"
|
||||
bottom: "fc7"
|
||||
top: "fc7"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc8"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc7"
|
||||
top: "fc8"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 196
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "softmax"
|
||||
type: "Softmax"
|
||||
bottom: "fc8"
|
||||
top: "softmax"
|
||||
}
|
BIN
cars/architecture-investigations/fc/2-layers/1024/large.png
Normal file
After Width: | Height: | Size: 267 KiB |
@ -0,0 +1,388 @@
|
||||
name: "AlexNet"
|
||||
layer {
|
||||
name: "train-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
stage: "train"
|
||||
}
|
||||
transform_param {
|
||||
mirror: true
|
||||
crop_size: 227
|
||||
}
|
||||
data_param {
|
||||
batch_size: 128
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "val-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
stage: "val"
|
||||
}
|
||||
transform_param {
|
||||
crop_size: 227
|
||||
}
|
||||
data_param {
|
||||
batch_size: 32
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv1"
|
||||
type: "Convolution"
|
||||
bottom: "data"
|
||||
top: "conv1"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 96
|
||||
kernel_size: 11
|
||||
stride: 4
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu1"
|
||||
type: "ReLU"
|
||||
bottom: "conv1"
|
||||
top: "conv1"
|
||||
}
|
||||
layer {
|
||||
name: "norm1"
|
||||
type: "LRN"
|
||||
bottom: "conv1"
|
||||
top: "norm1"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool1"
|
||||
type: "Pooling"
|
||||
bottom: "norm1"
|
||||
top: "pool1"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv2"
|
||||
type: "Convolution"
|
||||
bottom: "pool1"
|
||||
top: "conv2"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 2
|
||||
kernel_size: 5
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu2"
|
||||
type: "ReLU"
|
||||
bottom: "conv2"
|
||||
top: "conv2"
|
||||
}
|
||||
layer {
|
||||
name: "norm2"
|
||||
type: "LRN"
|
||||
bottom: "conv2"
|
||||
top: "norm2"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool2"
|
||||
type: "Pooling"
|
||||
bottom: "norm2"
|
||||
top: "pool2"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv3"
|
||||
type: "Convolution"
|
||||
bottom: "pool2"
|
||||
top: "conv3"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu3"
|
||||
type: "ReLU"
|
||||
bottom: "conv3"
|
||||
top: "conv3"
|
||||
}
|
||||
layer {
|
||||
name: "conv4"
|
||||
type: "Convolution"
|
||||
bottom: "conv3"
|
||||
top: "conv4"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu4"
|
||||
type: "ReLU"
|
||||
bottom: "conv4"
|
||||
top: "conv4"
|
||||
}
|
||||
layer {
|
||||
name: "conv5"
|
||||
type: "Convolution"
|
||||
bottom: "conv4"
|
||||
top: "conv5"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu5"
|
||||
type: "ReLU"
|
||||
bottom: "conv5"
|
||||
top: "conv5"
|
||||
}
|
||||
layer {
|
||||
name: "pool5"
|
||||
type: "Pooling"
|
||||
bottom: "conv5"
|
||||
top: "pool5"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc6"
|
||||
type: "InnerProduct"
|
||||
bottom: "pool5"
|
||||
top: "fc6"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 1024
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu6"
|
||||
type: "ReLU"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
}
|
||||
layer {
|
||||
name: "drop6"
|
||||
type: "Dropout"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc7"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc6"
|
||||
top: "fc7"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 1024
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu7"
|
||||
type: "ReLU"
|
||||
bottom: "fc7"
|
||||
top: "fc7"
|
||||
}
|
||||
layer {
|
||||
name: "drop7"
|
||||
type: "Dropout"
|
||||
bottom: "fc7"
|
||||
top: "fc7"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc8"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc7"
|
||||
top: "fc8"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "accuracy"
|
||||
type: "Accuracy"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "accuracy"
|
||||
include {
|
||||
stage: "val"
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "loss"
|
||||
type: "SoftmaxWithLoss"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "loss"
|
||||
exclude {
|
||||
stage: "deploy"
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "softmax"
|
||||
type: "Softmax"
|
||||
bottom: "fc8"
|
||||
top: "softmax"
|
||||
include {
|
||||
stage: "deploy"
|
||||
}
|
||||
}
|
1619
cars/architecture-investigations/fc/2-layers/1024/pred.csv
Normal file
BIN
cars/architecture-investigations/fc/2-layers/1024/small.png
Normal file
After Width: | Height: | Size: 218 KiB |
@ -0,0 +1,14 @@
|
||||
test_iter: 51
|
||||
test_interval: 102
|
||||
base_lr: 0.00999999977648
|
||||
display: 12
|
||||
max_iter: 10200
|
||||
lr_policy: "exp"
|
||||
gamma: 0.999801933765
|
||||
momentum: 0.899999976158
|
||||
weight_decay: 9.99999974738e-05
|
||||
snapshot: 102
|
||||
snapshot_prefix: "snapshot"
|
||||
solver_mode: GPU
|
||||
net: "train_val.prototxt"
|
||||
solver_type: SGD
|
@ -0,0 +1,382 @@
|
||||
layer {
|
||||
name: "train-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
phase: TRAIN
|
||||
}
|
||||
transform_param {
|
||||
mirror: true
|
||||
crop_size: 227
|
||||
mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto"
|
||||
}
|
||||
data_param {
|
||||
source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/train_db"
|
||||
batch_size: 128
|
||||
backend: LMDB
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "val-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
phase: TEST
|
||||
}
|
||||
transform_param {
|
||||
crop_size: 227
|
||||
mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto"
|
||||
}
|
||||
data_param {
|
||||
source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db"
|
||||
batch_size: 32
|
||||
backend: LMDB
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv1"
|
||||
type: "Convolution"
|
||||
bottom: "data"
|
||||
top: "conv1"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 96
|
||||
kernel_size: 11
|
||||
stride: 4
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu1"
|
||||
type: "ReLU"
|
||||
bottom: "conv1"
|
||||
top: "conv1"
|
||||
}
|
||||
layer {
|
||||
name: "norm1"
|
||||
type: "LRN"
|
||||
bottom: "conv1"
|
||||
top: "norm1"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool1"
|
||||
type: "Pooling"
|
||||
bottom: "norm1"
|
||||
top: "pool1"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv2"
|
||||
type: "Convolution"
|
||||
bottom: "pool1"
|
||||
top: "conv2"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 2
|
||||
kernel_size: 5
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu2"
|
||||
type: "ReLU"
|
||||
bottom: "conv2"
|
||||
top: "conv2"
|
||||
}
|
||||
layer {
|
||||
name: "norm2"
|
||||
type: "LRN"
|
||||
bottom: "conv2"
