75 lines
1.5 KiB
Plaintext
75 lines
1.5 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 1,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"import numpy as np\n",
|
||
|
"import matplotlib as mpl\n",
|
||
|
"from matplotlib import pyplot as plt"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"# Different Train/Validation/Test Splits\n",
|
||
|
"\n",
|
||
|
"## Index\n",
|
||
|
"0. train prop\n",
|
||
|
"1. val prop\n",
|
||
|
"2. test prop\n",
|
||
|
"3. top-1 accuracy\n",
|
||
|
"4. top-5 accuracy\n",
|
||
|
"5. last val loss\n",
|
||
|
"6. last val accuracy"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 2,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"split_results = np.array([\n",
|
||
|
" [50, 5, 45, 8.14, 20.7, 5.77, 8.29],\n",
|
||
|
" [50, 25, 25, 7.91, 20.9, 5.59, 8.41],\n",
|
||
|
" [70, 15, 15, 15.81, 34.62, 4.92, 16.82],\n",
|
||
|
" [80, 10, 10, 20.94, 44.1, 4.39, 24.45],\n",
|
||
|
" [90, 5, 5, 20.62, 45.19, 4.17, 30.29]\n",
|
||
|
"])"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": []
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.9.2"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 4
|
||
|
}
|