|
||||
top: "norm2"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool2"
|
||||
type: "Pooling"
|
||||
bottom: "norm2"
|
||||
top: "pool2"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv3"
|
||||
type: "Convolution"
|
||||
bottom: "pool2"
|
||||
top: "conv3"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu3"
|
||||
type: "ReLU"
|
||||
bottom: "conv3"
|
||||
top: "conv3"
|
||||
}
|
||||
layer {
|
||||
name: "conv4"
|
||||
type: "Convolution"
|
||||
bottom: "conv3"
|
||||
top: "conv4"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu4"
|
||||
type: "ReLU"
|
||||
bottom: "conv4"
|
||||
top: "conv4"
|
||||
}
|
||||
layer {
|
||||
name: "conv5"
|
||||
type: "Convolution"
|
||||
bottom: "conv4"
|
||||
top: "conv5"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu5"
|
||||
type: "ReLU"
|
||||
bottom: "conv5"
|
||||
top: "conv5"
|
||||
}
|
||||
layer {
|
||||
name: "pool5"
|
||||
type: "Pooling"
|
||||
bottom: "conv5"
|
||||
top: "pool5"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc6"
|
||||
type: "InnerProduct"
|
||||
bottom: "pool5"
|
||||
top: "fc6"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 1024
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu6"
|
||||
type: "ReLU"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
}
|
||||
layer {
|
||||
name: "drop6"
|
||||
type: "Dropout"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc7"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc6"
|
||||
top: "fc7"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 1024
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu7"
|
||||
type: "ReLU"
|
||||
bottom: "fc7"
|
||||
top: "fc7"
|
||||
}
|
||||
layer {
|
||||
name: "drop7"
|
||||
type: "Dropout"
|
||||
bottom: "fc7"
|
||||
top: "fc7"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc8"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc7"
|
||||
top: "fc8"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 196
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "accuracy"
|
||||
type: "Accuracy"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "accuracy"
|
||||
include {
|
||||
phase: TEST
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "loss"
|
||||
type: "SoftmaxWithLoss"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "loss"
|
||||
}
|
4566
cars/architecture-investigations/fc/2-layers/2048/caffe_output.log
Normal file
197
cars/architecture-investigations/fc/2-layers/2048/conf.csv
Normal file
@ -0,0 +1,341 @@
|
||||
input: "data"
|
||||
input_shape {
|
||||
dim: 1
|
||||
dim: 3
|
||||
dim: 227
|
||||
dim: 227
|
||||
}
|
||||
layer {
|
||||
name: "conv1"
|
||||
type: "Convolution"
|
||||
bottom: "data"
|
||||
top: "conv1"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 96
|
||||
kernel_size: 11
|
||||
stride: 4
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu1"
|
||||
type: "ReLU"
|
||||
bottom: "conv1"
|
||||
top: "conv1"
|
||||
}
|
||||
layer {
|
||||
name: "norm1"
|
||||
type: "LRN"
|
||||
bottom: "conv1"
|
||||
top: "norm1"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool1"
|
||||
type: "Pooling"
|
||||
bottom: "norm1"
|
||||
top: "pool1"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv2"
|
||||
type: "Convolution"
|
||||
bottom: "pool1"
|
||||
top: "conv2"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 2
|
||||
kernel_size: 5
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu2"
|
||||
type: "ReLU"
|
||||
bottom: "conv2"
|
||||
top: "conv2"
|
||||
}
|
||||
layer {
|
||||
name: "norm2"
|
||||
type: "LRN"
|
||||
bottom: "conv2"
|
||||
top: "norm2"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool2"
|
||||
type: "Pooling"
|
||||
bottom: "norm2"
|
||||
top: "pool2"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv3"
|
||||
type: "Convolution"
|
||||
bottom: "pool2"
|
||||
top: "conv3"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu3"
|
||||
type: "ReLU"
|
||||
bottom: "conv3"
|
||||
top: "conv3"
|
||||
}
|
||||
layer {
|
||||
name: "conv4"
|
||||
type: "Convolution"
|
||||
bottom: "conv3"
|
||||
top: "conv4"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu4"
|
||||
type: "ReLU"
|
||||
bottom: "conv4"
|
||||
top: "conv4"
|
||||
}
|
||||
layer {
|
||||
name: "conv5"
|
||||
type: "Convolution"
|
||||
bottom: "conv4"
|
||||
top: "conv5"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu5"
|
||||
type: "ReLU"
|
||||
bottom: "conv5"
|
||||
top: "conv5"
|
||||
}
|
||||
layer {
|
||||
name: "pool5"
|
||||
type: "Pooling"
|
||||
bottom: "conv5"
|
||||
top: "pool5"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc6"
|
||||
type: "InnerProduct"
|
||||
bottom: "pool5"
|
||||
top: "fc6"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 2048
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu6"
|
||||
type: "ReLU"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
}
|
||||
layer {
|
||||
name: "drop6"
|
||||
type: "Dropout"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc7"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc6"
|
||||
top: "fc7"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 2048
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu7"
|
||||
type: "ReLU"
|
||||
bottom: "fc7"
|
||||
top: "fc7"
|
||||
}
|
||||
layer {
|
||||
name: "drop7"
|
||||
type: "Dropout"
|
||||
bottom: "fc7"
|
||||
top: "fc7"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc8"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc7"
|
||||
top: "fc8"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 196
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "softmax"
|
||||
type: "Softmax"
|
||||
bottom: "fc8"
|
||||
top: "softmax"
|
||||
}
|
BIN
cars/architecture-investigations/fc/2-layers/2048/large.png
Normal file
After Width: | Height: | Size: 264 KiB |
@ -0,0 +1,388 @@
|
||||
name: "AlexNet"
|
||||
layer {
|
||||
name: "train-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
stage: "train"
|
||||
}
|
||||
transform_param {
|
||||
mirror: true
|
||||
crop_size: 227
|
||||
}
|
||||
data_param {
|
||||
batch_size: 128
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "val-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
stage: "val"
|
||||
}
|
||||
transform_param {
|
||||
crop_size: 227
|
||||
}
|
||||
data_param {
|
||||
batch_size: 32
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv1"
|
||||
type: "Convolution"
|
||||
bottom: "data"
|
||||
top: "conv1"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 96
|
||||
kernel_size: 11
|
||||
stride: 4
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu1"
|
||||
type: "ReLU"
|
||||
bottom: "conv1"
|
||||
top: "conv1"
|
||||
}
|
||||
layer {
|
||||
name: "norm1"
|
||||
type: "LRN"
|
||||
bottom: "conv1"
|
||||
top: "norm1"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool1"
|
||||
type: "Pooling"
|
||||
bottom: "norm1"
|
||||
top: "pool1"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv2"
|
||||
type: "Convolution"
|
||||
bottom: "pool1"
|
||||
top: "conv2"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 2
|
||||
kernel_size: 5
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu2"
|
||||
type: "ReLU"
|
||||
bottom: "conv2"
|
||||
top: "conv2"
|
||||
}
|
||||
layer {
|
||||
name: "norm2"
|
||||
type: "LRN"
|
||||
bottom: "conv2"
|
||||
top: "norm2"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool2"
|
||||
type: "Pooling"
|
||||
bottom: "norm2"
|
||||
top: "pool2"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv3"
|
||||
type: "Convolution"
|
||||
bottom: "pool2"
|
||||
top: "conv3"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu3"
|
||||
type: "ReLU"
|
||||
bottom: "conv3"
|
||||
top: "conv3"
|
||||
}
|
||||
layer {
|
||||
name: "conv4"
|
||||
type: "Convolution"
|
||||
bottom: "conv3"
|
||||
top: "conv4"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu4"
|
||||
type: "ReLU"
|
||||
bottom: "conv4"
|
||||
top: "conv4"
|
||||
}
|
||||
layer {
|
||||
name: "conv5"
|
||||
type: "Convolution"
|
||||
bottom: "conv4"
|
||||
top: "conv5"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu5"
|
||||
type: "ReLU"
|
||||
bottom: "conv5"
|
||||
top: "conv5"
|
||||
}
|
||||
layer {
|
||||
name: "pool5"
|
||||
type: "Pooling"
|
||||
bottom: "conv5"
|
||||
top: "pool5"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc6"
|
||||
type: "InnerProduct"
|
||||
bottom: "pool5"
|
||||
top: "fc6"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 2048
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu6"
|
||||
type: "ReLU"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
}
|
||||
layer {
|
||||
name: "drop6"
|
||||
type: "Dropout"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc7"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc6"
|
||||
top: "fc7"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 2048
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu7"
|
||||
type: "ReLU"
|
||||
bottom: "fc7"
|
||||
top: "fc7"
|
||||
}
|
||||
layer {
|
||||
name: "drop7"
|
||||
type: "Dropout"
|
||||
bottom: "fc7"
|
||||
top: "fc7"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc8"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc7"
|
||||
top: "fc8"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "accuracy"
|
||||
type: "Accuracy"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "accuracy"
|
||||
include {
|
||||
stage: "val"
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "loss"
|
||||
type: "SoftmaxWithLoss"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "loss"
|
||||
exclude {
|
||||
stage: "deploy"
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "softmax"
|
||||
type: "Softmax"
|
||||
bottom: "fc8"
|
||||
top: "softmax"
|
||||
include {
|
||||
stage: "deploy"
|
||||
}
|
||||
}
|
1619
cars/architecture-investigations/fc/2-layers/2048/pred.csv
Normal file
BIN
cars/architecture-investigations/fc/2-layers/2048/small.png
Normal file
After Width: | Height: | Size: 222 KiB |
@ -0,0 +1,14 @@
|
||||
test_iter: 51
|
||||
test_interval: 102
|
||||
base_lr: 0.00999999977648
|
||||
display: 12
|
||||
max_iter: 10200
|
||||
lr_policy: "exp"
|
||||
gamma: 0.999801933765
|
||||
momentum: 0.899999976158
|
||||
weight_decay: 9.99999974738e-05
|
||||
snapshot: 102
|
||||
snapshot_prefix: "snapshot"
|
||||
solver_mode: GPU
|
||||
net: "train_val.prototxt"
|
||||
solver_type: SGD
|
@ -0,0 +1,382 @@
|
||||
layer {
|
||||
name: "train-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
phase: TRAIN
|
||||
}
|
||||
transform_param {
|
||||
mirror: true
|
||||
crop_size: 227
|
||||
mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto"
|
||||
}
|
||||
data_param {
|
||||
source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/train_db"
|
||||
batch_size: 128
|
||||
backend: LMDB
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "val-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
phase: TEST
|
||||
}
|
||||
transform_param {
|
||||
crop_size: 227
|
||||
mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto"
|
||||
}
|
||||
data_param {
|
||||
source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db"
|
||||
batch_size: 32
|
||||
backend: LMDB
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv1"
|
||||
type: "Convolution"
|
||||
bottom: "data"
|
||||
top: "conv1"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 96
|
||||
kernel_size: 11
|
||||
stride: 4
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu1"
|
||||
type: "ReLU"
|
||||
bottom: "conv1"
|
||||
top: "conv1"
|
||||
}
|
||||
layer {
|
||||
name: "norm1"
|
||||
type: "LRN"
|
||||
bottom: "conv1"
|
||||
top: "norm1"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool1"
|
||||
type: "Pooling"
|
||||
bottom: "norm1"
|
||||
top: "pool1"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv2"
|
||||
type: "Convolution"
|
||||
bottom: "pool1"
|
||||
top: "conv2"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 2
|
||||
kernel_size: 5
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu2"
|
||||
type: "ReLU"
|
||||
bottom: "conv2"
|
||||
top: "conv2"
|
||||
}
|
||||
layer {
|
||||
name: "norm2"
|
||||
type: "LRN"
|
||||
bottom: "conv2"
|
||||
top: "norm2"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool2"
|
||||
type: "Pooling"
|
||||
bottom: "norm2"
|
||||
top: "pool2"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv3"
|
||||
type: "Convolution"
|
||||
bottom: "pool2"
|
||||
top: "conv3"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu3"
|
||||
type: "ReLU"
|
||||
bottom: "conv3"
|
||||
top: "conv3"
|
||||
}
|
||||
layer {
|
||||
name: "conv4"
|
||||
type: "Convolution"
|
||||
bottom: "conv3"
|
||||
top: "conv4"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu4"
|
||||
type: "ReLU"
|
||||
bottom: "conv4"
|
||||
top: "conv4"
|
||||
}
|
||||
layer {
|
||||
name: "conv5"
|
||||
type: "Convolution"
|
||||
bottom: "conv4"
|
||||
top: "conv5"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu5"
|
||||
type: "ReLU"
|
||||
bottom: "conv5"
|
||||
top: "conv5"
|
||||
}
|
||||
layer {
|
||||
name: "pool5"
|
||||
type: "Pooling"
|
||||
bottom: "conv5"
|
||||
top: "pool5"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc6"
|
||||
type: "InnerProduct"
|
||||
bottom: "pool5"
|
||||
top: "fc6"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 2048
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu6"
|
||||
type: "ReLU"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
}
|
||||
layer {
|
||||
name: "drop6"
|
||||
type: "Dropout"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc7"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc6"
|
||||
top: "fc7"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 2048
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu7"
|
||||
type: "ReLU"
|
||||
bottom: "fc7"
|
||||
top: "fc7"
|
||||
}
|
||||
layer {
|
||||
name: "drop7"
|
||||
type: "Dropout"
|
||||
bottom: "fc7"
|
||||
top: "fc7"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc8"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc7"
|
||||
top: "fc8"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 196
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "accuracy"
|
||||
type: "Accuracy"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "accuracy"
|
||||
include {
|
||||
phase: TEST
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "loss"
|
||||
type: "SoftmaxWithLoss"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "loss"
|
||||
}
|
4566
cars/architecture-investigations/fc/2-layers/512/caffe_output.log
Normal file
197
cars/architecture-investigations/fc/2-layers/512/conf.csv
Normal file
341
cars/architecture-investigations/fc/2-layers/512/deploy.prototxt
Normal file
@ -0,0 +1,341 @@
|
||||
input: "data"
|
||||
input_shape {
|
||||
dim: 1
|
||||
dim: 3
|
||||
dim: 227
|
||||
dim: 227
|
||||
}
|
||||
layer {
|
||||
name: "conv1"
|
||||
type: "Convolution"
|
||||
bottom: "data"
|
||||
top: "conv1"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 96
|
||||
kernel_size: 11
|
||||
stride: 4
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu1"
|
||||
type: "ReLU"
|
||||
bottom: "conv1"
|
||||
top: "conv1"
|
||||
}
|
||||
layer {
|
||||
name: "norm1"
|
||||
type: "LRN"
|
||||
bottom: "conv1"
|
||||
top: "norm1"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool1"
|
||||
type: "Pooling"
|
||||
bottom: "norm1"
|
||||
top: "pool1"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv2"
|
||||
type: "Convolution"
|
||||
bottom: "pool1"
|
||||
top: "conv2"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 2
|
||||
kernel_size: 5
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu2"
|
||||
type: "ReLU"
|
||||
bottom: "conv2"
|
||||
top: "conv2"
|
||||
}
|
||||
layer {
|
||||
name: "norm2"
|
||||
type: "LRN"
|
||||
bottom: "conv2"
|
||||
top: "norm2"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool2"
|
||||
type: "Pooling"
|
||||
bottom: "norm2"
|
||||
top: "pool2"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv3"
|
||||
type: "Convolution"
|
||||
bottom: "pool2"
|
||||
top: "conv3"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu3"
|
||||
type: "ReLU"
|
||||
bottom: "conv3"
|
||||
top: "conv3"
|
||||
}
|
||||
layer {
|
||||
name: "conv4"
|
||||
type: "Convolution"
|
||||
bottom: "conv3"
|
||||
top: "conv4"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu4"
|
||||
type: "ReLU"
|
||||
bottom: "conv4"
|
||||
top: "conv4"
|
||||
}
|
||||
layer {
|
||||
name: "conv5"
|
||||
type: "Convolution"
|
||||
bottom: "conv4"
|
||||
top: "conv5"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu5"
|
||||
type: "ReLU"
|
||||
bottom: "conv5"
|
||||
top: "conv5"
|
||||
}
|
||||
layer {
|
||||
name: "pool5"
|
||||
type: "Pooling"
|
||||
bottom: "conv5"
|
||||
top: "pool5"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc6"
|
||||
type: "InnerProduct"
|
||||
bottom: "pool5"
|
||||
top: "fc6"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 512
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu6"
|
||||
type: "ReLU"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
}
|
||||
layer {
|
||||
name: "drop6"
|
||||
type: "Dropout"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc7"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc6"
|
||||
top: "fc7"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 512
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu7"
|
||||
type: "ReLU"
|
||||
bottom: "fc7"
|
||||
top: "fc7"
|
||||
}
|
||||
layer {
|
||||
name: "drop7"
|
||||
type: "Dropout"
|
||||
bottom: "fc7"
|
||||
top: "fc7"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc8"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc7"
|
||||
top: "fc8"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 196
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "softmax"
|
||||
type: "Softmax"
|
||||
bottom: "fc8"
|
||||
top: "softmax"
|
||||
}
|
BIN
cars/architecture-investigations/fc/2-layers/512/large.png
Normal file
After Width: | Height: | Size: 273 KiB |
@ -0,0 +1,388 @@
|
||||
name: "AlexNet"
|
||||
layer {
|
||||
name: "train-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
stage: "train"
|
||||
}
|
||||
transform_param {
|
||||
mirror: true
|
||||
crop_size: 227
|
||||
}
|
||||
data_param {
|
||||
batch_size: 128
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "val-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
stage: "val"
|
||||
}
|
||||
transform_param {
|
||||
crop_size: 227
|
||||
}
|
||||
data_param {
|
||||
batch_size: 32
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv1"
|
||||
type: "Convolution"
|
||||
bottom: "data"
|
||||
top: "conv1"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 96
|
||||
kernel_size: 11
|
||||
stride: 4
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu1"
|
||||
type: "ReLU"
|
||||
bottom: "conv1"
|
||||
top: "conv1"
|
||||
}
|
||||
layer {
|
||||
name: "norm1"
|
||||
type: "LRN"
|
||||
bottom: "conv1"
|
||||
top: "norm1"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool1"
|
||||
type: "Pooling"
|
||||
bottom: "norm1"
|
||||
top: "pool1"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv2"
|
||||
type: "Convolution"
|
||||
bottom: "pool1"
|
||||
top: "conv2"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 2
|
||||
kernel_size: 5
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu2"
|
||||
type: "ReLU"
|
||||
bottom: "conv2"
|
||||
top: "conv2"
|
||||
}
|
||||
layer {
|
||||
name: "norm2"
|
||||
type: "LRN"
|
||||
bottom: "conv2"
|
||||
top: "norm2"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool2"
|
||||
type: "Pooling"
|
||||
bottom: "norm2"
|
||||
top: "pool2"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv3"
|
||||
type: "Convolution"
|
||||
bottom: "pool2"
|
||||
top: "conv3"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu3"
|
||||
type: "ReLU"
|
||||
bottom: "conv3"
|
||||
top: "conv3"
|
||||
}
|
||||
layer {
|
||||
name: "conv4"
|
||||
type: "Convolution"
|
||||
bottom: "conv3"
|
||||
top: "conv4"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu4"
|
||||
type: "ReLU"
|
||||
bottom: "conv4"
|
||||
top: "conv4"
|
||||
}
|
||||
layer {
|
||||
name: "conv5"
|
||||
type: "Convolution"
|
||||
bottom: "conv4"
|
||||
top: "conv5"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu5"
|
||||
type: "ReLU"
|
||||
bottom: "conv5"
|
||||
top: "conv5"
|
||||
}
|
||||
layer {
|
||||
name: "pool5"
|
||||
type: "Pooling"
|
||||
bottom: "conv5"
|
||||
top: "pool5"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc6"
|
||||
type: "InnerProduct"
|
||||
bottom: "pool5"
|
||||
top: "fc6"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 512
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu6"
|
||||
type: "ReLU"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
}
|
||||
layer {
|
||||
name: "drop6"
|
||||
type: "Dropout"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc7"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc6"
|
||||
top: "fc7"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 512
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu7"
|
||||
type: "ReLU"
|
||||
bottom: "fc7"
|
||||
top: "fc7"
|
||||
}
|
||||
layer {
|
||||
name: "drop7"
|
||||
type: "Dropout"
|
||||
bottom: "fc7"
|
||||
top: "fc7"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc8"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc7"
|
||||
top: "fc8"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "accuracy"
|
||||
type: "Accuracy"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "accuracy"
|
||||
include {
|
||||
stage: "val"
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "loss"
|
||||
type: "SoftmaxWithLoss"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "loss"
|
||||
exclude {
|
||||
stage: "deploy"
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "softmax"
|
||||
type: "Softmax"
|
||||
bottom: "fc8"
|
||||
top: "softmax"
|
||||
include {
|
||||
stage: "deploy"
|
||||
}
|
||||
}
|
1619
cars/architecture-investigations/fc/2-layers/512/pred.csv
Normal file
BIN
cars/architecture-investigations/fc/2-layers/512/small.png
Normal file
After Width: | Height: | Size: 223 KiB |
@ -0,0 +1,14 @@
|
||||
test_iter: 51
|
||||
test_interval: 102
|
||||
base_lr: 0.00999999977648
|
||||
display: 12
|
||||
max_iter: 10200
|
||||
lr_policy: "exp"
|
||||
gamma: 0.999801933765
|
||||
momentum: 0.899999976158
|
||||
weight_decay: 9.99999974738e-05
|
||||
snapshot: 102
|
||||
snapshot_prefix: "snapshot"
|
||||
solver_mode: GPU
|
||||
net: "train_val.prototxt"
|
||||
solver_type: SGD
|
@ -0,0 +1,382 @@
|
||||
layer {
|
||||
name: "train-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
phase: TRAIN
|
||||
}
|
||||
transform_param {
|
||||
mirror: true
|
||||
crop_size: 227
|
||||
mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto"
|
||||
}
|
||||
data_param {
|
||||
source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/train_db"
|
||||
batch_size: 128
|
||||
backend: LMDB
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "val-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
phase: TEST
|
||||
}
|
||||
transform_param {
|
||||
crop_size: 227
|
||||
mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto"
|
||||
}
|
||||
data_param {
|
||||
source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db"
|
||||
batch_size: 32
|
||||
backend: LMDB
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv1"
|
||||
type: "Convolution"
|
||||
bottom: "data"
|
||||
top: "conv1"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 96
|
||||
kernel_size: 11
|
||||
stride: 4
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu1"
|
||||
type: "ReLU"
|
||||
bottom: "conv1"
|
||||
top: "conv1"
|
||||
}
|
||||
layer {
|
||||
name: "norm1"
|
||||
type: "LRN"
|
||||
bottom: "conv1"
|
||||
top: "norm1"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool1"
|
||||
type: "Pooling"
|
||||
bottom: "norm1"
|
||||
top: "pool1"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv2"
|
||||
type: "Convolution"
|
||||
bottom: "pool1"
|
||||
top: "conv2"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 2
|
||||
kernel_size: 5
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu2"
|
||||
type: "ReLU"
|
||||
bottom: "conv2"
|
||||
top: "conv2"
|
||||
}
|
||||
layer {
|
||||
name: "norm2"
|
||||
type: "LRN"
|
||||
bottom: "conv2"
|
||||
top: "norm2"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool2"
|
||||
type: "Pooling"
|
||||
bottom: "norm2"
|
||||
top: "pool2"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv3"
|
||||
type: "Convolution"
|
||||
bottom: "pool2"
|
||||
top: "conv3"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu3"
|
||||
type: "ReLU"
|
||||
bottom: "conv3"
|
||||
top: "conv3"
|
||||
}
|
||||
layer {
|
||||
name: "conv4"
|
||||
type: "Convolution"
|
||||
bottom: "conv3"
|
||||
top: "conv4"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu4"
|
||||
type: "ReLU"
|
||||
bottom: "conv4"
|
||||
top: "conv4"
|
||||
}
|
||||
layer {
|
||||
name: "conv5"
|
||||
type: "Convolution"
|
||||
bottom: "conv4"
|
||||
top: "conv5"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu5"
|
||||
type: "ReLU"
|
||||
bottom: "conv5"
|
||||
top: "conv5"
|
||||
}
|
||||
layer {
|
||||
name: "pool5"
|
||||
type: "Pooling"
|
||||
bottom: "conv5"
|
||||
top: "pool5"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc6"
|
||||
type: "InnerProduct"
|
||||
bottom: "pool5"
|
||||
top: "fc6"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 512
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu6"
|
||||
type: "ReLU"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
}
|
||||
layer {
|
||||
name: "drop6"
|
||||
type: "Dropout"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc7"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc6"
|
||||
top: "fc7"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 512
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu7"
|
||||
type: "ReLU"
|
||||
bottom: "fc7"
|
||||
top: "fc7"
|
||||
}
|
||||
layer {
|
||||
name: "drop7"
|
||||
type: "Dropout"
|
||||
bottom: "fc7"
|
||||
top: "fc7"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc8"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc7"
|
||||
top: "fc8"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 196
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "accuracy"
|
||||
type: "Accuracy"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "accuracy"
|
||||
include {
|
||||
phase: TEST
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "loss"
|
||||
type: "SoftmaxWithLoss"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "loss"
|
||||
}
|
4566
cars/architecture-investigations/fc/2-layers/8192/caffe_output.log
Normal file
197
cars/architecture-investigations/fc/2-layers/8192/conf.csv
Normal file
@ -0,0 +1,341 @@
|
||||
input: "data"
|
||||
input_shape {
|
||||
dim: 1
|
||||
dim: 3
|
||||
dim: 227
|
||||
dim: 227
|
||||
}
|
||||
layer {
|
||||
name: "conv1"
|
||||
type: "Convolution"
|
||||
bottom: "data"
|
||||
top: "conv1"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 96
|
||||
kernel_size: 11
|
||||
stride: 4
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu1"
|
||||
type: "ReLU"
|
||||
bottom: "conv1"
|
||||
top: "conv1"
|
||||
}
|
||||
layer {
|
||||
name: "norm1"
|
||||
type: "LRN"
|
||||
bottom: "conv1"
|
||||
top: "norm1"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool1"
|
||||
type: "Pooling"
|
||||
bottom: "norm1"
|
||||
top: "pool1"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv2"
|
||||
type: "Convolution"
|
||||
bottom: "pool1"
|
||||
top: "conv2"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 2
|
||||
kernel_size: 5
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu2"
|
||||
type: "ReLU"
|
||||
bottom: "conv2"
|
||||
top: "conv2"
|
||||
}
|
||||
layer {
|
||||
name: "norm2"
|
||||
type: "LRN"
|
||||
bottom: "conv2"
|
||||
top: "norm2"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool2"
|
||||
type: "Pooling"
|
||||
bottom: "norm2"
|
||||
top: "pool2"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv3"
|
||||
type: "Convolution"
|
||||
bottom: "pool2"
|
||||
top: "conv3"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu3"
|
||||
type: "ReLU"
|
||||
bottom: "conv3"
|
||||
top: "conv3"
|
||||
}
|
||||
layer {
|
||||
name: "conv4"
|
||||
type: "Convolution"
|
||||
bottom: "conv3"
|
||||
top: "conv4"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu4"
|
||||
type: "ReLU"
|
||||
bottom: "conv4"
|
||||
top: "conv4"
|
||||
}
|
||||
layer {
|
||||
name: "conv5"
|
||||
type: "Convolution"
|
||||
bottom: "conv4"
|
||||
top: "conv5"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu5"
|
||||
type: "ReLU"
|
||||
bottom: "conv5"
|
||||
top: "conv5"
|
||||
}
|
||||
layer {
|
||||
name: "pool5"
|
||||
type: "Pooling"
|
||||
bottom: "conv5"
|
||||
top: "pool5"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc6"
|
||||
type: "InnerProduct"
|
||||
bottom: "pool5"
|
||||
top: "fc6"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 8192
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu6"
|
||||
type: "ReLU"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
}
|
||||
layer {
|
||||
name: "drop6"
|
||||
type: "Dropout"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc7"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc6"
|
||||
top: "fc7"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 8192
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu7"
|
||||
type: "ReLU"
|
||||
bottom: "fc7"
|
||||
top: "fc7"
|
||||
}
|
||||
layer {
|
||||
name: "drop7"
|
||||
type: "Dropout"
|
||||
bottom: "fc7"
|
||||
top: "fc7"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc8"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc7"
|
||||
top: "fc8"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 196
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "softmax"
|
||||
type: "Softmax"
|
||||
bottom: "fc8"
|
||||
top: "softmax"
|
||||
}
|
BIN
cars/architecture-investigations/fc/2-layers/8192/large.png
Normal file
After Width: | Height: | Size: 263 KiB |
@ -0,0 +1,388 @@
|
||||
name: "AlexNet"
|
||||
layer {
|
||||
name: "train-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
stage: "train"
|
||||
}
|
||||
transform_param {
|
||||
mirror: true
|
||||
crop_size: 227
|
||||
}
|
||||
data_param {
|
||||
batch_size: 128
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "val-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
stage: "val"
|
||||
}
|
||||
transform_param {
|
||||
crop_size: 227
|
||||
}
|
||||
data_param {
|
||||
batch_size: 32
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv1"
|
||||
type: "Convolution"
|
||||
bottom: "data"
|
||||
top: "conv1"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 96
|
||||
kernel_size: 11
|
||||
stride: 4
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu1"
|
||||
type: "ReLU"
|
||||
bottom: "conv1"
|
||||
top: "conv1"
|
||||
}
|
||||
layer {
|
||||
name: "norm1"
|
||||
type: "LRN"
|
||||
bottom: "conv1"
|
||||
top: "norm1"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool1"
|
||||
type: "Pooling"
|
||||
bottom: "norm1"
|
||||
top: "pool1"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv2"
|
||||
type: "Convolution"
|
||||
bottom: "pool1"
|
||||
top: "conv2"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 2
|
||||
kernel_size: 5
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu2"
|
||||
type: "ReLU"
|
||||
bottom: "conv2"
|
||||
top: "conv2"
|
||||
}
|
||||
layer {
|
||||
name: "norm2"
|
||||
type: "LRN"
|
||||
bottom: "conv2"
|
||||
top: "norm2"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool2"
|
||||
type: "Pooling"
|
||||
bottom: "norm2"
|
||||
top: "pool2"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv3"
|
||||
type: "Convolution"
|
||||
bottom: "pool2"
|
||||
top: "conv3"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu3"
|
||||
type: "ReLU"
|
||||
bottom: "conv3"
|
||||
top: "conv3"
|
||||
}
|
||||
layer {
|
||||
name: "conv4"
|
||||
type: "Convolution"
|
||||
bottom: "conv3"
|
||||
top: "conv4"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu4"
|
||||
type: "ReLU"
|
||||
bottom: "conv4"
|
||||
top: "conv4"
|
||||
}
|
||||
layer {
|
||||
name: "conv5"
|
||||
type: "Convolution"
|
||||
bottom: "conv4"
|
||||
top: "conv5"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu5"
|
||||
type: "ReLU"
|
||||
bottom: "conv5"
|
||||
top: "conv5"
|
||||
}
|
||||
layer {
|
||||
name: "pool5"
|
||||
type: "Pooling"
|
||||
bottom: "conv5"
|
||||
top: "pool5"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc6"
|
||||
type: "InnerProduct"
|
||||
bottom: "pool5"
|
||||
top: "fc6"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 8192
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu6"
|
||||
type: "ReLU"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
}
|
||||
layer {
|
||||
name: "drop6"
|
||||
type: "Dropout"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc7"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc6"
|
||||
top: "fc7"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 8192
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu7"
|
||||
type: "ReLU"
|
||||
bottom: "fc7"
|
||||
top: "fc7"
|
||||
}
|
||||
layer {
|
||||
name: "drop7"
|
||||
type: "Dropout"
|
||||
bottom: "fc7"
|
||||
top: "fc7"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc8"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc7"
|
||||
top: "fc8"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "accuracy"
|
||||
type: "Accuracy"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "accuracy"
|
||||
include {
|
||||
stage: "val"
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "loss"
|
||||
type: "SoftmaxWithLoss"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "loss"
|
||||
exclude {
|
||||
stage: "deploy"
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "softmax"
|
||||
type: "Softmax"
|
||||
bottom: "fc8"
|
||||
top: "softmax"
|
||||
include {
|
||||
stage: "deploy"
|
||||
}
|
||||
}
|
1619
cars/architecture-investigations/fc/2-layers/8192/pred.csv
Normal file
BIN
cars/architecture-investigations/fc/2-layers/8192/small.png
Normal file
After Width: | Height: | Size: 218 KiB |
@ -0,0 +1,14 @@
|
||||
test_iter: 51
|
||||
test_interval: 102
|
||||
base_lr: 0.00999999977648
|
||||
display: 12
|
||||
max_iter: 10200
|
||||
lr_policy: "exp"
|
||||
gamma: 0.999801933765
|
||||
momentum: 0.899999976158
|
||||
weight_decay: 9.99999974738e-05
|
||||
snapshot: 102
|
||||
snapshot_prefix: "snapshot"
|
||||
solver_mode: GPU
|
||||
net: "train_val.prototxt"
|
||||
solver_type: SGD
|
@ -0,0 +1,382 @@
|
||||
layer {
|
||||
name: "train-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
phase: TRAIN
|
||||
}
|
||||
transform_param {
|
||||
mirror: true
|
||||
crop_size: 227
|
||||
mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto"
|
||||
}
|
||||
data_param {
|
||||
source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/train_db"
|
||||
batch_size: 128
|
||||
backend: LMDB
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "val-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
phase: TEST
|
||||
}
|
||||
transform_param {
|
||||
crop_size: 227
|
||||
mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto"
|
||||
}
|
||||
data_param {
|
||||
source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db"
|
||||
batch_size: 32
|
||||
backend: LMDB
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv1"
|
||||
type: "Convolution"
|
||||
bottom: "data"
|
||||
top: "conv1"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 96
|
||||
kernel_size: 11
|
||||
stride: 4
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu1"
|
||||
type: "ReLU"
|
||||
bottom: "conv1"
|
||||
top: "conv1"
|
||||
}
|
||||
layer {
|
||||
name: "norm1"
|
||||
type: "LRN"
|
||||
bottom: "conv1"
|
||||
top: "norm1"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool1"
|
||||
type: "Pooling"
|
||||
bottom: "norm1"
|
||||
top: "pool1"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv2"
|
||||
type: "Convolution"
|
||||
bottom: "pool1"
|
||||
top: "conv2"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 2
|
||||
kernel_size: 5
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu2"
|
||||
type: "ReLU"
|
||||
bottom: "conv2"
|
||||
top: "conv2"
|
||||
}
|
||||
layer {
|
||||
name: "norm2"
|
||||
type: "LRN"
|
||||
bottom: "conv2"
|
||||
top: "norm2"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool2"
|
||||
type: "Pooling"
|
||||
bottom: "norm2"
|
||||
top: "pool2"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv3"
|
||||
type: "Convolution"
|
||||
bottom: "pool2"
|
||||
top: "conv3"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu3"
|
||||
type: "ReLU"
|
||||
bottom: "conv3"
|
||||
top: "conv3"
|
||||
}
|
||||
layer {
|
||||
name: "conv4"
|
||||
type: "Convolution"
|
||||
bottom: "conv3"
|
||||
top: "conv4"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu4"
|
||||
type: "ReLU"
|
||||
bottom: "conv4"
|
||||
top: "conv4"
|
||||
}
|
||||
layer {
|
||||
name: "conv5"
|
||||
type: "Convolution"
|
||||
bottom: "conv4"
|
||||
top: "conv5"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu5"
|
||||
type: "ReLU"
|
||||
bottom: "conv5"
|
||||
top: "conv5"
|
||||
}
|
||||
layer {
|
||||
name: "pool5"
|
||||
type: "Pooling"
|
||||
bottom: "conv5"
|
||||
top: "pool5"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc6"
|
||||
type: "InnerProduct"
|
||||
bottom: "pool5"
|
||||
top: "fc6"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 8192
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu6"
|
||||
type: "ReLU"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
}
|
||||
layer {
|
||||
name: "drop6"
|
||||
type: "Dropout"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc7"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc6"
|
||||
top: "fc7"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 8192
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu7"
|
||||
type: "ReLU"
|
||||
bottom: "fc7"
|
||||
top: "fc7"
|
||||
}
|
||||
layer {
|
||||
name: "drop7"
|
||||
type: "Dropout"
|
||||
bottom: "fc7"
|
||||
top: "fc7"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc8"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc7"
|
||||
top: "fc8"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 196
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "accuracy"
|
||||
type: "Accuracy"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "accuracy"
|
||||
include {
|
||||
phase: TEST
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "loss"
|
||||
type: "SoftmaxWithLoss"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "loss"
|
||||
}
|
4694
cars/architecture-investigations/fc/3-layers/1024/caffe_output.log
Normal file
197
cars/architecture-investigations/fc/3-layers/1024/conf.csv
Normal file
@ -0,0 +1,381 @@
|
||||
input: "data"
|
||||
input_shape {
|
||||
dim: 1
|
||||
dim: 3
|
||||
dim: 227
|
||||
dim: 227
|
||||
}
|
||||
layer {
|
||||
name: "conv1"
|
||||
type: "Convolution"
|
||||
bottom: "data"
|
||||
top: "conv1"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 96
|
||||
kernel_size: 11
|
||||
stride: 4
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu1"
|
||||
type: "ReLU"
|
||||
bottom: "conv1"
|
||||
top: "conv1"
|
||||
}
|
||||
layer {
|
||||
name: "norm1"
|
||||
type: "LRN"
|
||||
bottom: "conv1"
|
||||
top: "norm1"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool1"
|
||||
type: "Pooling"
|
||||
bottom: "norm1"
|
||||
top: "pool1"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv2"
|
||||
type: "Convolution"
|
||||
bottom: "pool1"
|
||||
top: "conv2"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 2
|
||||
kernel_size: 5
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu2"
|
||||
type: "ReLU"
|
||||
bottom: "conv2"
|
||||
top: "conv2"
|
||||
}
|
||||
layer {
|
||||
name: "norm2"
|
||||
type: "LRN"
|
||||
bottom: "conv2"
|
||||
top: "norm2"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool2"
|
||||
type: "Pooling"
|
||||
bottom: "norm2"
|
||||
top: "pool2"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv3"
|
||||
type: "Convolution"
|
||||
bottom: "pool2"
|
||||
top: "conv3"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu3"
|
||||
type: "ReLU"
|
||||
bottom: "conv3"
|
||||
top: "conv3"
|
||||
}
|
||||
layer {
|
||||
name: "conv4"
|
||||
type: "Convolution"
|
||||
bottom: "conv3"
|
||||
top: "conv4"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu4"
|
||||
type: "ReLU"
|
||||
bottom: "conv4"
|
||||
top: "conv4"
|
||||
}
|
||||
layer {
|
||||
name: "conv5"
|
||||
type: "Convolution"
|
||||
bottom: "conv4"
|
||||
top: "conv5"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu5"
|
||||
type: "ReLU"
|
||||
bottom: "conv5"
|
||||
top: "conv5"
|
||||
}
|
||||
layer {
|
||||
name: "pool5"
|
||||
type: "Pooling"
|
||||
bottom: "conv5"
|
||||
top: "pool5"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc6"
|
||||
type: "InnerProduct"
|
||||
bottom: "pool5"
|
||||
top: "fc6"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 1024
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu6"
|
||||
type: "ReLU"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
}
|
||||
layer {
|
||||
name: "drop6"
|
||||
type: "Dropout"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc7"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc6"
|
||||
top: "fc7"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 1024
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu7"
|
||||
type: "ReLU"
|
||||
bottom: "fc7"
|
||||
top: "fc7"
|
||||
}
|
||||
layer {
|
||||
name: "drop7"
|
||||
type: "Dropout"
|
||||
bottom: "fc7"
|
||||
top: "fc7"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc7.5"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc7"
|
||||
top: "fc7.5"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 1024
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu7.5"
|
||||
type: "ReLU"
|
||||
bottom: "fc7.5"
|
||||
top: "fc7.5"
|
||||
}
|
||||
layer {
|
||||
name: "drop7.5"
|
||||
type: "Dropout"
|
||||
bottom: "fc7.5"
|
||||
top: "fc7.5"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc8"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc7.5"
|
||||
top: "fc8"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 196
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "softmax"
|
||||
type: "Softmax"
|
||||
bottom: "fc8"
|
||||
top: "softmax"
|
||||
}
|
BIN
cars/architecture-investigations/fc/3-layers/1024/large.png
Normal file
After Width: | Height: | Size: 263 KiB |
@ -0,0 +1,428 @@
|
||||
name: "AlexNet"
|
||||
layer {
|
||||
name: "train-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
stage: "train"
|
||||
}
|
||||
transform_param {
|
||||
mirror: true
|
||||
crop_size: 227
|
||||
}
|
||||
data_param {
|
||||
batch_size: 128
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "val-data"
|
||||
type: "Data"
|
||||
top: "data"
|
||||
top: "label"
|
||||
include {
|
||||
stage: "val"
|
||||
}
|
||||
transform_param {
|
||||
crop_size: 227
|
||||
}
|
||||
data_param {
|
||||
batch_size: 32
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv1"
|
||||
type: "Convolution"
|
||||
bottom: "data"
|
||||
top: "conv1"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 96
|
||||
kernel_size: 11
|
||||
stride: 4
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu1"
|
||||
type: "ReLU"
|
||||
bottom: "conv1"
|
||||
top: "conv1"
|
||||
}
|
||||
layer {
|
||||
name: "norm1"
|
||||
type: "LRN"
|
||||
bottom: "conv1"
|
||||
top: "norm1"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool1"
|
||||
type: "Pooling"
|
||||
bottom: "norm1"
|
||||
top: "pool1"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv2"
|
||||
type: "Convolution"
|
||||
bottom: "pool1"
|
||||
top: "conv2"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 2
|
||||
kernel_size: 5
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu2"
|
||||
type: "ReLU"
|
||||
bottom: "conv2"
|
||||
top: "conv2"
|
||||
}
|
||||
layer {
|
||||
name: "norm2"
|
||||
type: "LRN"
|
||||
bottom: "conv2"
|
||||
top: "norm2"
|
||||
lrn_param {
|
||||
local_size: 5
|
||||
alpha: 9.99999974738e-05
|
||||
beta: 0.75
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool2"
|
||||
type: "Pooling"
|
||||
bottom: "norm2"
|
||||
top: "pool2"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv3"
|
||||
type: "Convolution"
|
||||
bottom: "pool2"
|
||||
top: "conv3"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu3"
|
||||
type: "ReLU"
|
||||
bottom: "conv3"
|
||||
top: "conv3"
|
||||
}
|
||||
layer {
|
||||
name: "conv4"
|
||||
type: "Convolution"
|
||||
bottom: "conv3"
|
||||
top: "conv4"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 384
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu4"
|
||||
type: "ReLU"
|
||||
bottom: "conv4"
|
||||
top: "conv4"
|
||||
}
|
||||
layer {
|
||||
name: "conv5"
|
||||
type: "Convolution"
|
||||
bottom: "conv4"
|
||||
top: "conv5"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 256
|
||||
pad: 1
|
||||
kernel_size: 3
|
||||
group: 2
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu5"
|
||||
type: "ReLU"
|
||||
bottom: "conv5"
|
||||
top: "conv5"
|
||||
}
|
||||
layer {
|
||||
name: "pool5"
|
||||
type: "Pooling"
|
||||
bottom: "conv5"
|
||||
top: "pool5"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc6"
|
||||
type: "InnerProduct"
|
||||
bottom: "pool5"
|
||||
top: "fc6"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 1024
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu6"
|
||||
type: "ReLU"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
}
|
||||
layer {
|
||||
name: "drop6"
|
||||
type: "Dropout"
|
||||
bottom: "fc6"
|
||||
top: "fc6"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc7"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc6"
|
||||
top: "fc7"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 1024
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu7"
|
||||
type: "ReLU"
|
||||
bottom: "fc7"
|
||||
top: "fc7"
|
||||
}
|
||||
layer {
|
||||
name: "drop7"
|
||||
type: "Dropout"
|
||||
bottom: "fc7"
|
||||
top: "fc7"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc7.5"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc7"
|
||||
top: "fc7.5"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 1024
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00499999988824
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.10000000149
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu7.5"
|
||||
type: "ReLU"
|
||||
bottom: "fc7.5"
|
||||
top: "fc7.5"
|
||||
}
|
||||
layer {
|
||||
name: "drop7.5"
|
||||
type: "Dropout"
|
||||
bottom: "fc7.5"
|
||||
top: "fc7.5"
|
||||
dropout_param {
|
||||
dropout_ratio: 0.5
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "fc8"
|
||||
type: "InnerProduct"
|
||||
bottom: "fc7.5"
|
||||
top: "fc8"
|
||||
param {
|
||||
lr_mult: 1.0
|
||||
decay_mult: 1.0
|
||||
}
|
||||
param {
|
||||
lr_mult: 2.0
|
||||
decay_mult: 0.0
|
||||
}
|
||||
inner_product_param {
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.00999999977648
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
value: 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "accuracy"
|
||||
type: "Accuracy"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "accuracy"
|
||||
include {
|
||||
stage: "val"
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "loss"
|
||||
type: "SoftmaxWithLoss"
|
||||
bottom: "fc8"
|
||||
bottom: "label"
|
||||
top: "loss"
|
||||
exclude {
|
||||
stage: "deploy"
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "softmax"
|
||||
type: "Softmax"
|
||||
bottom: "fc8"
|
||||
top: "softmax"
|
||||
include {
|
||||
stage: "deploy"
|
||||
}
|
||||
}
|